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1. Introduction

It is often difficult to make reliable inferences from regressions estimated using instru-
mental variables. This is especially true when the instruments are weak. There is
an enormous literature on this subject, much of it quite recent. Most of the papers
focus on the case in which there is just one endogenous variable on the right-hand
side of the regression, and the problem is to test a hypothesis about the coefficient of
that variable. In this paper, we also focus on this case, but, in addition, we discuss
confidence intervals, and we allow the number of endogenous variables to exceed two.

One way to obtain reliable inferences is to use statistics with better properties than
those of the usual IV ¢ statistic. These include the famous Anderson-Rubin, or AR,
statistic proposed in Anderson and Rubin (1949) and extended in Dufour and Taamouti
(2005, 2007), the Lagrange Multiplier, or K, statistic proposed in Kleibergen (2002),
and the conditional likelihood ratio, or CLR, test proposed in Moreira (2003). A
detailed analysis of several tests is found in Andrews, Moreira, and Stock (2006).

A second way to obtain reliable inferences is to use the bootstrap. This approach
has been much less popular, probably because the simplest bootstrap methods for this
problem do not work very well. See, for example, Flores-Lagunes (2007). However, the
more sophisticated bootstrap methods recently proposed in Davidson and MacKinnon
(2008) work very much better than traditional bootstrap procedures, even when they
are combined with the usual ¢ statistic.

One advantage of the t statistic over the AR, K, and CLR statistics is that it can
easily be modified to be asymptotically valid in the presence of heteroskedasticity of
unknown form. But existing procedures for bootstrapping IV ¢ statistics either are
not valid in this case or work badly in general. The main contribution of this paper
is to propose a new bootstrap data generating process (DGP) which is valid under
heteroskedasticity of unknown form and works well in finite samples even when the
instruments are quite weak. This is a wild bootstrap version of one of the methods
proposed in Davidson and MacKinnon (2008). Using this bootstrap method together
with a heteroskedasticity-robust ¢ statistic generally seems to work remarkably well,
even though it is not asymptotically valid under weak instrument asymptotics. The
method can also be used with other test statistics that are not heteroskedasticity-
robust. It seems to work particularly well when used with the AR statistic, probably
because the resulting test is asymptotically valid under weak instrument asymptotics.

In the next section, we discuss six bootstrap methods that can be applied to test
statistics for the coefficient of the single right-hand side endogenous variable in a linear
regression model estimated by IV. Three of these have been available for some time,
two were proposed in Davidson and MacKinnon (2008), and one is a new procedure
based on the wild bootstrap. In Section 3, we discuss the asymptotic validity of
several tests based on this new wild bootstrap method. In Section 4, we investigate
the finite-sample performance of the new bootstrap method and some existing ones by
simulation. Our simulation results are quite extensive and are presented graphically.
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In Section 5, we briefly discuss the more general case in which there are two or more
endogenous variables on the right-hand side. In Section 6, we discuss how to obtain
confidence intervals by inverting bootstrap tests. Finally, in Section 7, we present an
empirical application that involves estimation of the return to schooling.

2. Bootstrap Methods for IV Regression

In most of this paper, we deal with the two-equation model

Y1 = PY2 + Zv +uy (1)
Yo = W + us. (2)

Here y; and yo are n—vectors of observations on endogenous variables, Z is an n X k
matrix of observations on exogenous variables, and W is an n x [ matrix of exogenous
instruments with the property that $(Z), the subspace spanned by the columns of Z,
lies in (W), the subspace spanned by the columns of W. Equation (1) is a structural
equation, and equation (2) is a reduced-form equation. Observations are indexed by 1,
so that, for example, y1; denotes the i*" element of ;.

We assume that [ > k. This means that the model is either just identified or over-
identified. The disturbances are assumed to be serially uncorrelated. When they are
homoskedastic, they have a contemporaneous covariance matrix

po[d sme]

PO102 g5
However, we will often allow them to be heteroskedastic with unknown (but bounded)
variances o3; and o3; and correlation coefficient p; that may depend on W;, the row
vector of instrumental variables for observation .

The usual t statistic for g = By can be written as
A B — bBo

ts( 0, = = ) 3
(5 BO) O_1||PWy2 _szZH_l ( )

where B is the generalized IV, or 2SLS, estimate of 5, Py and Pz are the matrices
that project orthogonally on to the subspaces S(W') and 8(Z), respectively, and || - ||
denotes the Euclidean length of a vector. In equation (3),

A Y. A ) R 12
Gy = (%ui u1> - (%(yl — By — Z3) (y1 — By2 — Z’Y)> (4)

is the usual 2SLS estimate of o1. Here 4 denotes the IV estimate of 7, and w4, is the
usual vector of IV residuals. Many regression packages divide by n — k — 1 instead of
by n. Since 61 as defined in (4) is not necessarily biased downwards, we do not do so.
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When homoskedasticity is not assumed, the usual ¢ statistic (3) should be replaced by
the heteroskedasticity-robust t statistic

th(ﬁa BO) = ) (5)

where 12
(X, 43, (Pwys — Pzy2)?)
|| Pwy2 — szzH

Sh(B) = (6)

Here (Pyy2 — PzYy2); denotes the i*® element of the vector Py ys — Pzy2. Expression
(6) is what most regression packages routinely print as a heteroskedasticity-consistent
standard error for §. It is evidently the square root of a sandwich variance estimate.

The basic idea of bootstrap testing is to compare the observed value of some test
statistic, say 7, with the empirical distribution of a number of bootstrap test statistics,
say 77, for j = 1,..., B, where B is the number of bootstrap replications. The
bootstrap statistics are generated using the bootstrap DGP, which must satisfy the
null hypothesis tested by the bootstrap statistics. When « is the level of the test, it is
desirable that a(B + 1) should be an integer, and a commonly used value of B is 999.
See Davidson and MacKinnon (2000) for more on how to choose B appropriately. If
we are prepared to assume that 7 is symmetrically distributed around the origin, then
it is reasonable to use the symmetric bootstrap P value

1 B
Ps ( ZI (1771 > I71)- (7)
j:l

We reject the null hypothesis whenever pf(7) < a.

For test statistics that are always positive, such as the AR and K statistics that will be
discussed in the next section, we can use (7) without taking absolute values, and this
is really the only sensible way to proceed. In the case of IV t statistics, however, the
probability of rejecting in one direction can be very much greater than the probability
of rejecting in the other, because 3 is often biased. In such cases, we can use the
equal-tail bootstrap P value

p%.(7) = 2min % Z I(r; <7), % Z (7 > %)). (8)

Here we actually perform two tests, one against values in the lower tail of the distribu-
tion and the other against values in the upper tail, and reject if either of them yields
a bootstrap P value less than «/2.

Bootstrap testing can be expected to work well when the quantity bootstrapped is
approximately pivotal, that is, when its distribution changes little as the DGP varies
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within the limits of the null hypothesis under test. In the ideal case in which a test
statistic is exactly pivotal and B is chosen properly, bootstrap tests are exact. See,
for instance, Horowitz (2001) for a clear exposition.

The choice of the DGP used to generate the bootstrap samples is critical, and it can
dramatically affect the properties of bootstrap tests. In the remainder of this section,
we discuss six different bootstrap DGPs for tests of 8 = [y in the IV regression
model given by (1) and (2). Three of these have been around for some time, but they
often work badly. Two were proposed in Davidson and MacKinnon (2008), and they
generally work very well under homoskedasticity. The last one is new. It is a wild
bootstrap test that takes account of heteroskedasticity of unknown form.

The oldest and best-known method for bootstrapping the test statistics (3) and (5)
is to use the pairs bootstrap, which was originally proposed in Freedman (1981) and
applied to 2SLS regression in Freedman (1984). The idea is to resample the rows of
the matrix

[v1 y2 W] (9)

For the pairs bootstrap, the i*" row of each bootstrap sample is simply one of the
rows of the matrix (9), chosen at random with probability 1/n. Other variants of
the pairs bootstrap have been proposed for this problem. In particular, Moreira,
Porter, and Suarez (2005) propose a variant that seems more complicated, because
it involves estimating the model, but actually yields identical results when applied
to both ordinary and heteroskedasticity-robust ¢ statistics. Flores-Lagunes (2007)
proposes another variant that yields results very similar, but not identical, to those
from the ordinary pairs bootstrap.

Because the pairs bootstrap DGP does not impose the null hypothesis, the bootstrap
t statistics must be computed as

(10)

Here 5* is the IV estimate of 8 from the j*™ bootstrap sample, and Se(ﬁ;) is the
Standard error of B*, calculated by whatever method is used for the standard error of
5 in the ¢ statistic that is being bootstrapped. If we used [y in place of B in (10), w

would be testing a hypothesis that was not true of the bootstrap DGP.

The pairs bootstrap is fully nonparametric and is valid in the presence of heteroskedas-
ticity of unknown form, but, as we shall see in Section 4, it has little else to recommend
it. The other bootstrap methods that we consider are semiparametric and require esti-
mation of the model given by (1) and (2). We consider a number of ways of estimating
this model and constructing bootstrap DGPs.

The least efficient way to estimate the model is to use OLS on the reduced-form
equation (2) and IV on the structural equation (1), without imposing the restriction
that 8 = Bp. This yields estimates 3, 4, and 7, a vector of IV residuals u;, and a
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vector of OLS residuals ws. Using these estimates, we can easily construct the DGP
for the unrestricted residual bootstrap, or UR bootstrap. The UR bootstrap DGP
can be written as

yih = Byé‘z + ZiA + 17, (11)
Y5, = Wit + 13, (12)

where

{% } EDF i (13)
A ~ 1/2 ~ *

U, (n/(n—1)) / Ua;

Equations (11) and (12) are simply the structural and reduced-form equations evalu-

ated at the unrestricted estimates. Note that we could omit Z;¥ from equation (11),
since the t statistics are invariant to the true value of ~.

According to (13), the bootstrap disturbances are drawn in pairs from the joint empiri-
cal distribution of the unrestricted residuals, with the residuals from the reduced-form
equation rescaled so as to have variance equal to the OLS variance estimate. This
rescaling is not essential. It would also be possible to rescale the residuals from the
structural equation, but it is unclear what benefit might result. The bootstrap DGP
given by (11), (12), and (13) ensures that, asymptotically, the joint distribution of the
bootstrap disturbances is the same as the joint distribution of the actual disturbances
if the model is correctly specified and the disturbances are homoskedastic.

Since the UR bootstrap DGP does not impose the null hypothesis, the bootstrap test
statistics must be calculated in the same way as for the pairs bootstrap, using equation
(10), so as to avoid testing a hypothesis that is not true of the bootstrap DGP.

Whenever possible, it is desirable to impose the null hypothesis of interest on the
bootstrap DGP. This is because imposing a (true) restriction makes estimation more
efficient, and using more efficient estimates in the bootstrap DGP should reduce the
error in rejection probability (ERP) associated with the bootstrap test. In some cases,
it can even improve the rate at which the ERP shrinks as the sample size increases;
see Davidson and MacKinnon (1999). All of the remaining bootstrap methods that
we discuss impose the null hypothesis.

The DGP for the restricted residual bootstrap, or RR bootstrap, is very similar to the
one for the UR bootstrap, but it imposes the null hypothesis on both the structural
equation and the bootstrap disturbances. Without loss of generality, we suppose that
Bo = 0. Under this null hypothesis, equation (1) becomes a regression of y; on Z,
which yields residuals @;. We therefore replace equation (11) by

9;1 = ai‘: (14)

since the value of v does not matter. Equation (12) is used unchanged, and equation
(13) is replaced by



[ﬂﬁ}NEDF<@ﬂn—kﬂ”%u>_

- 1/2 .
Us,; (n/(n—1)) / Ug;
Since w1; is just an OLS residual, it makes sense to rescale it here.

As we shall see in Section 4, the RR bootstrap outperforms the pairs and UR boot-
straps, but, like them, it does not work at all well when the instruments are weak. The
problem is that 7 is not an efficient estimator of 7, and, when the instruments are
weak, 7 may be very inefficient indeed. Therefore, Davidson and MacKinnon (2008)
suggested using a more efficient estimator, which was also used by Kleibergen (2002)
in constructing the K statistic. This estimator is asymptotically equivalent to the
ones that would be obtained by using either 3SLS or FIML on the system consisting
of equations (1) and (2). It may be obtained by running the regression

Yo = Wr + I Mzy,+ residuals. (15)

This is just the reduced-form equation (2) augmented by the residuals from restricted
estimation of the structural equation (1). It yields estimates 7t and ¢ and residuals

U = Y2 —Wrmr.

These are not the OLS residuals from (15), which would be too small, but the OLS
residuals plus dMzy; .

This procedure provides all the ingredients for what Davidson and MacKinnon (2008)
call the restricted efficient residual bootstrap, or RE bootstrap. The DGP uses equa-
tion (14) as the structural equation and

Yo, = WiT + 1y, (16)

as the reduced-form equation, and the bootstrap disturbances are generated by

] - EDF<("/ (n~ ’f>>”2ﬂh'>. (17)

1/2 .

(n/(n—1))" "ty

Here the residuals are rescaled in exactly the same way as for the RR bootstrap. This
rescaling, which is optional, should have only a slight effect unless k& and/or [ is large
relative to n.

One of several possible measures of how strong the instruments are is the concentration
parameter, which can be written as

W MzWr. (18)



Evidently, the concentration parameter is large when the ratio of the error variance in
the reduced-form equation to the variance explained by the part of the instruments that
is orthogonal to the exogenous variables in the structural equation is small. We can
estimate a? using either OLS estimates of equation (2) or the more efficient estimates
7t1 and & obtained from regression (15). However, both estimates are biased upwards,
because of the tendency for OLS estimates to fit too well. Davidson and MacKinnon
(2008) therefore proposes the bias-corrected estimator

iAo = max(O,d2 —(l—=k)(1- ﬁQ))v

where p is the sample correlation between the elements of w; and ws. The bias-
corrected estimator can be used in a modified version of the RE bootstrap, called the
REC bootstrap by Davidson and MacKinnon. It uses

" .. ~ % 2 a Q)T
ys; = Wyt + a5;,  where 71 = (apc/a)m,

instead of equation (16) as the reduced-form equation in the bootstrap DGP. The boot-
strap disturbances are still generated by (17). Simulation experiments not reported
here, in addition to those in the original paper, show that, when applied to ¢ statistics,
the performance of the RE and REC bootstraps tends to be very similar. Either one
of them may perform better in any particular case, but neither appears to be superior
overall. We therefore do not discuss the REC bootstrap further.

As shown in Davidson and MacKinnon (2008), and as we will see in Section 4, the
RE bootstrap, based on efficient estimates of the reduced form, generally works very
much better than earlier methods. However, like the RR and UR bootstraps (and
unlike the pairs bootstrap), it takes no account of possible heteroskedasticity. We now
propose a new bootstrap method which does so. It is a wild bootstrap version of the
RE bootstrap.

The wild bootstrap was originally proposed in Wu (1986) in the context of OLS re-
gression. It can be generalized quite easily to the IV case studied in this paper. The
idea of the wild bootstrap is to use for the bootstrap disturbance(s) associated with
the i*1" observation the actual residual(s) for that observation, possibly transformed in
some way, and multiplied by a random variable, independent of the data, with mean 0
and variance 1. Often, a binary random variable is used for this purpose. We propose
the wild restricted efficient residual bootstrap, or WRE bootstrap. The DGP uses
(14) and (16) as the structural and reduced form equations, respectively, with

{} _ [ (n/(n = k) a7

ﬁ’;z (n/(n— l))1/2ﬁ21v*

i

(19)

where v; is a random variable that has mean 0 and variance 1. Until recently, the
most popular choice for v} has been

e { ~(vV5—1)/2 with probability (v5 + 1)/(2v5);

(v5+1)/2  with probability (v/5 —1)/(2v/5). (20)
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However, Davidson and Flachaire (2008) have shown that, when the disturbances are
not too asymmetric, it is better to use the Rademacher distribution, according to
which

vf =1 with probability 3; v; = —1 with probability 3. (21)

(2

Notice that, in equation (19), both rescaled residuals are multiplied by the same value
of v}. This preserves the correlation between the two disturbances, at least when
they are symmetrically distributed. Using the Rademacher distribution (21) imposes
symmetry on the bivariate distribution of the bootstrap disturbances, and this may
affect the correlation when they are not actually symmetric.

In the experiments reported in the next section, we used (21) rather than (20). We did
so because all of the disturbances were symmetric, and there is no advantage to using
(20) in that case. Investigating asymmetric disturbances would have substantially
increased the scope of the experiments. Of course, applied workers may well want to
use (21) instead of, or in addition to, (20). In the empirical example of Section 7, we
employ both methods and find that they yield very similar results.

There is a good deal of evidence that the wild bootstrap works reasonably well for
univariate regression models, even when there is quite severe heteroskedasticity. See,
among others, Gongalves and Kilian (2004) and MacKinnon (2006). Although the wild
bootstrap cannot be expected to work quite as well as a comparable residual bootstrap
method when the disturbances are actually homoskedastic, the cost of insuring against
heteroskedasticity generally seems to be very small; see Section 4.

Of course, it is straightforward to create wild bootstrap versions of the RR and REC
bootstraps that are analogous to the WRE bootstrap. In our simulation experiments,
we studied these methods, which it is natural to call the WRR and WREC bootstraps,
respectively. However, we do not report results for either of them. The performance
of WRR is very similar to that of RR when the disturbances are homoskedastic, and
the performance of WREC is generally quite similar to that of WRE.

3. Asymptotic Validity of Wild Bootstrap Tests

In this section, we sketch a proof of the asymptotic validity of the AR test with weak
instruments and heteroskedasticity of unknown form when it is bootstrapped using
the WRE bootstrap. In addition, we show that both t tests and the K test are not
asymptotically valid in this case. In contrast, all four tests are asymptotically valid
with strong instruments and the WRE bootstrap.

A bootstrap test is said to be asymptotically valid if the rejection probability under
the null hypothesis tends to the nominal level of the test as the sample size tends to
infinity. Normally, this means that the limiting distribution of the bootstrap statistic
is the same as that of the statistic itself. Whether or not a bootstrap test is asymp-
totically valid depends on the null hypothesis under test, on the test statistic that
is bootstrapped, on the bootstrap DGP, and on the asymptotic construction used to
compute the limiting distribution.
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There are two distinct ways in which a bootstrap test can be shown to be asymptot-
ically valid. The first is to show that the test statistic is asymptotically pivotal with
respect to the null hypothesis. In that case, the limiting distribution of the statistic
is the same under any DGP satisfying the null. The second is to show that the boot-
strap DGP converges under the null in an appropriate sense to the true DGP. Either of
these conditions allows us to conclude that the (random) distribution of the bootstrap
statistic converges to the limiting distribution of the statistic generated by the true
DGP. If both conditions are satisfied, then the bootstrap test normally benefits from
an asymptotic refinement, a result first shown in Beran (1988).

We consider four possible test statistics: tg, t,,, the Anderson-Rubin statistic AR, and
the Lagrange Multiplier statistic K of Kleibergen (2002). We consider only the WRE
bootstrap DGP, because it satisfies the null hypothesis whether or not heteroskedastic-
ity is present, and because it is the focus of this paper. We make use of two asymptotic
constructions: the conventional one, in which the instruments are “strong”, and the
weak-instrument construction of Staiger and Stock (1997).

The homoskedastic case has been dealt with in Davidson and MacKinnon (2008). With
strong instruments, AR is pivotal, and the other three test statistics are asymptoti-
cally pivotal. With weak instruments, AR is pivotal, and K is asymptotically pivotal,
but the t statistics have neither property, because their limiting distributions depend
nontrivially on the parameters a and p used in weak-instrument asymptotics. It is
easy to see that, with heteroskedasticity and strong instruments, only t}, is asymptot-
ically pivotal, because the three other statistics make use, explicitly or implicitly, of
a variance estimator that is not robust to heteroskedasticity. With heteroskedasticity
and weak instruments, none of the statistics is asymptotically pivotal, because ty is
not asymptotically pivotal even under homoskedasticity.

In the presence of heteroskedasticity, all we can claim so far is that t;, gives an asymp-
totically valid bootstrap test with strong instruments. However, the fact that the
WRE DGP mimics the true DGP even with heteroskedasticity suggests that it may
yield asymptotically valid tests with other statistics. In the remainder of this section,
we show that, when the instruments are strong, all four WRE bootstrap tests are
asymptotically valid, but, when the instruments are weak, only AR is.

The proof makes use of an old result, restated in Davidson and MacKinnon (2008),
according to which the test statistics tg, K, and AR can be expressed as deterministic
functions of six quadratic forms, namely y; . Py, for i, = 1,2, where the orthogonal
projection matrix P is either My, or Py = Py — Pz. Since all four of the statistics
are homogeneous of degree 0 with respect to both y; and y, separately, we can,
without loss of generality, restrict attention to the DGP specified by (1) and (2) with
any suitable scaling of the endogenous variables. Further, when 8 = 0, y;' Mwy; =
uiTMWuj, for Z,j = 1, 2, and lePVyl = 'u,lTPVul.

We focus initially on the AR statistic, which is simply the F' statistic for w5 = 0 in
the regression
Y1 — Boye = Zm + Wama + uy, (22)
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where Z and W, span the same subspace as W. It can be written as

AR= " — 1 (y1 — Boy2) "Py (y1 — Boy2) _n—l uy Pyug
I —k (y1 — Boy2) "Mw (y1 — foy2) | —k ui Mwu,

We need to show that, with weak instruments and heteroskedasticity, the quadratic
forms u," Pyu; and w;' Myyu; have the same asymptotic distributions as their analogs
under the WRE bootstrap.

Let V be an n x (I — k) matrix with orthonormal columns such that V'V = nI;_y,
where the matrix that projects orthogonally on to 8(V') is Py. Let element i of the
vector u; be u; = o;w;, where the w; are homoskedastic with mean 0 and variance 1.
Then, letting V; denote the i*" row of V, we have n 12y Ty =n=1/2 21 1 Vo w;.
Under standard regularity conditions, the limiting distribution of this expression is
given by a central limit theorem, and it is multivariate normal with expectation zero
and asymptotic covariance matrix

(23)

plim — Z o2 V'V, (24)

n— 00
=1

Now consider the wild bootstrap analog of the sample quantity n~'/2V Tu;. This
means replacing the vector u; by a vector u] with element ¢ given by o;w; v, where
U; = 0;W;, and the v} are IID with expectation 0 and variance 1. The sum n=12v Ty,
is thus replaced by

n~ V2V Ty —n_l/sz o;W; v —n_l/QZV oW v (25)

The asymptotic equality here follows from the fact that w; tends to w; by the consis-
tency of the estimates under the null hypothesis. Conditional on the w;, the limiting
distribution of the rightmost expression in (25) follows from a central limit theorem.
Because Var(v}) = 1, this limiting distribution is normal with expectation zero and
asymptotic covariance matrix

plim — Z o2w?V;'V;. (26)

’I’L—)OO

Since Var(w;) = 1, the unconditional probability limit of this covariance matrix is, by
a law of large numbers, just expression (24).

Now consider the quadratic form
w Pyu; =n tu VViu = (n_l/QVTul)T(n_l/zVTul),

which depends solely on the vector n=1/2V Tuy. We have shown that the asymptotic
distribution of this vector is the same as that of its WRE counterpart, with either
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weak or strong instruments. Thus the limiting distribution of the numerator of the
AR statistic (26) is unchanged under the WRE bootstrap.

A different argument is needed for the denominator of the AR statistic, because the
matrix My has rank n — [, and so no limiting matrix analogous to (24) exists. By a
law of large numbers,

n n
-1, T, _ 1 2, 2 : 1 2 _ =2
n ulul—ﬁg o;w; —p hmﬁg o; =07,
i=1

where we can readily assume that the last limit exists. Since u;' Pwui = O,(1) as
n — 00, we see that the probability limit of n~ u; Myyu, is just 2. If we once more
replace u; by u}, then it is clear that n=1(u}) uj —, 62 as well, since E(w?(v})?) = 1.
Thus n~ u" Myw u; and its WRE counterpart tend to the same deterministic limit as

n — 0o, with weak or strong instruments.

This is enough for us to conclude that the AR statistic (23) in conjunction with
the WRE bootstrap is asymptotically valid. This result holds with weak or strong
instruments, with or without heteroskedasticity.

The K statistic is closely related to the AR statistic. It can be written as

(y1 — Boy2) "Prywa (Y1 — Boy2)
(y1 — Boy2) "Mw (y1 — Boyz)

K=(n-1)

where Ppr, w# projects on to the subspace spanned by MzWr, and 7 is the vector
of estimates of 7 from regression (15) with y; replaced by (y1 — Boy2). The K and AR
statistics have the same denominator. The numerator of K is the reduction in SSR
from adding the regressor W7 to a regression of y; — Boy2 on Z. This augmented
regression is actually a restricted version of regression (22).

In order to investigate the two t statistics and K, we consider, without loss of generality,
a simplified DGP based on the model (1) and (2) with g = 0:

Y1 = Uy (27)

Y2 = aw; + U2, U2 = pU] + TV, (28)

where r = (1 — p?)'/2, and the elements of the vectors u; and v are IID random
variables with mean 0 and variance 1. Under this DGP, the quadratic form vy Py y-
is equal to w; Pyus + az1, where 1 = w, u; is asymptotically normal with expecta-
tion 0. This means that, since all the statistics except AR depend on y,' Py y-, they
depend on the value of the parameter a, which is the square root of the concentration
parameter defined in (18). It is shown in Davidson and MacKinnon (2008) that no
estimator of a is consistent under weak-instrument asymptotics, and so, even though
the WRE bootstrap mimics the distribution of the quadratic form u,' Py us correctly
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in the large-sample limit, it cannot do the same for a. Thus the statistics tg, ¢, and
K do not yield asymptotically valid tests with the WRE bootstrap.

The result for K may be surprising, since it is well known that K is asymptotically
valid under homoskedasticity. It is shown in Davidson and MacKinnon (20) that the
distribution of K is independent of a under the assumption of homoskedasticity, but
this independence is lost under heteroskedasticity.

In the strong-instrument asymptotic construction, a does not remain constant as
n varies. Instead, a = n'/2a, where the parameter « is independent of n. This
implies that n= /2y, Pyy, = O, (1) and n~lyy Pyys = O,(1) as n — oo. Indeed,
n~lys Py ys is a consistent estimator of a. A straightforward calculation, which we
omit for the sake of brevity, then shows that all four of the statistics we consider give
asymptotically valid tests with the WRE bootstrap and strong instruments.

4. Finite-Sample Properties of Competing Bootstrap Methods

In this section, we graphically report the results of a number of large-scale sampling
experiments. These were designed to investigate several important issues.

In the first five sets of experiments, which deal only with the two t statistics, there is
no heteroskedasticity. The data are generated by a version of the simplified DGP given
by (27) and (28) in which the elements of the n-vectors u; and v are independent and
standard normal. Thus the elements of u; and us are contemporaneously correlated,
but serially uncorrelated, standard normal random variables with correlation p. The
instrument vector w; is normally distributed and scaled so that ||w;] = 1. This,
together with the way the disturbances are constructed, ensures that the square of the
coefficient a in (28) is the concentration parameter a? defined in (18).

Although there is just one instrument in equation (28), the model that is actually
estimated, namely (1) and (2), includes [ of them, of which one is w;, [ — 2 are
standard normal random variables that have no explanatory power, and the last is a
constant term, which is also the sole column of the matrix Z of exogenous explanatory
variables in the structural equation, so that £ = 1. Including a constant term ensures
that the residuals have mean zero and do not have to be recentered for the residual
bootstraps.

In the context of the DGP given by (27) and (28), there are only four parameters that
influence the finite-sample performance of the tests, whether asymptotic or bootstrap.
The four parameters are the sample size n, [ — k, which is one more than the number of
overidentifying restrictions, a (or, equivalently, a?), and p. In most of our experiments,
we hold a fixed as we vary n. This implies a version of the weak-instrument asymptotics
of Staiger and Stock (1997). Consequently, we do not expect any method except AR
to work perfectly, even as n — oco. By allowing n and a to vary independently, we
are able to separate the effects of sample size per se from the effects of instrument
weakness.
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All experiments use 100,000 replications for each set of parameter values, and all
bootstrap tests are based on B = 399 bootstrap replications. This is a smaller number
than should generally be used in practice, but it is perfectly satisfactory for simulation
experiments, because experimental randomness in the bootstrap P values tends to
average out across replications. The same seeds are used for all parameter values
in each set of experiments. This makes it easier to see graphically how rejection
frequencies vary with parameter values.

Unless otherwise noted, bootstrap tests are based on the equal-tail P value (8) rather
than the symmetric P value (7). In some cases, as we discuss later, using the latter
would have produced noticeably different results. We focus on rejection frequencies
for tests at the .05 level. Results for rejection frequencies at other common levels are
qualitatively similar.

Figure 1 shows the effects of varying a from 1 (instruments very weak) to 64 (in-
struments extremely strong) by factors of v/2. In these experiments, n = 400 and
I — k = 11. The reasons for choosing these values will be discussed below. In the top
two panels, p = 0.9; in the bottom two, p = 0.1. The left-hand panels show rejection
frequencies for the asymptotic test and the pairs, UR, and RR bootstraps. The right-
hand panels show rejection frequencies for the RE and WRE bootstraps, as well as
partial ones for the RR bootstrap. Notice that the vertical axis is different in every
panel and has a much larger range in the left-hand panels than in the right-hand ones.
Results are shown for both the usual t statistic 5 and the heteroskedasticity-robust
one t,. The former are shown as solid, dashed, or dotted lines, and the latter are
shown as symbols that are full or hollow circles, diamonds, or crosses.

Several striking results emerge from Figure 1. In all cases, there is generally not much
to choose between the results for ¢y and the results for ¢,. This is not surprising,
since the disturbances are actually homoskedastic. Everything else we say about these
results applies equally to both test statistics.

It is clear from the top left-hand panel that the older bootstrap methods (namely, the
pairs, UR, and RR bootstraps) can overreject very severely when p is large and a is
not large, although, in this case, they do always work better than the asymptotic test.
In contrast, the top right-hand panel shows that the new, efficient bootstrap methods
(namely, the RE and WRE bootstraps) all tend to underreject slightly in the same
case. This problem is more pronounced for RE than for WRE.

The two bottom panels show that, when p is small, things can be very different. The
asymptotic test now underrejects modestly for small values of a, the pairs and UR
bootstraps overreject quite severely, and the RR bootstrap underrejects a bit less than
the asymptotic test. This is a case in which bootstrap tests can evidently be much less
reliable than asymptotic ones. As can be seen from the bottom right-hand panel, the
efficient bootstrap methods generally perform much better than the older ones. There
are only modest differences between the rejection frequencies for WRE and RE, with
the former being slightly less prone to underreject for small values of a.
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It is evident from the bottom right-hand panel of Figure 1 that the RR, RE, and
WRE bootstraps perform almost the same when p = 0.1, even when the instruments
are weak. This makes sense, because there is little efficiency to be gained by running
regression (15) instead of regression (2) when p is small. Thus we can expect the RE
and RR bootstrap DGPs to be quite similar whenever the correlation between the
reduced-form and structural disturbances is small.

Figure 2 shows the effects of varying p from 0 to 0.95 by increments of 0.05. In the
top two panels, a = 2, so that the instruments are quite weak, and, in the bottom
two panels, a = 8, so that they are moderately strong. As in Figure 1, the two left-
hand panels show rejection frequencies for older methods that often work poorly. We
see that the asymptotic test tends to overreject severely, except when p is close to 0,
that the pairs and UR bootstraps always overreject, and that the RR bootstrap almost
always performs better than the pairs and UR bootstraps. However, even it overrejects
severely when p is large.

As in Figure 1, the two right-hand panels in Figure 2 show results for the new, effi-
cient bootstrap methods, as well as partial ones for the RR bootstrap for purposes of
comparison. Note the different vertical scales. The new methods all work reasonably
well when a = 2 and very well, although not quite perfectly, when a = 8. Once again,
it seems that WRE works a little bit better than RE.

In the first two sets of experiments, the number of instruments is fairly large, with
l—k = 11, and different choices for this number would have produced different results.
In Figure 3, | — k varies from 1 to 21. In the top two panels, a = 2 and p = 0.9; in the
bottom two, a = 2 and p = 0.1. Since a is quite small, all the tests perform relatively
poorly. As before, the new bootstrap tests generally perform very much better than
the older ones, although, as expected, RR is almost indistinguishable from RE when
p=0.1.

When p = 0.9, the performance of the asymptotic test and the older bootstrap tests
deteriorates dramatically as [ — k increases. This is not evident when p = 0.1, however.
In contrast, the performance of the efficient bootstrap tests actually tends to improve
as | — k increases. The only disturbing result is in the top right-hand panel, where
the RE and WRE bootstrap tests underreject fairly severely when [ = k < 3, that is,
when there are two or fewer overidentifying restrictions. The rest of our experiments
do not deal with this case, and so they may not accurately reflect what happens when
the number of instruments is very small.

In all the experiments discussed so far, n = 400. It makes sense to use a reasonably
large number, because cross-section data sets with weak instruments are often fairly
large. However, using a very large number would have greatly raised the cost of the
experiments. Using larger values of n while holding a fixed would not necessarily cause
any of the tests to perform better, because, in theory, rejection frequencies approach
nominal levels only as both n and a tend to infinity. Nevertheless, it is of interest to
see what happens as n changes while we hold a fixed.
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Figure 4 shows how the efficient bootstrap methods perform in four cases (a = 2 or
a =38, and p = 0.1 or p = 0.9) for sample sizes that increase from 25 to 1600 by factors
of approximately /2. Note that, as n increases, the instruments become very weak
indeed when a = 2. For n = 1600, the R? of the reduced-form regression (28) in the
DGP, evaluated at the true parameter values, is just 0.0025. Even when a = 8, it is
just 0.0385.

The results in Figure 4 are striking. Both the efficient bootstrap methods perform
better for n = 1600 than for n = 25, often very much better. As n increases from 25 to
about 200, the performance of the tests often changes quite noticeably. However, their
performance never changes very much as n is increased beyond 400, which is why we
used that sample size in most of the experiments. When possible, the figure includes
rejection frequencies for RR. Interestingly, when p = 0.1, it actually outperforms RE
for very small sample sizes, although its performance is almost indistinguishable from
that of RE for n > 70.

The overall pattern of the results in Figure 4 is in accord with the asymptotic theory
laid out in Section 3. In particular, the failure of the rejection frequency of the boot-
strap t tests using RE and WRE to converge to the nominal level of 0.05 as n grows is
predicted by that theory. The reason is that, under weak-instrument asymptotics, no
estimate of a is consistent. Nevertheless, we see from Figure 4 that this inconsistency
leads to an ERP of the bootstrap test for a = 2 and large n that is quite small. It is
less than 0.004 in absolute value when p = 0.9 and about 0.012 when p = 0.1.

Up to this point, we have reported results only for equal-tail bootstrap tests, that is,
ones based on the equal-tail P value (8). We believe that these are more attractive
in the context of ¢ statistics than tests based on the symmetric P value (7), because
IV estimates can be severely biased when the instruments are weak. However, it is
important to point out that results for symmetric bootstrap tests would have differed,
in some ways substantially, from the ones reported for equal-tail tests.

Figure 5 is comparable to Figure 2. It too shows rejection frequencies as functions of
p for n =400 and [ — k = 11, with a = 2 in the top row and a = 8 in the bottom row,
but this time for symmetric bootstrap tests. Comparing the top left-hand panels of
Figure 5 and Figure 2, we see that, instead of overrejecting, symmetric bootstrap tests
based on the pairs and UR bootstraps underreject severely when the instruments are
weak and p is small, although they overreject even more severely than equal-tail tests
when p is very large. Results for the RR bootstrap are much less different, but the
symmetric version underrejects a little bit more than the equal-tail version for small
values of p and overrejects somewhat more for large values.

As one would expect, the differences between symmetric and equal-tail tests based
on the new, efficient bootstrap methods are much less dramatic than the differences
for the pairs and UR bootstraps. At first glance, this statement may appear to be
false, because the two right-hand panels in Figure 5 look quite different from the
corresponding ones in Figure 2. However, it is important to bear in mind that the
vertical axes in the right-hand panels are highly magnified. The actual differences in

— 15—



rejection frequencies are fairly modest. Overall, the equal-tail tests seem to perform
better than the symmetric ones, and they are less sensitive to the values of p, which
further justifies our choice to focus on them.

Next, we turn our attention to heteroskedasticity. The major advantage of the WRE
over the RE bootstrap is that the former accounts for heteroskedasticity in the boot-
strap DGP and the latter does not. Thus it is of considerable interest to see how the
various tests (now including AR and K) perform when there is heteroskedasticity.

In principle, heteroskedasticity can manifest itself in a number of ways. However,
because there is only one exogenous variable that actually matters in the DGP given
by (27) and (28), there are not many obvious ways to model it without using a more
complicated model. In our first set of experiments, we used the DGP

y1 = n/?|wi| *u (29)

Yo = awi + U, Uy = pn1/2|fw1\ *uy +ro, (30)

where, as before, the elements of u; and v are independent and standard normal. The
purpose of the factor n'/2 is to rescale the instrument so that its squared length is
n instead of 1. Thus each element of w; is multiplied by the absolute value of the
corresponding element of wq, appropriately rescaled.

We investigated rejection frequencies as a function of p for this DGP for two values
of a, namely, a = 2 and a = 8. Results for the new, efficient bootstrap methods only
are reported in Figure 6. These results are comparable to those in Figure 2. There are
four test statistics (ts, tn, AR, and K) and two bootstrap methods (RE and WRE).
The left-hand panels contain results for a = 2, and the right-hand panels for a = 8.
The top two panels show results for three tests that work badly, and the bottom two
panels show results for five tests that work at least reasonably well.

The most striking result in Figure 6 is that using RE, the bootstrap method which
does not allow for heteroskedasticity, along with any of the test statistics that require
homoskedasticity (ts, AR, and K) often leads to severe overrejection. Of course, this
is hardly a surprise. But the result is a bit more interesting if we express it in another
way. Using either WRE, the bootstrap method which allows for heteroskedasticity, or
the test statistic t,, which is valid in the presence of heteroskedasticity of unknown
form, generally seems to produce rejection frequencies that are reasonably close to
nominal levels.

This finding can be explained by the standard result, discussed in Section 3, under
which bootstrap tests are asymptotically valid whenever one of two conditions is satis-
fied. The first is that the quantity is asymptotically pivotal, and the second is that the
bootstrap DGP converges in an appropriate sense to the true DGP. The first condition
is satisfied by t;, but not by t5. The second condition is satisfied by WRE but not by
RE except when the true DGP is homoskedastic.

Interestingly, the combination of the AR statistic and the WRE bootstrap works ex-
tremely well. Notice that rejection frequencies for AR do not depend on p, because
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this statistic is solely a function of y;. When a = 8, combining WRE with ¢}, also
performs exceedingly well, but this is not true when a = 2.

We also performed a second set of experiments in which the DGP was similar to (29)
and (30), except that each element of w; was multiplied by nt/ 2w?, instead of by
n'/?|w;|. Thus the heteroskedasticity was considerably more extreme. Results are
not shown, because they are qualitatively similar to those in Figure 6, with WRE
continuing to perform well and RE performing very poorly (worse than in Figure 6)
when applied to the statistics other than ty.

The most interesting theoretical results of Section 3 deal with the asymptotic validity
of the WRE bootstrap applied to AR, K, t5, and ¢, under weak instruments and
heteroskedasticity. To see whether these results provide a good guide in finite samples,
we performed another set of experiments in which we varied the sample size from 25
to 1600 by factors of approximately /2 and used data generated by (29) and (30).
Results for the usual four cases (a =2 or a = 8, and p = 0.1 or p = 0.9) are shown in
Figure 7. Since the AR and K tests are not directional, upper-tail bootstrap P values
based on (7) were computed for them, while equal-tail bootstrap P values based on
(8) were computed for the two t tests.

Figure 7 provides striking confirmation of the theory of Section 3. The AR test not only
demonstrates its asymptotic validity but also performs extremely well for all sample
sizes. As it did in Figure 4, t,, performs well for large sample sizes when a = 8, but it
underrejects modestly when a = 2. The other tests are somewhat less satisfactory. In
particular, the K test performs surprising poorly in two of the four cases.

Figure 8 contains results for the RE bootstrap for the same experiments as Figure 7.
All of the tests except t, now overreject quite severely for all sample sizes. Thus, as the
theory predicts, only ¢, is seen to be asymptotically valid for large enough a. Careful
examination of Figures 7 and 8, which is a bit difficult because of the differences in the
vertical scales, also shows that, for samples of modest size, t;, performs considerably
better when bootstrapped using WRE rather than RE. This makes sense, since with
WRE there is the possibility of an asymptotic refinement.

Taken together, our results for both the homoskedastic and heteroskedastic cases sug-
gest that the safest approach is undoubtedly to use the WRE bootstrap with the
AR statistic. It is also reasonably safe to use the WRE bootstrap with the robust
t statistic ¢, when the sample size is moderate to large (say, 200 or more) and the
instruments are not extremely weak. Using the RE bootstrap, or simply performing
an asymptotic test, with any statistic except t can be very seriously misleading when
heteroskedasticity is present.

5. More than Two Endogenous Variables

Up to this point, as in Davidson and MacKinnon (2008), we have focused on the case in
which there is just one endogenous variable on the right-hand side. The AR test (23),
the K test, and the CLR test are designed to handle only this special case. However,
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there is no such restriction for ¢ statistics, and the RE and WRE bootstraps can easily
be extended to handle more general situations.

For notational simplicity, we deal with the case in which there are just two endogenous
variables on the right-hand side. It is trivial to extend the analysis to handle any
number of them. The model of interest is

Y1 = Pay2 + B3ys + Zv +wy (31)
Y2 = Wy + u (32)
ys = W3 + ug, (33)

where the notation should be obvious. As before, Z and W are, respectively, an n X k
and an n x [ matrix of exogenous variables with the property that 8(Z) lies in §(W).
For identification, we require that [ > k + 2.

The pairs and UR bootstraps require no discussion. The RR bootstrap is also quite
easy to implement in this case. To test the hypothesis that, say, fs = P29, we need to
estimate by 2SLS a restricted version of equation (31),

Y1 — B20Y2 = B3ys + Zv + uq, (34)

in which y3 is the only endogenous right-hand side variable, so as to yield restricted
estimates 3 and 4 and 2SLS residuals ;. We also estimate equations (32) and (33)
by OLS, as usual. Then the bootstrap DGP is
Y — BaoYin = BS?J?);Z + Ziy + a3,
y;l = Wz 7%2 + ﬁ;z (35)
y3; = Wit + i3,

where the bootstrap disturbances are generated as follows:

x. 7:1112'

i 1/2.

a3, | ~EDF| (n/(n—10))" a9 |. (36)
3 (n/(n— l>)1/2a3i

As before, we may omit the term Z;7 from the first of equations (35). In (36), we
rescale the OLS residuals from the two reduced-form equations but not the 2SLS ones
from equation (34), although this is not essential.

For the RE and WRE bootstraps, we need to re-estimate equations (32) and (33) so
as to obtain more efficient estimates that are asymptotically equivalent to 3SLS. We
do so by estimating the analogs of regression (15) for these two equations, which are

Yo = Wy + d2u1+ residuals, and
y3 = Wz + 0311+ residuals.
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We then use the OLS estimates 7o and 73 and the residuals uo, = yo — W7 and
uz = ys3 — W in the RE and WRE bootstrap DGPs:

i — Booyls = Bsys; + ZiA + 1}
y;i = Wz ﬁ'g + ﬂ;z (37)
Only the second and third equations of (37) differ from the corresponding equations of

(35) for the RR bootstrap. In the case of the RE bootstrap, we resample from triples
of (rescaled) residuals:

@, i
@, | ~EDF| (n/(n—1))" %
ﬁ;l (n/(n — l))1/2ﬂ3i

In the case of the WRE bootstrap, we use the analog of (19), which is

s | = | (n/(n— 1) ag0r |,
’a;z (n/(n — l))1/2’a3¢’£1;<

where v} is a suitable random variable with mean 0 and variance 1.

6. Bootstrap Confidence Intervals

Every confidence interval for a parameter is constructed, implicitly or explicitly, by
inverting a test. We may always test whether any given parameter value is the true
value. The upper and lower limits of the confidence interval are those values for which
the test statistic equals its critical value. Equivalently, for an interval with nominal
coverage 1 — « based on a two-tailed test, they are the parameter values for which
the P value of the test equals a. For an elementary exposition, see Davidson and
MacKinnon (2004, Chapter 5).

There are many types of bootstrap confidence interval; Davison and Hinkley (1997)
provides a good introduction. The type that is widely regarded as most suitable is the
percentile £, or bootstrap t, interval. Percentile ¢ intervals could easily be constructed
using the pairs or UR bootstraps, for which the bootstrap DGP does not impose the
null hypothesis, but they would certainly work badly whenever bootstrap tests based
on these methods work badly, that is, whenever p is not small and a is not large; see
Figures 1, 2, 3, and 5.

It is conceptually easy, although perhaps computationally demanding, to construct
confidence intervals using bootstrap methods that do impose the null hypothesis. We
now explain precisely how to construct such an interval with nominal coverage 1 — a.
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The method we propose can be used with any bootstrap DGP that imposes the null
hypothesis, including the RE and WRE bootstraps. It can be expected to work well
whenever the rejection frequencies for tests at level a based on the relevant bootstrap
method are in fact close to a.

1. Estimate the model (1) and (2) by 2SLS so as to obtain the IV estimate 3 and
the heteroskedasticity-robust standard error sy (3) defined in (6). Our simulation
results suggest that there is no significant cost to using the latter rather than
the usual standard error that is not robust to heteroskedasticity, even when the
disturbances are homoskedastic, for the sample sizes typically encountered with

cross-section data.

2. Write a routine that, for any value of 3, say [y, calculates a test statistic for the
hypothesis that § = Sy and bootstraps it under the null hypothesis. This routine
must perform B bootstrap replications using a random number generator that
depends on a seed m to calculate a bootstrap P value, say p*(8y). For ty, this
should be an equal-tail bootstrap P value based on equation (8). For the AR or
K statistics, it should be an upper-tail one.

3. Choose a reasonably large value of B such that a(B + 1) is an integer, and
also choose m. The same values of m and B must be used each time p*(f)
is calculated. This is very important, since otherwise a given value of 5y, would
yield different values of p*(8y) each time it was evaluated.

4. For the lower limit of the confidence interval, find two values of 3, say 8;— and 514,
with 51— < 14, such that p*(5)-) < a and p*(B1+) > «. Since both values will
normally be less than B , one obvious way to do this is to start at the lower limit
of an asymptotic confidence interval, say §7°, and see whether p*(3;) is greater
or less than «. If it is less than «, then B{° can serve as [§)_; if it is greater,
then 7° can serve as f1+. Whichever of 31— and 14 has not been found in this
way can then be obtained by moving a moderate distance, perhaps sh(B), in the
appropriate direction as many times as necessary, each time checking whether the

bootstrap P value is on the desired side of a.

5. Similarly, find two values of 3, say f,— and [u4+, with S, < B4+, such that
p*(Bu—) > a and p*(But) < .

6. Find the lower limit of the confidence interval, 8. This is a value between J3;_
and (14 which is such that p*(87) = «. One way to find 57 is to minimize the
function (p*(ﬁ) — a)2 with respect to 3 in the interval [51_, §14] by using golden
section search; see, for instance, Press, Teukolsky, Vettering, and Flannery (2007,
Section 10.2). This method is attractive because it is guaranteed to converge to
a local minimum and does not require derivatives.

7. In the same way, find the upper limit of the confidence interval, 87. This is a
value between f,_ and S,4+ which is such that p*(5%) = a.

When a confidence interval is constructed in this way, the limits of the interval have
the property that p*(57) = p*(8)) = «. The approximate equalities here would
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become exact, subject to the termination criterion for the golden search routine, if
B were allowed to tend to infinity. The problem is that p*(3) is a step function, the
value of which changes by precisely 1/B at certain points as its argument varies. This
suggests that B should be fairly large, if possible. It also rules out the many numerical
techniques that, unlike golden section search, use information on derivatives.

7. An Empirical Example

The method of instrumental variables is routinely used to answer empirical questions
in labor economics. In such applications, it is common to employ fairly large cross-
section datasets for which the instruments are very weak. In this section, we apply
our methods to an empirical example of this type. It uses the same data as Card
(1995). The dependent variable in the structural equation is the log of wages for
young men in 1976, and the other endogenous variable is years of schooling. There are
3010 observations without missing data, which originally came from the Young Men
Cohort of the National Longitudinal Survey.

Although we use Card’s data, the equation we estimate is not identical to any of
the ones he estimates. We simplify the specification by omitting a large number of
exogenous variables having to do with location and family characteristics, which appear
to be collectively insignificant, at least in the IV regression. We also use age and age
squared instead of experience and experience squared in the wage equation. As Card
notes, experience is endogenous if schooling is endogenous. In some specifications,
he therefore uses age and age squared as instruments. For purposes of illustrating
the methods discussed in this paper, it is preferable to have just two endogenous
variables in the model, and so we do not use experience as an endogenous regressor.
This slightly improves the fit of the IV regression, but it also has some effect on the
coefficient of interest. In addition to age and age squared, the structural equation
includes a constant term and dummies for race, living in a southern state, and living
in an SMSA as exogenous variables.

We use four instruments, all of which are dummy variables. The first is 1 if there
is a two-year college in the local labor market, the second if there is either a two-
year college or a four-year college, the third if there is a public four-year college,
and the fourth if there is a private four-year college. The second instrument was not
used by Card, although it is computed as the product of two instruments that he
did use. The instruments are fairly weak, but apparently not as weak as in many of
our simulations. The concentration parameter is estimated to be just 19.92, which is
equivalent to a = 4.46. Of course, this is just an estimate, and a fairly noisy one.
The Sargan statistic for overidentication is 7.352. This has an asymptotic P value of
0.0615 and a bootstrap P value, using the wild bootstrap for the unrestricted model,
of 0.0658. Thus there is weak evidence against the overidentifying restrictions.

Our estimate of the coefficient 3, which is the effect of an additional year of schooling
on the log wage, is 0.1150. This is higher than some of the results reported by Card and
lower than others. The standard error is either 0.0384 (assuming homoskedasticity) or
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0.0389 (robust to heteroskedasticity). Thus the ¢ statistics for the coefficient 8 to be
zero and the corresponding asymptotic P values are:

ts = 2.999 (p=0.0027) and t, =2.958 (p = 0.0031).

Equal-tail bootstrap P values are very similar to the asymptotic ones. Based on
B =99,999, the P value is 0.0021 for the RE bootstrap using ts, and either 0.0021 or
0.0022 for the WRE bootstrap using t;,. The first of these wild bootstrap P values is
based on the Rademacher distribution (21) that imposes symmetry, and the second is
based on the distribution (20) that does not.

We also compute the AR statistic, which is 5.020 and has a P value of 0.00050 based
on the F(4,3000) distribution. WRE bootstrap P values are 0.00045 and 0.00049
based on (21) and (20), respectively. It is of interest that the AR statistic rejects the
null hypothesis even more convincingly than the bootstrap ¢ statistics. As some of
the simulation results in Davidson and MacKinnon (2008) illustrate, this can easily
happen when the instruments are weak. In contrast, the P values for the K statistic,
which is 7.573, are somewhat larger than the ones for the ¢ statistics. The asymptotic

P value is 0.0059, and the WRE ones are 0.0056 and 0.0060.

Up to this point, our bootstrap results merely confirm the asymptotic ones, which
suggest that the coefficient of schooling is almost certainly positive. Thus they might
incorrectly be taken to show that asymptotic inference is reliable in this case. In
fact, it is not. Since there is a fairly low value of a and a reasonably large value of p
(the correlation between the residuals from the structural and reduced-form equations
is —0.474), our simulation results suggest that asymptotic theory should not perform
very well in this case. Indeed, it does not, as becomes clear when we examine bootstrap
confidence intervals.

We construct eleven different 0.95 confidence intervals for 8. Two are asymptotic
intervals based on ts and t,,, two are asymptotic intervals obtained by inverting the
AR and K statistics, and seven are bootstrap intervals. The procedure for inverting
the AR and K statistics is essentially the same as the one discussed in Section 6,
except that we use either the F'(4,3000) or x?(1) distributions instead of a bootstrap
distribution to compute P values. One bootstrap interval is based on t5 with the RE
bootstrap. The others are based on t,,, AR, and K, each with two different variants
of the WRE bootstrap. The “s” variant uses (21) and thus imposes symmetry, while
the “ns” variant uses (20) and thus does not impose symmetry. In order to minimize
the impact of the specific random numbers that were used, all bootstrap intervals are
based on B = 99,999. Each of them required the calculation of at least 46 bootstrap
P values, mostly during the golden section search. Computing each bootstrap interval
took about 30 minutes on a Linux machine with an Intel Core 2 Duo E6600 processor.
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Table 1. Confidence Intervals for 3

Test Statistic Method Lower Limit Upper Limit

ts Asymptotic 0.0399 0.1901
RE Bootstrap 0.0497 0.3200

t Asymptotic 0.0388 0.1913
WRE (s) Bootstrap 0.0500 0.3439

WRE (ns) Bootstrap 0.0503 0.3424

AR Asymptotic 0.0817 0.2965
WRE (s) Bootstrap 0.0827 0.3021

WRE (ns) Bootstrap 0.0818 0.3022

K Asymptotic 0.0584 0.4168
WRE (s) Bootstrap 0.0582 0.4268

WRE (ns) Bootstrap 0.0577 0.4238

It can be seen from Table 1 that, for the t statistics, the lower limits of the bootstrap
intervals are moderately higher than the lower limits of the asymptotic intervals, and
the upper limits are very much higher. What seems to be happening is that 3 is
biased downwards, because p < 0, and the standard errors are also too small. These
two effects almost offset each other when we test the hypothesis that § = 0, which is
why the asymptotic and bootstrap tests yield such similar results. However, they do
not fully offset each other for the tests that determine the lower limit of the confidence
interval, and they reinforce each other for the tests that determine the upper limit.

All the confidence intervals based on the AR statistic are substantially narrower than
the bootstrap intervals based on the ¢ statistics, although still wider than the asymp-
totic intervals based on the latter. In contrast, the intervals based on the K statistic
are even wider than the bootstrap intervals based on the ¢ statistics. This is what one
would expect based on the P values for the tests of 5 = 0. Of course, if the overidenti-
fying restrictions do not hold, the AR statistic will tend to overreject. Bootstrapping
does not make much difference for AR and K, apparently because there is not much
heteroskedasticity.

It is perhaps a bit disappointing that the bootstrap confidence intervals in Table 1
are so wide. This is a consequence of the model and the data, not the bootstrap
methods themselves. With stronger instruments, the estimates would be more precise,
all the confidence intervals would be narrower, intervals based on t statistics would
be narrower relative to ones based on the AR statistic, and the differences between
bootstrap and asymptotic intervals based on t statistics would be less pronounced.
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8. Conclusion

In this paper, we propose a new bootstrap method for models estimated by instru-
mental variables. It is a wild bootstrap variant of the RE bootstrap proposed in
Davidson and MacKinnon (2008). The most important features of this method are
that it uses efficient estimates of the reduced-form equation(s) and that it allows for
heteroskedasticity of unknown form.

We prove that, when the new WRE bootstrap is applied to the Anderson-Rubin stat-
istic under weak instrument asymptotics and heteroskedasticity of unknown form, it
yields an asymptotically valid test. We also show that it does not do so when it is
applied to t statistics and the K statistic. Under strong instrument asymptotics, it
yields asymptotically valid tests for all the test statistics.

In an extensive simulation study, we apply the WRE bootstrap and several existing
bootstrap methods to t statistics, which may or may not be robust to heteroskedasticity
of unknown form, for the coefficient of a single endogenous variable. We also apply
the WRE bootstrap to the AR and K statistics when there is heteroskedasticity. We
find that, like the RE bootstrap, the new WRE bootstrap performs very much better
than earlier bootstrap methods, especially when the instruments are weak.

We also show how to apply the RE and WRE bootstraps to models with two or more
endogenous variables on the right-hand side, but their performance in this context
remains a topic for future research. In addition, we discuss how to construct confidence
intervals by inverting bootstrap tests based on bootstrap DGPs that impose the null
hypothesis, such as the RE and WRE bootstraps.

Finally, we apply the efficient bootstrap methods discussed in this paper to an empirical
example that involves a fairly large sample but weak instruments. When used to test
the null hypothesis that years of schooling do not affect wages, the new bootstrap
tests merely confirm the results of asymptotic tests. However, when used to construct
confidence intervals, they yield intervals that differ radically from conventional ones
based on asymptotic theory.
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