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1. Introduction

It is well known that the LIML estimator of a single equation from a linear simultaneous
equations model has no moments, and that the generalized IV (2SLS) estimator has
as many moments as there are overidentifying restrictions. For a recent survey, see
Mariano (2001); key papers include Fuller (1977) and Kinal (1980). In this paper, we
propose a method based on the use of polar coordinates to study the existence, or non-
existence, of moments of IV estimators. This approach resembles that of Forchini and
Hillier (2003) and is considerably easier than the methods used prior to that paper;
see also Hillier (2006).!

The principal new result of the paper is that the JIVE estimator proposed by Angrist,
Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999) has no moments.
This is a result that those who have studied the finite-sample properties of JIVE by
simulation, including Hahn, Hausman, and Keuersteiner (2004) and Davidson and
MacKinnon (2006), have suspected for some time.

In the next section, we discuss a simple model with just one endogenous variable on
the right-hand side and develop some simple expressions for the IV estimate of the
coefficient of that variable. We also show how the JIVE estimator can be expressed
in a way that is quite similar to a generalized IV estimator. Then, in Section 3, we
rederive some standard results about the existence of moments for IV and certain
K-class estimators in a novel way. In Section 4, we show that the JIVE estimator
has no moments. In Section 5, we show that the results for the simple model extend
to a more general model in which there are exogenous variables in the structural
equation. In Section 6, we present some simulation results which illustrate some of the
consequences of nonexistence of moments for these estimators. Section 7 concludes.

2. A Simple Model

The simplest model that we consider has a single endogenous variable on the right-hand
side and no exogenous variables. This model is written as

Yr = Bxs + oy,

xp = oy(awy + vy),

(1)

where we have used some unconventional normalizations that will later be convenient.
The structural disturbances u; and the reduced form disturbances v; are assumed to
be serially independent and bivariate normal:

] (Gl )

1 We are grateful to an anonymous referee for bringing these two papers to our attention.
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The n—-vectors u and v have typical elements u; and v, respectively. The n-vector wy,
with typical element w;1, is to be interpreted as an instrumental variable. As such, it
is taken to be exogenous. The disturbance u; in the structural equation for y; can be
expressed as u; = pv; +uy1, where vy and uy; are independent, with u;y ~ N(0,1 — p?).

The simple instrumental variables, or IV, estimator of the parameter 5 in model (1)
solves the estimating equation

wy'(y — zfrv) =0, (2)

where the n-vectors y and x have typical elements y; and x;, respectively. It is
well known that the estimator defined by (2) has no moments, since there are no
overidentifying restrictions.

When there are overidentifying restrictions, W denotes an n x | matrix of exogenous
instruments, with w; denoting its *" column. The generalized IV, or 2SLS, estimator,
that makes use of these instruments solves the estimating equation

2 Py (y — xfv) =0, (3)

where Py, = W(W 'W)~!W T is the orthogonal projection on to the span of the
columns of W. The degree of overidentification is [ — 1, which is also the number of
moments that the estimator possesses. If [ = 1, the estimating equations (2) and (3)
are equivalent. Note that (1) may be taken to be the DGP (data-generating process)
even when there are overidentifying restrictions. This involves no loss of generality,
because we can think of the instrument vector w; as a particular linear combination
of the columns of the matrix W. Since 31y depends on W only through the linear
span of its columns, there is also no loss of generality in supposing that W'W =1,
the [ x [ identity matrix.

Replacing the matrix Py, in (3) by other matrices A" with the property that
AW = W leads to other estimators of interest. For instance, if we make the choice
A =1—- KMy, where My =1 — Py is the orthogonal projection complementary
to Py, then we obtain a K-class estimator. With K = 1, of course, we recover the
generalized IV estimator BIV.

Quite generally, consider the estimator ﬁ defined by the estimating equation
z'Al(y — xB) =0, (4)

where the n x n matrix A depends somehow on the linear span of the columns of an
n x [ matrix W of exogenous instruments, and is such that AW = W. If we denote
by 3° the true parameter of the DGP (1), we see that

wTAT(y - mﬁo) - JumTATu = 0y 0y (awlT‘i‘ UT)AT(,O’U + ul)

= auav(apwlTAT'v + pv'ATv + aw'ATu; + vTATul), (5)
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of which the expectation conditional on v is

E(azTAT(y —z%) |v) = P00, (aw'v 4+ v Av). (6)
Similarly,
x'A'x = 02(a® + av'A"w; + aw v + v'Av). (7)

The factor of A is retained in the second term on the right-hand side because we
do not necessarily require that A should be symmetric, so that Aw; = w; does not
necessarily imply that A'w; = w;. Subtracting the estimating equation (4) from (6),
dividing by x'A"z, and using (7) gives for the estimator 3 that

Ou ( aw, v + v'Av )

B(3— 8% v) ="~

Oy

(8)

a? + av'ATw, + aw,'v + v'Av

Notice that both the numerator and the denominator of this conditional expectation
vanish if v = —aw;. We therefore make the change of variables

£ =v+ aw,

whereby the n-vector £ is distributed as N(awq,I). With this change of variables, the
numerator of the factor in parentheses in expression (8) becomes

awi € —a® 4+ €TAE — afTwy — aw A€ + a? = €TAE — aw 'AE,
and the denominator becomes
a? + at’ATw; — a? + aw, € — a® + €TAE — aw'AE — afTw, + a® = £TAE,
The factor in parentheses in expression (8) therefore simplifies to
§'AL — aw A w'AL
=1-a .
§AE §AE
Clearly, the estimator B has just as many moments as the second term on the right-
hand side of (9), and we will come back to this point in the next section.

(9)

First, however, we consider the particular case that was rather misleadingly called
“jackknife instrumental variables,” or JIVE, by Angrist, Imbens, and Krueger (1999)
and Blomquist and Dahlberg (1999).2 This estimator makes use, for its single instru-
mental variable, of what we may call the vector of omit-one fitted values from the
first-stage regression of the endogenous explanatory variable @ on the instruments W':

=W~ +o,v. (10)

2 Actually, Angrist, Imbens, and Krueger (1999) called the estimator we will study JIVEL,
and Blomquist and Dahlberg (1999) called it UJIVE. But it is most commonly just called
JIVE.
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The omit-one fitted value for observation ¢, #;, is defined as W;¥®), where W; is
row t of W, and the estimates 4(*) are obtained by running regression (10) without
observation t.

The vector of omit-one estimates () is related to the full-sample vector of estimates 4

by the relation
1

1— hy
where the 4; are the residuals from regression (10) run on the full sample, and h; is
the t*I' diagonal element of Pyy; see, for instance, equation (2.63) in Davidson and

MacKinnon (2004). Under our assumption that WTW = I, we may write h; = ||W;||2
Further, W4 = (Pwa);. It follows then that

40 =4 — (WW) "W,

1 (MWaf)t

~:WA(t):P ——P M = e — 11
Tt t’)/ ( Wm)t 1 — HWtH2< W)tt( Ww)t Tt 1 - ||Wt||2 ) ( )

since the t'" diagonal element (Py )y of Py is hy = ||W;||2. We assume throughout
that 0 < hy < 1 with strict inequality, thereby avoiding the potential problem of a zero
denominator in (11). This assumption is not at all restrictive, since, if hy = 0, the ¢
elements of all the instruments vanish, whereas, if h; = 1, the span of the instruments
contains the dummy variable for observation ¢.

For the JIVE estimator, we wish to define the matrix A in such a way that the vector
& of omit-one fitted values is equal to Ax. By letting the (¢, s) element of A be

1

= m((PW%ES - 5tsHWtH )7 (12)

Qs

where &4 is the Kronecker delta, we may check that

" 1 (Mwx); ~
sty = ———— ((Pwx)s — z¢||We||?) = 2y — ————~ = &y,
2 s = gy (Pwa)e = el WilF) = - 370 =3

s=1
and that, fori =1,...,1,

n

1
Za“w“ - m(wti — wy || Wi ||*) = wy,

s=1

so that AW = W, as required. It is also clear that A depends on W only through
the projection Py .

With & defined as above, the JIVE estimator B J1v satisfies the estimating equation
&' (y — xfyv) = ' ATy — zfv) =0, (13)

and so it falls into the class of estimators defined by equation (4).
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3. Existence of Moments for IV Estimators

In this section, we study the problem of how many moments exist for the estimators
discussed in the previous section under DGPs belonging to the model (1). We begin
by constructing an n X n orthogonal matrix U with its first [ columns identical to
those of the instrument matrix W, and the remaining n — [ columns constituting an
orthonormal basis for 8+ (W), the orthogonal complement of the span of the columns
of W. If we denote column j of U by u;, we can define z; = uj—rﬁ, forj=1,...,n.
Then the z; are mutually independent, and they are distributed as standard normal
except for z1, which is distributed as N(a, 1). Because U is an orthogonal matrix,

E'AE=¢'UUAUU ¢ = 2'U'AU 2, (14)
where z is the n—vector with typical element z;. Similarly, since w; = w1, we see that

w'A€ = uAUz. (15)

We now once more change variables, so as to use the polar coordinates that correspond
to the Cartesian coordinates z;, i = 1,...,n.> The first polar coordinate is denoted r,
and it is the positive square root of Y I, 22. The other polar coordinates, denoted

01,...,0,_1, are all angles. They are defined as follows:

z1 = rcosbq,
i—1
Zi :TCOSQiHSiIle, 1=2,...,n—1, and
j=1 (16)

n—1
Zn =T H sin 6,
j=1

where 0 < 0; <mfori=1,...,n—2, and 0 < #,,_1 < 2m. It can be shown easily that
for 1 <j <mn,

n J
Z 22 =r? H sin? ;. (17)
i=j+1 i=1
The joint density of the z; is
1 1 2, N~ 2 e=a'/? 1,2
n) 72 exp —§<(z1 —a)® + Z%) = WGXP(_E(T — 2arcos€1)>. (18)
i=2

3 The use of polar coordinates in more than two dimensions is relatively uncommon.
Anderson (2003, p. 285) uses somewhat different conventions from ours, but with similar
results.



The Jacobian of the transformation to polar coordinates can be shown to be

021,y 2n)

(9(1”, 04,... 79n71) — pn=lgipn—2 01 gin™ 3 0y . sind, - (19)

see James (1954) and Anderson (2003, p. 286).
We first consider the generalized IV estimator defined by (3), for which A = AT = Py,

Partition the matrix U as [W Z], where Z is an n X (n —[) matrix. Then

wT I, o]' (20)

U'AU = {ZT]PW[W Z]:[O o

For this estimator, therefore, the expression w,'A&/€T A€ that occurs in (9) and deter-
mines how many moments the estimator has, becomes, with the help of (14) and (15),
wy 3 21

EPwE 2

=174

(21)

Since (21) depends only on the z; for i = 1,... [, we can use polar coordinates based

on these only. This means that we replace n by [ in (16), (18), and (19). With these

polar coordinates, we find that z; = r cos 6, and Zl | 22 = r?. Consequently, the mth

moment of (21), if it exists, is given by the integral

5/ cos™ 0y sin'~ 91/ pl—m-1 exp(—l(r2 —2arcos€1)) drdb, (22)
0 0 2
where
—a /2 . L
= 2ﬂ(12/2H/sm] 6;do;.

Here the integral with respect to 6;_; has been performed explicitly: Since neither
the density nor the Jacobian depends on this angle, the integral with respect to it is
just 2m.

Expression (22) can certainly be simplified, but that is not necessary for our conclusion
regarding the existence of moments. The integral over r converges if and only if the
exponent [ —m — 1 is greater than —1. If not, then it diverges at » = 0. The angle
integrals are all finite, and the joint density is everywhere positive, and so the only
possible source of divergence is the singularity with respect to r at » = 0. Thus
moments exist only for m < [. This merely confirms, for the special case of just one
endogenous regressor, some of the more general results on the existence of moments of
various estimators which were first demonstrated in Kinal (1980). Forchini and Hillier
(2003) also proved the above results by arguments similar to ours.



As an example, and because the analysis is quite similar to that of the JIVE estimator
in the next section, we consider another class of estimators examined in Kinal (1980),

namely, K-class estimators with fixed K < 1. For these estimators, as we saw earlier,
the matrix A is I — K M.

Observe that
AU = (1- KMw)W Z]|=[W (1-K)Z],
from which it is easy to see that

I 0)

U'AU =
O (1-K)I,

(23)

From (14), it follows that
ETAE =2 U'AUz = 2,2, + (1— K)ZQTZQ, (24)

where z; is the [-vector made up of the first [ components of z, and z, contains the
other components. Similarly, from (15),

'wlTAS = uAUz = 21,

where z7 is the first element of z. We now use the full transformation to polar coordi-
nates, rather than just the one for the [ components of z;. We have that z; = r cos 6,
as before. Then, from the result (17) applied to our n-dimensional coordinates, we
see that

n

!
29 29 = E z?:r2Hsin20j,
Jj=1

i=1+1
so that

lezl—sz—zQng—TQ—zQzQ—r< Hsm 9)

The right-hand side of (24) can therefore be written as
! !
(1—Hs1n9 +(1-K H 1n29j):r2<1—KHsin29j).
j=1 j=1 j=1

Note that, because K < 1, the right-hand side above cannot vanish for any values of
the 6;. The m'™ moment of the K-class estimator is therefore a multiple integral with
finite angle integrals and an integral over r of the function

pn—m—l1 exp (_%(73 — 2ar cos 01)>-

This integral diverges unless n —m — 1 > —1, that is, unless m < n.

-



4. Existence of Moments for JIVE

We now move on to the JIVE estimator, for which the matrix A is specified in (12)
by its typical element. By (12), the t*® element of Aw;, for j =1+1,...,n, is

utjht — s — Ut
1—he 7 1—h

Since AW = W, it follows that
U'AU =1- D, (25)

where the first [ columns of D are zero, and the other elements are given by

n
Ut Ut g . )
dijzzll_h]t, i=1,...,n, j=1+1,...,n. (26)
t=1

T T

as [z1 29|, where z; contains the first
[ elements. We define D5 and D3y as submatrices of D, the former with rows 1
through [ and columns [ 4+ 1 through n, and the latter with rows and columns [ 4 1
through n. Then, from (14),

As in the previous section, we partition z

éTAé = le(zl — D12Z2) + ZQT(I — D22)z2. (27)

Next, we see that
wiAé = u'AUz = 2 — d'z,. (28)

Here the 1 x k row vector d' is the top row of the matrix Dy,. The last equality in (28)
follows from the fact that u;'AU is just the top row of the matrix on the left-hand
side of equation (25).

Consider next the expectation of w'A¢/£'A€ conditional on 2. Since the elements
of z are mutually independent, this conditional expectation, should it exist, can be
computed using the marginal density of the vector z;. We may apply a linear trans-
formation to this vector which leaves the first element, z;, unchanged and rotates the
remaining [ — 1 elements in such a way that, for the value of zo on which we are
conditioning, all elements of the vector Dq52z5 vanish except the first two, which we
denote by §; and 2, respectively. Thus d'z,, which is the first component of D525,
is equal to §;. Since the components of z; except for the first are multivariate stan-
dard normal, and since the first component is unaffected by the rotation of the other
components, the joint density is also unaffected by the transformation.

Next we make use of the [-dimensional polar coordinates that correspond to the trans-
formed z;. In terms of these, expression (28) becomes 7 cosf; — 01, and (27) becomes

r? — 811 cos By — dor sin By cos By — ng(Dgg —1I)zs.

— 8 -



Thus the conditional expectation we wish to evaluate can be written, if it exists, as a
multiple integral with finite angle integrals and an integral over the radial coordinate r
with integrand

rcosf; — 01

-1 1, 9
—5(r" =2 01)). 29
' — 017 cos By — dor sin 0y cos Oy — b? exp( 2 (r arcos 1)> (29)

The quantity b? is defined as zo' (Dgs —I)z2, and it is indeed positive, since the matrix
in its definition is positive definite. This can be seen by noting from (26) that element 7j
of the matrix D — 1 is

Z Q;tzuftl]t — 5 Zu“utj ( ) ZutZUt‘] 1= ht

t=1

where we use the fact that Y i, usgug; = d;; by the orthonormality of the w;. Thus
D —1=U'QU, where Q is the diagonal matrix with typical element h;/(1 — hy).
Since we assume that 0 < hy; < 1, Q is positive definite. This implies that D — I, and
hence also the lower right-hand block, Dss — I, is positive definite as well.

Unlike what we found for the conventional IV estimator and the K-class estimator
with K < 1, the denominator of (29) does not vanish at » = 0. However, it does have
a simple pole for a positive value of r. Let §; cosi + d2sinfy cosfy = d. Then the
denominator can be written as r? — rd — b?, which has zeros at

d+ \/d?+ 4b?

2

The discriminant is obviously positive, so that the roots are real, one being positive
and the other negative, whatever the sign of d. The positive zero causes the integral
over r to diverge, from which we conclude that the JIVE estimator has no moments.
It may appear that this conclusion is not true if p = 0; see (8). But it is not hard to
see that the unconditional expectation of the JIVE estimator fails to exist even though
the conditional expectation vanishes in this special case.

T =

It is illuminating to rederive this result for the special case in which the design of the
instruments is perfectly balanced, in the sense that h; = [/n for all ¢. This is the
case, for instance, if the instruments are all seasonal dummies and the sample contains
an integer number of years. A substantial simplification follows from the fact that
the matrix A becomes Py — (I/(n — 1)) My, as can be seen from (12) by setting
|W;||? = I/n. The denominator £'A€ can then be written as
: l
> (wie)? - o | Mw |2

=1

The first term is just ||z1||* = r? and mlnus the second term, which replaces the b2
of (29), is clearly positive. Thus ETAE =72 —b% = (r+b)(r — b), and the singularity
at r = b is what causes the divergence.



5. Exogenous Explanatory Variables in the Structural Equation

In most econometric models, the structural equation contains exogenous explanatory
variables in addition to the endogenous one, and these extra explanatory variables are
included in the set of instrumental variables. In this section, we briefly indicate how
to extend our previous results to this more general case.

We extend the model (1) as follows:

y = a0+ Wsy + o,u,

(30)
x = 0,(Wiay + Waas +v).
Here W5 has I’ columns, and the full set of instruments is contained in the matrix
W = [W; W,]. Without loss of generality, we again assume that W'W = I and
that Wia1 = awq, where w; is the first column of Wj.

We will show in a moment that all of the estimators we have considered so far can still,
when applied to the model (30), be expressed as solutions to the estimating equations
(4), but with different A matrices. In fact, A = My Ay, Ag being the matrix A for the
original model (1) and My being the matrix that projects orthogonally on to 8+ (W5).
Since AgW = W, it follows that AW; = W, and AW, = AW, = O. These
conditions are enough for equations (5), (6), and (7) still to be satisfied. Consequently,
as before, the estimator has as many moments as the expression w;'A&/€A€ that
appears in (9).

As in (14) and (15), £'A¢€ = 2'U'AUz, and w/'A¢ = ui’/AUz. We may write U
in partitioned form as [W; W, Z]. But since AW, = Wy'A = O, if we define the
n x (n—1") matrix V' as [W; Z], we see that

2 UAUz=2,'"V'AVz, and uw/'AUz = UITAVZJ_,

where z; = V'€ is an (n — I')-vector of mutually independent elements, each dis-
tributed as N(0,1), except the first, which is distributed as N(a,1). This means that
z, is distributed just like the n-vector z of the previous two sections, except that the
dimension n is replaced by n—1’. Thus we need to show that, for each of the estimators
we consider, the matrix VAV has exactly the same form as the matrix UTAU for
the corresponding estimator without exogenous explanatory variables in the structural
equation, but with n replaced by n — " and W by Wj. If we can do that, then all of
the results on existence of moments are unchanged, except for replacing n by n — 1’

Consider first the generalized IV estimator. It is easy to show that the estimating
equation for Byy is

&' P (y — xfrv) = x' Py My (y — (1) = 0.

~10 -



We see from (3) that A = My Ay, as required. Moreover,
I, O

Ty _ | 1

VAV = [ 0 O}

which is the same as the UTAU of (20). Thus the presence of W5 does not change
our analysis of the IV estimator. Moments of order m exist only for m < [.

The K-class estimator with fixed K < 1 can readily be seen to be defined by the
estimating equation

z'(Mz — KMw)(y — 20) = z'(1 - K Mw)M:(y — ) =0,

so that, once again, A = M,A,. It is also immediate that VAV is given by the
right-hand side of (23), with n replaced by n —’. We conclude that moments of
order m exist only if m <n —1’.

For the JIVE estimator, the vector & of omit-one fitted values is defined exactly as
before, using the full matrix W of instruments. The estimating equation (4) for B TV
becomes

&' Ms(y — zfnv) =« A Ma(y — zB51v) = 0,

where Ag is the A used in (13). Thus A = M> Ay, as required. Just as for (25), we
see that VIAV =1 — D, except that the dimension of the square matrices I and D
is n — I’ rather than n. Thus the analysis based on (27) and (28), leading to the
conclusion that the JIVE estimator has no moments, proceeds unaltered.

6. Consequences of Nonexistence of Moments

The fact that an estimator has no moments does not mean that it is necessarily a bad
estimator, although it does suggest that extreme estimates are likely to be encountered
relatively often. However, when the sample size is large enough and when, for cases like
the simultaneous equations case we are considering here, the instruments are strong
enough, this may not be a problem in practice.

In some ways, the lack of moments is more of a problem for investigators performing
Monte Carlo experiments than it is for practitioners actually using the estimator. Sup-
pose we perform N replications of a Monte Carlo experiment and obtain N realizations
ﬁ] of the estimator 6 It is natural to estimate the population mean of B by using
the sample mean of the ﬁj, which converges as N — oo to the population mean if the
latter exists. However, when the estimator has no first moment, what one is trying to
estimate does not exist, and the sequence of sample means does not converge.

To illustrate this, we performed several simulation experiments based on the DGP (1).
Both standard errors (o, and o, ) were equal to 1.0, the sample size was 50, p was 0.8, 3
was 1, and a took on two different values, 0.5 and 1.0. There were five instruments, and

— 11 —



hence four overidentifying restrictions. For each value of a, 29 different experiments
were performed for various values of N, starting with N = 1000 and then multiplying
N by a factor of (approximately) v/2 as many times as necessary until it reached
16,384,000.

In the first experiment, a = 0.5. For this value of a and a sample size of only 50,
the instruments are quite weak. As can be seen in Figure 1, the averages of the
IV estimates converge quickly to a value of approximately 1.1802, which involves a
rather serious upward bias. In contrast, the averages of the JIVE estimates are highly
variable. These averages tend to be less than 1 most of the time, but they show no
real pattern. The figure shows two different sets of results, based on different random
numbers, for the JIVE estimates. Only one set is shown for IV, because, at the scale
on which the figure is drawn, the two sets would be almost indistinguishable.

In the second experiment, a = 1.0, and the instruments are therefore a good deal
stronger. As seen in Figure 2, the averages of the IV estimates now converge quickly
to a value of approximately 1.0489, which involves much less upward bias than before.
The averages of the JIVE estimates do not seem to converge, but they vary much
less than they did in the first set of experiments, and it is clear that they tend to
underestimate (3.

In additional experiments that are not reported here, we also tried a = 0.25 and
a = 2. In the former case, the results were quite similar to those in Figure 1, except
that the upward bias of the IV estimator was much greater. In the latter case, where
the instruments were quite strong, the averages of both the IV and JIVE estimates
appeared to converge, to roughly 1.012 for the former and 0.991 for the latter. Thus,
based on the simulation results for this case, there was no sign that the JIVE estimator
lacks moments. It would presumably require very large values of N to illustrate the
lack of moments when the instruments are strong.

7. Conclusions

In this paper, we have proposed a method based on the use of polar coordinates to
investigate the existence of moments for instrumental variables and related estimators
in the linear regression model. For generalized IV estimators and K-class estimators
with fixed K < 1, we obtain standard results. However, the main result of the paper
concerns the estimator called JIVE. We show that this estimator has no moments.
Simulation results suggest that, when the instruments are sufficiently weak, JIVE’s
lack of moments is very evident. However, when the instruments are strong, it may
not be apparent.
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