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Abstract

Monte Carlo evidence has made it clear that asymptotic tests based on generalized method
of moments (GMM) estimation have disappointing size. The problem is exacerbated when
the moment conditions are serially correlated. Several block bootstrap techniques have been
proposed to correct the problem, including Hall and Horowitz (1996) and Inoue and Shintani
(2006). We propose an empirical likelihood block bootstrap procedure to improve inference
where models are characterized by nonlinear moment conditions that are serially correlated of
possibly infinite order. Combining the ideas of Kitamura (1997) and Brown and Newey (2002),
the parameters of a model are initially estimated by GMM which are then used to compute the
empirical likelihood probability weights of the blocks of moment conditions. The probability
weights serve as the multinomial distribution used in resampling. The first-order asymptotic
validity of the proposed procedure is proven, and a series of Monte Carlo experiments show it

may improve test sizes over conventional block bootstrapping.
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1 Introduction

Generalized method of moments (GMM, Hansen (1982)) has been an essential tool for econo-
metricians, partly because of its straightforward application and fairly weak restrictions on the data
generating process. GMM estimation is widely used in applied economics to estimate and test as-
set pricing models (Hansen and Singleton (1982), Kocherlakota (1990), Altonji and Segal (1996)),
business cycle models (Christiano and Haan (1996)), models that use longitudinal data (Arellano
and Bond (1991), Ahn and Schmidt (1995)), as well as stochastic dynamic general equilibrium
models (Ruge-Murcia (2007)).

Despite the widespread use of GMM, there is ample evidence that the finite sample properties for
inference have been disappointing (e.g. the 1996 special issue of JBES); t-tests on parameters and
Hansen’s test of overidentifying restrictions (J-test, or Sargan test) for model specification perform
poorly and tend to be biased away from the null hypothesis. The situation is especially severe for
dependent data (see Clark (1996)). Consequently, inferences based on asymptotic critical values
can often be very misleading. From an applied perspective, this means that theoretical models may

be more frequently rejected than necessary due to poor inference rather than poor modeling.

Various attempts have been made to address finite sample size problems while allowing for de-
pendence in the data. Berkowitz and Kilian (2000), Ruiz and Pascual (2002), and Hérdle, Horowitz,
and Kreiss (2003) review some of the techniques developed for bootstrapping time-series models,
including financial time series. Lahiri (2003) is an excellent monograph on resampling methods
for dependent data. Hall and Horowitz (1996) apply the block bootstrap approach to GMM and es-
tablish the asymptotic refinements of their procedure when the moment conditions are uncorrelated
after finitely many lags. Andrews (2002) provides similar results for the k-step bootstrap procedure
first proposed by Davidson and Mackinnon (1999).

Limited Monte Carlo results indicate the block-bootstrap has some success at improving in-
ference in GMM. More recent papers by Zvingelis (2002) and Inoue and Shintani (2006) attempt
refinements to Hall and Horowitz (1996) and Andrews (2002). The main requirement of these ear-
lier papers is that the data is serially uncorrelated after a finite number of lags. In contrast, Inoue
and Shintani (2006) prove that the block bootstrap provides asymptotic refinements for the GMM
estimator of linear models when the moment conditions are serially correlated of possibly infinite
order. Zvingelis (2002) derives the optimal block length for coverage probabilities of normalized

and Studentized statistics.

A complementary line of research has examined empirical likelihood (EL) estimators, or their

generalization (GEL). Rather than try to improve the finite properties of the GMM estimator di-



rectly, researchers such as Kitamura (1997), Kitamura and Stutzer (1997), Smith (1997), and Im-
bens, Spady, and Johnson (1998) have proposed and/or tested new statistics, ones based on GEL-
estimators.! A GEL estimator minimizes the distance between the empirical density and a synthetic
density subject to the restriction that all the moment conditions are satisfied. GEL estimators have
the same first-order asymptotic properties as GMM but have smaller bias than GMM in finite sam-
ples. Furthermore, these biases do not increase in the number of overidentifying restrictions in the
case of GEL. Newey and Smith (2004) provide theoretical evidence of the higher-order efficiency of
GEL estimators. Gregory, Lamarche, and Smith (2002) have shown, however, that these alternatives

to GMM do not solve the over-rejection problem in finite samples.

Brown and Newey (2002) introduce the empirical likelihood bootstrap technique for iid data.
Rather than resampling from the empirical distribution function, the empirical likelihood bootstrap
resamples from a multinomial distribution function, where the probability weights are computed by
empirical likelihood. Brown and Newey (2002) show that empirical likelihood bootstrap provides an
asymptotically efficient estimator of the distribution of ¢ ratios and overidentification test-statistics.
The authors Monte Carlo design features a dynamic panel model with persistence and iid error
structure. The results suggest that the empirical likelihood bootstrap is more accurate than the

asymptotic approximation, and not dis-similar to the Hall and Horowitz (1996) bootstrap.

In this paper, the approach of Brown and Newey (2002) is extended to the case of dependent
data, using the empirical likelihood (Owen (1990)). A number of researchers have implemented
this approach with some success in linear time-series models (Ramalho (2006)) as well as dynamic
panel data models (Gonzalez (2007)). With serially correlated data the idea is that parameters of
a model are initially estimated by GMM and then used to compute the empirical likelihood prob-
ability weights of the blocks of moment conditions, which serve as the multinomial distribution
for resampling. In this paper the first-order asymptotic validity of the proposed empirical likeli-
hood block bootstrap is proven using the results in Gongalves and White (2004). We report on the
finite-sample properties of t-ratios and overidentification test-statistics. A series of Monte Carlo
experiments show that the empirical likelihood block bootstrap can reduce size distortions consid-
erably and improve test sizes over first-order asymptotic theory and frequently outperforms con-
ventional block bootstrapping approaches.> Furthermore, the empirical likelihood block bootstrap
does not require solving the difficult saddle point problem associated with GEL estimators. This is

because estimation of the probability weights can be conducted by plugging-in first-stage GMM es-

ISee Kitamura (2007) for a review of recent research on empirical likelihood methods.

2In addition to bootstrapping using empirical likelihood estimated weights it would seem natural to consider subsam-
pling using the same weights. Subsampling (Politis and Romano (1994), Politis, Romano, and Wolf (1999), and Hong
and Scaillet (2006)) is an alternative to bootstrapping where each block is treated as it’s own series and test-statistics are
calculated for each sub-series. This is left as future work.



timates. Difficulties with solving the saddle point problem is a common argument amongst applied

researchers for not switching from GMM to EL, even though the latter is higher-order efficient.

The paper is organized as follows. Section 2 provides an overview of GMM and EL. Section
3 presents a discussion of how resampling methods might improve inference in GMM. Section
4 presents the asymptotic results. Section 5 presents the Monte Carlo design for both linear and
nonlinear models. Section 6 concludes. The technical assumption and proofs are collected at the

end of the paper in the mathematical appendix.

2 Overview of GMM and GEL

Let X, € R¥,t = 1,...n, be a set of observations from a stochastic sequence. Suppose for some

true parameter value 8y (p x 1) the following moment conditions (m equations) hold and p <m < n:
E [g(X;,60)] =0, (1)

where g : R¥ x ® — R”. The GMM estimator is defined as:

6 =argminQ,(0), 0,(0)= <n_1 ig(X,,G)) W, (n_l ig(X,,G)) ) )
=1 t=1

where the weighting matrix W, —, W. Hansen (1982) shows that the GMM estimator 0 is consistent
and asymptotically normally distributed subject to some regularity conditions. The elements of
{g(X;,0)} and {Vg(x,0)} are assumed to be near epoch dependent (NED) on the ai-mixing sequence
{V;} of size —1 uniformly on (®,p) where p is any convenient norm on R”. ||x||, denotes the L,

norm (E|X,|?)'/?. For a (m x k) matrix x, let |x| denote the 1-norm of x, so |x| = ¥, Z'jzl |xi]-

Define ¥ = limnﬂmvar(n’l/ 2y"  g(X;,80)). The standard kernel estimate of ¥ is:

n h “
h=—n m

where k(-) isakernel and I'(h,0) =n~' Y7, . | g(X;,0)8(X;44,0)' forh >0and n' Y"1 g(X;,0)g(X,—,0)’

for h < 0. It is known that S,,(8) — pif 60— » 80 under weak conditions on the kernel and band-

width; see de Jong and Davidson (2000).

The optimal weighting matrix is given by S,(6)

! with & — p 80. When the optimal weighting

matrix is used, the asymptotic covariance matrix of 8 is (G’'2'G) !, where G =1lim, . E(n~ ' ¥, Vg(X;,00))



with Vg(x,0)=0g(x,0)/06'.

In terms of testing for model misspecification, the most popular test is Hansen’s J-test for overi-
dentifying restrictions:
I = Kn(en),Kn(en) —d Xm—r» “4)

where .
Ki(8) =8, '*n 12 Y g(%:,8),
=1

and S, is a consistent estimate of X. Let 0, denote the rth element of 6, and let 6, denote the rth
element of 0y. The t-statistic for testing the null hypothesis Hy : 6, = 0y, is:
\/ﬁ (énr - eOr)

an:(,\si _)dN(Oal)y (5)

where 8,,, is the rth element of 8, and 6,21, is a consistent estimate of the asymptotic variance of 0,

Empirical Likelihood (EL) estimation has some history in the statistical literature but has only
recently been explored by econometricians. One attractive feature is that while its first-order asymp-
totic properties are the same as GMM, there is an improvement for EL at the second-order (see Qin
and Lawless (1994) and Newey and Smith (2004)). For time-series models see Anatolyev (2005).
This suggests that there might be some gain for EL over GMM in finite sample performance. At
present, limited Monte Carlo evidence (see Gregory, Lamarche, and Smith (2002)) has provided

mixed results.

The idea of EL is to use likelihood methods for model estimation and inference without having
to choose a specific parametric family or probability densities. The parameters are estimated by
minimizing the distance between the empirical density and a density that identically satisfies all of
the moment conditions. The main advantages over GMM are that it is invariant to linear transforma-
tions of the moment functions and does not require the calculation of the optimal weighting matrix
for asymptotic efficiency (although smoothing or blocking of the moment condition is necessary for
dependent data). The main disadvantage is that it is computationally more demanding than GMM

in that a saddle point problem needs to be solved.

The Generalize Empirical Likelihood Estimator solves the following Lagrangian:

maxL — % Y h()—uf
=1

_.
I\ agE
L

n,—l)—w/ang(x,,e). (0)
t=1



Solving for m; gives
__ (¥8(x,0))
" Em(¥g(x.8))’

In the case of EL, i(-) = log(m;). The presence of serially correlated observations necessitates a

hy(v) = oh(v)/ov. @)

modification of equation (6). Kitamura and Stutzer (1997) address the data dependency problem
by smoothing the moment conditions. Anatolyev (2005) provides conditions on the amount of
smoothing necessary for the bias of the GEL estimator to be less than the GMM estimator. Kitamura
(1997) and Bravo (2005) address serial correlation in the moment conditions by using averages

across blocks of data.

3 Improving Inference: Resampling Methods

Under the assumption of finite autocorrelation of the moment conditions, Hall and Horowitz
(1996) show that block bootstrapping provides asymptotic refinements to the critical values of t-
tests and Hansen’s J-test. A small Monte Carlo experiment, consisting of two nonlinear moment
conditions and one parameter, is used to show that the block bootstrap usually reduces the errors in

level from the critical values based on first-order asymptotic theory.?

3.1 The Block Bootstrap

The bootstrap amounts to treating the estimation data as if they were the population and carry-
ing a Monte Carlo in which bootstrap data is generated by resampling the estimation data. If the
estimation data is serially correlated, then blocks of data are resampled and the blocks are treated
as the iid sample. Operationally one needs to choose a block size when implementing the block-
bootstrap. Hérdle, Horowitz, and Kreiss (2003) point out that the optimal block length depends on
the objective of bootstrapping. That is, the block length depends on whether or not one is interested
in bootstrapping one-sided or two-sided tests or whether one is concerned with estimating a distri-
bution function. Among others, Zvingelis (2002) solves for optimal block lengths given different
scenarios. Practically, the optimal block lengths for each different hypothesis test are unlikely to be
implemented since practitioner’s are interested in a variety of problems across various hypotheses.

Experimentation is done with fixed block lengths as well as data-dependent methods.

We implement two forms of the block bootstrap. The first approach implements the overlapping
bootstrap (MBB, Kiinsch (1989)). Let b be the number of blocks and ¢ the block length, such that

3This paper follows this design in the Monte Carlo experiments and also includes cases with persistence, heteroscedas-
ticity, and asymmetry in the moment conditions.



n = bl. The ith overlapping block is X; = {X;,...,Xis¢_1}, i =1,...,n — £+ 1. The MBB resample
is {X;/ Y, ={X/,....X; }, where X ~ iid (X, ...,Xn,gﬂ). The GMM estimator is therefore:

0)/p5 = argmin QﬁBB,n(e)a
Kk — * * ! *k — * *
MBB,n(e) = (” 12?:18 (X; 79)) W, (" 1):?:1(? (X 79))7

where g*(X",0) = g(X;",8) —n~'Y"_, g(X;,0,) and W* is a weighting matrix. That is, given a
weighting matrix W, the GMM estimator that minimizes the quadratic form of the demeaned

block-resampled moment conditions is 63755.

Hall and Horowitz (1996) implement the nonoverlapping block bootstrap (NBB, Carlstein (1986)).
This approach is also considered (in addition to the MBB). Let b be the number of blocks and ¢ the
block length, and assume b¢ = n. We resample b blocks with replacement from {X;:i=1,...,b}
where X; = (X(i—1)e+1,- -, X(i=1)¢4¢)- The NBB resample is {X;*}/__,. The NBB version of the GMM

problem is identical to the MBB version, except for the way one resamples the data.

As shown in Gongalves and White (2004) (hereafter GW04), because the resampled b blocks
are (conditionally) iid, the bootstrap version of the long-run autocovariance matrix estimate takes
the form (cf. equation (3.1) of GW04):

/
S, (07) =1tb IZ <£_ Zg (i— 1£+t7e** ) ( Zg (i— 1z+we**)> ) ®)

where 8** denotes either 837z, or 855,. The optimal weighting matrix is given by (S3*(8*))~!,
where 8" is the first-stage MBB/NBB estimator. The bootstrap version of the J-statistic, Jvis,, and
INBB 18 defined analogously to J, but using (S:(8))~1/2 and n= 12 Y| g*(X/,0).

Note that in Hall and Horowitz (1996), the recentering of the sample moment condition is nec-
essary in order to establish the asymptotic refinements of the bootstrap. This is because in general
there is no 0 such that E*g(x,0) = 0 when there are more moments than parameters and the re-
sampling schemes must impose the null hypothesis. Recentering is not necessary for establishing
the first-order validity of the bootstrap version of 0, (cf. Hahn (1996)), but is necessary for the
first-order validity of the bootstrap J-test.

Both bootstrap approaches are considered because there is little known about the finite sample
properties of either method. It is, however, known that the bias and variance of a block bootstrap
estimator depends on the block length (Hall, Horowitz, and Jing (1992)), and that the MBB is more
efficient than the NBB in estimating the variance (Lahiri (1999)).



3.2 Empirical Likelihood Bootstrap

In this section we develop the empirical likelihood approach to estimating time-series models.

Two cases are considered: (i) the overlapping empirical likelihood block bootstrap (EMB), and (ii)

the non-overlapping empirical likelihood block bootstrap (ENB). The procedure for implementing

the empirical block bootstrap is straightforward and outlined in Section 7.

3.21 EMB

First consider the overlapping bootstrap. Let N = n— ¢+ 1 be the total number of overlapping

blocks. Define the ith overlapping block of the sample moment as (° stands for “overlapping”):

¢
T0(0)=¢" Y e(Xiyi-1,8), i=1,...,N,

t=1

and the Lagrangian as:

Mz

i=1

L= ilog(nf’) +u < nf’) NVZTE”T“
i=1

It is known that the solution for the probability weights are given by:
o1 1
TN \Trp(eyTe(e) )

ar§max Z log(1+YT°(8

where

®

Solving out the Lagrange multipliers and the coefficients simultaneously requires solving a dif-

ficult saddle point problem outlined in Kitamura (1997). Instead, one can use the GMM estimate

of 0 to compute 7Y and attach these weights to the bootstrapped (blocks of) samples. Given the

GMM estimate 6, compute y’(8), which is a much smaller dimensional problem. Then solve for the

empirical probability weights:

(10)



which satisfy the moment condition Y, #¢7,°(8) = 0. The EMB version of 8 is defined as:

0355 = argmin Q;ijBB,n(e)a
[O* T 0% !y % — £O0% 0%
QX/IBB,n(e) = (bilzleNni T, (9)) WhigB (b IZ?:ani T, (9)),

where Wyjpp , is a weighting matrix and {#{*7,”*(0)} are b iid samples (with replacement) from
{#¢T°(0) : j = 1,...,N}. The multiplicative numbers 5~! and N are included so that the order of
Q}155.,(6) mimics that of Q,,(6). Note that E*&2*7,7*(6) = N~ 'YX | #¢7°(6) = 0.

The long-run autocovariance matrix estimator for EMB takes the form:

b b
Sissa(8) = (b~' Y (AT (8)) (NAY'T*(8)) = (o™ 'N* Y &7 T (O)R7T*(8), (1)

i=1 i=1
and the second-stage (optimal) weighting matrix is given by S}{,,BBJ,(QLBB)”, where 875 is the
first-stage EMB estimator. The overlapping block Wald tests are based on the long-run autocovari-

ance matrix Sy/pp ,(0). The EMB version of the J-statistic, Jypp , is defined analogously to J, but
using (SX/IBB,n(éX/IBB))_m and n= /2~ Y| NRYT(6).

3.2.2 ENB

The ENB uses b non-overlapping blocks rather than overlapping blocks. The ith non-overlapping

block is defined as: ,

Ti(e):‘e_lzg(x(ifl)#kt?e)v i:1,...,b,

t=1

and the Lagrange multiplier and empirical probability weights are given by:

A~ b " 1 1
0) = argmax log(1+YT;(0)), fAi=-(—FfF]. 12
¥(®) %eAn(é)i:1 e(1+77(0)) b <1+Y(9)’Ti( )> (2

D>

The ENB estimator is defined as:
b ! b
Oypp = argmin Q}kVBB,n(e)v Q;:/BB,n(e) = ZW?E*(G) WﬁBB,n ZRTT,*(G) )
where Wyp , is a weighting matrix. The long-run autocovariance matrix estimator for ENB is:

b
(bR T;(8)) (bR T (8)) = (b ) & T (B)RT;"(8)', (13)
1 i=1

e

Snppa(0) =0b7"

1



and the optimal weighting matrix is given by Sypp ,(0kps) "', Where 85y is the first-stage ENB
estimator. The non-overlapping block Wald tests are based on the long-run autocovariance matrix,

Sypp.(0). The ENB version of the J-statistic, Jypp ,, is defined analogously to Jypp ,-

4 Consistency of the bootstrap-based inference

The following lemmas establish the consistency of the bootstrap-based inference. The proofs are
based on the results in Gongalves and White (2004) and hereafter referred to as GW04. As in GW04,
let P denote the probability measure that governs the behavior of the original time-series and let P*
be the probability measure induced by bootstrapping. For a bootstrap statistic 7," we write 7, — 0
prob-P*, prob-P (or 7, — p+ p 0) if for any € > 0 and any & > 0,lim, ... P[P*[|T}| > €] > §] = 0. Also
following GW04 we use the notation x, — 4+ x prob-P when weak convergence under P* occurs in

a set with probability converging to one.

Lemma 1 Suppose Assumption A in Appendix hold. Then & — 6y —p 0. If also £ — o and { =
o(n), then 0}/ —-0 —pep 0. If also Assumption B in Appendix hold and { = o(n'/2=1/"), then
OIT/IBB - é —PpP*P 0.

Lemma 2 Suppose Assumption A in Appendix hold, { — oo, and ¢ = o(n). Then 03z — 6 —pep0.
If also £ = o(n"=2/20=1) then %5 — 8 —p-p 0. Note that £ must satisfy £ = o(n'/?) because
(r—=2)/2(r—1)<1/2.

If we compare conditions on ¢, the condition with the NBB is slightly weaker because (r—2)/2(r —
)=1/2—1/2(r—1)and 2(r—1) > r.

Lemma 3 Let Assumptions A and B in Appendix hold. If { — oo, £ =0(n'/>~1/"), and W;*, Wyipg.n — PP
W, then for any € > 0, Pr{sup, g, |P*[v/n(8}z5 — 0) < x] — P[\/n(8 —8p) < x]| > €} — 0 and
Pr{supczs [P V(85555 —8) < x| — Plyn(B—80) < ]| > e} — 0.

Lemma 4 Let Assumptions A and B in Appendix hold. If { — oo, £ = o(n"=2/2=1) "and
W, Wygp,, —p-p W, then for any € > 0, Pr{sup,.g, |P*[v/n(8ypp — ) <x] — P[y/n(6—8g) <
x| > €} — 0 and Pr{sup,cp, |P*[va(8355 — 0) < 2] — P[y/n(6 —80) <x]| > €} — 0.

Lemma 5 Let Assumptions A and B in Appendix hold. Assume S, —p X. If { — oo and ¢ =

o(n'/>=1/")  then the Wald statistic converges to Xg in distribution J, —4 X,zwp, and Jyigg ns INBB ns

InBBa> INBBN —d X2 p prob-P. Therefore, the bootstrap inference is consistent.

10



S Monte Carlo Experiments

In this section, a comparison of the finite sample performance differences of the standard block
bootstrapping approaches to the empirical likelihood block bootstrap approaches is undertaken in a
number of Monte Carlo experiments. The Monte Carlo design includes both linear and nonlinear
models. For each experiment we report actual and nominal size at the 1, 5, and 10 per cent level for
the ¢-test and J-test. Parameter settings are deliberately chosen to illustrate the most challenging size
problems. There are sample sizes: 100, 250, and 1000. Each experiment has 2000 replications and
499 bootstrap samples. This number of bootstrap samples does not lead to appreciable distortions

in size for any of the experiments.

5.1 Case I: Linear models
5.1.1 Symmetric Errors

Consider the same linear process as Inoue and Shintani (2006):
Vi =01+0x;+u forr=1,..T, (14)

where (01,0,) = (0,0), u; = pus—1 + €1, and x; = px;— + €. The error structure, € = (€,¢€;)
are uncorrelated iid normal processes with mean 0 and variance 1. The approach is instrumental
variable estimation of 8; and 6, with instruments z; = (1 x; x;—1 x;—2). There are two overidentifying
restrictions. The null hypothesis being tested is: H, : 8, = 0. The statistics based on the GMM
estimator are Studentized using a Bartlett kernel applied to pre-whitened series (see Andrews and
Monahan (1992)). The bootstrap sample is not smoothed since the b blocks are iid. Both the non-

overlapping block bootstrap and the overlapping block bootstrap are considered in the experiment.

Results are reported in Table 1. The amount of dependence in the moment conditions is rela-
tively high, p = 0.9. The block length is set equal to the lag window in the HAC estimator, which
is chosen using a data-dependent method (Newey and West (1994)). One immediate observation is
that the asymptotic test-statistics severely over-reject the true null hypothesis. For example, with
100 observations the actual level for a 10% ¢-test is 42.25%. The actual level of the J-test is closer
to the nominal level, although there is still over-rejection. The block bootstrap, with block size
averaging from 1.96 for 100 observations to 4.48 for 1,000 observations, reduces the amount of
over-rejection of the 7-test substantially. The greatest improvements for the ¢-test are with the stan-
dard bootstrap. For the J-test the empirical likelihood bootstrap produces actual size much closer to

the nominal size than the alternatives. Interestingly, the overlapping bootstrap has worse size than

11



the non-overlapping block bootstrap for the z-test.

5.1.2 Heteroscedastic Errors

The subsequent DGP is the same as in the previous section with the addition of conditional
heteroscedasticity, modeled as a GARCH(1,1). The DGP is:

yt = 91 —i—ezxt —I—Gtu, fOI‘ 1= 1,...]“7 (15)

where (81,6,) = (0,0), x; = 0.75x,_1 + €1, and u, ~ N(0,6;). 6> = 0.0001 +0.662 | +0.3¢3, ,

and € ~ N(0,1). The unconditional variance is 1. The instrument set is z; = [L x; x;—1 X;—2].

Results with 2,000 replications and 499 bootstrap samples are presented in Table 2. There are
three sample sizes: 100, 250, and 1000. The actual size of the asymptotic tests are close to the
nominal size for sample size 250 and greater. The moving block bootstrap tests have good size
and the empirical likelihood bootstrap performs best out of the bootstrap procedures. Using the
standard block bootstrap actually leads to more severe under-rejection of the true null hypothesis

than the asymptotic tests.

5.2 Case II: Nonlinear Models

Two experiments are consider. First the chi-squared experiment from Imbens, Spady, and John-
son (1998). Second, the asset pricing DGP outlined in Hall and Horowitz (1996) and used by
Gregory, Lamarche, and Smith (2002). Imbens, Spady, and Johnson (1998) also consider this DGP.
In addition this section looks at the empirical likelihood bootstrap in a framework with dependent
data. It is the case of nonlinear models where the asymptotic 7-test and J-test tend to severely

over-reject.

5.2.1 Asymmetric Errors

First consider a model with Chi-squared moments. Imbens, Spady, and Johnson (1998) provide
evidence that average moment tests like the J-test can substantially over-reject a true null hypothesis
under a DGP with Chi-squared moments. The authors find that tests based on the exponential tilting

parameter perform substantially better.

The moment vector is:
8(X,,01) = (X, —0; X>—67—20;)"

12



The parameter 0 is estimated using the two moments.

Results for 2,000 replications and 499 bootstrap samples are presented in Table 3. There is se-
vere over-rejection of the true null hypothesis when using the asymptotic distribution. The bootstrap
procedures correct for this over-rejection; the empirical likelihood bootstrap performs very well for
the 7-tests. For small sample sizes the standard and empirical likelihood bootstrap both outperform

the asymptotic approximation but there is still is an over-rejection.

5.2.2 Asset Pricing Model: Environment

Finally consider an asset pricing model with the following moment conditions.*:

Elexp(u—0(x+z)+3z)—1]=0, Ez[exp(u—06(x+2z)+3z)—1]=0.

It is assumed that

logx; = plogx;—1 + 1/ (1-p?)ew, z=pz1+ \/ (1-p?)ey,

where €, and €, are independent normal with mean 0 and variance 0.16. In the experiment p = 0.6.

Results for 2,000 replications and 499 bootstrap samples are presented in Table 4. Again, the
asymptotic tests severely over-reject the true null hypothesis. The bootstrap procedures produce
tests with reasonable size, especially for the z-tests. As was the case in the model with asymmetric

errors, the empirical likelihood bootstrap performs best.

6 Conclusion

This paper extends the ideas put forth by Brown and Newey (2002) to bootstrap test-statistics
based on empirical likelihood. Where Brown and Newey (2002) consider bootstrapping in an iid
context, this paper provides a proof of the first-order asymptotic validity of empirical likelihood
block bootstrapping in the context of dependent data. Given the test-statistics considered, the size
distortions of those tests based on the asymptotic distribution are severe, especially in the case of
nonlinear moment conditions and substantial serial correlation. The empirical likelihood bootstrap
largely corrects for these size distortions and produces promising results. This is especially true

when the regression errors are non-spherical. Two possible avenues for future research include

4Derivation of the example can be found in Gregory, Lamarche, and Smith (2002).
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combining subsampling methods with empirical likelihood probability weights and establishing

higher order improvements for the ENB and EMB.

7 Implementing the Block Bootstrap

The procedure for implementing the GMM overlapping (MBB) and empirical likelihood (EMB)
bootstrap procedures are outlined below. The procedure is similar for the non-overlapping bootstrap.

1. Given the random sample (X1, ..., X,), calculate 8 using 2-stage GMM

2. For EMB calculate ft¢ using equation (10)

3a. For EMB sample with replacement from {fc;’T]"(é) cj=1,...,N}

3b. For MBB uniformly sample with replacement to get {X*}"_, = (Xi,...,X})
4a. For EMB calculate the J-statistic (Jypp ,) and t-statistic (7,,)

4b. For MBB calculate J-statistic (Jy/gp ,) and t-statistic (7,,;"

5. Repeat steps 3-4 B times

6. Let 4T be a (1 — o) percentile of the distribution of 7, or T}

7. Let gy be a (1 — o) percentile of the distribution of ;5 , Or Jyjpp ,

—1/24

8. The bootstrap confidence interval for 6, is 0, + grn G,

9. For the bootstrap J-test, the test rejects if 7, > g

14



8 Mathematical Appendix

Assumptions A and B are a simplified version of Assumptions A and B in Gongalves and White
(2004), tailored to our GMM estimation framework.

Assumption A

A.l

A2

A3

A4

AS

A.6

A7

A8

Let (Q,F,P) be a complete probability space. The observed data are a realization of a
stochastic process {X; : Q — R¥ k € N}, with X; (@) = W; (..., Vi_1(®),V,(0), Vii1(®),...),V;:
Q—-R veN and W, : [T~ _R"— R! is such that X; is measurable for all 7.

The functions g : R x ® — R™ are such that g(-,8) is measurable for each 8 € ®, a compact
subset of R”, p € N, and g(X;,-) : ® — R™ is continuous on ® a.s.-P, t = 1,2,....

(i) B9 is identifiably unique with respect to Eg(X;,0)WEg(X,,0) and (ii) 69 is interior to ©.

(i) {g(X;,0)} is Lipschitz continuous on @, i.e. |g(X;,0) —g(X;,6°)| < L;|6 —0°| a.s5.-P,V
8,8° € ®, where sup, E(L,) = O(1). (ii) {Vg(X;,0)} is Lipschitz continuous on ©.

For some r > 2: (i) {g(X;,0)} is r-dominated on ® uniformly int, i.e. there exists D, : R” — R
such that |g(X;,0)| < D, for all 6 in ® and D, is measurable such that ||D;||, < A < co for all
t. (i) {Vg(X:,0)} is r-dominated on ® uniformly in ¢.

{V,} is an a-mixing sequence of size —2r/(r —2), with r > 2.

The elements of (i) {g(X;,0)} are NED on {V;} of size —1 uniformly on (@, p), where p is

any convenient norm on R”, and (i) {Vg(X;,0)} are NED on {V;} of size —1 uniformly on
(©,p).

Y =1lim, .var(n~'/2Y"_ ¢(X,,00)) is positive definite, and G = lim,, ... E(n~' ¥_, Vg(X;,00))
is of full rank.

Assumption B

B.1

B.2

{g(X;,0)} is 3r-dominated on ® uniformly in ¢, r > 2.

For some small 8 > 0 and some r > 2, the elements of {g(X;,0)} are L, , s—NED on {V;} of
size —(2(r—1))/(r —2) uniformly on (®,p); {V;} is an & -mixing sequence of size —((2+
d)r)/(r—2).
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8.1 Proof of Lemma 1

The proof closely follows the proof of Theorem 2.1 of GW04, with two differences: (i) the
objective function is a GMM objective function, and (ii) in the case of EL-MBB, the bootstrapped
objective function contains the probability weight ft?. 6 — 6y —p 0 follows from applying Lemma
A.2 of GW04 to the GMM objective function, because conditions (al)-(a3) in Lemma A.2 of
GWO04 are satisfied by Assumption A. The consistency of 0375 is proved by applying Lemma
A.2 of GW04. Their conditions (b1)-(b2) are satisfied by Assumptions A.2. Define Qn(e) =
(n='yr  g(X,0))Wi(n~ 'Y’ g(X’,0)), then their condition (b3) holds because sup, |Ohipp.a(0) —
0,(8)| —p+ p 0 from a standard argument and supg |0,(8) — 0,(8)| —p+ p 0 by Lemmas A.4 and
A.5 of GW04.

Deriving the asymptotics of 0}, requires the bound of the difference between #; and 1/N.
First we show 1°(8) = Op(¢n~"/?). In view of the argument in pp. 100-101 of Owen (1990)
(see also Kitamura (1997)), ¥°(8) = Op(¢n—'/?) holds if (a) éN_lzﬁvzlﬂo(é)Y}”(é)’ —p X, (b)
(NTTYN  TO(8) = Op(fn~'/?), and (c) max <i<y |T?(8)] = op(n'/?¢~1). For (a), a mean value

expansion gives, with © € [0, 6],

N
INT'Y TP(0)T(8) —¢N!

i=1 i

T (80)T7 (60)’

M=

< 18— Gol2N 1Y VTP ()17 (8)] = Opln~20) = op(1),
=
where the second equality follows because |7,°(8)| and |VT?(0)| are r-dominated on ® with r > 2.
Define Gi =n~' Y, g(X;*,8), then we have (cf. Lahiri (2003), p. 48) (IN~' YN | T°(8¢)T?(60) =
var*(/nG) + (T, T/, where T, = N~' YN T°(8p). var*(y/nG};) — X —p 0 from Corollary 2.1 of
Gongalves and White (2002) (hereafter GW02). T, is equal to va,, defined in p. 1371 of GWO02 if we
replace their X, with g(X;,00). GW02 p.1381 shows Xy, = op(¢~!), and hence ¢7,> = op(1). There-
fore, /N~! Zﬁ-vzl T°(80)T°(80) —p X, and (a) follows. (b) follows from expanding Tl"(é) around
8o and using N~'YN  T9(80) = n~ 'Y g(X;,00) + Op(n'¢) (cf. Lemma A.1 of Fitzenberger
(1997)), and applying the central limit theorem. (c) holds because max;<;<y |T?(8)| = O, (N'/")
from Lemma 3.2 of Kiinsch (1989) and ¢ = o(n'/2~1/"). Therefore, we have

¥(6) = 0p(tn™'?),  max [¥'(8)'77(8)| = op(1). (16)

1<i<N
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Since (1+a)~ ' =1—(1+a&)%a, & € [0,q, it follows that

1

2 =N"1(1+8,), lrgegv\ﬁml =op(1). a7

Consequently, supg |Q15,(6) — 0n(8)| —p- p 0, and the stated result follows since the conditions
(b1)-(b2) of Lemma A.2 of GW04 are satisfied by Assumptions A.2. [

8.2 Proof of Lemma 2

In view of the proof of Lemma 1, the consistency of 0555 holds because condition (b3) of
Lemma A.2 of GW04 holds because supg |0,,(8) — Q,(8)| —p+ » 0 by Lemmas 6 and 7.

Similarly, 855 is consistent if

Y8) = Op(tn ™), max [4(8) T:(8)| = on(1). (18)
Equation (18) holds if (a) ¢b~' Y2 | T;(0)T;(6) —pZ, (b) (b 'YL T;(8) = Op(n="/?), and (c)
max;<;<,|T;(8)| = op(n'/2~1). (a) follows from expanding 7;(8) around 6 and using Corollary
1. (b) follows from expanding T(é) around 6y and applying the central limit theorem. (c) follows
because max|<j<p |T;(0)| = Ous.(b"/") and £ = o(n"~2/20-1)). O

8.3 Proof of Lemma 3

The proof follows the argument in the proof of Theorem 2.2 of GW04. Define
H = (GWG) 'GWEIWG(G'WG)™!, then the stated result follows from Polya’s theorem if we
show /n(8—8¢) —4 N(0,H), \/n(8%,55 —0) — 4+ N(0,H) prob-P, and /n(0}i55 —0) — 4 N(0,H)
prob-P. The limiting distribution of \/n(8 — 8y) follows from a standard argument. First, we derive
the limiting distribution of 8,5,. We need to strengthen the bound on &¢ — 1/N. Since (1+a)~! =
1—oa+2(1+a)3a?, ac [0,q], it follows that

£ = N'(1=9(8)T°(8) +Auly' (9) T (8)]%), (19)

Eix |A,i| < 1 with prob-P approaching one. (20)
l

The first order condition gives:

b ! b
<Z VT (0ys5) ) Wi1BB <Z T (Oyps) )
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Expanding Y2, #*T/%* (0%, around 8 gives, with 6 € [0,07,55],

b ! b
0 = (Zﬁio*VTio*(OX/IBB)> WA;BB,n (ZT@”*E“*(%)

i=1
b !
+ Z VT (Oysp) | Wassa
i=1 '

Note that

S
S

b
b Y N VT (8ig55) — G = b Y. (NRS — 1) VT Bigg) + 5 Y. VT (8i155) — G.
i=1 i=1 i=1

In view of (17) and E(E*b~' Y2_, supy |[VT?*(8)]) = O(1), the first term on the right is 0p+ p(1). De-
fine G,(8) =n~' Y, Vg(X,,0). The second term on the right is op+ p(1) because b~ Y'0_, VT.2*(8) —
G, (0) converges to 0 uniformly in prob-P*, prob-P from Lemmas A.4 and A.5 of GW04, G,,(0) con-
verges to G(0) =lim, .n 'Y EVg(X;,0) uniformly, G(8) is continuous, and 8}, is consistent.
Therefore, b~' Y0 | NR*VT?*(8},55) converges to G in prob-P*, prob-P. b=' Y2 | NR?*VT*(8)
converges to G from the same argument.

We proceed to derive the limiting distribution of \/nb~ ' Y'2_| N&¢*T°*(8). Since Y, #977°(8) =
0 by the construction of &7, we can write \/nb~' Y'2_| NR?*T%*(8) = I, 4 I1,,, where

N
In — fb IZTO* fN IZ'Z;()
i=1
N

1, = Z (NRZ* — 1) T7*(8) — VN~ Y (NRY — 1) T (8).
i=1 i=1
Since N7'YN  T°(8) =n~' Y, g(X,,8) + O, (n"'¢) from Lemma A.1 of Fitzenberger (1997),

Li=n""Y g(x",8)—n"'2Y g(X,,8) + Op(n~'1%t) =4 N(0,%) prob-P,
=1 =1

where the convergence of n~'/2Y"™ | ¢(X;,0) —n~'/2¥"_ ¢(X;,0) follows from the proof of Theo-
rem 2.2 of GW04.

The limiting distribution of 8}, is obtained if we show /1, = op- p(1). It follows from (19) that

Iy = 1Ly +/nb™ lZA,,, 0) T (B)PT;"*(8) — /N~ lZAm T(O)P1(6), @D
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where

I} = —y/nb™! f T @) (8 (8)-+ Vi Y T O )7 O).
i=1 i=1

Expanding 7.(8) and T,?(8) around 8y and using (16), we obtain
b . N .
m, = —Vub! ZTi”*(GO)Ti”*(GO)'YO(G) +VnN"! Y T (80) T (80) Y (8) +0p(1)
‘ =1
= —p! Z {0177 (80) T (80) — E* [¢T;7%(80) T (80)'] } v/nl ™'y (8) + 0p(1).

We assume 7,°*(6y) is a scaler and derive the bound on /1!, because the bound for the vector-valued
case follows from the elementwise bounds and the Cauchy-Schwartz inequality. Let p = 1+ 8/2
with 0 < & < 2. Then, proceeding in a similar manner as the proof of Lemma B.1 of GW04 (p.217),
we obtain

p

b
Z [ [1/2To* E*((ZI/ZZ}”*(GO))Z} (22)

p/2
b PCE* |b~

IN

1 d 1/2 2 1/2 2 2
Y[ r @) - B (1 @)

IN

b= VCE* | (£'/2TP*(89))? — E*(él/sz’*(eo))z‘p
b= (P=02PCE 02T (80) .

IA

From Lemmas A.1 and A.2 of GWO02, we have, fori=1,...,N,

2p -1\ P2
) sc( Y c%) =0(tr), (23)

i+j—1

Y. 8(X:,00)

1jst| =

t=i

E|(T?(80)|” <E (max

where ¢, are (uniformly bounded) mixingale constants of {g(X;,80)}. Therefore, E(E*|¢'/2T*(8¢)|?") =
N='YN mPET? (80) P = O(1), and (22)= Op(b~?~V) and II} = op+ p(1) follow.

For the other terms in (21), note that the Lyapunov inequality implies E|T?(8o)|*> < (E|T{(8)|?") !/ =
O(¢~1). Therefore, the third term on the right of (21) is bounded by
1 S )12
N~ A, (YT (8)] ) |y T2(0)2 = op(1
i (ma 4l ) ( ma (¢ O/O) ) @)L 77 @)F = on(1)

i=1

and the second term on the right of (21) op- p(1) by a similar argument. Therefore, 11, = op- p(1)
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and \/n(0},55 —0) — 4+ N(0,H) prob-P follows.

For the standard bootstrap estimator 0};55, expanding the first order condition gives

0=(G+opp(1) W, "n"! Z 0) —8(X:,8)) + (G +op p(1)) W, (G +o0p p(1)) (8355 —6),

and the limiting distribution of 8}, follows immediately. [

8.4 Proof of Lemma 4

Expanding the first order condition gives, with 8 € [0, 0} 55],
! b
(Zﬁ*v T;" (Onps) ) WaBs.n <Zﬁsz*(é)>
i=1
b ! b . .
+ Zn?VTi*(eX/BB) WyB ZR?VTi*(e) (Onps —6).

i=1

In view of (18), the weights #; satisfy the bound (17) (19), and (20) with (b, y( ), ( )) replacing
(N,Y’(8),T°(8)). Therefore, Yo | #FVT*(8%pp), Yo #:VT#(8) —p p G follows from repeating
the argument of the proof of Lemma 3 using Lemmas 6 and 7 in place of Lemmas A.4 and A.5 of
GWO04.

We proceed to derive the limiting distribution of /2 Y2, #:T;*(8). Since Y2, #;7;(8) = 0 by the
construction of #;, we can rewrite \/nY?_ &5 T*(8) = /n Y2 [&1T;*(8) — #;T;(8)]. The argument
leading to (23) can be used to show E|¢T;(8¢)|*” = O(¢) for i = 1,...,b. Then, using this bound

and the bounds of #; — 1/b and proceeding as in the proof of Lemma 3, we obtain
b ) b R .
Vi) w17 (0) = b~ Y [T7(8) —Ti(8)] +op p(1).
Rewrite /b~ ' £7_, [1;%(8) — T:(8)] = C1n + Lan + Can, where {1 = /nb ™' X2, [T7(80) — Ti(80)] =

Vb~ LT (80) = E*Ti(80)], Gon = Vb X7 [T, *( ) =T (60)], and Gz, = /b~ X [Ti(80) -
T;(8)]. Observe that {o, + L3, = b~ Y0, [VT*(8%) — VT;(8)]/n(6 — 8y), where 6*,8 € [8),6]. Then

Con+C3n = 0p+ p(1) because both 8* and 8 converge to 8y, b~ Y2 [VT*(8) — VT;(8)] and b~ ' Y2 | [V

G(0)] converges to 0 uniformly, and G(8) is continuous.

In view of the proof of Theorem 2.2 of GW02, {;, —4 N(0,X) prob-P follows if, for some

20
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small & > 0,
(a) var*({;,) —X—p0, Xis positive definite,
(b) BE*|Z " —p0,

where Z,; =X~ !/2n=1/24[T;*(8) — E*T;*(8p)]. Lemma 8 implies (a), because {1, =n~ /2 Y7 [¢(X;",00) —
E*g(X;",80)]. For (b), first observe that E(E*|¢'/2T"(8¢)|>”) = O(1) because E|(T;(8)|*” = O(¢P).
Therefore, by setting p = 1+98/2,

E(DE*|Zi|**®) < CE(DE*|n" /20T (09)|*®) = O(bn~173/20'+3/2) = 0(b3/?) = 0(1),

and §;, —4+ N(0,X) prob-P and the limiting distribution of 03 5 follows.

For the standard bootstrap estimator 8335, expanding the first order condition gives
!/ > A A ! A
0= (G+opp(1))W,* Y b~ (T;'(8) = T:(8)) + (G +o0p- p(1)) W, (G +0p- p(1)) (855 —B),
i=1
and the limiting distribution of \/7(8}55 — 8) follows immediately. [J

8.5 Proof of Lemma 5

The validity of the bootstrap Wald test with the EL bootstrap is proven if we show S5, (6") —p-p

X and Sypp ,(8%) —p« p L for any root-n consistent 6*. First,

b
Suppa(07) = 67" Y (NRTT (80)) (N&T*(80))' + 0p p(1)
i=1

b

= b)Y T (80)T" (80) +0p p(1) = Z+o0p p(1),
i=1

where the first equality follows from expanding 7;°*(8*) around 6y, the second equality follows

from (17) and E|T?(8¢)|> = O(¢~'), and the third equality follows from the proof of Theorem 3.1

of GWO04. Similarly, we obtain

Sngpa(®) = (b7"Y T¥(80)T;*(80) +op p(1)

e

Il
-

-

Il
—_

= b~ "Y Ti(80)Ti(80) +op p(1) = Z+0p p(1),

21



where the second equality follows because the argument following (22) is valid even if we replace
T°*(8p) in (22) with 7;*(8y), and the third equality follows Corollary 1. The proof for the standard
MBB and NBB bootstrap is very similar and omitted.

In —a X}znip if W, —pZ " and n1/2Y" | g(X;,80) —4 N(0,Z), which follows from Assump-
tions A and B and a standard argument. 755 , — 4+ X, Prob-P because SX,,BB’n(éj{,,B p) —p:pXand
Vb=l Yl NRY*T2*(8) — 4 N(0,Z) prob-P. IViBB.A —d* sznfp prob-P follows because S;*(83/z5) —p+ P
¥ and we have shown in the proof of Lemma 3 that n='/2Y"_ ¢*(X;,0) = n='/2Y"_ ¢(X,0) —
n=12y" | ¢(X,,8) —4 N(0,X) prob-P. The convergence of Inpp.n and Jypp , are proven by a simi-
lar argument. []

9 Auxiliary results

Lemma 6 (NBB uniform WLLN). Let {q;,(-,®,0)} be an NBB resample of {qn (®,0)} and assume:
(a) For each ® € ® C R”, @ a compact set, nY;_ (g, (-, ®,8) — ¢,y (®,8)) — 0, prob-P;, ,, prob-P;

and (b) V8,00 € ©, |gu(+,0) — gt (,00)| < Lyt|0 — 09| a.s.-P, where sup,{n ' Y7 E(L,)} = O(1).
Then, if £ = o(n), for any 8 > 0 and & > 0,
> 8) > &] =0.

Proof The proof closely follows that of Lemma 8 of Hall and Horowitz (1996). [J

Y (@ (-, .0) — gu(®.6))

t=1

lim P | Pl [ supn™!
noe ERACEC)

Lemma 7 (NBB pointwise WLLN). For some r > 2, let {qn : @ X ® — R™ : m € N} be such that
for all n,t, there exists Dy : Q — R with |gn (+,0)| < Dy for all ® € © and ||Dy||, < A < 0. For
each © € O let {q,(-,,0)} be an NBB resample of {gu(®,0)}. If { = o(n), then for any & > 0,

& > 0 and for each 6 € O,
>8> >&

P,fm (n_l

Proof Fix 6 € O, and we suppress 6 and ® henceforth. Since g}, is a NBB resample, E*g};, =

i(QZt('amve)_Qnt(wae)) =0.

t=1

lim P

n—oo

n 'Y G = Gn and hence Y, (g%, — qu) = Y1 (¢}, — E*qn). From the arguments in the proof
of Lemma A.5 of GWO04, the stated result follows if ||var*(n =2 Y™ ¢%)||, /> = O(() for some r >
2. Define Uy; = ¢! Zfz 1 9n,(i—1)¢+1> the average of the ith block. Since the blocks are independently
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sampled, we have (cf. Lahiri (2003), p.48)

b

var® <H—1/22q2t> b_lgz"(Uni_Qn)(Uni_Qn)/
t=1 i=1

4 4
(qn,(ifl)éﬂ - QH) Z (QIL,(I'fl)éLFS - Cjn),
s=1

A\

Il
—_
=
Il
—_

[
M
N

-

1

o1~

|
=
=
—~
=]
=
J’_
S
|
1=
~
|

(Rui(7) + Rii(7))

I
a
I

where

=

Rn<0) = n! (Qnt - @l) (Qnt - C?n),a

\’FN
a ~

Ryi(t) = ! (‘In,(ifl)ut _Qn) (Qn,(ifl)#H«M _Qn)la t=1,....0— 1L

t=1

Applying Minkowski and Cauchy-Schwartz inequalities gives ||R,(7)||,/» = O(1), T=0,...,£— 1,
and ||var*(n='/2 Y1, @p)llr2 = O(£) follows. [

Lemma 8 (Consistency of NBB conditional variance). Assume {X,} satisfies EX, = 0 for all t,
[|X;]|3r < A < oo for somer>2andallt=1,2,.... Assume {X;} is Ly-NED on {V; } of size —(2(r —
1))/(r—2), and {V,} is an o-mixing sequence of size —(2r/(r —2)). Let {X,*} be an NBB resample
of {X,}. Define X, =n~ 'Y X, X =n~' Y0 X}, ¥, =var(\/nX,), and £, =var*(\/nX}). Then,
ift = ooand { = o(n'?), %, —%, —p0.

Corollary 1 Assume X, satisfies the assumptions of Lemma 8. Define U; = (= ZleX(i, 1)e+1» the
average of the ith non-overlapping block. Then, if { — c and { = o(nl/z)7 b71€Zf~’=1 UU!—%, —pO.

Proof For simplicity, we assume X; to be a scalar. The extension to the vector-valued X; is straight-
forward, see GWO02. Define U; = ¢! Zf:1X(i—1)z+u the average of the ith block. Since the blocks
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are independently sampled, we have

b
L,o= by Ur—X;
i=1

b 4
= bi]é*lz Y Xiovyeee Y Xii-1)ees — (X} (24)
i=1 | r=1 s=1
b b (-1
= 'Y R(0)+207 'Y Y Ri(r) — €X;.
i=1 i=1t=1
where R;(t) = £~ 1):; 1 X(i- 14+,X(i_1)5+,+1,’C:O,...,E—l.FirstweshowE(in)—ano(l).From

Lemmas A.1 and A.2 of GW02, we have, fori=1,...,b,

2

< n2E | max
1<j<n

E(X})=n"E Y X

n
-2 thz = O(n_l) )
=1 t=1
where ¢, are (uniformly bounded) mixingale constants of X;, and E|¢X?| = o(1) follows. De-
fine Ri(’C) =¢! Zf;‘fE(X(i,l)(jHX(i,l)gHJﬂ) and R;j = ! Zle Zle E(X(ifl)[+tX(j71)é+s) so that
E(Ri(t)) = Ri(t), then

1|

L, =b" Z 0)+2b~ IZZR V) +b- IZZR,,,
i= i=11= i=1j#i
and E(ﬁ =%, =b" ): 121#1R,J From Gallant and White (1988) (pp.109-110), E(X;X; 1) is
bounded by

1/2-1 e
|EX: X | < A(S(X[T//4] /r+2"[r/4]) <cr! &a
for some & € (0,1), where v, is the NED coefficient. Therefore, for |i — j| = k > 2, we have

Rij| <CO Yl Yl ((k—1)0)" "5 = 0((k—1)"'75¢7%), and

YA /-1
Rijrt] <COYY Y [ets—1" 8 < Y (|| =00,
t=1s=1 h=—(+1

where the last equality follows from evaluating the sums with 2 > 0 and & < O separately. It follows
that

IZZRJ—0<€ S+b- 12 (b—k)( 1—ég—&> :0(5—&),

i=1 j#i
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and we establish E(%,,) — X, = o(1). It remains to show var(Z,) = o(1). It suffices to show that the

variance of
b

by (Ri(0)—R +2b122(1é (25)

i=1 i=l1t=

is o(1). Following the derivation in GW02 leading to their equation (A.4), we obtain

(—

var (Ri(1)) < (72 Y var(X(i_1)es Xi-1)eti4e)
=1
zé T (-1
F202Y Y | cov (Xim 1)y X1y etrrs X(im 1) s X (i )5t |
t=1s=t+1

IN

1/2—-1 (r=2)/2(r—1)
{A+ )y Ot /) T Z Vik/4) + Z Vik/4] }
_ 1-2/r 1/2—1/r —
+C€ (T(X[T/4]/ +TV[1/4] +2T(X[T//4] / V[T/4]) = 0(£ 1).

Observe that, when |i — j| > 7, from Lemma 6.7(a) of Gallant and White (1988) we have, for some
ce(0,1),

{—tl—1
22 Z |C0V (i~ 1)+ X (i— ])£+t+I>X(j7])£+.¥X(j71)l+s+r)}

t=1s=
2 1/2 1/r (r=2)/2(r—1)
¢ ZZ( (s V[<|z>j\76>4/41)

(—Tl—7
( ZZZ [(Ji— j| —6)¢/4] '~ é><c<e|z—1|>

(@)
Q
<
—~
s
N
A
~—
=»
<
—
A
~—
~—
IN IN

t=1s=

Define B, = {1 <i<b:i=Tk+rkeN}forr=1,...,7,sothatall i € B, are at least 7 apart from
each other. Rewrite (25) as ¥.)_; b~ Yicp, (Ri(0) = Ri(0)) + 2 L] XeZ i b Lies, (Ri(7) — Ri(7)).
Then, fort=0,...,0—1,

i€B, i€B, jEB,

b b
bl Y Y |i—j|‘§>

i=1 j£i

var (b‘l Y (R,»(I)—RM))) = b Y Y cov(Ri(r),R;(v))

o
b—1
= 0 (blfl H0E 2 Y (b h)h”‘a)
( 1

“lehy. :
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Therefore, the variance of (25) is O(¢b~") = O(£2n~") = o(1), giving the stated result. Corollary 1
follows because b’lfxf’zl vU! = 3.+ op(1) from (24). O
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Table 1: Linear Model - symmetric errors
Replications=2000; Bootstraps=499; auto-selection block length
Ve = 01 +00x; +up; up = 0.9u; 1 + €14
X =09%_1+¢€y 2= (1 Xt Xt—1 Xz—z)

(91,92) = (070); [81,,82;] ~ N(O,Iz)

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic  0.4225 0.3420 0.2335 0.1360 0.0735 0.0245

SNB 0.2725 0.2070 0.1085 0.1505 0.0945 0.0320
SMB 0.3760 0.2885 0.1640 0.1330 0.0755 0.0255

ENB 0.3475 0.2240 0.1580 0.1220 0.0700 0.0280
EMB 0.3510 0.2765 0.1535 0.1395 0.0885 0.0315

250
Asymptotic  0.3485 0.2755 0.1625 0.1225 0.0745 0.0235

SNB 0.2090 0.1460 0.0720 0.1320 0.0840 0.0310
SMB 0.3255 0.2390 0.1320 0.1315 0.0790 0.0260

ENB 0.3135 0.2350 0.1235 0.1215 0.0715 0.0250
EMB 0.3175 0.2330 0.1225 0.1695 0.1095 0.0465

1000
Asymptotic  0.2735 0.1945 0.0955 0.0925 0.0460 0.0075

SNB 0.1675 0.1140 0.0425 0.0930 0.0505 0.0090
SMB 0.2550 0.1815 0.0830 0.0970 0.0450 0.0070

ENB 0.2545 0.1755 0.0803 0.0930 0.0560 0.0100
EMB 0.2450 0.1700 0.0800 0.1110 0.0650 0.0180
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Table 2: Linear Model - GARCH(1,1) errors
Replications=2000; Bootstraps=499; auto-selection block length
yr = 01 4+ 02x; + 6,13 u, ~ N(0,6,),67 = 0.0001 —|—().6($l2_1 4+0.3e1,_1;
X =0.75x,_1 + €5, where €1, ~ N(0,1); zz = (L x; X1 X;—2)
(91,92) = (070); €1t NN(O, 1)
T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic  0.1420 0.0840 0.0280 0.070 0.0240 0.0040

SNB 0.0820 0.0340 0.0060 0.0530 0.0180 0.0050
SMB 0.0920 0.0480 0.0060 0.0590 0.0160 0.0050

ENB 0.0785 0.0370 0.0006 0.0660 0.0255 0.0020

EMB 0.1350 0.0800 0.0250 0.1000 0.0500 0.0050
250

Asymptotic  0.1150 0.0580 0.0150 0.0840 0.0270 0.0040

SNB 0.0630 0.0300 0.0060 0.0820 0.0230 0.0030
SMB 0.0830 0.0370 0.0080 0.0760 0.0260 0.0040

ENB 0.0885 0.0360 0.0055 0.0810 0.0310 0.0025
EMB 0.1050 0.0500 0.0200 0.1450 0.0900 0.0100
1000

Asymptotic  0.1050 0.0560 0.0150 0.0880 0.0390 0.0060

SNB 0.0700 0.0340 0.0070 0.0840 0.0420 0.0050
SMB 0.0910 0.0470 0.0110 0.0860 0.0410 0.0060

ENB 0.0840 0.0430 0.0105 0.0810 0.0380 0.0120
EMB 0.1000 0.0570 0.0080 0.0900 0.0440 0.0110

Note: The mean block length is 1.96 when 7' = 100, 2.84 when T' = 250, and 4.48 when T = 1000.
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Table 3: Nonlinear Model - Chi-Square Moment Conditions
Replications=2000; Bootstraps=499; auto-selection block length
g(X,,01)=(X,—0; X?—07-20;).

T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic  0.1845 0.1250 0.0625 0.2655 0.2065 0.1195

SNB 0.1535 0.1000 0.0380 0.1895 0.1505 0.0870
SMB 0.1800 0.0875 0.0070 0.1825 0.1465 0.0780

ENB 0.1075 0.0525 0.006 0.2235 0.1580 0.0745

EMB 0.1100 0.0600 0.0080 0.2100 0.1600 0.0700
250

Asymptotic  0.1245 0.0700 0.0250 0.1990 0.1560 0.0840

SNB 0.1095 0.0585 0.0200 0.1615 0.1290 0.0790
SMB 0.1240 0.0710 0.0175 0.1520 0.1225 0.0695

ENB 0.1070 0.0550 0.0130 0.1730 0.1200 0.0415
EMB 0.1050 0.0600 0.0120 0.1800 0.1300 0.0400
1000

Asymptotic  0.0975 0.0515 0.0100 0.1325 0.0835 0.0400

SNB 0.0985 0.0620 0.0205 0.1335 0.0985 0.0580
SMB 0.0795 0.0395 0.0075 0.1180 0.0870 0.0430

ENB 0.1000 0.0550 0.0180 0.1300 0.0800 0.0500
EMB 0.0960 0.0400 0.0080 0.1350 0.0705 0.0430

Note: The mean block length is 1.29 when 7' = 100, 1.99 when T' = 250, and 3.33 when 7" = 1000.
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Table 4: Nonlinear Model - Asset Pricing Model

Replications=2000; Bootstraps=499; auto-selection block length
g=(exp(u—0(x+2)+3z)—1 z[exp(u—06(x+2z)+3z)—1]),
logx; = plogx, 1 ++/ (1 =p?)ew, 2z =pz—1++/(1—p?)ey,
where €, and €, are independent normal with mean 0 and variance
0.16. In the experiment p = 0.6.
T-Test Sargan Test
10 05 01 10 05 01

100
Asymptotic  0.4010 0.3235 0.2195 0.3080 0.2350 0.1460

SNB 0.1550 0.0985 0.0400 0.1880 0.1260 0.0385
SMB 0.1540 0.1015 0.0435 0.1930 0.1300 0.0420

ENB 0.1400 0.0820 0.0265 0.1270 0.0700 0.0160
EMB 0.1380 0.0905 0.0300 0.1900 0.0820 0.0205
250

Asymptotic  0.3005 0.2275 0.1240 0.2470 0.1850 0.0995

SNB 0.1270 0.0755 0.0290 0.1435 0.1005 0.0510
SMB 0.1285 0.0780 0.0290 0.1430 0.0985 0.0535

ENB 0.1200 0.0640 0.0170 0.1230 0.0690 0.0190
EMB 0.1300 0.0600 0.0230 0.1275 0.0680 0.0280
1000

Asymptotic  0.2205 0.1440 0.0545 0.1975 0.1335 0.0685

SNB 0.1440 0.0825 0.0280 0.1005 0.0715 0.0220
SMB 0.1420 0.0820 0.0250 0.1040 0.0660 0.0220

ENB 0.1190 0.0600 0.0205 0.1290 0.0700 0.0230
EMB 0.1160 0.0580 0.0170 0.1080 0.0620 0.0170

Note: The mean block length is 1.51 when 7' = 100, 2.62 when T' = 250, and 4.96 when 7' = 1000.

30



References

AHN, S., AND P. SCHMIDT (1995): “Efficient Estimation of Models for Dynamic Panel Data,”

Journal of Econometrics, 68, 5-27.

ALTONIIL, J., AND L. SEGAL (1996): “Small-sample Bias in GMM Estimation of Covariance Struc-

tures,” Journal of Business & Economic Statistics, 14, 353-366.

ANATOLYEV, S. (2005): “GMM, GEL, Serial Correlation, and Asymptotic Bias,” Econometrica,
73, 983-1002.

ANDREWS, D. (2002): “Higher-ordeer Improvements of a Computationally Attractive k-step Boot-

strap for Extremum Estimators,” Econometrica, 70, 119-262.

ANDREWS, D., AND J. MONAHAN (1992): “An Improved Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix Estimator,” Econometrica, 60, 953-966.

ARELLANO, M., AND S. BOND (1991): “Some Tests of Specification for Panel Data: Monte Carlo
Evidence and an Application to Employment Equations,” Review of Economic Studies, 58, 277—
297.

BERKOWITZ, J., AND L. KILIAN (2000): “Recent Developments in Bootstrapping Time Series,”

Econometric Reviews, 19, 1-48.

BRrAvO, F. (2005): “Blockwise Empirical Entropy Tests for Time Series Regressions,” Journal of
Time Series Analysis, 26, 185-210.

BROWN, B., AND W. NEWEY (2002): “Generalized Method of Moments, Efficient Bootstrapping,

and Improved Inference,” Journal of Business & Economic Statistics, 20, 507-517.

CARLSTEIN, E. (1986): “The Use of Subseries Methods for Estimating the Variance of a General
Statistic from a Stationary Time Series,” The Annals of Statistics, 14, 1171-1179.

CHRISTIANO, L., AND W. HAAN (1996): “Small-sample Properties of GMM for Business-cycle
Data,” Journal of Business & Economic Statistics, 14, 309-327.

CLARK, T. (1996): “Small-sample Properties of Estimators of Nonlinear Models of Covariance

Structure,” Journal of Business and Economic Statistics, 14, 367-373.

31



DAVIDSON, R., AND J. G. MACKINNON (1999): “Bootstrap Testing in Nonlinear Models,” Inter-

national Economic Review, 40, 487-508.

DE JONG, R., AND J. DAVIDSON (2000): “Consistency of Kernel Estimators of Heteroscedastic

and Autocorrelated Covariance Matrices,” Econometrica, 68, 407-423.

FITZENBERGER, B. (1997): “The Moving Blocks Bootstrap and Robust Inference for Linear Least

Squares and Quantile Regressions,” Journal of Econometrics, 82, 235-287.

GALLANT, A., AND H. WHITE (1988): A Unified Theory of Estimation and Inference for Nonlinear
Dynamic Models. Blackwell.

GONCALVES, S., AND H. WHITE (2002): “The Bootstrap of the Mean for Dependent Heteroge-
neous Srrays,” Econometric Theory, 18, 1367-1384.

(2004): “Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models,” Journal
of Econometrics, 119, 199-219.

GONZALEZ, A. (2007): “Empirical Likelihood Estimation in Dynamic Panel Models,” mimeo.

GREGORY, A., J. LAMARCHE, AND G. W. SMITH (2002): “Information-theoretic Estimation
of preference Parameters: Macroecnomic Applications and Simulation Evidence,” Journal of
Econometrics, 107, 213-233.

HAHN, J. (1996): “A Note on Bootstrapping Generalized Method of Moments Estimators,” Econo-
metric Theory, 12, 187-197.

HALL, P., AND J. HOROWITZ (1996): “Bootstrap Critical Values for Tests Based on Generalized-

method-of-moments Estimators,” Econometrica, 64, 891-916.

HALL, P., J. HOROWITZ, AND B. JING (1992): “On Blocking Rules for the Bootstrap with Depen-
dent Data,” Biometrika, 82, 561-574.

HANSEN, L. (1982): “Large Sample Properties of Generalized Method of Moments Estimators,”
Econometrica, 50, 1029-1054.

HANSEN, L., anD K. J. SINGLETON (1982): “Generalized Instrumental Variables Estimation of

Nonlinear Rational Expectations Models,” Econometrica, 50, 1296—1286.

32



HARDLE, W., J. HOROWITZ, aND J. KREISS (2003): “Bootstrapping Methods for Time Series,”
International Statistical Review, 71, 435-459.

HoNG, H., AND O. SCAILLET (2006): “A Fast Subsampling Method for Nonlinear Dynamic Mod-

els,” Journal of Econometrics, 133.

IMBENS, G., R. SPADY, AND P. JOHNSON (1998): “Information Theoretic Approaches to Inference
in Moment Condition Models,” Econometrica, 66, 333-357.

INOUE, A., AND M. SHINTANI (2006): “Bootstrapping GMM Estimators for Time Series,” Journal
of Econometrics, 133, 531-555.

KITAMURA, Y. (1997): “Empirical Likelihood Methods with Weakly Dependent Processes,” The
Annals of Statistics, 25, 2084-2102.

(2007): Empirical Likelihood Methods in Econometrics: Theory and Practice. In R.W.
Blundell, and W.K. Newey and T. Persson (Eds), Advances in Economics and Econometrics:
Theory and Applications, Ninth World Congress, Volume Il of Econometric Society Monograph
ESM 43pp. 174-237. Cambrdige: Cambrdige University Press.

KITAMURA, Y., AND M. STUTZER (1997): “An Information-theoretic Alternative to Generalized
Method of Moments Estimation,” Econometrica, 65, 861-874.

KOCHERLAKOTA, N. (1990): “On Tests of Representative Consumer Asset Pricing Models,” Jour-
nal of Monetary Economics, 25, 43—48.

KUNscH, H. (1989): “The Jackknife and the Bootstrap for General Stationary Observations,” The
Annals of Statistics, 17, 1217-1261.

LAHIRI, S. (1999): “Theoretical Comparisons of Block Bootstrap Methods,” Annals of Statistics,
27, 384-404.

(2003): Resampling Methods for Dependent Data. Springer.

NEWEY, W., AND R. SMITH (2004): “Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators,” Econometrica, 72, 219-256.

NEWEY, W., aND K. WEST (1994): “Automatic Lag Selection in Covariance Matrix Estimation,”
Review of Economic Studies, 61, 631-654.

33



OWEN, A. (1990): “Empirical Likelihood Ratio Confidence Regions,” Annals of Statistics, 18,
90-120.

POLITIS, D., AND J. ROMANO (1994): “Large Sample Confidence Regions Based on Subsamples

under Minimal Assumptions,” The Annals of Statistics, 22.
PoLITIS, D., J. ROMANO, AND M. WOLF (1999): Subsampling. New York: Springer.

QIN, J., AND J. LAWLESS (1994): “Empirical Likelihood and General Estimating Equations,” The
Annals of Statistics, 22, 300-325.

RAMALHO, J. (2006): “Bootstrap Bias-Adjusted GMM Estimators,” Economics Letters, 92, 149—
155.

RUGE-MURCIA, F. (2007): “Methods to Estimate Dynamic Stochastic General Equilibrium Mod-
els,” Journal of Economic Dynamics and Control, 31, 2599-2636.

Ruiz, E., aND L. PASCUAL (2002): “Bootstrapping Financial Time Series,” Journal of Economic
Surveys, 16, 271-300.

SMITH, R. (1997): “Alternative Semi-Parametric Likelihood Approaches to Generalized Method
of Moments Estimation,” The Economic Journal, 107, 503-519.

ZVINGELIS, J. (2002): “On Bootstrap Coverage Probability with Dependent Data,” University of

Iowa working paper.

34






