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This paper proves the existence of a general equilibrium in a financial model with trans-
action costs. A general equilibrium is shown to exist in a model with convex trading
technology, in which the agents include consumers, production firms, brokers or
dealers. When the trading technology is non-convex, an individual approximate equi-
librium, introduced by Heller and Starr (1976), is proved in the above model. And,
moreover, under a further assumption of finite p-convexity on the commodity excess
demand correspondence, a general equilibrium for a non-convex exchange economy is
obtained for an economy with consumers, brokers or dealers.
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1. Introduction

A number of authors have considered financial markets with transaction costs,
particularly the impact of transaction costs on optimal portfolio selection (e.g.,
Magill and Constantinides (1976), Kandell and Ross (1983), Taksar, Klass and
Assaf (1988), Duffie and Sun (1990), Fleming et al. (1989), Davis and Norman
(1990)); and the pricing and hedging of derivative securities using the underlying
stock and bond (e.g., Leland (1985), Boyle and Vorst (1992), Bensaid, et al. (1992),
Edirisinghe, Naik and Uppal (1993), Constantinedes and Zariphopoulou (1995)).

More recently, some authors (e.g., Jouini and Kallal (1995), Ortu (1995), Milne
and Neave (1996)) have investigated economies with transaction costs and the im-
plications for asset prices and allocations. Jouini and Kallal (1995) use arbitrage
methods as introduced by Harrison and Kreps (1979) to obtain a set of equivalent
Martingale measures that are deduced from an economy with transaction costs and
an absence of arbitrage. Ortu (1995) uses duality and linear programming meth-
ods in finite dimensions extending Jouini and Kallal’s results. Milne and Neave
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324 Quantitative Analysis in Financial Markets

(1996) formulate a competitive economy with multiple dates, uncertainty, a single
physical commodity and a set of consumers trading assets through a set of bro-
ker/intermediaries, who have explicit transaction technologies. Their formulation
draws upon an older literature in General Equilibrium theory that characterises
transaction costs by discriminating between bought and sold commodities or assets
(see Ostroy and Starr (1990) for a survey of this literature). Assuming the exis-
tence of an equilibrium, Milne and Neave characterise pricing and asset allocations
for a number of special cases of their model, emphasising the model’s flexibility in
encompassing many cases discussed separately in the literature (e.g., broking, per-
sonal transaction costs, fixed and variable transaction costs, inventory-type models,
incomplete markets). The Milne-Neave model is consistent with the formulations
of Jouini~Kallal and Ortu, in providing a general primal formulation. The latter
papers exploit no arbitrage/duality methods to obtain similar, or complementary
results.

This paper constructs a more general version of Milne and Neave (1996) in-
cluding many physical commodities, producers/firms and general assumptions on
feasible consumption, production sets, and transaction technologies. ‘We provide
conditions that guarantee the existence of an equilibrium in this economy when the
transaction technology is convex. To incorporate non-convexities (or fixed costs)
in transactions, the model considers a modification introduced in an earlier general
equilibrium literature (see Heller and Starr (1976)) that allows us to prove the ex-
istence of an approximate equilibrium. In addition we introduce a different method
for proving existence in a version of our economy with non-convex transaction tech-
nologies. It is well-known that transactions often involve a fixed cost for each
transaction, and some element of marginal cost: our non-convex technology deals
with that case. We suppose a condition of finite p-convexity on the commodity
excess demand correspondence. This assumption allows a limited degree of non-
convexity in the asset trade technology, and yet a well-defined element of convexity
in commodity demand to generalise the existence of an exact equilibrium.

The rest of this paper is organized as follows. In Sec. 2, we outline the basic
model and introduce the concept of no arbitrage and its equivalent condition. In
Sec. 3, we will prove some preliminary results and, finally, show the existence of
equilibrium for the model with convex trading technology. Section 4 is devoted
to individual approximate equlibrium in the model with non-convex trading tech-
nology. In Sec. 5, a concept of finite p-convexity is introduced and the general
equilibrium is proved in an exchange economy. In Sec. 6, we conclude with a dis-
cussion of special cases and possible extensions of our model. The appendix includes
a proof of one preliminary result.

2. The Model and No Arbitrage

Consider an economy with uncertainty characterized by a event tree such as
that depicted in Fig. 1 of Duffie (1987). This tree consists of a finite set of nodes E
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and directed arcs A C E x E, such that (E, A) forms a tree with a distinquished
root ep. For any node e € E other than the root node ey, e~ designates the unique
predecessor of e. The number of immediate successor nodes of any e € E is denoted
#e. A node e € E is terminal if it has no successor node. The immediate successor
nodes of any non-terminal node e € E are labeled e*!,...,etX where K = #te.
The sub-tree with root e is denoted E(e). Particularly, E = E(eg). Suppose there
are N securities and M commodities at any node e € E. Assume that all assets
pay dividends at each node.

There are J production firms (indexed by j) with objective function V;(), each
of whom chooses a production plan and a trade plan. A production plan of firm 7 is
an array of numbers y;,m(e), one for eachm € M = {1,..., M}, and e € E with the
usual sign convention for inputs (non-positive) and outputs (non-negative). Thus
a contingent production plan y;(e) = (y;1(e),...,y;,m(e)) of firm j is a point of
vector space RM. The set of all contingent production plans that are technologically
feasible for firm j will be denoted by ¥; C RIEI*M where |E| is the total number
of nodes of E.

A trade plan of firm j is a vector 8; = (0;(€))ece = (Hf(e),()f(e))eeg =
OF1(e), -, 87n(e), 051 (e), ... 05y (€))ecr in REFPM | where 62, (e)(65,(e))
represents the accumulated purchase (sale) of asset n by firm j after trading at
node e. Let Bfo,n and 9}'3,0,1: denote the initial shares of asset n bought and
sold respectively by firm j just before trading begins at node e;. And let 00 =
(0P0.1s-- 108 850 1,05, ).

There are H brokers or intermediaries (indexed by h) with objective function
Wi(-). They are intermediaries specializing in the transaction technology that
transforms bought and sold assets. Let dno = (45 o, 9F,) = (¢i€,0,1""!¢f,0,N’
$h o1+ Pho n) be the initial trading by broker h. oF (€)(#5 ,(e)) be the accu-
mulated number of bought (sold) asset n supplied by intermediary h after trading at
e and denote ¢r, = (43, ¢F) = (¢ (€), $2(€))eck; and zx(e) = (zn,1(e), .. -y Zh,M(€))
be the vector of contingent commodities used up in the activity of intermediation at
date ¢ and denote (2x(€))eck by 21 For intermediary h, let Th(e) C RY xRY xR
denote its technology at node e.

There are I consumers, indexed by ¢, with endowment w; ;, initial trading i o,
and utility function U;(:) and consumption set X; = REIXM. The consumer ¢
chooses a consumption plan z; = (z;1(e),..., % m(€))ece € X; and a portfolio
plan o; = (B, ¢F) ¢ Rﬁ_(IEIXN) which can be explained analogously to ;. ‘

Now we turn to assets. At each node e € E, asset n(n = 1,..., N) has a buying
price B"(e) and selling price S™(e) and dividend d,(e) denominated in the first
commodity (numeraire). Suppose that at each node e, the asset n pays its dividend
dn (denominated in the numeraire commodity) and is then available for trade at
prices By (e) and Sy (e).

Let d = {d(e) = (di(e),...,dn(e)) : e € E}, B = {B(e) = (B(e),..., BV (e)) :
e € E} and § = {S(e) = (S'(e),...,SN(e)) : e € E}. A dividend process d*
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generated by a generic strategy 8 = (#2,6°) is defined by
d®(e) = (08 (e™) — 85(e™))d(e) + £85(e)S(e) — £6B(e)B(e),e € E,

where 0(eg) = (68 (eg ),0°(ep)) is the initial shares bought and sold by an agent
just before the trading takes place at node eg. Here A8P(e) = 65 (e) — 68 (e™); and
N05(e) = 8%(e) — 05(e™). And define Ad(e) = O(e) — B(e™).

Let p = (P)eck = (pi(e),...,prm(€))ecE(€ Do) denote the spot price of com-
modities, where /g is the unit simplex of RMxIE|

Now the problem of firm j can be specified as

sup  V;(d% +py;), (%)
(85,45)€T (#)

where I‘} (p) denote the set of feasible production-trade plans (8;,y;) of firm j given
price p, which satisfies

(2.1) y; is in Y};
(2.2) d%(e) + p(e)y;{e) > 0, Ve € E.

The maximization problem of broker i can be stated as

sup  Wi(—d* —pz), (**)
(én,zn)ETZ (7n)

where T (v)(vn = (%), (8;), (¢rrn), p) is the space of feasible trade-production
plans (¢, zn) = (@95, $2, z») given 4, which satisfies, at each node,

(2.3) (ApP(e), A3 (e), z(€)) € Th(e) and zi(e) > 0, Ve € E;
(2.4) —d®*(e) — p(e)zn(e) = 0, Ve € E;
(2.5) 3o, DAdnle) = 30, Dpile) + 35 Abj(e), Ve € E.

Comments: 1. The condition (2.5) requires that all consumers and all produc-
tion firms buy and sell securities through brokers. :

2. The productive firms and intermediary firms are treated similarly to con-
sumers. Because of transaction costs, it is well-known that the Fisher separation
theorem fails. Therefore we assume that each firm has an objective function (utility
function) derived in some fashion from the preference of the owners. For example,
we can either assume one-owner firms or draw on DeMarzo (1988) and argue that
the objective is derived from a more complicated composition of owner preferences.

3. The intermediary formulation allows the agent to trade on its own account;
or by interpreting the transaction technology more narrowly, it can be restricted to
a pure broker with direct pass through of assets bought and sold (see Milne and
Neave (1996) for further discussion).

The problem of consumer ¢ is as follows:

sup Ui(z;), (% * )
(i.z:)EP(T)
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where 7 = ((¢n, z1), (85, ¥;), p) and I'3(7) is the set of feasible portfolio-consumption
plans (15, z;) given 7, which satisfies

(2.6) z; is in X;;
(2.7) p(e)xi(e) < ple)wile) + d¥i(e) + X, o 555(e) + X, Binznle), Ve € E.

Here 7(e) = d% (€) + p(e)y;(e), Zh(e) = —d?*(e) — ple)an(e); any > O(5, any = 1)
is consumer 1’s initial share of the net cash flow of firm j; and 8; 5 > 03>, Bin=1)
is consumer i’s initial share of net cash flow of broker h.

Now we can define the abstract economy: £ = (X; x R2@WxIE)
Xy x RENXIED y; x RANXIED |y, x R2NXIED T! ... T4, Ao, Uy(zr),. ..,
UI(:BI): V'l(dt91 + pyl): R VJ(deJ + pyJ): V[/vl('_':i‘ﬁl - le), IR WH(_d¢H - sz)v
Seer m(e)p(ehule), THr),...,[3(r), Ti@),-..,Th(), T3m),....Th(va), Do)
where 7(e)(e € E) will be defined in Lemma 2.1 below, w(e) = 3, zi(e)+>", zn(e)—
> ;¥ile) — 3, wi(e) and

b= (85, 8% 20) : (A87 (€), Od5(€), 2n(e)) € The), Ve € E} .

A point e* = ((¥},x}), (67, ;) (#h,21),p*) is called an equilibrium solution of
economy & given the market system (B, S,d) if e* solves problems (*), () and
(* * *) and "

DT AY A=Yy wi,
i h ] i

D AL =D AYI+ Y A6
h b 7

The following assumptions are made in the remainder of this paper.
For consumer i:

(A.1) U;(-) is a continuous, concave and strictly increasing function.

For firm j:

(A.2) Y; is a closed convex subset of RM*IEl containing —folEl;

(A-3) ¥ nRY® = {0},
(A.4) (EJ Y;)n (- Ej Y;) = {0};
(A.5) V;(:) is a continuous, concave and strictly increasing function.

For broker h:

(A.6) For each e, Ty(e) is a closed and convex set with 0 € Tj(e).

(A.7) For any e and given z = (Z1,...sZan, 21, ..., 2m) € Th(e), fy =
Efﬁl Tp — 00, then {(z1,...,2pm)| = ETI:LI Zm — OO.

(A.8) For each e, if (¥,2) € Th(e) and 2z’ > z, then (¥,2') € Th(e) (free
disposal).
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(A.9) Wy(-) is a continuous, concave and strictly increasing function:
(A.10) The initial holdings ¥; 0, 8,0, ¢n,0 of securities of all consumers, all firms
and all brokers are taken as given and satisfy

Z Yio + Z f;0=3 Bro-
i 3 3

The assumptions (A.1)—(A.6) are standard. (A.7) says that transactions must
consume resources. (A.8) and (A.9) are standard. And (A.10) says that the initial
net trading is zero.

Now we conclude this section by introducing the concept of no-arbitrage.

Let an agent have initial shares 8, = (8F,85) just before the trading takes place
at node eg. Then his or her initial capital will be do = d(ep)(6F — 85) + S(e0)8F —
B(eo)85 if he or she sells the holding and buys back the short-sale. Given a price-
dividend triple (B, S,d) for N securities, a trading strategy @ is an arbitrage if
—dp > 0 and d?(e) > 0, Ve € E, and moreover, —dy > 0 or there exists at least one
node e € E such that d°(e) > 0.

(A.11) The price-dividend triple (B, S, d) admits no-arbitrage.

The following equivalent condition of no arbitrage is similar to Proposition 2C of
Duffie (1996) and will play an important role in the proof of market clearing later.

Lemma 2.1. There is no arbitrage if and only if there is a strictly increasing
linear function F : RIEIF! 5 R such that F((—dp,d%)) < 0 for any trading strategy
8 € ©, where © denotes the space of trading strategies and is a closed and convez
set.

Proof. There is no arbitrage if and only if the cones RL_EIH and M? =
{(=do,d%) : 6 € ©} intersect precisely at zero. If there is no arbitrage, the the-
orem “Linear Separation of Cones” in Appendix B of Duffie (1996) implies the
existence of a nonzero linear functional F such that F(z) < F(y) for each z in M?°
and each nonzero y in le'l"'l. Since MY is a cone, this implies F(z) < 0 for each z
in M®. And, moreover, 0 € M?; thus F(y) > F(0) = 0 for each nonzero y € RI_,]_BH'I.
That is, F is strictly increasing. The converse is immediate. O

In comparison with Proposition 2C in Duffie (1996), the next result shows the
difference between the model without transaction costs and the model with trans-
action costs caused by the bid-ask spread at some node.

Lemma 2.2. Suppose there is no arbitrage and B™(€) > S™(€) for security n
at o certain node €. Then F((—do,d%)) # 0 over ©.

Proof. Suppose not. Then F((— do,da)% = 0 for each # € ©. Since F(-) is
a strictly increasing linear functional on R I+ , this implies that there exists a
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vector m = (70, (7%)eer) € int(le'IH) such that F(z) = 7% + ¥, g 7z, for
each £ = (zo, (%c)eck) € RIEIF1. Without loss of generality, we assume N = n = 1.
For a fixed positive integer M, set

6%(e) = 0,Ve € E — {},6%(¢) = M;
85(e) = 0,Ve € E.

Then d’(e) = d(e)(65 — 65), Ve ¢ E(€),d’(8) = d(&)(68 — 65) — MB(),d(e) =
d(e)(6F — 65 + M),Ve € E(8) — {e}.
Hence

Mn(€)B'(e) = —n%do + Y _ m(e)d(e}(65 - 65) + M > w(e)d(e).

B <€E(e)—{}
Likewise, by setting
#5(e) = 0,Ye € E — {&},05(¢) = M ;
68(e) = 0,Ve € E.

Mr(8)5'(€) = n%do— ) m(e)d(e)(6F — 65) +M > w(e)d(e),
ecE ecE(e)~{e}

and therefore,

Mr(@)(B' (@) ~ 5'@) = 2 | 3 n(e)d(e) (68 — 65) — °do

ecE

Thus B'(e) = S'(€) since M is arbitrary, which provides a contradiction and
proves the conclusion of the lemma. ()

Therefore, from Proposition 2C of Duffie (1996), in a security market without
friction and with no arbitrage, the initial value of any trading strategy is uniquely
determined by the inner product of its future cash flows with a martingale measure.
But, by the above two lemmas, this conclusion does not hold in the security market
with transaction costs: the martingale measure is not unique (see Jouini and Kallal
(1995) for similar observations).

3. Proof of Existence of Equilibrium

We will adopt the technique of proof used in Arrow-Debreu (1954). First of all,
we will show that the set of attainable plans for economy £ is bounded, and replace
the original economy £ by a bounded one. Secondly, we will show the continuity of
the constrained correspondences.

For broker h, define

Zp = {zn: there exists (¢y,$7) > 0 such that (¢5,¢2,z,) € T, };

Zy = {zr € Zp: there exist zp € Zp for each ' # h,z; € X; for each ¢ and
y; € Y; for each jsuch that w =3, 2 + ., zn — 25 Y — 2 wi <0}
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O = {¢n = (¢3,¢B): there exists z;, € Zj, such that (¢, 2x) € TL};

& = {¢n = (¢3,98) € ®p: there exist ¢ € &y for each b/ # h, AG; > 0 for
each j and At); > 0 for each 4 such that 3, Av; + 30, A8; < 37, Adn}.

For consumer i, define

X',- = {z; € X;: there exist z;; € Xy for each i’ # 1,2z, € Z for each h and
y;j € Y; for each jsuch that w=3",2; + 3, zn — 2, ¥5 — 20, wi S0}

¥, = {4 = (¥B,¥5): there exist Ay > 0 for each i/ # i, ¢, € &, for each
h, A§; > 0 for each j such that 3=, Avh; + 3°. A0; < 37, A}

Likewise, we can define YJ and éj for firm j.

By use of the technique of 3.3.1 of Arrow—Debreu (1954) and by Lemma Al, we
can show the following result.

Lemma 3.1. The sets X;, f@ and Z), are all compact and conver.

In exactly the same method as Lemma 3.1 (and Al in Appendix), we can show
the following boundedness result of trade plan for broker h.

Lemma 3.2. The set &), is a compact and convez subset of R2IEIXN) And so
is ‘I’h, \I',- and 6

Thus there exist cubes C1(C RIEI*M) and C?(C Ri(lEIXN)) so that C! contains
in its interior all f(,-, all YJ and all Zh; C? contains all \il,-, all éj and all ;. Define
X;=C'nX;,¥; =C%Y, =C'nY;,6; =C?, 2, =C'NZ;, and &, = C2. And
~ let T} (p), 2 (1) and 1"3(T) be the resultant modification of I'}(p), T3 (v») and T3(7)
respectlvely

We now turn to the proof of continuity of [‘1 (), T2 () and T3(r). We only
investigate the continuity of I‘ the continuity of the others can be shown similarly.

Lemma 3.3. Given p, all 9;, all 8; and all o (h' # h), and there exists
(th,zh) € T}, such that 3. A + Z ANO; € 3, Adp and 0 K —d¢" '~ pzy. Then

I'2(vyh) is continuous.

Proof Without loss of generality, we show the continuity of I'2 (71) Let

(¢17 ’1/)119 ¢2) 1¢Hs k)_)71=(T)blv'-'7¢I=019---76Ja¢23~--,
¢H, p). Consider a pomt (¢1,z1) € 1"1('71) then

0< —d* - pz, ZA¢i+ZA0j SEAth.

If0 <« d¢1 —pz1, 3, A + E ANO; L 3, Agn, then for &k sufﬁc1ently large,
0« —d*'—pFz;,and ), A’t/)’H—Z AH" < Y Ak +Agy. By taking (¢F,2f) =
(¢1,21), we prove the conclusion of the lemma.



The Ezxistence of Equilibrium in a Financial Market with Transaction Costs 331

If the above case does not hold, then there exist Eq C E and E{),E(Lg E =
E x {1,..., N} (there is at least one nonempty set among Eg and E{, and Ej})) such
that

—d®'(e) — p(e)z1(e) =0, e € Ey;
—d*(e) — ple)zi(e) >0, ec E—-Eq;

S ApE )+ 008, (e) = 3" A6 (), (e,q) € B,
i 3 h

Z Awfq(e) + ZAﬁfq(e) < ZAqb;f,q(e), (e,q) € E - Eg,
3 ] h

and

ZA¢1q<e)+ZaoSq(e) Zamq ), (e,q) € By,
> Ay (e)+ZA Se) <Y A¢P (e), (e,q) € E - Ejf.
i h

By assumption, we can choose (¢}, z{) € T} such that

0 < —d% — pz}

and
ZA% +ZAO <3 D¢+ 4.
hA1
Clearly
#'54(0) > A5 (e), (e,9) € B,
and, B
A To(e) > g (e, (e,q) € B
Let
Al = min {1 A¢’iq(e) (s A7’b C(e) + 22 Aé’k’qB("f) = Dhz A‘ﬁﬁ',f(e))
k ) A¢'1,q(e) A¢1,q(e) .
:(e,q) € EB} ;
AL = min { 1 Aqb’f’:q () — (s Aﬁf(e) +22; Ao;'c,'«}s(e) — D oht1 A¢i’:',f(€))
k ’ APE (&) — BB, (2)

: (e,q) € EB};
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and

% = min —d*1(e) — p*(e)z](e) .
Ak = {1, —d%"1(e) — pF(e)zl(e) — (—d® (e) — pF(e)zile)) € Eo}.

Let A = min(AL, Mg, A7) and (¢, 2F) = Ae(¢1,21) + (1 = Ak)(¢'1, 20).
It is easy to verify that A{ — 1(i =1,2) and

—d*i(e) — p*(e)2F(e) > 0, e € Eo; (3.1)
2V <e>+ZA9’°,B<e> DI HONCORE

and

DAY () + D867 (e) < ZAq& (€), (e,q) € Bh;

for k sufficiently large.
On the other hand, since = min.cg-g,{—d%! (e) — p(e)z1(e)} > 0 and

Jim (%! (e) - pH(e)2k () = —d* () — ple)ale).
Hence, for k sufficiently large,
~d*1(e) — pF(e)2f(e) > 0: e € E - Eo,
which, combining with (3.1), implies that for k sufficiently large,
—d% —pFak > 0.
Likewise, we can show that for k sufficiently large,

AYF+) A0 <Y Ak
. . J h
i J

Consequently, (¢%, 2§) € T?(v¥) and converges to (¢, 21), proving the continuity
of T3(-). 0

For firms and consumers, we have the following similar results.

Lemma 3.4. For firm j, given any price p € Ay, assume there erist 6; >0
and y; € Y; such that 0 < d% + py;. Then I‘l( ) is continuous.
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Lemma 3.5. For consumer i, given any price p € N, assume there exist ¥} > 0
end z; € X; such that

p:L"i < pw; + d"‘b; + max < 0, Za,',jjljj + Zﬁujh
J

3
Then T'; (-) ts continuous.

Remark 3.1. The conditions in Lemmas 3.4 and 3.5 will be satisfied if there
exists a portfolio @ such that d’(e) > 0, Ve € E, which is the Assumption 2.1 of Ortu
(1995) called the “Internality Condition”. This condition can be guaranteed if the
agent has a positive initial long position and has no initial short position and adopt
a buy-hold strategy, that is, 8% (e) = 6F > 0 and 6°(e) = 85 = 0, Ve € E. Observe
that these conditions are extensions of well-known standard assumptions that ensure
continuity of budget correspondences. Weaker conditions could be found, but these

will suffice for our purpose.
Let

pi = pi(T) = {W’h%) : Us(z;) = sﬁp Ui(ji)} ;

(P1,2:)€T3 (1)

v; = v;(p) = {(Bj,y,-) :Vj(d% +py;) =  sup  Vj(d” +P371)};
(8;.9;)€T;(p)

Th = Th{Yr) = {(¢h,2h) : Wh(—d® — pzp) = sup Wh(—d®» —Pih)} ;
(Dn.2n)ET2 (1)

p=p(w) = {p D m(epleyule) = sup > vr(e)p'(e)w(e)} :

ecE 0 ¢cE

and
I J H
‘IJ=Hyivajx H'rh XP.

By Berge's Maximum Theorem and standard methods, we can prove that the
correspondences u;, v;, Th and p are upper hemi-continuous and convex valued. This
implies ¥ is also upper hemi-continuous and convex valued.

The correspondence ¥ has been shown to satisfy the hypotheses of the Kakutani
fixed point theorem, and therefore to have a fixed point, say e* = (¥, z}), (0}, ;).
(¢7,21),p*). Especially, this fixed point satisfies

SO AYie)+ Y A05(e) <Y Adi(e), Ve € E, (3.2)
i 7 h

S n(e)p (e (e) = S m(elp(elw (e), ¥p € Ao (3.3)

ecE ecE
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By assumption (A.10) and Lemma 2.1,

o r(e)p"(eyur(e) < 3 m(e)dd s Lt o)

ecE ecE

= —mo [d(eo) (Z Yio+ D 00— ¢h.o)
i i h
+ S(eo) (Z Yo + Z 05 - Z ‘f’f,o)
i 3 h

B (z o zasf,o)]
i 7 h
+ Z W(e)dzi WY, 0=, 4 (e)

ecE
= F(— do,dzi"b:"'zje;_zhd"“) <0,

where

do = d(eo) (Z pio+ Y 0j0— Z¢h,0)
7 h

i

+5(eo) (Z¢fo+29f0‘z d’f.O) —B(eo) (Z¢fo+zeﬁo—z¢ﬁ0) :
% 3 h i K] h

Hence, from (3.3), w*(e) < 0,Ve € E.
Let Ayj(e) = —w*(e) 2 0,287 (e) =3, ApL(e)-3; Apr(e)=3; b7 (e) >0,
e € E. And set
7y =vi — Dyj, A = 085+ A6

Clearly,
TrEYr, D o= ui+T+ . 2,
i JET h
and i
DAV A A6+ ATy =S A
i i#d h
Moreover

p*(Ayy) = —p*w* = —dzi WD, 0500 4
dB" — _dzi ¢:+Zj 0;_2!1 b
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this implies that .
d +pxgy=d% +p'yy.
Finally, in exactly the same method as Arrow and Debreu (1954), it is not difficult

to show & = ((27,9}), (251 055): (73, 63), (81, 2), p*) is an equilibrium point of
the original Economy £.

4. Non-Convex Production Economy

This section is devoted to a economy in which the trading technology of each
broker is not necessarily convex so that we allow for fixed costs in trading assets.
By using the technique of Heller and Starr (1976), we will show the existence of
an individual approximate equilibrium defined by Heller and Starr (1976). An
approximate equilibrium is generally defined as a price p* and two allocations, a*
and a*. One, a*, is the allocation desired by households, firms and brokers at this
price, which may not clear the market. The other, ¢*/, is an allocation obeying
the market clearance condition although it need not represent agents’ optimizing
behaviour. The equilibrium is approximate of a modulus C if some suitably chosen
norm of the difference between these two allocations is no larger than C. The desired
allocation represents an approximate equilibrium in the sense that the failure to
clear the market at this price is bounded by C. And, furthermore, the bound of the
approximation improves as the number of the agents in the economy increases.

We will continue to make all the assumptions in Sec. 2 except the convexity of
the broker’s technology. We further assume the following:

(A.12) B, =Y N(X + Z — w) is bounded, where X = >, ; X;,w = ) ;o ywi,
Y = EJEJY and Z =),y Zn

Since the assumptions of Theorem 1 of Hurwicz and Reiter (1973) can be
ea.sxly verified through Assumptlons A.4 and A.12, we can show the boundedness of
Zn, X, Y;,, and, hence, <I)h, ¥, and G) are all bounded.

In order to show that the equ111br1um of the bounded economy is the equilibrium
of the original economy, an additional assumption is required.

(A..13) There is a positive number Ly such that |zs| < Lo, Vzp € Zp,.

That is, the quantity of commaodities used in transaction of assets is limited. This
is reasonable since a quantity larger than the total supply of the world is not feasible.
So the feasible plan of the broker should satisfy the additional assumption (A.13).
The cubes C' and C? used in defining the bounded economy can be chosen to be
large enough to contain the feasible plan of any broker.

As in Heller and Starr (1976), in order to prove the continuity of I'?(vx), we
give the definition of local interior.

Definition 4.1. f‘,% is said to be locally interior if for each (¢, z) # 0, (¢, 2) €
I'2 (y») there is (¢*,z*) so that
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() (¢, 27) € T2(m).
(i) 0 <« —d?® — pz*.
(ili) There exists a continuous function f : [0,1] — T'2(ys) so that f(0) =
(¢*,2%), f(1) = (¢, 2) and for all o(c [0,1)), f(o) satisfies the strict inequi-
lity in (ii).

(A.14) T2(y,) is locally interior.

Now we are in a position to show the existence of an individual approximate
equilibrium of the economy with non-convexities. But we omit its proof since it can
be obtained in the same method as Heller and Starr (1976). In the proof, we use
the correspondence ¥ (defined in Sec. 3) instedd of y(p) defined in Heller and Starr
(1976). The boundedness of R(¥) defined in Heller and Starr (1976) can be clearly
guaranteed by the assumption (A.13).

Theorem 4.1. Under the assumptions (A.1)-(A.14) omitting the converity
of the brokers’ technologies, there exists an individual approzimate equilibrium of
modulus C which only depends on M, N, Ly and R(p*), where p* is an approzi-

mate equilibrium price. That is, there exist two vectors a* = (93,25, -. ,¢;{, 25, Y1,
! ¥ ’ ’
J:I’ ,wl’zh l’yl’“ 0j’y‘*}) and a* = ( I"ZI’ 3¢H)2Ha 17m11 -.1¢;1
14
xy, 07yt ..., 0%, yY) such that

(i) a* satisfies market clearance with respect to p*.

(ii} a* solves problems (x), (x*) and (* * ) with respect to p*.
(iii) (¢7,z}) = (o7, *’) (@ ,y;)l—z 07,yy),iel,jeJ.

(iv) (32, ,(d)hxzh) (¥h :Zh) M2 <.

5. An Exchange Economy with Finite p-Convexity

In this section, the existence of a general equilibrium of an exchange economy is
investigated, which only includes consumers, brokers or dealers. For simplicity we
omit productive firms. In this model, the trading technology of each broker is not
necessarily convex. The model includes some cases of fixed costs, e.g., a model with
set-up cost, as special cases. By introducing the more restrictive concept of finite
p-convexity we are able to prove the existence of an exact equilibrium, even when
there are some fixed costs in transacting.

A fixed cost is represented by an initial fixed amount of input before there is
any output; after that, we can allow outputs and inputs to increase. For example,
setting up an office with a computer etc., will require inputs independent of how
much work is done in the office. Clearly, this gives a non-convex production set.

We will retain all the assumptions in Sec. 4 except (A.12), (A.13) and (A.14).
It is not difficult to show the boundedness of sets X, Z,¥; and &5, Moreover, we
will introduce another assumption called finite p-convexity. Finally, the existence of
general equilibrium is proved. To this end, we give the following definition of finite
p-convexity.
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Fig. 1. Finite p-convex set.

Fig. 2. Finite p-convex set.

Definition 5.1. Let X be a subset of B and A("=1) be the simplex of R™. Then
X is called finitely p-convex if for any z1, z; € X and p1,...,pm € int(A(P-D)
there is £ € X such that p;z < pi(ﬁ%ﬁ) for all ¢ = 1,2,...,m (see Figs. 1
and 2).

Let (¢, 2) = (¢1,21,...,%n, zr) and define the feasible set T; (p, %, z) (given price
p and broker’s plan (¢, z)) of consumer i analogously to I'3(7); and the feasible set
Th(~s) of broker h analogously to I'(y;,) in Sec. 3. Define the demand function
#i(p, ¢, z) of consumer 4 as p;(7) and the demand function Th(n) of broker h as
Th(x) in Sec. 3.
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Let

&(p) = {Z(‘A¢h;zh) + > (DY) = Y (0,w:)l(bh, 2n) € Th(Th),
h :

I
Vh € H, (¥, 2;) € pi(p, ¢, 2),Vi € I} :

As shown in Heller and Starr (1976), it can be shown that the sets I's(y) and
fi(p, #, z) are all continuous. Thus, the correspondences u;(p, ¢, 2) and 73, (n) are
upper hemi-continuous and also compact valued. Now it is not difficult to show that
the correspondence £(p) is upper hemi-continuous. And, moreover, the projection
o(p) of £(p) onto the commodity space is also upper hemi-continuous.

Before the proof of the main result of this section, we introduce two lemmas.

Lemma 5.1. Let P C R! be a compact set and let ¢ : P — R™ be an upper
hemi-continuous correspondence. If Vp € P,

®(p)={z€ R™:2u>0, Ve ¢(p)} #0,

then there exists a continuous function, W : P — R™, such that W(p) € ®(p),
Vp € P (cf. McCabe (1981)).

Lemma 5.2. Suppose that X and Y are two non-empty compact spaces and
that f : X x Y — R is a real-valued function such that

(i) =z = f(z,y) is lower hemi-continuous on X for eachy €Y ; y — flz,y) is
upper hemi-continuous for each x € X.

(ii) X is finitely f-convez: i.e., for any z1,20 € X and yy,...,yn € Y there is
Z € X such that f(Z,y;) < L{f(z1,4:) + flza,wi)] for alli=1,...,n;

(iii) Y is finitely f-concave: i.e., for any y1,y2 € Y and z4,..., %y € X there
ezist § € Y such that f(x;,9) > L[f(zj, y1)+ f(z4,92)] forallj=1,...,m.

Then
min max flz,y) = max min fz,y)

(¢f. Granas and Fon-Che Liu (1987)).
We now turn to the main result of this section.

Theorem 5.1. Suppose that &(p) is finitely p-conver and all assumptions
omitting producers in Sec. 2 hold. Then there ezists a general equilibrium e* =
(%7, %} )ier, (9}, 2 )nem, p*) in the non-convex exchange economy, i.e., e satisfies
the following condition:
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(i) (Y7, =) solves problem (* * x) for each i € I;
(ii) (¢}, 2;) solves problem (*x) for each h € H;
(iii) e* satisfies market clearance, i.e.,

Zz,’;+2w:—2wi=0;
h i i

and

DAL= Ag.
h i

Proof. We first truncate by a natural number n the set Zj, (defined in Sec. 3)
and prove the existence of general equilibrium in the truncated economy £™. And
then by taking limits, the existence of equilibrium can be obtained as in Geanakoplos
and Polemarchakis (1986).

Furthermore, the cubes C! and C? are also chosen large enough to include the
truncated feasible sets of all brokers.

Note that the consumption sets of all consumers are REIXM. Hence, by the
definition of {(p), to prove the existence of general equilibrium it suffices to show
that there exists pg € AUEIXM=1) gch that &o(po) N (—RE:IXM) # 0.

It is equivalent to that there exist 29 € 7&;(pg) such that Max, . A (Eixm-1) pz° <
0, where m = (7(e))eck as defined in Sec. 2 and

mo(po) = {(m(e)z1{e), .., m(e)zn(e)), g2 = (21(e), - -, 2m(e)), g GEo(Po)}-

And it is easy to show that 7&(p) is upper hemi-continuous and finitely p-convex.

We will prove the conclusion of this theorem by a contradiction. To this end,
let, for each k > |E| x M,

1

AI(JEIXM_I)={p:(pl(e),...,pM(e))EA('EIXM_I)Ipi(C) > 5i=1,...,[E| x M}.

For each p € A,(JEIXM_I) and each z € m&y(p), suppose that there exists a p’ €

AQEMM_D such that p’z > 0. Hence, max , (Eixm-1) P’z > 0. By the continuity of
k

the function max , (Ejxm-1 P'z, we have
k

min max p'z>0.

wéo(p) A§¢|E|><M—1)

In Lemma 5.2, by taking X = n&(p),Y = ASEIXM*I) and f(z,p') =p'z, it is
easy to verify that all conditions in this lemma are satisfied. And, particularly, the
condition finite f-convexity of X corresponds to the finite p-convexity of wéo(p).

Therefore,

max min p'z2 >0,
AUBIxM-1) wéo(p)
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which implies that there exist p, € A,(JEIXM_I), such that minge,(,) pi.z2 > 0 and
moreover, piz > 0,Vz € n€o(p). This is equivalent to that

B(p) = {p’ € AﬂE”‘M_l)lp’z >0,Vze 7750(17)} #0

for each p € ASEIXM—I).

Thus, by Lemma 5.1, there exists a continuous function W (p) : AgEl xM-1) __,
A,(JE'XM_I) such that W(p) € ®(p),Vp € A,(JEIXM_I). Then, by the Brouwer fixed
point theorem, there is a p} € AUFI*M=Y guch that Y = W(p?). This means
that plz > 0,Vz € m&(p}), which contradicts the Walras' Law which has been
established in Sec. 3. Therefore, for each p;, € AQEIXM_I), there exists 2z € & (pk)
such that ma.xAﬁ,EHM_,) pzp < 0.

Since {w&o(pk)|pr € AEC'EIXM_I), k =1,2,...)} are compact subsets of a compact
set, there is a convergent subsequence of (p, zx) with limit (p?, 29).

Note that the set &(p) is empty for each p € SAUEIXM-1) gince n¢ is upper
hemi-continuous (as proved in Lemmas 3.3 and 3.5) and the utility function of
consumer 1 is strictly increasing. It is not difficult to show that p® € int A(EIxM-1)
2% € 7&o(p®) and max AUEIxM-1) pz° < 0, proving the existence of equilibrium of
the truncated economy.

In exactly the same method as that of Geanakoplos and Polemarchakis (1986),
it can be shown that there exists a equilibrium in the original economy. O

We will finish this section by an example. We will show that the commodity ex-
cess demand correspondence of a model with set-up costs satisfies finite p-convexity.

An example. Consider a one-period model in which there are two commodities,
N securities and only one broker. We still retain the assumption of convexity
for consumers. But the broker needs a set-up cost before trading. The trading
technology of the broker is described as follows:

T = {(6%,6%,z1,22) € RY ™ : F(65,05,21,25) < 0,22 > k > 0} U {(0,0,0,0)},

where k is positive constant, that is, the broker needs k units of commodity 2 to
set up his or her trading. Here the F is a convex function and strictly increasing
with respect to each component. Including (0,0,0,0) in the trading technology T
means no trading.

Given a strictly positive commodity price, it suffices to show the commodity
excess demand correspondence of broker is finitely p-convex since the commo-
dity excess demand correspondences of all consumers are convex. Clearly, the com-
modity excess demand correspondence of the broker is a convex subset in T” (where
T is the projection of set T — {(0,0,0,0)} onto the commodity space) or the union
E of a convex subset of T” and {(0,0)}. The set E is finitely p-convex since, in the
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Definition 5.1, for any z1,z; € E and py,...,pm € int(A?), p;(0,0) < p;(21kez)
foralli=1,...,m.
Consequently, there exists an equilibrium in this model.

6. Conclusion

This paper has attempted to attain three objectives:

1. Prove the existence of equilibrium of an asset economy with transaction costs.
The model is sufficiently general to cover most cases (finite states, time hori-
zon) in the literature. .

2. The method of proof proves some new results (see Ortu (1995)) extending
arbitrage pricing dual results to cover transaction costs and different buying
and selling prices.

3. In addition, two proofs are provided of existence of an equilibrium with non-
convex transaction technologies. These proofs are important for addressing
economies with fixed costs in transacting.

Two final comments: in Milne-Neave (1996), it is shown that the basic model can
be adapted easily to accomodate a number of variations common in the literature.
For example, by considering I = J = @, and brokers are considered as ordinary
consumers with a “transaction technology” representing short-sales constraints on
trading, the proofs can be interpreted as proving the existence of an equilibrium
with trading constraints. A special case of this formulation is an exchange economy
with incomplete asset markets. We have discussed an approximate equilibrium with
non-convexities. It is possible to modify our model to allow a continuum of agents
and obtain an exact equilibrium via the use of the Liapunov Convexity Theorem.

Finally observe that we can incorporate the recent model of Prechac (1996) by
assuming that brokers have a linear technology. He assumes that this is a simple
markup, but to avoid underpricing, assumes that banking or clearance house has a
monopoly with an exogenous, fixed markup.

Appendix

Lemma A1l. If the assumption (A.7) holds, then the set Z;, is a closed convex
set.

Proof. The convexity of Z), is obvious. It remains to show its closedness.
Suppose z,’: € Zp and z’,,f — 2. For each k, there exists qbglk) such that (Aqbgk), z,’f) €
Tw(e), and, in particular, by (A.8), (A(i),&k),z,{l) € Tx(e), where z}, = (maxg z,’:,l, ce
maxy zf ). If {Aqbgk)} is unbounded, we may suppose A(qb(k))ﬁ 1 — oo without
loss of generality.

But, by assumption (A.7),

lim |z[} =
Jm [z]y = oo,
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which provides a contradiction and proves the boundedness of {Ac,bglk) }. Hence, we
can choose a subsequence {Aqbflk")} from {Ad)glk)} such that

lim AGY™) = Agn;
n—roo

this implies, by closedness of T} (e), the closedness of Zj. a
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