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Abstract

This paper develops a new test of orthogonality based on a zero restriction on
the covariance between the dependent variable and the predictor. The test pro-
vides a useful alternative to regression-based tests when conditioning variables
have roots close or equal to unity. In this case standard predictive regression
tests can suffer from well-documented size distortion. Moreover, under the al-
ternative hypothesis, they force the dependent variable to share the same order
of integration as the predictor, whereas in practice the dependent variable often
appears stationary while the predictor may be near-nonstationary. By contrast,
the new test does not enforce the same orders of integration and is therefore capa-
ble of detecting alternatives to orthogonality that are excluded by the standard
predictive regression model. Moreover, the test statistic has a standard normal
limit distribution for both unit root and local-to-unity conditioning variables,
without prior knowledge of the local-to-unity parameter. If the conditioning
variable is stationary, the test remains conservative and consistent. Thus the
new test requires neither size correction nor unit root pre-test. Simulations sug-
gest good small sample performance. As an empirical application, we test for
the predictability of stock returns using two persistent predictors, the dividend-
price-ratio and short-term interest rate.
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1 Introduction

This paper develops a new test of orthogonality based on a zero restriction on the
covariance between the dependent variable and the predictor. When the predictor
is stationary, this zero-covariance restriction is identical to the restriction imposed
in commonly employed predictive regressions, in which the dependent variable (yt)
is regressed on the predictor (xt−1). However, when the predictor has a root close
or equal to unity, the predictive regression forces the dependent variable to have the
same order of integration as the predictor under the alternative hypothesis. In other
words, the dependent variable has a (near) unit root component that cointegrates
with the predictor. Since there is often good reason to think that the dependent
variable is stationary, this regression model may not provide the only relevant alter-
native to orthogonality. The zero-covariance restriction proposed here allows for the
detection of empirically relevant alternatives to orthogonality, in which the condi-
tioning variable (e.g. interest rates, dividend yields) may be either stationary, near
nonstationary, or I(1), but the dependent variable (e.g. stock returns) is presumed
stationary.

Predictive regression tests are also known to suffer from substantial size distor-
tion when regressors have roots near unity and are predetermined but not strictly
exogenous (e.g. Mankiw and Shapiro (1986), Cavanagh et al. (1995), and Stambaugh
(1999)). This size distortion is known to depend on the local to unity parameter
and is not solved by two stage inference based on unit root pre-test (Cavanagh et al.
(1995), Elliott (1998)). Another advantage of the covariance based approach is that
it yields a single asymptotic t-type test that has correct size when the conditioning
variable is modelled as either a unit root or local to unity process (with finite local-
to-unity parameter c). The test has conservative size, but remains consistent when
the conditioning variable is stationary. It thus provides a sound basis for inference
without reference to prior knowledge, estimates, or pre-tests regarding the size of the
root.

The size distortion problem mentioned above has recently generated an active
literature aimed at correcting inference in regression-based predictive tests. In a
local-to-unity context, solutions of this type include bounds procedures (Cavanagh
et al. (1995), Torous et al. (2005), Valkanov (2003), Campbell and Yogo (2006)), re-
formulation of the problem as a stationarity test on yt (Wright (2000), Lanne (2002)),
and conditionally optimal inference employing sufficient statistics (Jansson and Mor-
eira (2006)). Other solutions, often in more tightly parametrized models, include
finite sample size corrections (Stambaugh (1999), Lewellen (2004)), augmented re-
gression methods (Amihud and Hurvich (2004), Amihud et al. (2004)), Bayesian
approaches (Elliott and Stock (1994), Stambaugh (1999), Lewellen (2004)), and re-
sampling approaches (Nelson and Kim (1993), Goetzmann and Jorion (1993), Wolf
(2000)).

Our test shares the attractive feature of the procedures described above in that
it maintains good size when the predictor is persistent. This is obtained without
size correction, pretest, or information on the local-to-unity parameter c. On the
other hand, our test differs from the size-corrected regressions in that it is based on a
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different parameter restriction. As explained in the paragraphs below, this allows us
to consider alternatives not covered by the regression model, including unbalanced
alternatives in which yt remains stationary despite I(1) or local-to-unity behavior in
xt.

In this way, our approach differs somewhat fundamentally from that taken in
much of the previous literature. The traditional framework, in which xt is stationary
and, under the alternative, yt is a constant linear function of xt−1, has intuitive appeal
in many applications and is often consistent with economic or financial theory. For
example, if under a failure of rational expectations, asset prices temporarily deviate
from their fundamental value, the levels of valuation measures such as the earnings or
dividend price ratio may have some predictive power for future market corrections.
Thus, even as the recent literature has relaxed the stationarity assumptions on xt
it has generally maintained alternative specifications in which yt depends linearly
on xt−1. A major advantage of this approach is that it has allowed researchers to
re-examine exactly the same alternatives that have been influential in the previous
literature. Thus this branch of the econometrics literature has made very important
and useful contributions in both econometrics and empirical finance.

On the other hand, once we allow the possibility that xt is (near) nonstationary,
there is also an argument in favor of broadening the alternative to allow for certain
more general forms of predictability. The reason is that, under the fixed-coefficient
linear alternative discussed above, a (near) permanent component to xt implies a
near permanent component to yt. However, yt is typically a financial return and
empirically such returns generally show little serial correlation. This is apparent
on comparing the behavior of the real stock return series shown in the top panel
of Figure 1 with that of the two persistent predictors, the log-dividend price ratio
and treasury bill rate, shown in the bottom two panels.1 Likewise, a stationary
return may arguably be more appealing from the perspective of economic or financial
theory. For example, in a standard rational expectations model, the predictable
component in the excess return (Et−1yt) reflects a time varying risk premium, so
that a stationary risk premium would imply a stationary return series. By explicitly
testing a covariance restriction rather than a regression coefficient restriction we widen
the set of alternatives to include those in which yt remains predictable yet stationary
even when xt has a (near) unit root. These alternatives are not permitted under
the regression based tests that have traditionally been employed, even when size-
corrected.

Naturally, this is not the only class of alternatives that is consistent with the
empirical observation that xt typically appears (near) nonstationary whereas yt ap-
pears (near) stationary. For example, it may be argued that local o(n−1/2) versions
of the traditional linear regression alternative sufficiently dampen the nonstationary
component so as to be consistent with near-stationary returns. While our covariance
test is also shown to be consistent against such alternatives, this is not the primary
alternative that it was designed to capture and, consequently, it does not match the
regression based test in providing consistency against local regression alternatives of

1A full description of the data employed for these figures is provided in Section 6.
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order n−1. Thus the covariance based test proposed here must properly be considered
as a complement rather than a substitute for existing regression based tests.

As in our approach, there are other tests of orthogonality that are based on
alternative procedures to predictive regression. In this vein, Campbell and Dufour
(1995, 1997) provide exact tests of orthogonality using non-parametric sign and sign
rank tests, while Toda and Yamamoto (1995) (see also Saikkonen and Lütkepohl
(1996)) have also shown that, by choosing the lag order sufficiently large, one can
estimate VARs formulated in levels and test general parameter restrictions even if
the order of integration of the process is unknown.

There is also a recent literature seeking to model the regression imbalances (yt ∼
I(0), xt near I(1)) commonly observed in practice. Marmer (2004) suggests a model
in which yt appears as I(0) but has a predictable component formulated as a nonlinear
function of a unit root process. By rescaling the innovation variance of xt by

√
n,

Moon et al. (2004) model yt as the sum of a small but persistent regressor and a
large white noise error term. In a more general context, Phillips (2005) suggests
a coordinate cointegration approach in terms of L2[0, 1] basis functions that allows
for the modelling of relationships between stochastically imbalanced variables. Our
framework is arguably simpler in that we allow for an imbalance between yt (I(0))
and xt (I(1)), in which yt is still predictable based on the past history of xt, within
the standard linear process setting.

As an empirical application, we revisit well-known orthogonality tests involving
the prediction of stock returns using dividend-yields and interest rates. We find little
evidence for predictability in the case of the dividend-price ratio where regression tests
may suffer substantial size distortion. However, the covariance-based tests confirm
the modest evidence of predictability found using the interest rate.

The remainder of the paper is organized as follows. Section 2 outlines our basic
approach. Section 3 introduces the kernel-based estimator of the covariance between
yt and xt−1 and demonstrates its asymptotic behavior when xt is I(1), I(0), and
local-to-unity. Section 4 discusses inference based on the covariance estimate, and
Section 5 reports some simulation results. The empirical application is reported in
Section 6, and Section 7 concludes. Proofs are given in Appendix A (Section 8) and
Appendix B (Section 9) collects some technical results.

2 Covariance-based orthogonality testing

We consider a test of the orthogonality or non-predictability condition

H0 : E [yt |Ix,t−1 ] = 0, (1)

where Ix,t−1 = σ(xt−1,xt−2, xt−3, . . .) denotes the information contained in the past
history of xt. Several common empirical applications may be cast in this form, includ-
ing tests of stock return predictability, forward rate unbiasedness,2 the permanent

2See Maynard (2006) for an application to the forward rate unbiasedness test.
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income hypothesis, the expectations hypothesis of the term structure, and the con-
stant real interest rate hypothesis.3

In practice one often tests the simpler restriction implied by (1):

cov(yt, xt−1) = 0. (2)

Typically this is accomplished by modeling yt as a linear function of xt−1

yt = β0 + β1xt−1 + εt, E[εt|Ix,t−1] = 0, (3)

estimating β1 by OLS, and testing the restriction β1 = 0. In doing so, one estimates

β1 =
cov(yt, xt−1)

var(xt−1)
(4)

by its sample analog β̂1 = ĉov(yt, xt−1)/v̂ar(xt−1) and tests β1 = 0.
Such tests were traditionally formulated with stationary regressors in mind, in

which case testing β1 = 0 is equivalent to testing cov(yt, xt−1) = 0 because var(xt−1)
in (4) is finite. However, it has come to be understood that many of the regressors,
such as interest rates, dividend-price ratios, and forward premia are highly persistent
and may be well characterized by roots near unity (e.g. Mankiw and Shapiro (1986),
Stambaugh (1999)). Moreover, in practice there is usually considerable uncertainty
regarding the size of the largest root in the regressor, with confidence intervals fre-
quently containing both one and values considerably below unity. On the other hand,
it often occurs that yt (e.g. a stock or exchange rate return) appears stationary on
empirical and/or a priori theoretical grounds.

This suggests a potential imbalance between the stationary dependent variable
and possibly near I(1) regressor in (3), which may cause some difficulty when (3)
is used to test for the orthogonality condition in (1). Suppose, for example, that xt
is I(1) and yt is I(0). In this case, only one value of β1, i.e. β1 = 0, can satisfy
the regression model in (3), because there cannot exist a simple linear relationship
between I(0) and I(1) variables. Thus, were to take the model in (3) literally, by
forcing β1 = 0 this imbalance would itself imply that yt was unpredictable.

Moreover, when yt is I(0) and xt is I(1) or near I(1), the equivalence between a
test of β1 = 0 and a test of cov(yt, xt−1) = 0 breaks down. This is due to the fact that
β̂1 = ĉov(yt, xt−1)/v̂ar(xt−1) converges to zero in probability regardless of whether
the restriction cov(yt, xt−1) = 0 holds, simply because ĉov(yt, xt−1) = Op(1), while
v̂ar(xt−1) = Op(n). In other words, tests based on β1 6= 0 are not designed to detect
alternatives to (1) in which yt is stationary and xt is nonstationary. In fact, under
the alternative implied by β1 6= 0 in (3), when xt is I(1), yt is both nonstationary
and cointegrated with xt.

Outside the simple regression framework in (3), the fact that xt and yt have
different orders of integration does not in itself imply that yt is unpredictable by the

3See Mankiw and Shapiro (1986) and references therein.
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past history of xt. In fact, when yt is I(0) and xt is I(1) a more general DGP is given
by the joint linear process

(
yt

∆xt

)
= A (L) εt =

∞∑

j=0

Ajεt−j ,
∞∑

j=0

j||Aj || <∞, εt ∼ i.i.d.(0, I2), (5)

in which (1) holds only for very specific parameter values.4 One economic interpre-
tation of this alternative is that the past history of xt has explanatory power for the
stationary risk premium (Et−1yt) and thus predictive power for the excess return yt.

The covariance condition in (2) allows for a more flexible test than the restric-
tion that β1 = 0 in (3). Clearly, when xt is stationary and var(xt−1) is finite the
two conditions are equivalent (see (4)). In the more interesting case, in which yt is
I(0) but xt is I(1) and properly initialized, cov(yt, xt−1) is time varying, but still
well-defined. Likewise, the orthogonality condition in (1) continues to imply that
cov(yt, xt−1) = 0 for all t. Finally, when (1) fails, this restriction is typically violated,
i.e. cov(yt, xt−1) 6= 0 in general. In other words, the restriction cov(yt, xt−1) = 0
admits a wide class of alternatives to (1), including alternatives not covered by a test
of β1 = 0, in which yt is stationary but xt is I(1), as in (5).

Therefore, we propose to test directly the condition cov(yt, xt−1) = 0 instead of
testing β1 = 0. However, since cov(yt, xt−1) depends on t when xt is I(1), we base our
test on the limiting covariance, which we define as limt→∞ cov(yt, xt−1). When yt and
xt−1 are stationary the limiting covariance is simply the covariance between yt and
xt−1. When yt is I(0) and xt−1 is I(1) it provides an asymptotic approximation to
their covariance. Since the orthogonality condition (1) implies that cov(yt, xt−1) = 0
for all t it also imposes the testable condition that limt→∞ cov(yt, xt−1) = 0, regardless
of whether xt is I(0) or I(1). On the other hand, as explained below, the limiting
covariance is generally non-zero when (1) fails, even when yt is I(0) and xt is I(1),
as in (5).

The limiting covariance between yt and xt−1 may also be usefully reformulated in
terms of the one-sided long-run covariance between yt and ∆xt−1. This interpretation
is helpful in establishing its properties. It also motivates the kernel estimator that we
employ later. Assume x0 ≡ 0 for simplicity and that (yt,∆xt) is covariance stationary.
Because xt−1 may be written as the sum of its past differences as xt−1 =

∑t−1
h=1 ∆xt−h,

the covariance takes the form

cov (yt, xt−1) =
t−1∑

h=1

cov (yt,∆xt−h) ,

and the limiting covariance may be expressed as

λy,∆x ≡ lim
t→∞ cov(yt, xt−1) = lim

t→∞

t−1∑

h=1

cov (yt,∆xt−h) =
∞∑

h=1

cov (yt,∆xt−h) , (6)

4Since we impose no a priori restriction on the largest root of xt, we also consider the DGPs in
which (yt, xt) follows a joint linear process, as well as local-to-unity models for xt.
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which is well-defined so long as
∑∞

h=0 |cov(yt,∆xt−h)| < ∞.5 When xt is station-
ary, (6) simplifies to λy,∆x = limt→∞ cov(yt, xt−1) = cov(yt, xt−1). Finally, if xt is
modelled local-to-unity as

xt =
(

1 +
c

n

)
xt−1 + ut, t = 1, 2, . . . , n, n = 1, 2, . . . c < 0, (7)

with xt ≡ 0 for t ≤ 0, then as shown in Appendix A, (6) takes the form

λy,∆x = lim
t→∞ cov(yt, xt−1) =

∞∑

h=1

cov(yt, ut−h) +O
(
n−1

)
. (8)

and is well-defined when
∑∞

h=1 h|cov(yt, ut−h)| <∞.
The (limiting) covariance cannot be consistently estimated by the sample covari-

ance of yt and xt−1, which converges to a random variable when xt is I(1). Instead,
we estimate (6) by a standard kernel estimator, which is consistent for both station-
ary and nonstationary xt, without the necessity of pretesting or estimating the root
of xt. This feature may be useful in applied work, as it is often difficult to distinguish
with confidence between I(0) and I(1) alternatives. A second desirable property of
the estimator is that it is shown to have the same limit distribution for all finite
values of the local to unity parameter c. This allows us to avoid two-stage infer-
ence procedures, such as Bonferroni bounds, that are often necessitated by the lack
of a consistent time-series estimator for c. We construct a large sample test, based
on a single test statistic with a limiting standard normal distribution under both
unit root and local to unity assumptions. No bias corrections or other adjustments
are required. The test is shown to remain conservative and consistent when xt is
stationary.

Unlike the regression model in (3), our test is designed to have power against a
general class of alternatives to (1) under which yt is stationary and predictable based
on the past history of xt−j j ≥ 1, regardless of whether xt is I(0), I(1), or local to
unity. For example, in the unbalanced case given by (5), the limiting covariance is
given by λy,∆x =

∑∞
h=1

∑∞
j=0A

1
j (A

2
j−h)′, where Aij denotes the ith row of Aj , and

is generally non-zero when yt may be predicted by past xt. For instance, a simple
example is

yt = γ0 + γ1 (xt−1 − xt−2) + ε1t, γ1 6= 0, (9)

in which case λy,∆x = γ1

∑∞
h=1E(∆xt−1∆xt−h). Our test also remains generally

consistent against the regression alternative specified in (3) with β1 6= 0. By contrast,
tests based on β̂1 are not designed to have power against alternatives such as (5) or
(9), in which yt is I(0), but xt may be I(1).

On the other hand, tests based on β̂1 naturally have better power if (3) is the
correctly specified model. Likewise, if (9) is the correct model, then a regression of
yt on ∆xt−1 will of course have better power. However, in practice it is often difficult
to determine a priori which model is correct and confidence intervals on the largest

5When x0 6= 0, cov(yt, xt−1) is defined as
Pt−1
h=1 cov (yt,∆xt−h) + cov(yt, x0) and (6) continues

to apply under the relatively weak and reasonable assumption that limt→∞cov(yt, x0)→ 0.
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root of xt are typically wide. Even if we restrict ourselves to the simplest parametric
models in (3) and (9), the model selection exercise is non-trivial, as it involves a unit
root pre-test that may complicate the second-stage inference. Two-step procedures
that involve unit-root pretesting are known to suffer from size distortion when the
roots may be close to unity (e.g. Cavanagh et al. (1995, Table 1)).

3 Estimation of limiting covariance

In this section, we develop an estimator of the limiting covariance between yt and
xt−1, as defined in (6), and derive its asymptotic properties. First we consider the
case when xt is I(1).

Assumption A

(yt,∆xt) is generated by

zt =
(

yt
∆xt

)
= A (L) εt =

∞∑

j=0

Ajεt−j ,
∞∑

j=0

jδ||Aj || <∞, δ > 1; (10)

εt ∼ i.i.d. (0, I2) , with finite fourth moment,
∞∑

h=−∞
|h|δ ‖Γ(h)‖ <∞, Γ(h) =

[
Γyy(h) Γy∆x(h)
Γ∆xy(h) Γ∆x∆x(h)

]
= Eztz

′
t+h,

where ||A|| = (tr(A′A))1/2 is the Euclidean norm of a matrix A.
The assumption that var(εt) = I2 is innocuous because we do not normalize the

elements of Aj . Note that under these assumptions yt is stationary, although xt may
be I(1). However, the orthogonality condition (1) holds only under particular pa-
rameter choices, for example, when the off-diagonal elements of Aj are zero for all
j > 0. The limiting covariance between yt and xt−1, which, under the above assump-
tions, may be expressed as λy,∆x = limt→∞ cov(yt, xt−1) =

∑∞
h=1 cov (yt,∆xt−h) =∑∞

h=1

∑∞
j=0A

1
j (A

2
j−h)′ is zero when (1) holds, but is generally non-zero otherwise.

It is well known that when xt is I(1) the sample covariance between yt and xt−1

converges to a random variable. Thus we propose instead to estimate the limiting
covariance between yt and xt−1 based on its reformulation in (6). This expression
suggests the following one-sided kernel covariance estimator

λ̂y,∆x =
n−1∑

h=1

k

(
h− 1
m

)
Γ̂∆xy(h); Γ̂∆xy(h) =

1
n

n∑

t=h+1

yt∆xt−h, (11)

where m is the bandwidth and k(x) is the kernel.6

6We use k((h−1)/m) instead of k(h/m) in the definition bλy,∆x so that the leading term, bΓ∆xy(1),
is multiplied by 1, instead of k(1/m), leading to a smaller bias, especially when m is small.
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Assumption K

The kernel k(x) is continuous at x = 0 and uniformly bounded with k(0) = 1,∫∞
0 k̄(x)x2dx < ∞, and limx→0+

1−k(x)
|x|q = kq < ∞ with δ ≥ q, where k̄(x) =

supy≥x |k(y)|.

Assumption M

1
m

+
mq

n
→ 0 as n→∞.

Assumption K is satisfied by the Bartlett kernel with q = 1. Other kernels such
as the Parzen kernel, Tukey-Hanning kernel, and Quadratic Spectral kernel satisfy
Assumption K with q = 2. The condition

∫∞
0 k̄(x)x1/2dx <∞ is necessary to rule out

pathological cases where the convergence of m−1
∑n−1

h=1 k(h/m) to
∫∞

0 k(x)dx fails, for
instance k(x) = 1 for any integer x but k(x) is the same as the QS kernel otherwise.
See Lemma 1 of Jansson (2002) and the discussion therein.

Let fyy(λ) denote the spectral density of yt, let f∆xy(λ) denote the cross-spectral
density between ∆xt and yt, and define fy∆x(λ) and f∆x∆x(λ) analogously. The
following lemma provides the asymptotic bias and variance of λ̂y,∆x and shows its
consistency.

Lemma 1 If Assumptions A, K and M hold, then

(a) limn→∞mqE(λ̂y,∆x − λy,∆x) = −kq
∑∞

h=1 Γ∆xy(h)hq,
(b) limn→∞ nm−1var(λ̂y,∆x) = V ≡ 4π2fyy (0) f∆x∆x (0)

∫∞
0 k2 (x) dx,

(c) λ̂y,∆x →p λy,∆x as n→∞.

The proof of part (a) is omitted because it is the same as that of Theorem 10
in Hannan (1970, p. 283). Part (b) is a one-sided version of Theorem 9 of Hannan
(1970, p. 280).

Remark 1 λy,∆x 6= 0 provided that
∑∞

h=1

∑∞
j=0A

1
j (A

2
j−h)′ 6= 0.

Remark 2 It is well known that the limiting variance of the two-sided long-run co-
variance estimate between yt and ∆xt is given by 4π2

∫∞
−∞ k

2(x)dx{fyy(0)f∆x∆x(0) +
[fy∆x(0)]2}. Hence, in the special case where yt = ∆xt, V is 1/4 of the limiting
variance for the two-sided case.

Remark 3 From Lemma 1, the asymptotic mean squared error is minimized by
choosing m such that

m∗ =


2qk2

q

( ∞∑

h=1

Γ∆xy(h)hq
)2

n

/
V




1/(2q+1)

.
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Assuming k(x) is symmetric, we can rewrite m∗ as

m∗ =
(
qk2
qα(q)n

/∫ ∞
−∞

k2 (x) dx
)1/(2q+1)

, (12)

α(q) =
4

(
(2π)−1

∑∞
h=1 Γ∆xy(h)hq

)2

fyy (0) f∆x∆x (0)
,

giving expressions similar to those in Andrews (1991, pp. 825, 830). If m is chosen
optimally, then the rate of convergence is nq/(2q+1).

Interestingly, when the truncated kernel (k(x) = 1, |x| ≤ 1, 0 otherwise) is em-
ployed, we obtain λ̂y,∆x = ĉov(yt, xt−1− xt−m−1), which equals the numerator of the
coefficient in the regression of yt on xt−1 − xt−m−1. For fixed m = 1 this simpli-
fies to a regression of yt on ∆xt−1. A test based on such a regression might appear
simpler than the one proposed here. However, this would test only the restriction
cov(yt,∆xt−1) = 0, which is quite distinct from limt→∞ cov(yt, xt−1) = 0, the re-
striction tested by our procedure. The requirement that m → ∞ in Assumption M
is necessary for the consistent estimation of the limiting covariance between yt and
xt−1, without which a valid test of the restriction in (2) is not possible.

On the other hand, one might also consider a test based on the regression of yt
on xt−1 − xt−m, while allowing m → ∞. Unfortunately, not only would the choice
of m pose a difficulty, but more fundamentally, such a regression entails a drawback
similar to that of the regression of yt on xt−1. In particular, when yt is I(0) and xt
is I(1), it follows from Lemma 1 and the divergence of v̂ar(xt−1 − xt−m−1) that the
regression coefficient converges to 0 in probability regardless of whether or not (1)
holds.

3.1 The limit distribution when xt is I(1)

It is well known that the estimator of the two-sided long-run covariance between
yt and ∆xt has a normal limiting distribution. However, currently there are no
corresponding distributional results for the one-sided long-run covariance estimator,
partly because its analysis is substantially more involved than that of its two-sided
counterpart. To see why, let Σ and Λ denote the contemporaneous covariance and
the one-sided long-run covariance matrix, so that

Σ = E
[
ztz
′
t

]
= Γ(0), Λ =

∞∑

h=1

Γ(h) =
[

Λyy Λy∆x

Λ∆xy Λ∆x∆x

]
,

∞∑

h=−∞
Γ(h) = 2πfz(0) = Σ + Λ + Λ′.

The limiting distribution of spectral density estimators has been studied widely in
the statistics literature and it is well known that (e.g. Hannan, 1970, Theorem 11,
p.289) √

n

m

(
n−1∑

h=−n+1

k

(
h

m

)
Γ̂(h)− 2πfz(0)

)
→d N(0,Φ),

10



where Φ is finite. Let the one-sided long-run covariance estimate be Λ̂ =
∑n−1

h=1 k (h/m) Γ̂(h),
where Γ̂(h) is the hth sample autocovariance of zt. Deriving the limiting distribution
of the diagonal elements of Λ̂ is easy, because we can use the identities

Λyy =
∞∑

h=1

E(ytyt+h) =
1
2

[ ∞∑

h=−∞
E(ytyt+h)− Ey2

t

]
, Λ̂yy =

1
2

[
n−1∑

h=−n+1

k

(
h

m

)
Γ̂yy(h)− Γ̂yy(0)

]
,

(13)
where Γ̂yy(h) is the (1, 1)th element of Γ̂(h), and then

√
n/m(Λ̂yy−Λyy)→d N (0,Φ11/4) .

However, deriving the asymptotics of the off-diagonal elements of Λ̂ is not trivial,
because E(yt∆xt+h) 6= E(yt∆xt−h) and hence the identity in (13) does generalize to
the off-diagonal elements:

Λy∆x =
∞∑

h=1

E(yt∆xt+h) 6= 1
2

[ ∞∑

h=−∞
E(yt∆xt+h)− Eyt∆xt

]
.

Therefore, we need to return to the original derivation. The limiting distributions of
spectral density estimators have traditionally been analyzed using their representa-
tion in terms of periodograms (e.g. Hannan, 1970, Theorem 11):

n−1∑

h=−n+1

k

(
h

m

)
Γ̂(h) =

n−1∑

h=−n+1

k

(
h

m

)∫ π

−π
Iz(ω)eiωhdω

=
∫ π

−π
Kn (ω) Iz(ω)dω ≈

n∑

j=−n
Kn (ωj) Iz (ωj)

2π
n
,

where Kn (ω) =
∑n−1

h=−n+1 k (h/m) eiωh (frequency window) and ωj = 2πj/n. Under
standard regularity conditions, Kn (ω) approaches a delta-function as n → ∞, and
since Iz (ωj) are asymptotically independent, we obtain the asymptotic normality of∑n−1

h=−n+1 k (h/m) Γ̂(h).
However, this approach does not work in the one-sided case when the summation

of Γ̂(h) is taken only for positive h. Specifically,

n−1∑

h=1

k

(
h

m

)
Γ̂(h) =

n−1∑

h=1

k

(
h

m

)∫ π

−π
Iz(ω)eiωhdω

=
∫ π

−π
K̃n(ω)Iz(ω)dω, K̃n (ω) =

n−1∑

h=1

k

(
h

m

)
eiωh.

Unlike Kn(ω), the one-sided K̃n (ω) does not have a simple expression such as a Fejér
kernel. In particular, it has a nonnegligible imaginary part, because it involves only
positive h. The fact that there is no published result on the limiting distribution of
Λ̂y∆x, despite its importance in econometrics, also suggests its difficulty.

In the present paper, we work directly with Γ̂y∆x by applying the martingale
approximation a la Phillips and Solo (1992) and show the asymptotic normality of
λ̂y,∆x. The following theorem establishes it.
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Theorem 2 If Assumptions A, K and M hold and m2/n+ n/m2q+1 → 0, then
√
n

m

(
λ̂y,∆x − λy,∆x

)
→d N(0, V ), as n→∞.

Unlike the regression-based tests, neither a non-zero intercept in (yt, xt) nor a
linear trend in xt affects the limiting distribution. Because ∆(xt + µ) = ∆xt, λ̂y,∆x
is invariant to the presence of a non-zero intercept in xt. For a non-zero intercept
in yt and a linear trend in xt, if we replace (yt,∆xt−h) with (yt − y,∆xt−h − ∆x),
where y and ∆x denote the sample average of yt and ∆xt, then λ̂y,∆x has the stated
asymptotic distribution.7

The optimal bandwidth m∗ in (12) does not satisfy the rate condition on m of
Theorem 2, which is a standard result when the bandwidth is chosen to minimize the
mean squared error. m needs to grow faster than m∗ for Theorem 2 to hold. Since
the optimal rate of increase of m is n1/(2q+1) from Remark 3, the upper bound on m,
m2/n→ 0, does not appear to pose a severe problem when q is 1 or 2.

3.2 The limit distribution when xt is modelled as local to unity

Consider the case where xt is a local-to-unity process:

Assumption B

xt = (1 + c/n)xt−1 + ut, t = 1, 2, . . . , n, n = 1, 2, . . . c < 0,
xt ≡ 0 for t ≤ 0,
z∗t = (yt, ut)′ satisfies Assumption A.

Then λy,∆x =
∑∞

h=1cov(yt, ut−h) + O(n−1) as seen in (8). The following Lemma
establishes the first order equivalence of the limit theory for λ̂y,∆x under both I(1)
and local to unity assumptions on xt.

Lemma 3 Suppose Assumptions B, K and M hold. Then λ̂y,∆x =
∑n−1

h=1 k((h −
1)/m)Γ̂uy(h)+Op((m/n)). If, in addition, m2/n+n/m2q+1 → 0, then

√
n/m(λ̂y,∆x−

λy,∆x) →d N(0, V ), where Γ̂uy(h) and V are defined in (11) and Lemma 1, respec-
tively, with ut replacing ∆xt.

The fact that the limiting distribution is the same for all finite c ≤ 0 has important
practical implications, since it means that no prior knowledge on c is required in
order to conduct inference in a local-to-unity model. By contrast, many econometric
procedures, including several common cointegration tests, that are valid for c = 0
may fail for c < 0.

7If yt is trend stationary, employing the detrended residual gives the same limiting distribution.
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3.3 The limit distribution when xt is I(0)

The argument so far is based on the assumption that xt is I(1)/local-to-unity. How-
ever, in practice often we do not have strong prior knowledge as to whether xt is
I(1) or I(0). With an additional Lipschitz continuity assumption on the kernel, λ̂y,∆x
converges to Eytxt−1 = λy,∆x when xt is an I(0) process. Let us first state the
assumptions on xt and yt.

Assumption C

vt =
(
yt
xt

)
= B (L) εt =

∞∑

j=0

Bjεt−j ,
∞∑

j=0

j||Bj || <∞, (14)

εt ∼ i.i.d. (0, I2) , with finite fourth moment
∞∑
−∞
|h|δ ‖γ(h)‖ < ∞, δ > 1; γ(h) =

[
γyy(h) γyx(h)
γxy(h) γxx(h)

]
= Evtv

′
t+h,

and f̃xx(0), f̃yy(0) > 0, where f̃xx(λ) and f̃yy(λ) are the spectral densities of xt and
yt.

We use γ(h) to denote the autocovariance of vt in order to distinguish it from the
autocovariance of zt in Assumption A. Note that λy,∆x = Eytxt−1 = γxy (1) .

Lemma 4 If Assumptions C, K and M hold and k(x) is Lipschitz(1), then

√
n

(
λ̂y,∆x − λy,∆x

)
=
√
n

(
γ̂xy (1)− γxy(1)

)
+Bn + op(1), (15)

where γ̂xy (1) = n−1
∑n

t=2 ytxt−1 and Bn is the bias term satisfying

Bn =
{

0, if Eytxt−h = 0 for all h ≥ 2,
O(n1/2m−q), otherwise.

In addition,
√
n(γ̂xy (1)− γxy(1))→d N (0,Ξ) as n→∞, where

Ξ =
∞∑

u=−∞

{
γxx (u) γyy (u) + γxy (u+ 1) γyx (u− 1)

}
+

∞∑
u=−∞

kxyxy (0, 1, u, u+ 1) ,

and kxyxy(0, a, b, c) is the fourth cumulant of (xt, yt+a, xt+b, yt+c)′.

If one knew xt were I(0), then one would estimate Eytxt−1 by γ̂xy (1), and the
limiting variance of λ̂y,∆x is the same as that of γ̂xy (1) . Therefore, λ̂y,∆x is robust to
misspecification of the order of integration, apart from the bias term in (15), which
disappears when (1) holds.
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4 Possible ways to conduct inference

4.1 Estimation of the limiting variance of the estimator

Suppose that xt is I(1) and Theorem 2 gives the limiting distribution of λ̂y,∆x.
In order to conduct inference, we need to estimate V . Of course, we can use
V̂ = 4π2

∫∞
0 k2 (x) dxf̂yy(0)f̂∆x∆x(0), where f̂ab is a consistent periodogram-based

estimator of fab.
We may also consider another estimator of V, Ṽ , whose particularly good perfor-

mance is suggested by the simulations in Section 5. It is based on the exact finite
sample variance of λ̂y,∆x, which is given by (see equations (34)-(36) in the proof of
Lemma 1)

n

m
var

(
λ̂y,∆x

)

=
1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

) ∞∑
u=−∞

{
Γ∆x∆x (u) Γyy(u+ h− h′)

+ Γ∆xy (u+ h) Γy∆x(u− h′) + k∆xy∆xy(0, h′, u, u+ h)
}
φn(u, h′, h),

where φn(u, h′, h) is defined in the proof of Lemma 1. Since the terms involving
Γ∆xy(·)Γy∆x(·) and the cumulants disappear in the limit and φn(u, h′, h) = 1 for the
relevant values of (u, h′, h), define Ṽ as:

Ṽ =
1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

)

×
∞∑

u=−∞
k̃

( u
m̃

)
Γ̂∆x∆x (u) k̃

(
u+ h− h′

m̃

)
Γ̂yy(u+ h− h′), (16)

where k̃(x) is a kernel and m̃ is a bandwidth. k̃(x) and m̃ can, but do not need
to, be the same as k(x) and m.8 Estimating V by Ṽ reduces the error from the
approximation of the discrete sum in (32) by an integral and gives better finite sample
performance than estimating V by V̂ . (The results using V̂ are not reported in the
present paper).

Suppose that (yt,∆xt) satisfies Assumption A and hence xt is I(1). Then, we may
test hypotheses on λy,∆x using a t-type statistic of the form

tλ =

√
n
m

(
λ̂y,∆x − λy,∆x

)
√
Ṽ

, (17)

8Ṽ is not guaranteed to be always positive, although we encountered no case where Ṽ is nonpos-
itive in the simulations we conducted. One may use another estimate that is always positive:

eV2 =
1

m

n−1X

h=1

k2

„
h− 1

m

« n−1X
u=−n+1

ek
“ u
em
”
bΓ∆x∆x (u)

n−1X
v=−n+1

ek
“ v
em
”
bΓyy(v).

However, eV2 did not perform as well as Ṽ in simulations.
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where λ̂y,∆x and Ṽ are defined in (11) and (16) respectively. Of course orthogonality
(1) implies the null λy,∆x = 0.9 The following Lemma and its corollary show that tλ
converges to a N(0, 1) random variable.

Lemma 5 If Assumptions A or B and K and M hold, the kernel k̃(x) satisfies As-
sumption K with q̃ replacing q, k̃(x) = 0 if |x| > 1, and 1/m̃ + m̃q̃/n → 0, then
Ṽ →p V as n→∞.
Corollary 6 If the assumptions of Theorem 2 or Lemma 3 and Lemma 5 hold, then
tλ →d N(0, 1) as n→∞.

4.2 Conservative inference when xt is I(0)

Consider the case in which (yt, xt) follows (14) and thus xt is I(0). It is easy to show
that the test based on tλ remains consistent. Suppose that we test H0 : λy,∆x =
Eytxt−1 = 0 but λy,∆x 6= 0. Then we have, from Lemma 4,

tλ =
n1/2λ̂y,∆x

(Ṽ )1/2m1/2
=
n1/2(λ̂y,∆x − λy,∆x) + n1/2λy,∆x

(Ṽ )1/2m1/2
=
n1/2λy,∆x(1 + op(1))

(Ṽ )1/2m1/2
.

Since Ṽ →p f∆x∆x(0) = 0 and n1/2m−1/2 →∞, it follows that |tλ| → ∞ as n→∞.
Indeed, tλ diverges at a faster rate than n1/2m−1/2, the rate of divergence in the I(1)
case.

Although Corollary 6 does not hold when xt is I(0), we still have tλ →p 0 when m̃
and k̃(x) are chosen appropriately. It thus serves as a tool for conservative inference
even when xt is I(0). In particular, if the Bartlett kernel k̃(x) = (1− |x|)1{|x| ≤ 1}
is used in Ṽ in (16) and Eytxt−h = 0 for all h ≥ 2 (which holds under the null
hypothesis of orthogonality), then tλ is Op((m̃/m)1/2).

Lemma 7 If Assumptions C, K and M hold, k̃(x) is the Bartlett kernel, 1/m̃ +
m̃/n→ 0, and Eytxt−h = 0 for all h ≥ 2, then tλ = Op((m̃/m)1/2) as n→∞.

In order to understand the convergence, rewrite tλ as

tλ =
n1/2(λ̂y,∆x − λy,∆x)

(Ṽ )1/2m1/2
.

The numerator converges to a Gaussian random variable from Lemma 4. Ṽ in the
denominator is an estimate of f∆x∆x(0) = 0 and hence converges to 0 as m̃ → ∞.
Because m tends to infinity, the asymptotic behavior of tλ depends on the rate of
convergence of Ṽ . Letting m̃ tend to infinity but not too quickly prevents Ṽ from
converging to 0 too fast and makes tλ converge to 0 in probability.

Therefore, by choosing m̃ appropriately, the tλ statistic provides a conservative
inferential tool that converges to N(0, 1) if xt is I(1) or local to unity but converges
to zero when xt is I(0). Thus, the rejection rate will not exceed the nominal level.
This is summarized in the following Lemma.

9A detailed description of the implementation is given in Section 5.
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Lemma 8 If either (i) Assumptions A or B and K and M hold, or (ii) Assumptions
C, K and M hold with Eytxt−h = 0 for all h ≥ 2, and, in addition, k(x) is Lipshitz(1),
k̃(x) is the Bartlett kernel, and m2/n + n/m2q+1 + 1/m̃ + m̃/n + m̃/m → 0, then
Pr(|tλ| ≥ z1−α/2) → α′ ≤ α as n → ∞, where z1−α/2 is the 100(1 − α/2) percentile
of the N(0, 1) distribution.

4.3 Power against nonstationary regression alternatives

Based on the empirical observation that the dependent variables in predictive tests
(e.g. returns) typically appear stationary, we have so far focused on the models where
yt is assumed to be I(0). As discussed in Section 2, for fixed values of β1, this rules
out regression-type alternatives where xt is I(1) and yt is linearly related to xt−1 as
in (3). However, under local alternatives for which β1 is of order n−1/2 or smaller,
the variance of the nonstationary component β1xt−1 no longer dominates that of the
stationary residual. Thus such local alternatives are potentially consistent with the
observation that yt appears essentially stationary in its behavior.

Thus we next examine the power of our covariance-based test against the following
regression alternative, which includes both fixed and local alternatives.

Assumption D

(yt, xt) is generated by
yt = βnxt−1 + ut,

where (ut,∆xt)′ is generated by a linear process A(L)εt that satisfy Assumption A
and x0 = Op(1). Γuu(h),Γu∆x(h),Γ∆xu(h), and Γ∆x∆x(h) are defined analogously to
Assumption A and they satisfy the summability condition in Assumption A.

We exclude the constant term in order to simplify the discussion. Under Assump-
tion D, we have cov(yt, xt−1) = βnvar(xt−1)+cov(ut, xt−1), which is not equal to zero
in general. Indeed, if 1/βn = o(n) then cov(yt, xt−1) diverges at the rate nβn. The
following lemma summarizes the behavior of λ̂y,∆x and Ṽ .

Lemma 9 If Assumptions D, K, and M hold, λu,∆x = 0 and m2/n→ 0, then

(a) λ̂y,∆x = mβn
[
(1/2)

(
B2(1) + 2πf∆x∆x(0)

)] ∫ 1

0
k(x)dx (1 + op(1)) .

If, in addition, m̃2/n→ 0 and nβn →∞, then

(b) Ṽ =
{(

β2
nnm̃

∫ 1

0
k̃(x)dx

∫ 1

0
B2(r)dr(1 + op(1))

)
+ 2πfuu(0)

}

×2πf∆x∆x(0)
∫ ∞

0
k2 (x) dx(1 + op(1)).
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λ̂y,∆x converges to a non-degenerate limit if mβn is bounded away from 0. The
behavior of Ṽ is dominated either by the term with β2

nnm̃ or 2πfuu(0). Assume
m̃/m → 0 as assumed in Lemma 8, and let ξn denote a generic random variable
that has a non-degenerate limiting distribution. If β2

nnm̃→∞, then Ṽ diverges and
tλ = (n/m)1/2λ̂y,∆x(Ṽ )−1/2 = (m/m̃)1/2ξn, which diverges to infinity. If βn tends to
0 faster and β2

nnm̃→ 0, then Ṽ is Op(1) and tλ = βnn
1/2m1/2ξn.

Consequently, the covariance-based test has a nonnegligible power against lo-
cal alternatives of the form βn ∼ bn−1/2m−1/2 with b 6= 0. Since regression-based
tests have power against alternatives for which βn ∼ bn−1, the covariance-based
test loses power relative to regression-based tests by the order of (n/m)1/2 as the
price of its greater flexibility. This reflects the fact that tλ uses m sample auto-
covariances whereas regression-based tests use effectively n sample autocovariances.
Despite the loss of power, the tλ-test is still consistent against the alternatives with
βn ∼ bn−1/2m−c for c ∈ (0, 1/2), in which the variance of the I(1) component is dom-
inated by the variance of the residual ut and yt may appear to be I(0). This result
is summarized in the following Corollary, which follows immediately from Lemma 9.

Corollary 10 If the assumptions of Lemma 9 hold and m̃/m → 0, then the test
statistic tλ for the test of H0 : λy,∆x = 0 has a nonnegligible power against alternatives
in Assumption D of the form βn = b (nm)−1/2 with b 6= 0 and diverges against
alternatives of the form βn = bn−1/2m−c for c ∈ (0, 1/2).

5 Finite sample performance: simulation results

This section provides a modest simulation study to gauge the small sample accuracy
of the proposed test. The results indicate reasonable (and often quite good) size and
power in sample sizes as small as 100.

For the simulations below we have in mind a test of yt orthogonal to Ix,t−1, the
information contained in past xt, as in (1). This is often tested in practice using a
regression of yt on xt−1 as in (3). Since size distortions rule out standard regression
only for xt highly serially correlated, it is this case that we focus on. In particular,
we consider both first and second order autoregressive models for xt:

xt = ρ0 + ρ1xt−1 + u2t, AR(1) (18)
xt = ρ0 + ρ1xt−1 + ρ2xt−2 + u2t. AR(2) (19)

The AR(1) model may also be written as a unit root/local to unity process by letting

ρ1 = 1 + c/n , c ≤ 0. (20)

Usually the primary economic interest centers on the relation between yt and xt−1.
Under the null hypothesis yt is orthogonal to Ix,t−1 and often an efficient market
condition will also imply that yt is orthogonal to its own past. In the simulations,
the process for yt under the null hypothesis is therefore specified by

yt = dt + u1t, (21)

17



where the innovation u1t is discussed below and the deterministic component dt con-
sists of either an intercept or a trend:

dt = δ0 or (22)
dt = δ0 + δ1t. (23)

We employ two different specifications for yt under the alternative hypothesis when
investigating finite sample power. First we consider the standard regression specifi-
cation

yt = dt + βxt−1 + u1t. (24)

In the unit root/local to unity context, (24) implies that yt and xt contain an equally
persistent component and are cointegrated when β 6= 0. While (24) has traditionally
been the alternative on which the literature has focused, in certain applications it
may be overly restrictive. For example, as discussed in the introduction, it is not clear
that one would want to model (near) unit root components in stock or exchange rate
returns on theoretical grounds, and empirically they show little serial correlation.
Thus, it also seems reasonable to consider test performance under alternatives that
allow yt to remain stationary even when xt is highly persistent. A simple alternative
of this type is given by a regression of yt on quasi-differenced xt as in

yt = dt + γ
(

1−
(

1 +
c

n

)
L

)
xt−1 + u1t, (25)

where xt is given by the AR(1) specification in (18). While both sides of (25) are
stationary, the data generating process permits yt and xt to have different orders of
integration. This may be rewritten as

yt = dt + γu2,t−1 + u1t, (26)

in which form it also makes sense for more general models of xt.
Finally, since the orthogonality between yt and past xt (i.e. xt−j , j ≥ 1) does not

rule out contemporaneous covariance between yt and xt, we allow the two innovation
processes to be correlated under both the null and alternative. They are specified by

u =
(
u1t u2t

)′ = Σ1/2εt, εt ∼ i.i.d. N (0, I2)

Σ = Σ1/2(Σ1/2)′ =
(

1 σ12

σ12 1

)
. (27)

Our primary interest lies in the performance of the covariance-based statistic tλ
given in (17), which was estimated as follows. In the trend model (23), we first
demeaned ∆xt (thereby removing the trend in xt) and detrended yt prior to estima-
tion. In the intercept model (22) only yt was demeaned. Using this detrended (or
demeaned) data we then estimated the limiting covariance λy,∆x defined in (6) using
the standard kernel covariance estimator λ̂y,∆x given in (11). Likewise, we estimated
its asymptotic variance V (see Lemma 1) using the kernel estimator Ṽ following (16).

Both kernel estimation procedures require the choice of kernel and bandwidth.
The theoretical results allow considerable flexibility in the choice of the kernel k(x)
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in the estimation of λy,∆x. However, to ensure conservative inference for stationary
xt, Lemma 7 mandates use of the Bartlett kernel for k̃(x) in the estimation of V . We
therefore used the Bartlett kernel for both estimators.10 The bandwidth parameter
m in the estimation of λy,∆x is selected using the optimal bandwidth formula given
in (12). Implementation of this formula in practice requires the use of a first-stage
parametric approximation model. As in Andrews (1991), this is assumed only to
provide a parsimonious approximation, not a correct specification. Although sepa-
rate univariate AR(1) models are typically employed, the optimal bandwidth in this
case depends on the behavior of the cross auto-correlations and necessitates a joint
model. Including a moving average component also seems desirable given possible
over-differencing in ∆xt. Therefore we estimated the first-stage VARMA(1,1) model
zt = Âzt−1 + ε̂t + B̂ε̂t−1 for z = (yt,∆xt)

′ employing the three-stage linear regression
method of Dufour and Pelletier (2002) and then used the estimated parameters to
calculate m∗ in (12).11 The choice of the second bandwidth parameter m̃ used in the
estimation of V is constrained by Lemma 7, which requires m̃ = o (m). While clearly
arbitrary, our choice of m̃ = m0.9 appeared sufficient to insure conservative inference
in the stationary case, with minimal cost in overall performance.

As a basis of comparison we also provide some simulation results for both the
standard regression t-test and the size-adjusted regression-based approach, using the
two stage Bonferroni-bounds test of Cavanagh et al. (1995) (hereafter CES).12 These
tests are developed under the assumption that yt is a martingale difference sequence
(MDS) under the null, which is commonly imposed in the finance literature when one
period returns are used. Our test was developed in a more general setting, allowing for
serial correlation in yt, and thus our use of V as defined in Lemma 1b and estimated by
Ṽ in (16) is analogous to the use of robust standard errors in regression. This gener-
ality can be quite useful, particularly when employing long-horizon returns for which
the MDS assumption is necessarily violated and when analyzing test power, since the
MDS assumption cannot be imposed under the alternative hypothesis. On the other
hand, when the MDS assumption is appropriate it may come at some cost in terms of
power. In order to allow for a clear comparison to predictive regression methods which
do not employ HAC standard error estimates, we simplify V by imposing the MDS
assumption on yt unless stated otherwise. Specifically, Γyy(h) and Γ̂yy (h) with |h| > 0
in V and Ṽ are replaced by 0, giving VMDS ≡ 2π2Γyy (0) f∆x∆x (0)

∫∞
0 k2 (x) dx and

ṼMDS =
1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

)
k̃

(
h′ − h
m̃

)
Γ̂∆x∆x

(
h′ − h) Γ̂yy(0).

10Alternate choices for k(x) are explored in Section 5.3.
11In this model, f(0) = 1

2π
(∆ + ∆′ − Γ(0)) where ∆ = Γ(0) [I2 −A′]−1

and vec (Γ(0)) =

[I2 − (A⊗A)]−1 vec(AΣB′ + Σ + BΣA′ + BΣB′), and the term
P∞
h=1 Γ∆xy(h)hq is given by the

(2,1)th element of (2π)−1Γ(1)(I2 −A′)−2, where Γ(1) = Γ(0)A′ + ΣB′. We impose some constraints
on the ARMA parameters to insure stationarity and invertibility and also impose n0.9 as an upper
bound on m.

12We thank James Stock for use of his Gauss code. Following CES, we impose a finite sample
size-adjustment, without which the test would be quite conservative. The reader is referred to CES
for the details.

19



In order to preserve space we report only the results with ṼMDS . The full set of
results using the more general Ṽ given by (16) are available upon request. The size
of the tests are quite similar in both cases. As expected, although the overall pattern
is similar, the power is generally better when the MDS assumption is imposed. All
results below are based on 2000 replications, with results reported for sample sizes of
n = 100 and 200.

5.1 Size

We first simulate under the null hypothesis with yt given by (21) and xt given by the
AR(1) process (18) with ρ1 modelled local-to-unity as in (20). Results are provided
for various values of both c (and therefore ρ1) and σ12. In order to set a basis
of comparison, Table 1 shows empirical rejection rates for the standard two-sided
regression t-test (yt regressed on xt−1) with a nominal level of 5 percent.13 The
rejection rates are reasonable for small values of ρ1 and/or σ12 but grow highly
unreliable as ρ1 approaches one and the residual correlation increases. The size
problem is particularly severe in the model with trend, for which rejection rates can
exceed 50 percent.

By contrast, the covariance-based test tλ, whose rejection rates are shown in
Table 2, is quite reliable in sample sizes as small as one hundred across the whole
range of parameter values in the both the intercept and trend models. The test can
become slightly conservative, particularly for large (negative) values of c. This is
consistent with Lemma 8. However, the empirical rejection rates remain within a
few percentage points of the nominal value. This good performance corroborates the
theoretical results. Of course, good performance may also be obtained by properly
size adjusting the regression-based tests, as in the bounds tests of CES (see their
Table 4).

Following the empirical literature, we also consider longer-horizon returns. We
may no longer impose an MDS assumption when estimating V , but otherwise require
no explicit corrections to handle the moving average components induced by the
overlapping returns; for fixed horizon (k) we simply have to define

yt,k = (yt + yt−1 + . . .+ yt−k+1 ) = φ(L)yt and ∆xt,k = ∆xt−k+1 = L(k−1)∆xt(28)

and apply the theoretical results to (yt,k,∆xt,k) =diag(φ(L), Lk−1)A(L)εt = A∗(L)εt.14

In finite sample, the accuracy of long-horizon tests typically depends on the ratio k/n.
In Table 3, we match this ratio to the sample size (n = 924) and longest horizon (2
years, k = 24) used in the empirical application, yielding k = 3 for n = 100. This

13Results (available upon request) using a 10% nominal level also confirm the the good properties of
the covariance-based test discussed below. Note that Hodrick or HAC standard errors are unnecessary
here since ut is taken to be i.i.d.

14In estimation of V , the MDS assumption in no longer tenable since yt,k follows an MA(k) if yt
is an MDS. Thus in (16) we impose only that cov(yt,k, yt−h,k) = 0 for h > k − 1. To choose m∗

we estimate the same VARMA(1,1) described above using z = (yt,∆xt)
′ and adjust the formula

in (12) to account for the long-horizon returns. Specifically, we replace fyy(0) by k2fyy(0) and
(2π)−1Γ(1)(I2 −A′)−2 by (2π)−1Γ(1)(I − (A′)k)(I −A′)−3 in footnote 11.
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again yields reasonable size performance. Holding n = 100 fixed, but increasing the
horizon to k = 5 leads to only a slight deterioration.

The model above is the baseline model most often used to evaluate size distortions
in this context. However, our test is designed to work in a more general setting
and it is also of interest to investigate finite sample performance under higher order
autoregressive specifications for xt, such as the AR(2) model (19), with roots on or
close to the unit circle. Rudebusch (1992, Table 2) finds that an AR(2) with ρ1 + ρ2

slightly below unity (with ρ1 > 1 and ρ2 < 0) provides a good fit for a number of
macroeconomic and financial time series. In order to roughly match these estimates
we set

ρ1 = 1.5 and ρ2 = −0.5 + c/n (29)

for the same values of c considered above. Thus, as in the AR(1) model, xt is unit-root
nonstationary for c = 0 (ρ2 = −0.5) and near-nonstationary for c < 0 (ρ2 < −0.5).
The rejection rates for the covariance-based tests are shown in Table 4. The results
remain fairly accurate even for n = 100, particularly in the demeaned case. By
contrast, finite sample rejection rates for least squares (available upon request) reach
to above 50% and do not improve with sample size for fixed c.

In summary the size of the proposed covariance-based test seems generally to be
reasonable, and is often quite accurate, even in sample sizes as small as n = 100. We
next consider finite sample power.

5.2 Power

We first consider the power of the covariance-based test tλ against the standard
regression alternative given in (24) with β 6= 0 and local to unity xt given by (18)
and (20).15 For c = 0 this alternative constitutes a cointegrating relation, while for
c << 0 the alternative is a stationary regression. The results are shown in Table 5.
To save space we show only the demeaned case. As expected, the power of the test
is reasonable, increasing in both sample size and distance from the null.

One of the goals of the covariance-based test was to simultaneously maintain
power against alternatives which allow yt (e.g. returns) to be stationary, despite near
or even exact unit root behavior in xt. This avoids, for example, the implication that
stock prices or exchange rates contain a (near) I(2) component under the alternative
hypothesis when predictor variables are persistent. The data generating process in
(25), together with (18), therefore provides a natural alternative in which to consider
finite sample power in that it holds yt stationary (but not over-differenced) regardless
of the persistence in xt. In doing so, it incorporates both (3) and (9) as special cases
for ρ1 = 0 and ρ1 = 1 respectively.

Finite sample power results for the covariance-based tests under the alternative
in (25) with xt given by (18) and (20) are shown in Table 6. The test is calculated
in the same way as before, again using yt and xt−1 as inputs. These rejection rates
appear quite reasonable, again increasing in both sample size and distance from the
null hypothesis.

15We do not report size adjusted power, since both tests considered in this section have good size.
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Many existing tests are based on a size adjusted regression of the type shown
in (3). These procedures may be expected to have good power against regression
alternatives when xt is stationary (e.g. ρ1 << 1 in (18) and β 6= 0 in (24)) and
against cointegration or near-cointegration alternatives when xt is near I(1) (e.g.
ρ1 ≈ 1 in (18) and β 6= 0 in (24)). This is confirmed in Table 7, which shows finite
sample power for the CES Bonferroni test procedure against β 6= 0 in (24) with local
to unity xt given by (18) and (20). As expected, the test exhibits very good power
against this alternative and is in this case more powerful than tλ.

On the other hand, it is not clear that regression tests based on (3) should have
much power against alternatives in which yt and xt−1 exhibit different orders of
integration. Table 8 provides rejection rates for the CES Bonferroni test against the
same DGP used to assess the power of tλ in Table 6, i.e. equations (18), (20), and
(25). Confirming the reasoning above, the regression-based test does quite well for
the larger values of c when xt and yt behave in a stationary manner, but performance
deteriorates rapidly as xt approaches nonstationarity (small c) and the alternative
becomes unbalanced. Moreover, for small c the power does not seem to improve as
we move further into the alternative. Nor, for fixed values of c, do rejection rates
increase much as the sample size increases. For example, in the worst case for c = 0
and σ12 = 0.95 (panel 2, row 2, last column), the power remains under 5 percent
even for a population R2 of 0.20 and a sample size of two-hundred. In fact, in results
not shown, it remains under 10 percent for an R2 of 0.50.

These simulations suggest that the covariance-based orthogonality test may pro-
vide power against a wider range of alternatives than do existing size-adjusted regression-
based tests. In particular, they appear to provide reasonable power against both stan-
dard regression and unbalanced (i.e. yt ∼ I(0), xt−1 ∼ I(1)) alternatives, whereas
regression-based tests do particularly well against the alternatives for which they
were designed, but provide little reliable power against unbalanced alternatives. This
added generality does of course come at some cost in terms of power against certain
specific alternatives and, in this sense, the two testing approaches (regression and
covariance-based) are properly seen as compliments rather than substitutes.

5.3 Kernel Comparison

In the preceding simulations we employed the Bartlett (Newey-West) kernel for both
k(x) and k̃(x). In the case of k̃ this is needed to satisfy the conditions of Lemma 7.
However, other kernel choices may be considered for k. We therefore replicated Tables
2, 5, and 6 using three alternative kernels, the Parzen, Quadratic Spectral, and Tukey-
Hanning kernels, defined respectively by k(x) =

(
1− 6x2 + 6|x|3) I (|x| < 1/2) +

2 (1− |x|)3 I (1/2 ≤ |x| ≤ 1), k(x) = 25/
(
12π2x2

)
(sin (6πx/5)− cos (6πx/5)), and

k(x) = 1/2 (1 + cosπx) I(|x| ≤ 1). Although the performance of the test varied
slightly according to the choice of kernel, the differences did not seem large enough
to be important in practice. In addition, the relative ordering of the test across kernel
choices varied with the choice of the specification of the data generating process.

Table 9 provides a representative comparison across three of these four kernels, the
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Bartlett (NW), Parzen (PZ), and Quadratic Spectral (QS).16 The first two columns
provide the values of c and σ12 respectively, the third column denotes the choice of
kernel, the fourth column provides rejection rates under the null hypothesis, and the
remaining columns provide rejection rates under the alternative. In the top panel
the alternative is specified in levels as in Table 5, whereas in the bottom panel the
alternative is rebalanced as in Table 6. As is apparent from the table, use of the
Parzen kernel delivers modest power improvements against the levels alternative,
whereas, depending on the parameters of the DGP, either the Bartlett (NW) or
the Quadratic Spectral (QS) kernel tends to perform best against the rebalanced
alternative.

6 Application to tests of stock return predictability

We use the method developed above to test the orthogonality of stock returns to the
information in past short-term interest rates and dividend yields. Under the market
efficiency/constant risk premium hypothesis it should not be possible to systemat-
ically forecast stock returns. Early tests of this hypothesis found fairly substantial
predictability and thus had a large impact on the finance literature (see Campbell
and Shiller (1988a,b), Fama and French (1988), Hodrick (1992), Shiller (1984)).

Although theoretical considerations may rule out exact unit root behavior in
dividend yields17 and interest rates, near unit roots in the local to unity sense cannot
be ruled out a priori. Empirically, both series are highly persistent, with confidence
intervals on the largest root often containing one (Torous et al. (2005)). Moreover,
although pre-determined, there is no reason to believe that these regressors are fully
exogenous. For example, the stock price enters both the return and dividend yield.
The combination of near unit root behavior and a failure of strict exogeneity is a
recipe for size problems (Cavanagh et al. (1995)). Consequently, subsequent doubts
have been raised regarding the evidence for predictability on account of the strong
persistence in the regressors (Stambaugh (1986 & 1999) and Mankiw and Shapiro
(1986)).18 This has spurred a large literature in an attempt to address this issue, and
the degree to which evidence of predictability has been overstated remains a subject
of ongoing debate.19

Thus the literature to date has focused primarily on the issue of size distortion.
However, near unit root regressors may also raise specification issues under the alter-
native, in the sense that a stationary variable, such as a stock return should not be
linearly predictable by a unit (or near unit) root regressor (Lanne (2002)). Even if yt

16The full results are available upon request.
17Campbell and Shiller (1988a,b), but see Tuypens (2002) for an alternative viewpoint.
18Also of concern have been the accuracy of the standard errors in long-horizon regressions

(Richardson and Stock (1989), Valkanov (2003)).
19This literature includes resampling and simulation methods (Hodrick (1992), Nelson and Kim

(1993), Goetzmann and Jorion (1993), Wolf (2000), and Ang and Bekaert (2005)), local to unity
corrections along the lines of Cavanagh et al. (1995) (Viceira (1997), Valkanov (2003), Torous et al.
(2005), and Campbell and Yogo (2006)), and finite sample or Bayesian approaches (Stambaugh
(1999) and Lewellen (2004)).
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is I(0) and xt is I(1), yt may still be predictable based on the past history of xt, as
exemplified by (9) with γ1 6= 0. Yet, as the simulations underscored, regression tests
based on (3) have unreliable power against such alternatives, even if size-adjusted.
Therefore, while evidence of predictability may be overstated due to size distortion,
it is also possible that it has been understated due to near unit root specification
issues. Since the covariance-based tests address both issues simultaneously they may
be useful in untangling these two effects.

We use monthly returns from 1927 to 2003. Following Campbell et al. (1997, chap-
ter 7), we also consider separately the 1927-1951 and 1952-1994 subsamples, along
with the more recent 1952-2003 subperiod.20 Monthly log returns are calculated as
rt+1 = ln ((Pt+1 +Dt+1)/Pt), where Pt and Dt are the stock price and dividend from
the CRSP value-weighed index of NYSE, AMEX, and NASDAQ stocks. Real returns
are formed by deflating nominal returns by the CPI.21 The dividend-price ratio is cal-
culated in the standard way as the sum of dividends paid over the past twelve months,
divided by the current level of the index: dt − pt = ln ((Dt + . . .+Dt−11)/Pt)). We
denote the one-month treasury bill rate by it. Following the literature, we also con-
sider longer-horizon returns of the form rt+1 + . . . + rt+k for k = 1, 3, 12, and 24.
HAC standard errors are employed for k > 1 in the regression analysis. Likewise, for
the covariance-based test, the MDS assumption on yt is relaxed in the estimation of
V , as detailed in footnote 14. For fixed k our test requires no further correction or
adjustment, as discussed in the simulation section above.

The first three rows in each panel of Table 10 show the standard regression coef-
ficients, R2s, and t-statistics. We defer discussion of the fourth row until later. The
interest rate regressions show modest evidence of predictability whereas evidence us-
ing dividend yields is generally quite strong. Intuition for the potential bias and size
distortion in these regressions is provided by Lewellen (2004) who expresses the bias
in β̂ in (3) in terms of the bias in ρ̂ in (18) and the residual covariance σ12 in (27):

E
[
β̂ − β

]
=
σ12

σ22
E [ ρ̂− ρ] . (30)

The two ingredients needed to produce bias are thus persistent regressors and residual
serial correlation. Table 11 shows the Stock (1991) confidence interval on the largest
root in xt together with the estimated residual correlation δ = corr(ε1t, ε2t). The two
series both show large roots, with confidence intervals on the largest root containing
one, but display quite different residual correlation properties. Estimates of δ are
small for the interest rate series, suggesting only modest size distortion, but are
close to negative one for the dividend price ratio. Intuitively, an increase in the
current stock price corresponds to a higher return but lower dividend yield. Since
the AR(1) coefficient estimate ρ̂1 is downward biased (Hurwitz (1950)), negative
residual correlation implies positive bias in β̂ (see (30)). In other words, the bias
runs in the same direction as the observed alternative, leaving the results difficult to
interpret.

20We thank John Campbell for kindly providing us with the original data for this project, which
was later updated from CRSP.

21Similar results were also found replacing real by excess returns.
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This preliminary analysis suggests that size distortion may be a more serious
concern in the case of the dividend price ratio than it is for the interest rate regres-
sions. This conjecture is supported by the results in Table 12. The table shows the
covariance-based test statistic tλ, for which standard normal critical values apply, the
two-sided p-value, and the optimal bandwidth m∗, calculated in the same way as in
the simulations (see Section 5 for details).22

For the interest rate, the covariance-based tests in Table 12 provide overall ev-
idence of predictability similar to that found from the standard regression tests of
Table 10. In both cases, evidence of predictability is confined to the later sample
periods (1952 -1994 & 1952-2003). However, the strongest evidence from the covari-
ance test come at medium horizons (3-12), whereas regression t-tests are largest at
short horizons (1-3), showing little evidence of predictability at the 12 month hori-
zon. On the other hand, in the case of the dividend price ratio, the covariance-based
tests show far weaker evidence of predictability than do the standard regression-based
tests. This agrees with the conclusion in several (but not all) previous studies that
address the issue of size distortion in (3).23

It may also be instructive to compare the empirical results from the standard
regression and covariance based tests to those from a properly size adjusted regression
test, such as the CES tests discussed in the section above. Since the CES tests apply
only at short-horizons (k=1), we employ instead a similar bounds test proposed by
Valkanov (2003) for use in the long horizon context. The last row of each panel of
Table 10 shows the p-value from the Valkanov (2003) sup-bound tests. These p-values
confirm the modest evidence of predictability found from the interest rate regressions.
This is expected in light of the small residual cross correlations in Table 11, which
suggest only modest distortion in standard tests. On the other hand, evidence of
predictability in the dividend yield regression, for which residual cross-correlations
are large, disappears in all but one of four samples, the 1952-1994 sub-period.

Thus with a few exceptions, the covariance and size-adjusted regression tests tell
similar stories regarding predictability. Both tests confirm the modest evidence of
interest rate predictability found from standard regressions, with the covariance test
finding evidence at medium to longer horizons. Similarly both tests suggest show
substantially less evidence of predictability than implied by standard, but possibly
size-distorted regression tests.

7 Conclusion

In regression-based orthogonality tests it is often the case that the regressor is highly
serially correlated, with an autoregressive root close or possibly equal to unity. This

22We also employed fixed bandwidths of m = 1, 2, 5, and 10 (results available upon request).
This produced similar qualitative results, but with larger values of m further increasing evidence
of predictability using it and changing the sign of some insignificant statistics using dt − pt. The
demeaned version of the estimator was employed. Similar results (available upon request) were
obtained using the detrended version.

23Viceira (1997), Wolf (2000), Torous et al. (2005), Valkanov (2003) , but see also Lewellen (2004)
and Campbell and Yogo (2006) who conclude more strongly in favor of predictability.
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is well known to cause size problems in standard tests. Simple two-stage proce-
dures employing unit root tests together with size correction can generally correct
this problem in the I(1) case, but still produce size distortions under local-to-unity
assumptions.

Roots near unity may also artificially restrict the allowable alternative hypoth-
esis, leading to poor size-adjusted power under certain reasonable alternatives. For
example, when the regressor has a unit root but the dependent variable does not,
no linear relation between the two can exist, so that the true regression coefficient
is forcibly equal to zero. A properly adjusted t-test based on this regression coef-
ficient should therefore generally support the null of orthogonality. However, such
a regression imbalance (i.e. yt ∼ I(0), xt ∼ I(1)) would not rule out a violation
of orthogonality due to a linear relationship between the dependent variable and
stationary transformations of the regressor.

The covariance-based test proposed here produces good size and power against
alternatives in which the dependent variable (e.g. stock returns) is stationary, re-
gardless of whether the predictor is stationary, nonstationary, or local to unity. This
comes without resort to unit root pre-tests or other forms of prior information. Fur-
thermore, because nonstandard distributions are avoided, size adjustments are un-
necessary. Simulation results suggest reasonably good size and power in samples as
small as one hundred, making this a practical tool for use in empirical applications.

Finally, we note that the formulation of the limiting covariance defined in (6)
could be usefully modified in various ways in order to provide alternate orthogonality
tests that also remain appropriate when xt and yt potentially exhibit different orders
of integration. For example, one might consider a test based on the restriction that∑∞

h=1 |cov (yt,∆xt−h)| = 0.24 This departs from the standard covariance restriction in
(2) that we generalize here, yet provides a stronger implication of (1) and thus could
potentially be a promising avenue for future research. From a theoretical perspective,
such an extension would be interesting and non-trivial, since deriving the joint prop-
erties of the absolute values of the sample covariances

∣∣n−1
∑n

t=h+1 yt∆xt−h
∣∣ would

be complicated considerably by the presence of the absolute value sign.

8 Appendix A: Proofs

In the following sections, C denotes a generic constant such that C ∈ (0,∞) unless
specified otherwise, and it may take different values in different places.

8.1 Proof of (8)

From the definition of xt, we have

∆xt = ut +
c

n
xt−1 =

{
ut + c

n

∑t−2
k=0 (1 + c/n)k ut−1−k, t ≥ 1,

0, t ≤ 0,
(31)

24We thank an anonymous referee for this valuable observation.
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with
∑−1

k=0 ≡ 0. It follows that cov(yt,∆xt−h) = cov(yt, ut−h) + c
n

∑t−h−2
k=0 (1 + c/n)k

cov (yt, ut−h−1−k) for t ≥ h+ 1, and 0 for t ≤ h. Therefore,

λy,∆x = lim
t→∞

t−1∑

h=1

cov (yt,∆xt−h)

= lim
t→∞

t−1∑

h=1

cov(yt, ut−h) +
c

n
lim
t→∞

t−1∑

h=1

t−h−2∑

k=0

(
1 +

c

n

)k
cov(yt, ut−h−1−k).

The first term converges to
∑∞

h=1cov(yt, ut−h). The second term is bounded by
c
n

∑∞
h=0(h+ 1) | cov(yt, ut−h)| = O(n−1), and the stated result follows. ¥

8.2 Proof of Lemma 1

The proof closely follows that of Theorem 9 of Hannan (1970, p. 280). See Hannan
(1970) pp. 313-316 for details. Observe that

n

m
var

(
λ̂y,∆x

)
=

n

m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

)
cov

(
Γ̂∆xy

(
h′

)
, Γ̂∆xy (h)

)
. (32)

Hannan (1970) p. 313 gives

cov
(

Γ̂∆xy

(
h′

)
, Γ̂∆xy (h)

)
(33)

= n−1
∞∑

u=−∞
{Γ∆x∆x (u) Γyy(u+ h− h′) + Γ∆xy(u+ h)Γy∆x(u− h′)

+k∆xy∆xy(0, h′, u, u+ h)}φn(u, h′, h),

where k∆xy∆xy(0, h′, u, u+h) is the fourth cumulant of zt (see Hannan, 1970, p.23 for
the definition) and φn(u, h′, h) is given by (the formula of φn(u, h′, h) for −n+ h′ ≤
u ≤ 0 in Hannan has a typo)

φn(u, h′, h)





= 0, u ≤ −n+ h′; = 1− h′−u
n , −n+ h′ ≤ u ≤ 0;

= 1− h′/n, 0 ≤ u ≤ h′ − h; = 1− h+u
n , h′ − h ≤ u ≤ n− h;

= 0, u ≥ n− h.

It follows that (32) is comprised of

1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

) ∞∑
u=−∞

Γ∆x∆x (u) Γyy(u+ h− h′)φn(u, h′, h) (34)

+
1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

) ∞∑
u=−∞

Γ∆xy(u+ h)Γy∆x(u− h′)φn(u, h′, h) (35)

+
1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

) ∞∑
u=−∞

k∆xy∆xy(0, h′, u, u+ h)φn(u, h′, h). (36)
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Let v = h′ − h, and we can rewrite (34) as

n−2∑

v=−n+2

∞∑
u=−∞

Γ∆x∆x (u) Γyy(u−v)

{
1
m

∑

h

′φn(u, h+ v, h)k
(
h+ v − 1

m

)
k

(
h− 1
m

)}
,

(37)
where the summation

∑′
h runs only for {h : 1 ≤ h ≤ n−1 and 1 ≤ h+v ≤ n−1}. The

bracketed expression converges to
∫∞

0 k2 (x) dx by the argument in Hannan (1970) pp.
314-15. Furthermore,

∑n−2
v=−n+2

∑∞
u=−∞ Γ∆x∆x(u)Γyy(u − v) → 4π2f∆x∆x(0)fyy(0)

as n→∞, and hence (34) converges to V.
For (35), define u′ = u+ h and rewrite (35) as

∞∑

u′=−∞
Γ∆xy

(
u′

) 1
m

n−1∑

h′=1

n−1∑

h=1

k

(
h′ − 1
m

)
k

(
h− 1
m

)
Γy∆x(u′ − h− h′)φn(u′ − h, h′, h).

(38)
Let β ∈ (0, 1/2) and split the sum into three: (i) |u′| ≥ logm, (ii) |u′| < logm and
h+ h′ ≤ mβ, and (iii) |u′| < logm and h+ h′ > mβ. For (i), the sum is bounded by

∑

|u′|≥logm

∣∣Γ∆xy

(
u′

)∣∣ 1
m

n−1∑

h=1

∣∣∣∣k
(
h− 1
m

)∣∣∣∣
n−1∑

h′=1

∣∣Γy∆x(u′ − h− h′)∣∣ sup
x
|k(x)| → 0,

since
∑∞

u=−∞ |Γ∆xy(u)| < ∞ and thus the tail sum is o(1). For (ii), the sum is
bounded by

∑

|u′|<logm

∣∣Γ∆xy

(
u′

)∣∣ 1
m



mβ∑

h=1

∣∣∣∣k
(
h− 1
m

)∣∣∣∣




2

sup
u
|Γy∆x(u)| = O

(
m2β−1

)
→ 0.

For (iii), define v = u′ − h − h′ and note that |v| ≥ mβ/2 for sufficiently large m.
Thus, the sum is bounded by

∑

|u′|<logm

∣∣Γ∆xy

(
u′

)∣∣ 1
m

n−1∑

h=1

∣∣∣∣k
(
h− 1
m

)∣∣∣∣
∑

v≥mβ/2
|Γy∆x(v)| |v|(mβ/2)−1 sup

x
|k(x)| = O(m−β),

since
∑∞

v=−∞ |Γy∆x(v)| |v| < ∞ by (10). Hence (35) converges to 0. (36) is O(m−1)
because the fourth cumulant of zt satisfies (Hannan, 1970, p. 211)

∞∑
q=−∞

∞∑
r=−∞

∞∑
s=−∞

|kijkl(0, q, r, s)| <∞, i, j, k, l = {y,∆x}, (39)

and the stated result follows. ¥
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8.3 Proof of Theorem 2

In view of Lemma 1, it suffices to show that
√
n/m(λ̂y,∆x − Eλ̂y,∆x) →d N(0, V ).

First, observe that
√
n

m

(
λ̂y,∆x − Eλ̂y,∆x

)

=
1√
m

n−1∑

h=1

k

(
h− 1
m

)
1√
n

n∑

t=h+1

(yt∆xt−h − Eyt∆xt−h) = I + II, (40)

where

I =
1√
m

n−1∑

h=1

k

(
h− 1
m

)
1√
n

n∑

t=1

(yt∆xt−h −Eyt∆xt−h) ,

II = − 1√
m

n−1∑

h=1

k

(
h− 1
m

)
1√
n

h∑

t=1

(yt∆xt−h − Eyt∆xt−h) .

From Lemma 11, Minkowski’s inequality,
∫∞

0 |k̄(x)|x1/2dx < ∞, and an argument
similar to Lemma 1 of Jansson (2002), we have

E(II)2 = O


 1
mn

(
n−1∑

h=1

∣∣∣∣k
(
h− 1
m

)∣∣∣∣h1/2

)2

 = O

(
m2

n

)
, (41)

Lemma 13 gives

I =
n∑

t=1

Zt +Rn; Zt = n−1/2m−1/2
n−1∑

h=1

k

(
h− 1
m

) ∞∑

r=1

ε′t−rf
hr(1)εt, (42)

where ER2
n = o(1) and fhr(1) is defined in the statement of Lemma 13. Therefore,√

n/m(λ̂y,∆x −Eλ̂y,∆x)→d N(0, V ) follows if we show that
n∑

t=1

Zt →d N(0, V ), as n→∞. (43)

Let It = σ(εt, εt−1, . . .). Since Zt ∈ It and E(Zt|It−1) = 0, Zt is a martingale
difference sequence and (43) follows from the martingale CLT of Brown (1971) if

(i)
n∑

t=1

E(Z2
t |It−1) =

1
n

n∑

t=1

E(nZ2
t |It−1)→p V,

(ii)
n∑

t=1

E(Z2
t 1{|Zt| ≥ δ})→p 0 for all δ > 0.

First we show (i). Observe that

E(nZ2
t |It−1) = m−1

n−1∑

h=1

n−1∑

u=1

k

(
h− 1
m

)
k

(
u− 1
m

) ∞∑

r=1

∞∑

s=1

ε′t−rf
hr(1)(fus(1))′εt−s.
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E(nZ2
t |It−1) is stationary and ergodic because εt is i.i.d. Furthermore, from the law

of iterated expectations we have

E
[
E(nZ2

t |It−1)
]

= nEZ2
t .

Therefore, (i) follows from the ergodic theorem if

nEZ2
t → V. (44)

From (40)-(42), we have
√
n

m

(
λ̂y,∆x −Eλ̂y,∆x

)
=

n∑

t=1

Zt + II +Rn, E(II +Rn)2 = o(1),

or equivalently,
n∑

t=1

Zt =
√
n

m

(
λ̂y,∆x −Eλ̂y,∆x

)
− (II +Rn).

Taking the second moment of the both sides gives

E

(
n∑

t=1

Zt

)2

= E

(√
n

m

(
λ̂y,∆x −Eλ̂y,∆x

)
− (II +Rn)

)2

. (45)

The left hand side of (45) is
∑n

t=1EZ
2
t = nEZ2

t , since Zt is a stationary martingale
difference sequence. The right hand side of (45) is

var
(√

n

m

(
λ̂y,∆x −Eλ̂y,∆x

))2

+ o(1)→ V,

because

E

(√
n

m

(
λ̂y,∆x − Eλ̂y,∆x

))2

= var
(√

n

m

(
λ̂y,∆x −Eλ̂y,∆x

))
→ V,

and E(II +Rn)2 = o(1).
Therefore, we establish (44) and (i). For (ii), the stationarity of Zt gives

∑n
t=1E(Z2

t 1{|Zt| ≥
δ}) = E(nZ2

t 1{|nZ2
t | ≥ nδ2}), and E(nZ2

t 1{|nZ2
t | ≥ nδ2}) → 0 follows from

E(nZ2
t ) → V < ∞ and the dominated convergence theorem, giving (43) and the

stated result follows. ¥

8.4 Proof of Lemma 3

From (31), we have

1
n

n∑

t=h+1

yt∆xt−h =
1
n

n∑

t=h+1

ytut−h+Tnh, Tnh =
c

n2

n∑

t=h+1

t−h−2∑

k=0

(
1 +

c

n

)k
ytut−h−1−k.

The required result follows becauseE|∑n−1
h=1 k((h−1)/m)Tnh| is bounded by n−2

∑n−1
h=1 |k((h−

1)/m)|∑n
t=h+1

∑∞
k=−∞ |Γuy(k)| = O(n−1

∑n−1
h=1 |k((h− 1)/m)|) = O(mn−1). ¥
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8.5 Proof of Lemma 4

Some simple algebra gives

λ̂y,∆x =
n−1∑

h=1

k

(
h− 1
m

)
1
n

n∑

t=h+1

yt∆xt−h

=
n−1∑

h=1

k

(
h− 1
m

)
1
n

n∑

t=h+1

ytxt−h −
n−1∑

h=1

k

(
h− 1
m

)
1
n

n∑

t=h+1

ytxt−h−1

=
n−1∑

h=1

k

(
h− 1
m

)
1
n

n∑

t=h+1

ytxt−h −
n∑

p=2

k

(
p− 2
m

)
1
n

n∑
t=p

ytxt−p (p = h+ 1)

=
1
n

n∑

t=2

ytxt−1 +
n−1∑

h=2

[
k

(
h− 1
m

)
− k

(
h− 2
m

)]
1
n

n∑

t=h+1

ytxt−h

−
n−1∑

p=2

k

(
p− 2
m

)
1
n
ypx0 − k

(
n− 2
m

)
1
n
ynx0

= T1n + T2n + T3n + T4n.

For T1n, we have from Theorem 14 of Hannan (1970, page 228) (note that λy,∆x =
Eytxt−1 = γxy(1))

√
n(T1n − λy,∆x) =

√
n(γ̂xy (1)− γxy(1))→d N(0,Ξ),

as n→∞, where Ξ is given by Hannan (1970) in equation (3.3) on page 209 and line
5 on page 211. For T2n, first observe that

E(T2n) =
n−1∑

h=2

[
k

(
h− 1
m

)
− k

(
h− 2
m

)]
n− h
n

γxy(h).

ET2n = 0 when Eytxt−h = γxy(h) = 0 for all h ≥ 2. Otherwise, fix a small ε > 0,
then

E|T2n| ≤
εm∑

h=2

∣∣∣∣k
(
h− 1
m

)
− k

(
h− 2
m

)∣∣∣∣
∣∣γxy(h)

∣∣ + C
n−1∑

h=εm+1

∣∣γxy(h)
∣∣ .

Since k(x) − 1 = O(xq) as x → 0, the first term on the right is, for ε sufficiently
small, O(

∑εm
h=2(h/m)q|γxy(h)|) = O(m−q). The second term on the right is bounded

by
∑n−1

h=εm |γxy(h)| ≤ (εm)−q
∑n−1

h=εm h
q|γxy(h)| = O(m−q). Therefore, defining Bn =√

nET2n gives the bias term Bn in (15).
It remains to show that var(

√
nT2n) = o(1) and

√
n(T3n + T4n) = op(1). From
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Hannan (1970) (equation (3.3) on page 209 and line 5 on page 211), we have

cov
(√
nγ̂xy (h) ,

√
nγ̂xy

(
h′

))

=
n−1∑

u=−n+1

(
1− |u|

n

) {
γxx (u) γyy(u+ h− h′) + γxy(u+ h)γyx(u− h′)}

+
n−1∑

u=−n+1

(
1− |u|

n

)
kxyxy(0, h, u, u+ h′).

Therefore, from the Lipschitz condition on k(·), the terms composing the variance of√
nT2n that do not involve kxyxy are bounded by

1
m2

m∑

h=1

m∑

h′=1

n−1∑

u=−n+1

∣∣γxx (u) γyy(u+ h− h′) + γxy(u+ h)γyx(u− h′)∣∣

≤ 1
m

[ ∞∑
u=−∞

|γxx (u)|
∞∑

h=−∞

∣∣γyy(h)
∣∣ +

∞∑
u=−∞

∣∣γxy (u)
∣∣
∞∑

h′=−∞

∣∣γyx(h′)
∣∣
]

= O(m−1).

The term in the variance of
√
nT2n that involves kxyxy is bounded by

1
m2

m∑

h=1

m∑

h′=1

n−1∑

u=−n+1

∣∣kxyxy(0, h, u, u+ h′)
∣∣ = O(m−2),

because
∑∞

q=−∞
∑∞

r=−∞
∑∞

s=−∞ |kxyxy(0, q, r, s)| < ∞ from Hannan (1970, p. 211).
Finally,

√
n(T3n + T4n) = op(1) follows from

√
n(T3n + T4n) =

n∑

p=2

k

(
p− 2
m

)
1√
n
ypx0,

x0 = Op(1), and

E




n∑

p=2

k

(
p− 2
m

)
1√
n
yp




2

≤ m

n

n−2∑

v=−n+2

|γyy(v)|
[

1
m

n∑

h=2

∣∣∣∣k
(
h− 2
m

)
k

(
v + h− 2

m

)∣∣∣∣
]

= O
(m
n

)
,

and the stated result follows. ¥

8.6 Proof of Lemma 5

In view of equations (34) and (37) in the proof of Lemma 1, Ṽ reduces to

n−2∑

v=−n+2

∞∑
u=−∞

k̃
( u
m̃

)
Γ̂∆x∆x(u)k̃

(
u− v
m̃

)
Γ̂yy(u− v)

{∫ ∞
0

k2 (x) dx+ o (1)
}
.
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Because k̃ (x) = 0 for |x| > 1 and m̃/n→ 0, this simplifies to

m̃∑

u=−m̃
k̃

( u
m̃

)
Γ̂∆x∆x (u)

m̃∑

u−v=−m̃
k̃

(
u− v
m̃

)
Γ̂yy(u− v)

{∫ ∞
0

k2 (x) dx+ o (1)
}
,

which converges to 4π2f∆x∆x (0) fyy (0)
∫∞

0 k2 (x) dx in probability by the standard
argument. The result for the local-to-unity case follows from the proof of Lemma 3.
¥

8.7 Proof of Lemma 7

The Lemma follows if we show that there exists η > 0 such that

Pr(Ṽ ≥ ηm̃−1)→ 1, as n→∞. (46)

From the arguments in the proof of Lemma 5, Ṽ is equal to

m̃∑

u=−m̃
k̃

( u
m̃

)
Γ̂∆x∆x (u)

m̃∑

v=−m̃
k̃

( v
m̃

)
Γ̂yy(v)

{∫ ∞
0

k2 (x) dx+ o (1)
}

(47)

Because
∑m̃

v=−m̃ k̃(v/m̃)Γ̂yy(v) →p 2πf̃yy(0) > 0 by the standard argument, (46)
follows if there exists ε > 0 such that

Pr

(
m̃∑

v=−m̃
k̃

( v
m̃

)
Γ̂∆x∆x(v) ≥ εm̃−1

)

= Pr
(

2π
∫ π

−π
Wm̃ (λ) I∆x(λ)dλ ≥ εm̃−1

)
→ 1, as n→∞, (48)

where (Priestley, 1981, p. 439)

Wm̃(λ) =
1

2π

m̃∑

h=−m̃
k̃

(
h

m̃

)
eiλh =

1
2πm̃

sin2(m̃λ/2)
sin2(λ/2)

≥ 0,

is the Fejér kernel. From Phillips (1999, Theorem 2.2 and Remark 2.4), we have

w∆x(λ) =
(

1− eiλ
)
wx(λ) + ei(n+1)λ(2πn)−1/2Xn.

It follows that
∫ π

−π
Wm̃ (λ) I∆x(λ)dλ

=
∫ π

−π
Wm̃ (λ) |1− eiλ|2Ix(λ)dλ (49)

+(2πn)−1/2Xn

∫ π

−π
Wm̃ (λ) 2Re

[
(1− eiλ)wx(λ)e−i(n+1)λ

]
dλ (50)

+
∫ π

−π
Wm̃ (λ) dλ(2πn)−1X2

n. (51)
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We can ignore (51) because it is nonnegative. For (50), it follows from the Cauchy-
Schwartz inequality and Lemma 14 (b) that

∫ π

−π
Wm̃ (λ) 2Re

[
(1− eiλ)wx(λ)e−i(n+1)λ

]
dλ

≤
(∫ π

−π
Wm̃ (λ)

∣∣∣2Re
[
(1− eiλ)wx(λ)e−i(n+1)λ

]∣∣∣
2
dλ

)1/2 (∫ π

−π
Wm̃ (λ) dλ

)1/2

= Op

((∫ π

−π
Wm̃ (λ)λ2dλ

)1/2
)

= Op(m̃−1/2),

and (50)= Op(n−1/2m̃−1/2) = op(m̃−1) follows. Rewrite (49) as
∫ π

−π
Wm̃ (λ) |1− eiλ|2EIx(λ)dλ

+
∫ π

−π
Wm̃ (λ) |1− eiλ|2 (Ix(λ)− EIx(λ)) dλ

= A1 +A2.

For A1, because f̃xx(0) > 0 and f̃xx(λ) is continuous in the neighborhood of the origin
since

∑
j||Bj || < ∞, there exist D ∈ (0, 1) and c1, c2 > 0 such that, for sufficiently

large n (Hannan, Theorem 2, p. 248)

infλ∈[−Dπ,Dπ] |1− eiλ|2λ−2 ≥ c1, infλ∈[−Dπ,Dπ]EIx(λ) ≥ c2.

Therefore, in conjunction with Lemma 14 (a), we obtain

A1 ≥ c1c2

∫ Dπ

−Dπ
Wm̃ (λ)λ2dλ ≥ c1c2κm̃

−1, κ > 0.

For A2, it follows from Theorem 2 and Corollary 1 of Hannan (1970, pp. 248-9) and
their proof that

{
supλ,λ′∈[−π,π]

∣∣cov
(
Ix(λ), Ix(λ′)

)∣∣ = O(1),
cov

(
Ix(λ), Ix(λ′)

)
= o(1), λ 6= λ′.

(52)

Therefore,

E(A2)2 =
∫ π

−π

∫ π

−π
Wm̃ (λ)Wm̃

(
λ′

) |1− eiλ|2|1− eiλ′ |2cov
(
Ix(λ), Ix(λ′)

)
dλdλ′

≤ C

∫ π

−π

∫ π

−π
Wm̃ (λ)Wm̃

(
λ′

)
λ2(λ′)2

∣∣cov
(
Ix(λ), Ix(λ′)

)∣∣ dλdλ′

= o(m̃−2)

where the interchange of expectation and integration in the first line is valid by
(52) and Fubini’s Theorem, and the last line follows from Lemma 14 (b), (52),
and the dominated convergence theorem. Therefore, there exists η′ > 0 such that
(49)+(50)+(51)≥ η′m̃−1 with probability approaching one, and (48) and the stated
result follow. ¥
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8.8 Proof of Lemma 9

Assume x0 = 0 without the loss of generality. We show part (a) first. Substituting
yt = βnxt−1 + ut into λ̂y,∆x, we have

λ̂y,∆x = βn

n−1∑

h=1

k

(
h− 1
m

)
1
n

n∑

t=h+1

xt−1∆xt−h + λ̂u,∆x, (53)

where the second term is Op((m/n)1/2) from Lemma 1. If we show

1
n

n∑

t=h+1

xt−1∆xt−h =
1
n

n∑

t=1

xt−1∆xt +
∞∑

j=0

Γ∆x∆x(j) +Rnh, (54)

withE|Rnh| = O(n−1h2+n−1/2h), then the stated result follows from n−1
∑n

t=1 xt−1∆xt →d

(1/2)(B2(1)− Γ∆x∆x(0)).
To show (54), first rewrite the left hand side of (54) as

n∑

t=h+1

xt−1∆xt−h =
n−h∑

t=1

xt+h−1∆xt =
1
n

n−h∑

t=1

(∆xt+h−1 + · · ·+ ∆xt) ∆xt+
1
n

n−h∑

t=1

xt−1∆xt.

(55)
The first term on the right of (55) equals

∑h−1
j=0 (Γ̂∆x∆x(j) + rnhj) with E|rnhj | =

O(n−1(h− j)). Then E|∑h−1
j=0 rnhj | = O(n−1h2). Now

∑h−1
j=0 Γ̂∆x∆x(j) is an estimate

of
∑∞

j=0 Γ∆x∆x(j) with a rectangular kernel (i.e., q =∞) and hence
∑∞

j=0 Γ∆x∆x(j)+
ranh where E|ranh| = O(n−1/2h1/2) from Lemma 1. The second term on the right of (55)
equals n−1

∑n
t=1 xt−1∆xt + rnh with E|rnh| ≤ Cn−1/2h from the Cauchy-Schwartz

inequality. Therefore, we show (54) and complete the proof of part (a).
We proceed to prove part (b). From the arguments in the proof of Lemma 5, Ṽ

is equal to
∑m̃

u=−m̃ k̃(u/m̃)Γ̂∆x∆x (u)
∑m̃

v=−m̃ k̃(v/m̃)Γ̂yy(v)
{∫∞

0 k2 (x) dx+ o (1)
}
.

A standard argument gives
∑m̃

u=−m̃ k̃(u/m̃)Γ̂∆x∆x (u) →p 2πf∆x∆x(0). Rewrite
Γ̂yy(v) as Γ̂yy(v) = n−1

∑n−v
t=1 ytyt+v = G1v +G2v +G3v +G4v, where

G1v = β2
nn
−1

∑n−v
t=1 xt−1xt−1+v, G2v = βnn

−1
∑n−v

t=1 xt−1ut+v,

G3v = βnn
−1

∑n−v
t=1 utxt−1+v, G4v = n−1

∑n−v
t=1 utut+v.

We consider G2v first. Note that, in view of x0 = 0, with h = t− s,

G2v

βn
=

1
n

n−v∑

t=2

t−1∑

s=1

∆xsut+v =
1
n

n−v−1∑

h=1

n−v−h∑

s=1

∆xsus+h+v =
n−v−1∑

h=1

Γ̂∆xu(h+ v).

E[
∑n−v−1

h=0 Γ̂∆xu(h+v)]2 = O(1) easily follows from the covariance between Γ̂∆xu(h+
v) and Γ̂∆xu(h′+v) given by (33), and hence we have

∑m̃
v=−m̃ k̃(v/m̃)G2v = Op(βnm̃).

A similar argument gives
∑m̃

v=−m̃ k̃(v/m̃)G3v = Op(βnm̃). For G1v, it follows from
the Cauchy-Schwartz inequality that

1
n

n−v∑

t=1

xt−1xt−1+v − 1
n

n∑

t=1

x2
t−1 = rnv, E|rnv| = O(v + n1/2v1/2),
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and hence (β2
nnm̃)−1

∑m̃
v=−m̃ k̃(v/m̃)G1v →d

∫ 1
0 k̃(x)dx

∫ 1
0 B

2(r)dr. Finally, the stated
result follows because

∑m̃
v=−m̃ k̃(v/m̃)G4v →p 2πfuu(0). ¥

9 Appendix B: technical results

Lemma 11 Under the assumptions of Theorem 2,

E

(
h∑

t=1

(yt∆xt−h −Eyt∆xt−h)

)2

= O(h), h = 1, . . . , n− 1.

Proof Observe that

E

(
h∑

t=1

(yt∆xt−h − Eyt∆xt−h)

)2

= var

(
h∑

t=1

yt∆xt−h

)
≤ E

(
h∑

t=1

yt∆xt−h

)2

.

From the product theorem (e.g. Hannan, 1970, pp. 23, 209), E(
∑h

t=1 yt∆xt−h)2 is
equal to (recall Γy∆x(h) = Eyt∆xt+h)

E

(
h∑

t=1

yt∆xt−h
h∑

s=1

ys∆xs−h

)

=
h∑

t=1

h∑

s=1

Γy∆x(h)Γy∆x(h) +
h∑

t=1

h∑

s=1

Γyy(s− t)Γ∆x∆x(s− t)

+
h∑

t=1

h∑

s=1

Γy∆x(s− h− t)Γ∆xy(s− t+ h) +
h∑

t=1

h∑

s=1

ky∆xy∆x(t, t− h, s, s− h)

= h2(Γy∆x(h))2 +
h−1∑

l=−h+1

(h− |l|)Γyy(l)Γ∆x∆x(l)

+
h−1∑

l=−h+1

(h− |l|)Γy∆x(l − h)Γ∆xy(l + h) +
h−1∑

l=−h+1

(h− |l|)ky∆xy∆x(0,−h, l, l − h).

The first term on the right is bounded by (sups s|Γy∆x(s)|)2 < ∞. The second and
third terms on the right are bounded by h sups ||Γ(s)||∑∞

l=−∞ ||Γ(l)|| ≤ Ch. From
(39), the fourth term on the right is bounded by h

∑∞
l=−∞

∑∞
r=−∞ |ky∆xy∆x(0,−r, l, l − r)| ≤

Ch, and the stated result follows. ¥

Lemma 12 Define f̃hr(L) =
∑∞

j=0 f̃
hr
j Lj with f̃hrj =

∑∞
s=j+1[(A2

s+r−h)′A1
s+(A1

s+r)
′A2
s−h],

where A1
j and A2

j are the first and second rows of Aj, respectively. Under the assump-
tions of Theorem 2, for h = 1, . . . , n− 1,

(a) E
(

tr
(
f̃h0(L)εtε′t

))2
<∞, (b) E

(
tr

( ∞∑

r=1

f̃hr(L)εtε′t−r

))2

<∞.
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Proof We need to show the result only for t = n, because εt is i.i.d. For part (a),
since tr(f̃h0(L)εnε′n) =

∑∞
j=0tr(f̃h0

j εn−jε′n−j) =
∑∞

j=0 ε
′
n−j f̃

h0
j εn−j , we have

E
(

tr
(
f̃h0(L)εnε′n

))2
=

∞∑

j=0

∞∑

k=0

E
(
ε′n−j f̃

h0
j εn−jε′n−kf̃

h0
k εn−k

)

≤ C



∞∑

j=0

||f̃h0
j ||




2

+ C
∞∑

j=0

||f̃h0
j ||2.

This is finite because, uniformly in h = 1, . . . , n− 1,

||f̃h0
j || ≤

∞∑

s=j+1

||(A2
s−h)′A1

s|| ≤ sup
r
||Ar||(j + 1)−δ

∞∑

s=j+1

sδ||As|| ≤ Cj−δ,

and δ > 1.
For part (b), rewrite tr(

∑∞
r=1 f̃

hr(L)εnε′n−r) as

∞∑

r=1

∞∑

j=0

tr
(
f̃hrj εn−jε′n−r−j

)
=
∞∑

r=1

∞∑

j=0

ε′n−j
(
f̃hrj

)′
εn−r−j =

∞∑

j=0

ξhn−j ,

where ξhn−j = ε′n−j
∑∞

r=1(f̃hrj )′εn−r−j . Since ξhn−j ∈ In−j = σ(εn−j , εn−j−1, . . .) and
E(ξhn−j |In−j−1) = 0, it follows that

E



∞∑

j=0

ξhn−j




2

=
∞∑

j=0

E(ξhn−j)
2 ≤ C

∞∑

j=0

∞∑

r=1

||f̃hrj ||2 ≤ C
(

sup
j,r
||f̃hrj ||

) ∞∑

j=0

∞∑

r=1

||f̃hrj ||.

(56)
Observe that suph supj,r ||f̃hrj || ≤ supp ||Ap||

∑∞
s=0 ||As|| < ∞. Furthermore, uni-

formly in h = 1, . . . , n− 1,

∞∑

j=0

∞∑

r=1

||f̃hrj || ≤
∞∑

j=0

∞∑

r=1

∞∑

s=j+1

||As+r−h||||As||+
∞∑

j=0

∞∑

r=1

∞∑

s=j+1

||As+r||||As−h||

≤
∞∑

j=0

∞∑

s=j+1

||As||
∞∑

r=0

||Ar||+
∞∑

j=0

∞∑

s=j+1

||As−h||
∞∑

r=0

||Ar||. (57)

The first term in (57) is bounded by
∑∞

j=0

∑∞
s=j+1 ||As|| =

∑∞
j=1 j||Aj || < ∞. The

second term in (57) is bounded by
∑∞

j=0

∑∞
p=max{j−h+1,0} ||Ap|| =

∑∞
j=h+1

∑∞
p=j−h+1 ||Ap|| =∑∞

s=1

∑∞
p=s+1 ||Ap|| =

∑∞
s=1 s||As|| < ∞. Therefore, the right hand side of (56) is

finite, and part (b) follows. ¥

Lemma 13 Under the assumptions of Theorem 2,

1√
m

n−1∑

h=1

k

(
h− 1
m

)
1√
n

n∑

t=1

(yt∆xt−h −Eyt∆xt−h) =
n∑

t=1

Zt +Rn,
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where ER2
n = o(1) and Zt = n−1/2m−1/2

∑n−1
h=1 k((h−1)/m)

∑∞
r=1 ε

′
t−rfhr(1)εt, fhr(1) =∑∞

j=0[(A2
j+r−h)′A1

j + (A1
j+r)

′A2
j−h], and A1

j and A2
j denote the first and second row

of Aj , respectively.

Proof The proof follows from an argument similar to Remark 3.9 (i) of Phillips
and Solo (1992, p. 980). First, we find an alternate expression of

∑n
t=1 yt∆xt−h so

that it can be approximated by a martingale. Express yt and ∆xt as
(
yt
∆xt

)
=

(
A1(L)εt
A2(L)εt

)
=

( ∑∞
j=0A

1
jεt−j∑∞

j=0A
2
jεt−j

)
,

where A1
j and A2

j are the first and second row of Aj , respectively. Observe that

yt∆xt−h = A1(L)εtA2(L)εt−h

=
∞∑

j=0

A1
jεt−j

∞∑

k=0

A2
kεt−h−k

=
∞∑

j=0

A1
jεt−jA

2
j−hεt−j +

∞∑

j=0

A1
jεt−j

∞∑

s=h,6=j
A2
s−hεt−s, (s = h+ k).

Since A2
j−hεt−j is a scalar, the first term on the right is

tr



∞∑

j=0

(A2
j−h)′A1

jεt−jε
′
t−j


 = tr

(
fh0(L)εtε′t

)
, fh0(L) =

∞∑

j=0

(A2
j−h)′A1

jL
j =

∞∑

j=0

fh0
j Lj .

The second term on the right is, since A2
s ≡ 0 for s < 0,

tr



∞∑

j=0

∞∑

s=0, 6=j
(A2

s−h)′A1
jεt−jε

′
t−s




= tr



∞∑

j=0

∞∑

s=j+1

(A2
s−h)′A1

jεt−jε
′
t−s


 + tr



∞∑

j=0

j−1∑

s=0

(A2
s−h)′A1

jεt−jε
′
t−s




= tr



∞∑

j=0

∞∑

s=j+1

(A2
s−h)′A1

jεt−jε
′
t−s


 + tr



∞∑

s=0

∞∑

j=s+1

(A1
j )
′A2
s−hεt−sε

′
t−j




= tr



∞∑

j=0

∞∑

s=j+1

[
(A2

s−h)′A1
j + (A1

s)
′A2
j−h

]
εt−jε′t−s




= tr



∞∑

j=0

∞∑

r=1

[
(A2

j+r−h)′A1
j + (A1

j+r)
′A2
j−h

]
εt−jε′t−j−r


 (r = s− j)

= tr

( ∞∑

r=1

fhr(L)εtε′t−r

)
,
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where fhr(L) =
∑∞

j=0 f
hr
j Lj with fhrj = (A2

j+r−h)′A1
j + (A1

j+r)
′A2
j−h. Therefore, we

may express yt∆xt−h as

yt∆xt−h = tr

(
fh0(L)εtε′t +

∞∑

r=1

fhr(L)εtε′t−r

)
.

Apply the B/N decomposition (Phillips and Solo (1992)) to fhr(L) and rewrite it as

fhr(L) = fhr(1)− (1− L)f̃hr(L), r = 0, 1, . . . ,

with f̃hr(L) =
∑∞

j=0 f̃
hr
j Lj and f̃hrj =

∑∞
s=j+1 f

hr
s =

∑∞
s=j+1[(A2

s+r−h)′A1
s+(A1

s+r)
′A2
s−h].

It follows that

1√
n

n∑

t=1

yt∆xt−h = tr

(
fh0(1)

1√
n

n∑

t=1

εtε
′
t +

∞∑

r=1

fhr(1)
1√
n

n∑

t=1

εtε
′
t−r

)
+ rnh, (58)

where

rnh =
1√
n

tr
(
f̃h0(L)(ε0ε

′
0 − εnε′n)

)
+

1√
n

tr

( ∞∑

r=1

f̃hr(L)(ε0ε
′
−r − εnε′n−r)

)
.

From Lemma 12, we have

E|rnh|2 ≤ Cn−1, h = 1, . . . , n− 1. (59)

Furthermore, observe that

Eyt∆xt−h = E



∞∑

j=0

∞∑

k=0

A1
jεt−jε

′
t−k−h(A2

k)
′




=
∞∑

j=0

A1
j (A

2
j−h)′ = tr



∞∑

j=0

(A2
j−h)′A1

j


 = tr

(
fh0(1)

)
.

In conjunction with (58), it follows that

1√
n

n∑

t=1

(yt∆xt−h − Eyt∆xt−h)

= tr

(
fh0(1)

1√
n

n∑

t=1

(
εtε
′
t − I2

)
+
∞∑

r=1

fhr(1)
1√
n

n∑

t=1

εtε
′
t−r

)
+ rnh,

and hence

1√
m

n−1∑

h=1

k

(
h− 1
m

)
1√
n

n∑

t=1

(yt∆xt−h −Eyt∆xt−h) = I + II + III,
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where III = m−1/2
∑n−1

h=1 k((h− 1)/m)rnh and

I =
1√
m

n−1∑

h=1

k

(
h− 1
m

)
tr

(
fh0(1)

1√
n

n∑

t=1

(
εtε
′
t − I2

)
)

= tr

(
1√
n

n∑

t=1

(
εtε
′
t − I2

) 1√
m

m∑

h=1

k

(
h− 1
m

)
fh0(1)

)

II =
1√
m

n−1∑

h=1

k

(
h− 1
m

)
tr

( ∞∑

r=1

fhr(1)
1√
n

n∑

t=1

εtε
′
t−r

)

=
n∑

t=1

Zt; Zt = n−1/2m−1/2
n−1∑

h=1

k

(
h− 1
m

) ∞∑

r=1

ε′t−rf
hr(1)εt.

From (59) and Minkowski’s inequality, we haveE(III)2 = O(m−1n−1(
∑n−1

h=1 |k(h/m)|)2) =
O(mn−1). For I, first observe that, since Aj ≡ 0 for j < 0,

||fh0(1)|| =

∥∥∥∥∥∥

∞∑

j=0

(A2
j−h)′A1

j

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∞∑

j=h

(A2
j−h)′A1

j

∥∥∥∥∥∥

≤ sup
s
||As||

∞∑

j=h

||Aj || ≤ Ch−δ
∞∑

j=h

jδ||Aj || ≤ Ch−δ, h = 1, . . . , n− 1.

Therefore, ||m−1/2
∑n−1

h=1 k((h−1)/m)fh0(1)|| ≤ Cm−1/2, and it follows that E(I)2 =
O(m−1), giving the stated result. ¥

Lemma 14 For Wm̃ (λ) = (2πm̃)−1[sin2(m̃λ/2)/ sin2(λ/2)], there exist D ∈ (0, 1)
and κ > 0 such that

(a)
∫ Dπ

−Dπ
Wm̃ (λ)λ2dλ ≥ κm̃−1, (b) supλ∈[−π,π] |Wm̃ (λ) |λ2 ≤ Cm̃−1.

Proof We can find a constant c ∈ (0, 1) such that, for λ ∈ [−π, π],

c(λ/2)2 ≤ sin2(λ/2) ≤ (λ/2)2. (60)

Therefore, there exists κ > 0 such that
∫ Dπ

−Dπ
Wm̃ (λ)λ2dλ ≥ Cm̃−1

∫ Dπ

−Dπ
sin2(m̃λ/2)dλ

= 2Cm̃−2

∫ m̃Dπ/2

−m̃Dπ/2
sin2(θ)dθ ≥ 2Cm̃−2[m̃D]

∫ π/2

−π/2
sin2(θ)dθ

∼ 2CDm̃−1

∫ π/2

−π/2
sin2(θ)dθ ≥ κm̃−1,

giving part (a). Part (b) follows from (60) and | sinx| ≤ 1. ¥
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Table 1: Regression t-statistic: finite sample size (AR(1))

c ρ1 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.056 0.071 0.108 0.178 0.275 0.053 0.091 0.182 0.351 0.559
-1 0.990 0.056 0.069 0.097 0.155 0.226 0.059 0.083 0.153 0.296 0.446
-5 0.950 0.051 0.054 0.067 0.091 0.115 0.054 0.068 0.113 0.182 0.254
-10 0.900 0.056 0.058 0.057 0.079 0.087 0.052 0.069 0.085 0.120 0.158
-20 0.800 0.045 0.056 0.046 0.066 0.072 0.049 0.058 0.061 0.079 0.108

Demeaned Case (n = 200) Detrended Case (n = 200)
0 1.000 0.057 0.065 0.110 0.178 0.287 0.050 0.091 0.171 0.355 0.549
-1 0.995 0.053 0.060 0.098 0.154 0.220 0.049 0.073 0.152 0.293 0.461
-5 0.975 0.059 0.072 0.073 0.094 0.109 0.049 0.070 0.115 0.179 0.246
-10 0.950 0.049 0.056 0.061 0.080 0.080 0.053 0.065 0.086 0.118 0.164
-20 0.900 0.050 0.058 0.057 0.068 0.065 0.067 0.051 0.072 0.096 0.115

The table shows rejection rates under the null hypothesis for a nominal 5% test using the standard t-statistic
from a regression of yt on xt−1. yt is given by (21) and xt by (18) with ρ1 given by (20), with local-to-unity
parameter c. Details are given in the text.

Table 2: Covariance-based t-statistic: finite sample size (AR(1))

c ρ1 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.032 0.036 0.035 0.038 0.034 0.034 0.028 0.034 0.042 0.045
-1 0.990 0.033 0.036 0.037 0.031 0.030 0.029 0.041 0.031 0.040 0.043
-5 0.950 0.038 0.034 0.040 0.036 0.030 0.032 0.036 0.033 0.040 0.034
-10 0.900 0.036 0.033 0.030 0.033 0.026 0.034 0.034 0.032 0.030 0.024
-20 0.800 0.028 0.022 0.020 0.022 0.022 0.025 0.025 0.021 0.022 0.015

Demeaned Case (n = 200) Detrended Case (n = 200)
0 1.000 0.036 0.036 0.030 0.035 0.040 0.036 0.036 0.042 0.034 0.039
-1 0.995 0.035 0.030 0.040 0.032 0.035 0.033 0.035 0.037 0.041 0.043
-5 0.975 0.034 0.030 0.037 0.041 0.041 0.037 0.029 0.035 0.029 0.036
-10 0.950 0.038 0.030 0.037 0.032 0.036 0.030 0.034 0.034 0.032 0.026
-20 0.900 0.029 0.025 0.033 0.029 0.022 0.035 0.035 0.030 0.032 0.027

The table shows rejection rates under the null hypothesis for a nominal 5% test using tλ. yt is given by (21) and
xt by (18) with ρ1 given by (20), with local-to-unity parameter c. Details are given in the text.
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Table 3: Covariance-based t-statistic: finite sample size (long-horizon returns, n =
100)

c ρ1 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (k = 3) Detrended Case (k = 3)

0 1.000 0.046 0.043 0.050 0.057 0.044 0.040 0.055 0.050 0.062 0.065
-1 0.990 0.044 0.041 0.044 0.044 0.048 0.050 0.048 0.048 0.060 0.059
-5 0.950 0.044 0.046 0.037 0.036 0.040 0.046 0.039 0.041 0.054 0.052
-10 0.900 0.035 0.037 0.043 0.039 0.032 0.040 0.038 0.042 0.036 0.037
-20 0.800 0.028 0.032 0.024 0.024 0.027 0.030 0.030 0.024 0.032 0.035

Demeaned Case (k = 5) Detrended Case (k = 5)
0 1.000 0.055 0.060 0.058 0.059 0.064 0.048 0.049 0.049 0.074 0.089
-1 0.990 0.046 0.052 0.050 0.054 0.053 0.055 0.049 0.057 0.062 0.072
-5 0.950 0.046 0.036 0.042 0.050 0.049 0.043 0.050 0.038 0.057 0.057
-10 0.900 0.034 0.036 0.033 0.037 0.036 0.037 0.036 0.046 0.041 0.052
-20 0.800 0.020 0.017 0.024 0.026 0.032 0.026 0.017 0.030 0.028 0.041

The table shows rejection rates under the null hypothesis for a nominal 5% test using tλ. The long-horizon return
yt,k and xt,k are given by (28) where xt and yt follow (18) and (21) respectively with ρ1 given by (20), with
local-to-unity parameter c. k = 3 is chosen to match the ratio of the sample size to the longest horizon in the
empirical application for a simulation sample size of n = 100. Details are given in the text.

Table 4: Covariance-based t-statistic: finite sample size (AR(2))

c ρ1 + ρ2 σ12 =0 0.25 0.50 0.75 0.95 σ12 =0 0.25 0.50 0.75 0.95
Demeaned Case (n = 100) Detrended Case (n = 100)

0 1.000 0.048 0.057 0.053 0.052 0.054 0.048 0.050 0.060 0.063 0.081
-1 0.990 0.053 0.056 0.049 0.058 0.057 0.049 0.055 0.050 0.065 0.062
-5 0.950 0.062 0.048 0.057 0.063 0.060 0.051 0.056 0.053 0.067 0.060
-10 0.900 0.046 0.056 0.058 0.060 0.054 0.061 0.051 0.049 0.052 0.056
-20 0.800 0.052 0.046 0.043 0.056 0.068 0.053 0.058 0.050 0.058 0.062

Demeaned Case (n = 200) Detrended Case (n = 200)
0 1.000 0.059 0.055 0.061 0.061 0.057 0.054 0.056 0.062 0.067 0.066
-1 0.995 0.056 0.054 0.062 0.052 0.061 0.051 0.054 0.062 0.067 0.070
-5 0.975 0.057 0.047 0.056 0.050 0.059 0.058 0.044 0.060 0.054 0.064
-10 0.950 0.066 0.058 0.058 0.059 0.066 0.052 0.057 0.066 0.057 0.049
-20 0.900 0.053 0.060 0.051 0.063 0.053 0.052 0.061 0.057 0.064 0.065

The table shows rejection rates under the null hypothesis for a nominal 5% test using tλ. yt is given by (21) and
xt by (19) with ρ1 and ρ2 given by (29), with local-to-unity parameter c. Details are given in the text.
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Table 5: Covariance-based t-statistic: finite sample power (yt = βxt−1 + ε1,t)

c σ12 β = 0.10 0.15 0.20 0.35 0.50
A. Demeaned Case (n = 100)

c = 0 0.500 0.037 0.103 0.208 0.709 0.968
(ρ1 = 1.000) 0.950 0.036 0.099 0.199 0.694 0.975
c = −1 0.500 0.155 0.320 0.537 0.861 0.931
(ρ1 = 0.990) 0.950 0.264 0.465 0.643 0.869 0.926
c = −2.5 0.500 0.155 0.340 0.536 0.878 0.953
(ρ1 = 0.975) 0.950 0.270 0.504 0.655 0.897 0.945
c = −7.5 0.500 0.155 0.303 0.498 0.897 0.973
(ρ1 = 0.925) 0.950 0.220 0.444 0.621 0.912 0.972
c = −20 0.500 0.105 0.251 0.408 0.870 0.987
(ρ1 = 0.800) 0.950 0.141 0.308 0.470 0.882 0.985

B. Demeaned Case (n = 200)
c = 0 0.500 0.088 0.242 0.506 0.973 1.000
(ρ1 = 1.000) 0.950 0.071 0.221 0.488 0.972 1.000
c = −1 0.500 0.410 0.720 0.867 0.959 0.971
(ρ1 = 0.995) 0.950 0.597 0.806 0.905 0.959 0.966
c = −2.5 0.500 0.416 0.717 0.891 0.983 0.985
(ρ1 = 0.988) 0.950 0.620 0.851 0.936 0.983 0.982
c = −7.5 0.500 0.345 0.663 0.870 0.992 0.998
(ρ1 = 0.963) 0.950 0.572 0.827 0.942 0.991 0.993
c = −20 0.500 0.302 0.602 0.826 0.995 1.000
(ρ1 = 0.900) 0.950 0.444 0.744 0.909 0.995 1.000

The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using tλ. yt is given by (24) and xt by (18) with ρ1 given by (20), with local-
to-unity parameter c. Details are given in the text.

46



Table 6: Covariance-based t-statistic: finite sample power (yt = γ(1−ρL)xt−1 + ε1,t)

c σ12 γ = 0.10 0.15 0.20 0.35 0.50
(ρ1) r2 = 0.01 0.02 0.04 0.11 0.20

A. Demeaned Case (n = 100)
c = 0 0.500 0.085 0.172 0.264 0.664 0.919
(ρ1 = 1.000) 0.950 0.080 0.156 0.252 0.639 0.884
c = −1 0.500 0.087 0.153 0.273 0.668 0.914
(ρ1 = 0.990) 0.950 0.089 0.173 0.277 0.660 0.903
c = −2.5 0.500 0.088 0.175 0.281 0.691 0.931
(ρ1 = 0.975) 0.950 0.089 0.162 0.276 0.666 0.901
c = −7.5 0.500 0.088 0.179 0.267 0.683 0.918
(ρ1 = 0.925) 0.950 0.076 0.133 0.249 0.623 0.893
c = −20 0.500 0.078 0.149 0.229 0.646 0.910
(ρ1 = 0.800) 0.950 0.044 0.106 0.154 0.531 0.873

B. Demeaned Case (n = 200)
c = 0 0.500 0.152 0.317 0.520 0.925 0.997
(ρ1 = 1.000) 0.950 0.154 0.314 0.500 0.907 0.992
c = −1 0.500 0.156 0.318 0.532 0.930 0.995
(ρ1 = 0.995) 0.950 0.150 0.314 0.507 0.913 0.994
c = −2.5 0.500 0.161 0.338 0.518 0.937 0.996
(ρ1 = 0.988) 0.950 0.166 0.322 0.512 0.912 0.998
c = −7.5 0.500 0.148 0.320 0.539 0.922 0.998
(ρ1 = 0.963) 0.950 0.136 0.295 0.497 0.900 0.994
c = −20 0.500 0.134 0.292 0.481 0.921 0.997
(ρ1 = 0.900) 0.950 0.088 0.192 0.332 0.858 0.993

The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using tλ. yt is given by (25) and xt by (18) with ρ1 given by (20), with local-
to-unity parameter c. Details are given in the text.
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Table 7: CES Bonferroni method: finite sample power (yt = βxt−1 + ε1,t)

c σ12 β = 0.10 0.15 0.20 0.35 0.50
A. Demeaned Case (n = 100)

c = 0 0.500 0.193 0.378 0.568 0.945 0.999
(ρ1 = 1.000) 0.950 0.226 0.397 0.599 0.961 1.000
c = −1 0.500 0.727 0.904 0.970 1.000 1.000
(ρ1 = 0.990) 0.950 0.642 0.829 0.940 0.997 1.000
c = −2.5 0.500 0.686 0.887 0.969 1.000 1.000
(ρ1 = 0.975) 0.950 0.604 0.832 0.927 0.998 1.000
c = −7.5 0.500 0.582 0.826 0.939 0.999 1.000
(ρ1 = 0.925) 0.950 0.514 0.784 0.903 0.996 1.000
c = −20 0.500 0.365 0.642 0.823 0.994 1.000
(ρ1 = 0.800) 0.950 0.351 0.625 0.782 0.989 1.000

B. Demeaned Case (n = 200)
c = 0 0.500 0.333 0.617 0.830 0.998 1.000
(ρ1 = 1.000) 0.950 0.373 0.643 0.871 1.000 1.000
c = −1 0.500 0.961 0.999 1.000 1.000 1.000
(ρ1 = 0.995) 0.950 0.929 0.991 1.000 1.000 1.000
c = −2.5 0.500 0.964 0.995 1.000 1.000 1.000
(ρ1 = 0.988) 0.950 0.922 0.992 1.000 1.000 1.000
c = −7.5 0.500 0.908 0.993 1.000 1.000 1.000
(ρ1 = 0.963) 0.950 0.891 0.976 0.999 1.000 1.000
c = −20 0.500 0.803 0.968 0.996 1.000 1.000
(ρ1 = 0.900) 0.950 0.769 0.950 0.993 1.000 1.000

The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using the CES Bonferroni test. yt is given by (24) and xt by (18) with ρ1 given
by (20), with local-to-unity parameter c. Details are given in the text.
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Table 8: CES Bonferroni method: finite sample power (yt = γ(1− ρL)xt−1 + ε1,t)

c σ12 γ = 0.10 0.15 0.20 0.35 0.50
(ρ1) r2 = 0.01 0.02 0.04 0.11 0.20

A. Demeaned Case (n = 100)
c = 0 0.500 0.044 0.041 0.044 0.060 0.097
(ρ1 = 1.000) 0.950 0.036 0.036 0.030 0.034 0.048
c = −1 0.500 0.051 0.039 0.059 0.088 0.135
(ρ1 = 0.990) 0.950 0.028 0.032 0.030 0.041 0.060
c = −2.5 0.500 0.045 0.069 0.084 0.143 0.234
(ρ1 = 0.975) 0.950 0.030 0.046 0.044 0.081 0.146
c = −7.5 0.500 0.082 0.098 0.146 0.297 0.468
(ρ1 = 0.925) 0.950 0.059 0.087 0.111 0.213 0.365
c = −20 0.500 0.093 0.170 0.232 0.546 0.829
(ρ1 = 0.800) 0.950 0.092 0.149 0.208 0.512 0.810

B. Demeaned Case (n = 200)
c = 0 0.500 0.034 0.041 0.046 0.061 0.100
(ρ1 = 1.000) 0.950 0.037 0.038 0.024 0.031 0.043
c = −1 0.500 0.043 0.043 0.066 0.080 0.141
(ρ1 = 0.995) 0.950 0.032 0.030 0.032 0.038 0.064
c = −2.5 0.500 0.064 0.059 0.072 0.145 0.235
(ρ1 = 0.988) 0.950 0.040 0.044 0.047 0.077 0.149
c = −7.5 0.500 0.076 0.103 0.137 0.277 0.472
(ρ1 = 0.963) 0.950 0.068 0.092 0.109 0.238 0.382
c = −20 0.500 0.106 0.175 0.239 0.574 0.844
(ρ1 = 0.900) 0.950 0.098 0.137 0.200 0.501 0.813

The table shows rejection rates under the alternative hypothesis for a nominal 5%
test using the CES Bonferroni test. yt is given by (25) and xt by (18) with ρ1 given
by (20), with local-to-unity parameter c. Details are given in the text.
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Table 9: Covariance-based t-statistic: Comparison of kernels

A. yt = βxt−1 + ε1,t (Demeaned Case, n = 100)
c σ12 kernel β = 0 0.10 0.15 0.20 0.35 0.50
c = −1 0.500 PZ 0.038 0.183 0.381 0.621 0.889 0.936

QS 0.041 0.161 0.325 0.546 0.940 0.998
NW 0.037 0.155 0.320 0.537 0.861 0.931

c = −1 0.950 PZ 0.031 0.297 0.505 0.682 0.888 0.939
QS 0.028 0.142 0.303 0.487 0.920 0.995
NW 0.030 0.264 0.465 0.643 0.869 0.926

c = −20 0.500 PZ 0.022 0.119 0.275 0.461 0.895 0.990
QS 0.019 0.130 0.273 0.453 0.906 0.996
NW 0.020 0.105 0.251 0.408 0.870 0.987

c = −20 0.950 PZ 0.024 0.148 0.338 0.507 0.903 0.988
QS 0.022 0.074 0.160 0.281 0.816 0.980
NW 0.022 0.141 0.308 0.470 0.882 0.985

B. yt = γ(1− ρL)xt−1 + ε1,t (Demeaned Case, n = 100)
c σ12 kernel γ = 0 0.10 0.15 0.20 0.35 0.50
c = −1 0.500 PZ 0.038 0.078 0.141 0.248 0.630 0.909

QS 0.041 0.089 0.166 0.278 0.673 0.925
NW 0.037 0.087 0.153 0.273 0.668 0.914

c = −1 0.950 PZ 0.031 0.071 0.143 0.221 0.609 0.879
QS 0.028 0.085 0.162 0.257 0.643 0.901
NW 0.030 0.089 0.173 0.277 0.660 0.903

c = −20 0.500 PZ 0.022 0.066 0.129 0.209 0.600 0.893
QS 0.019 0.065 0.128 0.207 0.596 0.882
NW 0.020 0.078 0.149 0.229 0.646 0.910

c = −20 0.950 PZ 0.024 0.038 0.081 0.116 0.461 0.817
QS 0.022 0.039 0.080 0.117 0.435 0.783
NW 0.022 0.044 0.106 0.154 0.531 0.873

The table shows rejection rates for a 5% test using tλ under both the null (Column 4) and
the alternative hypothesis (Columns 5-9). The two forms of the alternative hypothesis shown
in Panels A and B match those in tables 5 and 6 respectively. Column 3 gives the kernel
choice for k(x) in (11), with PZ, QZ, and NW denoting the Parzen, Quadratic Spectral and
Newey-West (Bartlett) kernels respectively. xt is specified by (18) with ρ1 given by (20),
with local-to-unity parameter c. Details are given in the text.
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Table 10: Regressions of k-period long-horizon real stock returns on the treasury bill
and dividend price ratio

Treasury Bills Dividend Price Ratio
Forecast Horizon (k) Forecast Horizon (k)

sample k = 1.0 3.0 12.0 24.0 k = 1.0 3.0 12.0 24.0
1927- β̂ -0.581 -1.676 -3.236 -2.168 0.006 0.021 0.100 0.202
2003 R2 0.001 0.002 0.002 0.000 0.002 0.008 0.039 0.080

tβ -0.830 -0.881 -0.433 -0.209 1.395 1.402 1.950 2.341
p− Vsup 0.368 0.326 0.650 0.842 0.972 0.577 0.600 0.605

1927- β̂ 0.615 -0.876 -22.184 -94.145 0.014 0.057 0.267 0.620
1951 R2 0.000 0.000 0.007 0.071 0.003 0.013 0.071 0.200

tβ 0.153 -0.081 -0.564 -1.125 0.920 0.913 1.834 3.883
p− Vsup 0.865 0.974 0.700 0.363 0.901 0.900 0.993 0.792

1952- β̂ -1.410 -3.910 -8.098 -3.027 0.025 0.079 0.332 0.598
1994 R2 0.007 0.017 0.017 0.001 0.016 0.049 0.194 0.342

tβ -1.916 -2.023 -0.985 -0.260 2.867 3.752 3.949 3.775
p− Vsup 0.038 0.025 0.299 0.745 0.080 0.010 0.042 0.048

1952- β̂ -1.290 -3.537 -6.764 -3.507 0.008 0.028 0.125 0.238
2003 R2 0.005 0.011 0.009 0.001 0.005 0.018 0.081 0.146

tβ -1.772 -1.820 -0.827 -0.314 1.849 2.162 2.358 2.167
p− Vsup 0.057 0.035 0.386 0.752 0.626 0.218 0.375 0.470

Entries show results from a regression of yt+k = rt+1 + . . . + rt+k on xt = it or xt = dt − pt.
Regressions are estimated by OLS with HAC standard errors for k > 1, using the Bartlett (Newey-
West) kernel with bandwidth set to k − 1. p − Vsup is the two-sided p-value from the Valkanov
(2003) sup-bound test.
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Table 11: Confidence intervals on largest roots and residual correlation

xt = µx + vt (1− αL)b(L)vt = ε2,t

yt = β0 + β1xt−1 + ε1,t δ = corr (ε1,t, ε2,t)
Treasury Bills Dividend Price Ratio
(yt = rt xt = it) (yt = rt xt = dt − pt)

sample 95 % CI on 95 % CI on
period largest root in xt δ̂ largest root in xt δ̂

1927 to 2003 (0.9841 1.004) -0.1066 (0.9839 1.004) -0.9506
1927 to 1951 (0.9507 1.011) 0.0245 (0.9148 1.004) -0.9328
1952 to 1994 (0.9670 1.006) -0.2965 (0.9587 1.004) -0.9807
1952 to 2003 (0.9733 1.005) -0.1890 (0.9871 1.007) -0.9732
Confidence intervals on the largest root are based on Stock (1991) using the Ng and
Perron (2001) MIC criteria to select lag-length with a maximum of six lags.

Table 12: Covariance-based orthogonality tests on k-period long-horizon real stock
returns using the treasury bill and dividend price ratio

Treasury Bills Dividend Price Ratio
Forecast Horizon (k) Forecast Horizon (k)

sample k = 1.0 3.0 12.0 24.0 k = 1.0 3.0 12.0 24.0
1927- tλ 0.073 -0.305 -1.050 -0.529 -0.974 1.052 -1.672 -0.016
2003 p-value 0.942 0.760 0.294 0.597 0.330 0.293 0.095 0.987

[m∗] [0.56] [0.35] [0.15] [0.13] [2.90] [1.33] [0.50] [0.30]
1927- tλ 0.696 1.086 0.507 0.612 -0.696 0.996 -1.408 -0.438
1951 p-value 0.486 0.277 0.612 0.541 0.486 0.319 0.159 0.661

[m∗] [0.66] [0.30] [0.11] [0.07] [2.62] [1.10] [0.31] [0.41]
1952- tλ -1.385 -1.883 -2.088 -1.392 -1.384 -0.629 -0.145 1.442
1994 p-value 0.166 0.060 0.037 0.164 0.166 0.529 0.885 0.149

[m∗] [3.61] [2.26] [0.90] [0.55] [1.60] [0.65] [0.25] [0.16]
1952- tλ -0.864 -1.491 -1.718 -1.099 -1.269 -0.487 -0.364 0.964
2003 p-value 0.388 0.136 0.086 0.272 0.204 0.626 0.716 0.335

[m∗] [2.69] [1.64] [0.68] [0.48] [1.54] [0.66] [0.24] [0.14]
Standard normal critical values apply. tλ is the test statistic and m∗ is the optimal bandwidth. The estimation
and bandwidth procedures are described in detail in the text.
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Figure 1: Log real return, log dividend price ratio, and treasury bill rate

53


