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Abstract

Societies provide institutions that are costly to set up, but able to enforce long-
run relationships. We study the optimal decision problem of using self-governance
for risk sharing or governance through enforcement provided by these institutions.
Third-party enforcement is modelled as a costly technology that consumes re-
sources, but permits the punishment of agents who deviate from ex-ante specified
allocations. We show that it is optimal to employ the technology whenever com-
mitment problems prevent first-best risk sharing, but never optimal to provide
incentives exclusively via this technology. Commitment problems then persist and
the optimal incentive structure changes dynamically over time with third-party

enforcement monotonically increasing in the relative inequality between agents.

Keywords: Limited Commitment, Risk Sharing, Third-party Enforcement.

JEL Classifications: C73, D60, D91, K49.



1 Introduction

Modern societies have developed institutions such as official legal systems or private
arbitration systems that are costly to set up, but able to enforce contracts or agreements
between people. In many situations, these enforcement institutions play a central role in
governing contractual relationships. This is despite the fact that the contracting parties
have the choice of self-governance directly through the structure of their contract. Our
objective is here to study the problem of choosing self-governance vs. governance through

a third party.

Economic transactions within long-term relationships are carried out by self-interested
parties only if there is mutual interest in continuing the relationship. All transactions
must, therefore, incorporate proper incentives to ensure that all parties continue to par-
ticipate over time. These incentives are usually costly in the sense that they make
it necessary to deviate from transactions that are optimal for both agents from an ex
ante point of view. It is here that institutions can improve upon welfare by providing
third-party enforcement: Agents involved in a long-run relationship are free to choose
whether to rely on such institutions rather than on incentives through the structure of

their agreement.

To govern relationships, third-party institutions (such as the legal system) are costly
to set up as well. In essence, these institutions offer a threat of punishment in the form
of fines or physical harm (e.g., imprisonment) in response to contractual violations, but
cannot force performance of the contract itself. Their efficacy is based upon the ability
to credibly commit to inflicting punishment in an objective manner if necessary. Ob-
jectivity arises from equal access as well as equal treatment of the parties involved in
a relationship, while enforcement is achieved through the threat rather then the appli-
cation of punishment. In fact, a strong presence of third-party enforcement manifests
itself mainly in the performance of contracts and the absence of actual employment of

punishment. Third-party enforcement can then be interpreted as a costly technology



that threatens to inflict punishment in case of contract violations, even though this view
is abstracting from other important factors such as limited effectiveness, information

problems or the incentives for these institutions.

Given that these institutions are available but costly to set up, the question then
arises as to what extent it is optimal for people to base incentive structures on these
institutions. Are commitment problems persistent in the sense that the parties of a
relationship do not want to rely exclusively on these institutions? Does the importance
of outside (i.e., third-party) enforcement change dynamically over time? If so, what are
the fundamentals that shape the dynamic evolution? Our contribution is to provide
answers to these questions by analyzing the optimal use of costly outside enforcement in

a long-run relationship.

We study a dynamic risk sharing problem between two risk averse agents where
commitment is a priori limited in the spirit of Kehoe and Levine [6] and Kocherlakota
[7]. Each period the agents face idiosyncratic income shocks. From an ex ante point
of view, it is then optimal to transfer income ex post from an agent with high income
realization to an agent with low income realization. We assume, however, that both
agents cannot commit to make transfers they have agreed upon ex ante: At any point
in time, each agent can choose to renege on the transfer and leave the risk sharing
arrangement. In our set-up, incentives for the agents to honor transfers can be provided
in two ways. First, agents can use the structure of the risk sharing arrangement itself
to provide these incentives. Specifically, an agent can be induced to make a transfer of
resources today if she is promised more expected utility in the future. Second, agents
can rely on a “punishment” technology: Each period they can invest part of the overall
resources in this technology. If investment occurs, the technology allows one to punish
any agent who decides not to honor the transfer. This threat of punishment yields - for

a resource cost - enforcement of transfers.

We show that - as long as the technology has convex costs and no fixed costs - it is op-

timal to employ the technology whenever the transfers necessary to support first-best risk



sharing are not incentive compatible. It is never optimal, however, to provide incentives
exclusively via this technology: The agents will always rely upon varying future promised
utility - or, equivalently, the consumption profile - over time. Commitment problems are
then only partially mitigated by using the technology and, thus, are persistent in this

sense.

This implies that the enforcement choice (as represented by the investment decision)
depends on the sequence of income shocks. Therefore, the optimal choice of punishment
is history-dependent and inherently a dynamic one. For the case of two possible income
realizations, we show analytically and numerically that more resources are spent on
punishment as the difference in promised utility for the agents increases. Hence, we
exhibit a positive relationship between inequality in future promised utility - or the
relative position of the agents - and the use of third-party enforcement. In the long
run, when no first-best allocation is incentive compatible, promised future utility is then

equalized irrespective of the initial level of inequality between agents.

Existing work on dynamic risk sharing with limited commitment® takes the lack of
commitment as exogenously given and focuses exclusively on the effects of optimally
designed incentives that arise within the risk sharing relationship. The structure of
these incentives is well understood. Kocherlakota [7] characterizes efficient risk sharing by
relying on reversion to autarky as the appropriate punishment if an agent reneges on a risk
sharing arrangement: Autarky is a credible punishment in the sense that it characterizes
the set of subgame-perfect allocations in bilateral risk sharing environments.? More
recently, Genicot and Ray [5] extend these results to a framework of risk sharing within
coalitions of agents. This paper goes further than this existing literature by studying

how agents choose optimally between internal incentives or incentives provided through

!See for example Phelan [12], Kocherlakota [7], Alvarez and Jermann [1] and Ligon et al. [11] among

others.
2Gauthier et al. [4] show that optimally designed ex ante payments between agents can help reduce

commitment problems. Ligon et al. [10] investigate the role of self-insurance in form of storage on the

incentives to share risk over time.



enforcement by a third party from outside the relationship. Hence, we study per se the

optimal degree of commitment within a risk sharing relationship.

Our research is related to the just emerging literature on contractual intermediaries.
Parallel to our approach, Dixit [3] outlines a theory of enforcement intermediaries. He
focuses on the role of third party enforcement in achieving cooperative outcomes in a
prisoner’s dilemma framework with random matching. The intermediary is modelled
close to our approach as a player that can inflict punishments on other players for some
positive fee. Ramey and Watson [13] investigate the optimal form of contractual inter-
mediation or conflict resolution in a repeated prisoner’s dilemma. Whereas we take the
outside enforcement as given and investigate its optimal use by the contracting parties,

these authors concentrate on understanding the existing design of such intermediation.?

The paper proceeds as follows: Section 2 presents the environment. In Section 3, we
describe the optimal contracting problem and derive its recursive formulation. Section 4
characterizes the optimal contract and contains the main results. In Section 5, we present
numerical examples concerning the optimal use of the punishment technology. Finally,
Section 6 concludes by discussing our modelling choices and puts our contribution into
a wider research context. All proofs appear in Appendix A, while Appendix B contains

a formal analysis of a result discussed in Section 4.

2 Environment

Consider the following environment where time is discrete and indexed by t = 0,1,....

There are two infinitely lived agents ¢ = 1,2, who receive each period a stochastic

3Tt is useful to distinguish our paper from Krasa and Villamil [9] who study a static investment
problem with differential information, where enforcement of the financial contract is a decision problem
for the lender. Enforcement of the contract is costly and the contracting parties will try to avoid it via
renegotiating the original contract whenever the lender cannot commit to seek enforcement of its terms.
While studying the optimal form of the financial contract, the authors take the lack of commitment to

be exogenous (i.e., not to be a choice variable).



endowment of a single good. Let w = {w;,ws,...} be a sequence of independently and
identically distributed random variables each having finite support Q@ = {1,2,... S}
and denote the probability of w; equaling s by m, > 0 for all s € . Define a t-history
of w by w' = {wy,wq,...,w;} and let Q' be the set of all possible t-histories of w.
The endowment for agent ¢ = 1,2 in period ¢ is determined by the realization of w, and
denoted by yi’s €{y1,y2,...,ys} whenw; = sfort =0, 1,.... We assume that ytlvs #+ yf,s,
Zle ygs =Y >0forall se€ Qandt=0,1,... and that the joint distribution of the
endowment is symmetric; i.e., for every s € S there exists s’ € S such that y; , = yf,s,

and 7Ty = Ty.

Preferences for both agents are described over w'-measurable consumption processes

e C={{c}Xct: Q' — [0,Y]} and represented by the utility function

Ey

zwm] | n

where 3 € (0,1) and FE; expresses the expectation conditional on a history of shocks
at date t. We assume that u is increasing, concave and twice continuously differentiable.
Furthermore, u is bounded from below with normalization «(0) = 0 and lim. o u/(c) =

Q.

Since the agents are risk averse and face idiosyncratic income shocks, there is an
incentive to share income risk. We assume, however, that enforcement of arrangements
to share risk is limited in the following sense: Each period, after uncertainty in period
t is resolved and the current endowment (y, ,,%7,) is known, an agent ¢ can choose to
remain in autarky forever. In this case, the agent will consume her endowment forever

and will be excluded from future trade, thereby obtaining a utility of

u<yz,s) + Et

3 ﬁTu(yZ;T)] = u(y,) + BVt 2)

=1

where V,,; expresses the future expected utility from autarky which is independent



of the realized history of shocks.

When sharing income risk, the agents also have access to a “punishment” technology
that reduces an agent’s current and future utility in case this agent decides to remain
in autarky. Specifically, if this technology is operated at a level d; € [0,1] in period t,
the agent loses a fraction d; of her current and future autarkic utility if she decides in
period t to remain in autarky forever.* Operating this technology in period t at a level
d; requires an investment of resources equal to v (d;) in period ¢ which depreciates fully
after one period. We assume that the cost function (:) is increasing, strictly convex

and does not include any fixed costs:
Assumption 2.1. 1. ¢ >0 and " > 0.

2. 1(0) =0 and ¢'(0) = 0.

We assume further that the level of the punishment technology in any period ¢, d;,
is set before the current shock w; is realized. Therefore, the level of punishment in
period t is independent of the current realization w; but can depend on the past history

of realizations w'~!.> Formally, we denote the w!™!

-measurable process of punishment
levels by d € D = {{d;}{2,|d; : Q' — [0,1]}, where Q™! is defined to contain a single

element.

4Note that the severity of current and future punishment depends only on the level of dy, i.e., on
the level of punishment in the period when an agent decides to switch to autarky. Hence, a level of
punishment chosen in future periods has no influence on punishments for switching to autarky in earlier

periods.
5Third-party enforcement does then condition only on the fact whether contract violations occur or

not. In the formulation chosen here neither the identity of the violator nor her particular situation -

such as current income - matters for outside enforcement.



3 Describing Optimal Allocations

Before formulating the problem that describes optimal risk sharing between the agents
we introduce some terminology. An allocation (c',c*,d) € C x C x D is given by a
consumption process for each agent and a process of punishment levels. An allocation is

feasible if

W s) + AW s) Fap(dy(Wh) <Y for all £, (W 5). (3)

An agent will switch to autarky for a given state s at time ¢ if the continuation
utility offered by an allocation is less than the value of autarky given the current level

of punishment. Specifically, an agent ¢ will honor the allocation if and only if

u(c'(W'1)8)) + E;

3 gTu(c§+T)] > (1= dy(w'™)) [u(y; ) + BVau) (4)

=1

for all ¢, (w1, s).

Definition 3.1. An allocation (c',c*,d) € C x C x D is ex post incentive compatible if
it satisfies inequality (4) for i = 1,2 for all t,s. An allocation is incentive feasible if it

is feasible for all t,s and ex post incentive compatible for i = 1,2 for all t,s.

We denote the set of incentive feasible allocations by I' € C x C' x D. Then, by
Assumption 2.1, T is convex® and compact in the product topology. Next, let I/ be the
set of joint utility levels that can be attained by an allocation in I' and denote by U; the
range of utility levels of consumer ¢ that is consistent with some allocation in I". The
following lemma establishes properties of the set of attainable utility levels. All proofs

are relegated to the appendix.

Lemma 3.2. 1. U C IR? is compact.

6Convexity follows from the concavity of u, the convexity of ¢ and the fact that the ex post incentive

compatibility constraints at ¢ are linear in d;.



2. U; C IR is compact and Uy = Us.
Proof. See Appendix. O]

A short remark concerning incentive feasibility is in place. The ex-post incentive
compatibility constraint (4) compares the expected utility of an allocation with the
utility obtain by choosing autarky forever and being punished by losing a fraction d; of
current and future utility. Remarkably, it is neither specified who pays the costs ¥(d;)

if nobody reverts to autarky nor who pays the costs if some agent does.

As long as neither of the agents chooses autarky, the distribution of costs is irrelevant
since for the utility attained by an allocation only the distribution of resources net of costs
1(d;) matters. This implies that it is always possible to recover the costs for operating
the punishment technology as long as the agents are participating. Of concern is then
that, given an agent chooses autarky, it might be optimal for the other agent to choose
autarky as well with the result that nobody would pay for the technology and it would
not be feasible to operate the technology. When describing incentive feasible allocations
this strategic interaction is, however, implicitly taken into account here since d; = 0 is

always feasible.”

The concept of incentive feasibility allows us to define optimal allocations. An alloca-
tion (c!, %, d) € C x C x D is optimal if there exists no other incentive feasible allocation
that provides both agents with at least as much expected utility at period 0 and at least

one of them with strictly more expected utility at period 0.

"Indeed it is possible to make these arguments analytically precise at considerable costs of compli-
cation: one can motivate constraint (4) by identifying the set of incentive feasible allocations with the
outcomes of a class of games formalizing repeated bargaining with voluntary participation where the
distribution of costs among the agents is specified and non-participating agents do not have to bear any
of the costs ex-post. This is achieved by establishing pay-off equivalence between the set of equilibria of
all possible games and U, i.e. the set of utility levels attainable through incentive feasible allocations.

For details see Koeppl [8].
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Define V,,;,, = minl; and V., = maxl;. We can then set up a modified Pareto-
problem that describes optimal allocations taking into account incentive feasibility. De-

fine the function V' : [Viuin, Vinaz]| — [Vinin, Vinaz] as the solution to the problem (SP):

V(ug) = ma;il) Ey

>t

subject to

(c',*,d)eT

iﬁtu(cf)] > .
t=0

Eq

The function V refers then to the maximum level of expected utility agent 1 can
obtain for any incentive feasible utility level ug € [Viin, Vinae] that must be guaranteed
for agent 2. Provided V is well defined it is clearly decreasing, since any incentive
feasible allocation at ﬁo > 1ip is also incentive feasible at 4y. Concavity of this function
follows immediately from the convexity of 1, the concavity of u and the fact that V'(ug)
is the maximum utility given ug. V is then also continuous and differentiable almost
everywhere. The next proposition shows that V' is indeed well defined and strengthens

some of these immediate results.

Proposition 3.3. 1. For all ug € [Vinin, Vinaz), @ solution to problem (SP) exists.

2. There is an interval [V, V] C Uy, where V. < Vyu <V = Viyaw, such that V is

strictly decreasing and strictly concave.
Proof. See Appendix. O]

We now restrict V to the subset [V, V] of its domain where it is strictly decreasing. By
symmetry, V : [V, V] — [V, V] and V describes the Pareto-frontier. Hence, any solution
of the problem (SP) for given uo € [V, V] is an optimal allocation. Since u is strictly
concave, for every ugy € [V, V] there exists a unique optimal allocation. Furthermore, for

any solution of problem (SP) the promise keeping constraint is strictly binding; i.e.,

11



Eq

ZﬁtU(C?)] = g (5)

for all ug € [V, V].

These facts allow us to use the methods introduced by Spear and Srivastava [15] and
Thomas and Worrall [17] to formulate the problem (SP) recursively. The state variable
for this approach is given by the level ug of promised utility for agent 2.

Definition 3.4. A contract is given by a collection of functions ({cs, us}S_,,d), where

d: [V, V] —[0,1], cs : [V, V] — [0,Y] for all s € S and u, : [V, V] — [V, V] for all

ses.

A contract consists of functions that determine the current level of consumption and
the future expected promised utility for agent 2 for each state s, denoted by ¢, and
u, respectively, as well as the level of punishment, denoted by d, in terms of the state
variable ug. The Pareto-frontier can then be determined recursively with the optimal

allocation being described by a contract.

Proposition 3.5. V satisfies the following functional equation (FE):

V(up) =  max Z s [u(Y — ¢s — (d)) + BV (us)]

({es, us}S 1.d 1

subject to
Z 7T5 Cs + ﬁus] = Ug

U(Y — ¢ = Y(d) + BV (us) = (1 — d)[u(yl) + BVau] Vs
u(cs) + Pue > (1= d)[u(y?) + BVau] Vs
€[V,V] Vs

Proof. See Appendix. O]

Since the value function V is strictly concave and the constraint set describing the

functional equation (FE) is convex, the solution to the above maximization problem is

12



unique for any state ug. Applying the Theorem of the Maximum, the optimal contract

can then be described by continuous functions for d, ¢, and wu,.

Proposition 3.6. There exists a unique optimal contract ({ct,u*}5_,,d*). Furthermore,

s=1>

the functions d*, ¢ and u’ are continuous on [V, V].

Proof. See Appendix. Ol

4 Optimal Contracts

4.1 Persistence of Limited Commitment

We can now use the problem (FE) to characterize the optimal contract and, in particular,
the decision concerning the use of the punishment technology. Let A be the multiplier
on the promise-keeping constraint and p the multiplier on the ex post incentive com-
patibility constraint for agent ¢ in state s. Assuming that the function V is differentiable
everywhere with respect to ug, we obtain the following set of first order conditions which

are necessary and sufficient for the optimal contract on (V,V):

—(ms + p ) (Y = (d) — ¢) + (A + p2)u'(es) = 0 (6)

(s + 113) BV (us) + (A + 412)8 = 0 (7)

D mlu(ys) + BVaue) + 12[u(y) + BVaut] = (ms + pl)u' (Y = 9(d) = ¢/ (d) <0 (8)

ses

13



d>0
and 9)

A [ ses HEu(yY) + BViur] + p2[u(y?) + BVus]) — (15 + ) (Y — 9(d) — c,)¢'(d)] = 0.

A brief comment about equations (6)-(9) is in order as we omit some of the corresponding
Kuhn-Tucker conditions on the decision variables. For uy € (V,V) it is optimal to make
current consumption strictly positive for both consumers for all states (i.e., Y — ¢ (d) >
¢s > 0), and hence boundary conditions will never bind for ¢s;. Hence, it is never optimal
to set d = 1 and we can restrict attention to d € [0,1). Finally, rearrange equation
(8) to obtain an expression for 1'(d) which shows that this expression will always be
non-negative. Hence, even if d = 0, equation (8) will hold with equality. With respect

to us the Kuhn-Tucker conditions are standard and, hence, omitted here.

We can reduce equations (6) and (7) to a single equation in the three decision variables

given by

—V'(ug) = . (10)

It is immediate that given d, us > uy if and only if ¢; > cy. Hence, u? is an increas-
ing function of ¢, or, equivalently, current consumption and future utility are varying
together across states. A major complication arises from the fact that this equation
depends also on the choice variable d. If d were constant over the state space [V, V],
this equation (together with the ex post incentive compatibility constraints for state s)
would determine the dynamic evolution independently for each state s € S. If d varies,

however, the system of equations becomes genuinely dependent in the sense that one

cannot conduct the analysis for each state separately.

The evolution of the state variable uy depends on which ex post incentive compatibil-

ity constraints are binding for a given state s. The following lemma summarizes results

14



concerning the law of motion of wug.

Lemma 4.1. Let uy € (V,V) and suppose that V is differentiable at ug. Then the
following hold:

1. If 1t (ug) = 0 for all i, then u?(ug)=uo.

2. 1If pt(ug) > 0 and p%(uo) = 0, then u?(ug) < up.

3. If 12 (ug) > 0 and pl(ug) = 0, then u*(ug) > uo.

4. Suppose —V'(ug) <1 and pl(up)p?(uo) > 0. If y2 > yl, then u’(uo) > up.

5. Suppose —V'(ug) > 1 and pl(uo)pu?(uo) > 0. If yl > y2, then u*(ug) < up.
Proof. See Appendix. O

This determines the optimal variation of future promised utility except for cases where
the ex post incentive compatibility constraints are binding for both agents simultaneously
in some state s. In this case, the direction of the movements for ug can be ambiguous.
Based on Lemma 4.1 it is possible to describe at least partially which agent’s ex post
incentive compatibility constraint is binding: If only one of the agents faces a binding
constraint at some income level, he receives more future utility than he was promised
initially. Since v} is increasing in ¢, this agent must receive even more future utility at
higher income levels. This is compatible with the first order conditions only if the agent
is constrained at higher income levels. Hence, agents tend to be constrained when their
income is high and, thus, have a strong reason to choose autarky over staying with the

contract. This intuition is formally summarized in the lemma below.
Lemma 4.2. 1. Suppose u*(ug) > ug for some s. If y% > y2, then p?(uy) > 0.

2. Suppose u*(ug) < ug for some s. If yt, > yl, then p}(uy) > 0.

Proof. See Appendix. O]

15



Two main questions arise concerning the use of the punishment technology within the
optimal contract. First, under what circumstances and to what extent is it optimal to use
the punishment technology to achieve better risk sharing among the agents? Second, how
does the decision concerning the use of the punishment technology vary endogenously

over time?

From Lemma 4.1 it is clear that the state variable remains unchanged for some state
s € S as long as none of the incentive constraints in this state is binding. We can
distinguish two cases depending on whether the first-best allocation at wg is incentive
feasible or not. For the first case, ' = 0 for all 7 and s and, hence, from equation (8),
d* = 0. Turning to the case where the first best allocation at ug is not incentive feasible,
at least some ex post incentive feasibility constraint is binding. Again by equation
(8), it follows that d* > 0 as long as p’ > 0 for some i and some s.® Beyond these
straightforward observations it is possible to give a stronger result on the use of the

punishment technology.

Theorem 4.3. Let ug € (V, V) and suppose that V is differentiable at uy. Then there
exists s € S such that u*(ug) # uo if and only if d*(ug) > 0.

Proof. See Appendix. O]

This theorem makes several important points. First, the agents will never rely exclusively
on the technology that provides punishment to deal with limited commitment. Enforce-
ment problems are always mitigated by a combination of using the explicit threat of pun-
ishment (d* > 0) and implicit incentives provided through variations in future promised
utility (ul # up). Hence, any optimal contract will retain the commitment problem to a
certain degree and counteract it by the intertemporal allocation of consumption between

the agents. In this sense, commitment problems are persistent.

8Note that assuming ¢’(0) = 0 is essential for this result. In the case that 1’(0) > 0, one might not
want to use the punishment technology when a first-best allocation is not incentive feasible, but rather

rely exclusively on internal incentives by setting u} # uo.

16



Second, the state variable uy will change with the realization of income shocks even
though the punishment technology is employed. Thus, the distribution of wealth as
summarized by ug varies over time and does not remain fixed. This implies that decisions
concerning the use of the punishment technology are path dependent and vary over
time due to changes in the wealth distribution. Therefore, the choice of enforcement is

inherently a dynamic problem and cannot be treated as an ex ante static problem.

4.2 Punishment and Inequality

We turn now to the second question of how the level of punishment changes over time
as the state variable ug evolves endogenously. Since the environment is symmetric with
respect to the characteristics of the two agents, it is possible to restrict attention to
the case where ug < W or V(ug) > ug, where u € [V, V] such that u = V(u). If the
first-best allocation for ug is incentive feasible, the contract is completely characterized
by Theorem 4.3. We therefore turn to the case where the first-best allocation at wg is

not incentive feasible.?

As inequality increases - i.e., as |ug — u| increases - it is more difficult to sustain
efficient risk sharing since the outside option of leaving the arrangement becomes more
attractive on average. Risk sharing has then to be supported by stronger incentives.
These can be provided in two different ways: One can either increase |u; — ug| (i.e.,
provide more indirect incentives via future promised utility) or one can invest more in
the punishment technology. However, using more indirect incentives decreases future
risk sharing on average. One should therefore expect that investment in the punishment
technology would rise to at least partially counteract the negative effects on risk sharing.
In other words, punishment should behave like a “normal” good in terms of inequality
(in symbols, |up — u|) and substitution between the ways to provide incentives should

not take place.

9Tt is straightforward to show that - independent of income shocks - for all 3 € (0,1), there exists

some level ug for which the first-best allocation is not incentive feasible.

17



Unfortunately, this question is too complex to be analyzed in full generality. We
therefore assume for the reminder of the analysis in this section that there are only two
states - i.e., S = 2 with S = {H, L} - representing the current level of income for agent
2, where 3% > y?. Before characterizing the optimal choice of punishment as a function

of the state variable ug, we derive the following lemma:*°

Lemma 4.4. Suppose S = {H, L} and uy < u. If at ug the first-best allocation is not

incentive feasible, then for any optimal contract p' =0 and p# > 0.
Proof. See Appendix. O

Whenever agent 2 is promised less utility than agent 1, at least one of her incentive
compatibility constraints must be binding. Since there are only two states, Lemma 4.2
implies that her constraint when she has high income must necessarily bind. This fact
allows us to prove the following monotonicity result for d* which confirms the intuition
outlined above for the case in which for some wu the first-best allocation is incentive

feasible.

Theorem 4.5. If S = 2, the policy function d*(ug) is monotone on [V, u].

Proof. See Appendix. O

Corollary 4.6. Suppose that for some ug the first-best allocation is incentive feasible. If
S = 2, the policy function d*(uy) is monotonically decreasing on [V, u] and monotonically

increasing on [@, V.
Proof. See Appendix. Ol

When inequality increases, it is optimal to decrease overall consumption and devote

more resources to ensure enforcement of the risk sharing arrangement. Even though

OEven though the value function is not differentiable at ug = @ if S = 2, none of the results in
this section is affected by this non-differentiability. Moreover, if S = 2, u*(u) = @, which shows that

differentiability is necessary for the validity of Theorem 4.3.
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Corollary 4.6 establishes this result only for the case when some first-best allocation is
incentive feasible, numerical solutions described in more detail below confirm this result

for the general case.

This result can be interpreted in a slightly different way. Suppose that one of the
agents has higher bargaining power than the other. Then this agent has an interest in
maintaining her position and is willing to spend more resources on outside enforcement.
This enables her to at least partially lock in the relative position by keeping u, “closer” to
up. When the difference between the relative positions (i.e., |up—u|) increases, it is harder
to maintain the current position, and more resources are spent on outside enforcement.
Interestingly, however, Theorem 4.3 shows that outside enforcement is always too costly

for the agents to maintain a current advantage in their bargaining power over time.

4.3 Long-run Implications of Optimal Contracts

After characterizing properties of the optimal contract, the question arises how the re-
lationship between the agents develops in the long run. Of particular interest is how the
relative position of the two agents adjusts in the long run and whether convergence to an
invariant distribution over the state space occurs. We focus first on the two-state case.
Later, we discuss what assumptions are necessary to derive a slightly weaker result for

the case of an arbitrary finite number of states.

Before stating the main result of this section, it is necessary to introduce some
notation. The stochastic process {w;}32, can be defined over the probability space
(Q°, F° 11°°), where an event is a particular sample path of the process, the o-algebra
F°° is generated by the cylinder sets of the process, and II* is the product measure

based on the probabilities {my, T, ..., Tg}.

Given the optimal contract and an initial condition ug, for every sample path w € Q>
it is possible to construct a sequence {u:(w;ug)}:2, of promised future utility levels for

agent 2. Set uy (w;ug) = uk(up) if s € S'isrealized in period 0. Define u,(w; ug) recursively
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by setting u;(w;ug) = uf(u;—q) if s € S is realized in period ¢ for all ¢ > 0. Moreover,
denote the set of promised utility levels for which some first-best allocations is incentive
feasible by [urp,uf®] C [V, V]. Suppressing the arguments of u;, we can then prove the

following result on the long-run behavior of the optimal contract.

Theorem 4.7. Let S = 2 and suppose that u? is non-decreasing.

1. If there exists a first-best allocation that is incentive feasible, then for any optimal

contract, lim;_.oo uy = upp 11%°-a.s. whenever uy < upp and lim;_.ou; = u'?

II°°-a.s. whenever uy > uP.

2. If there does not exist a first-best allocation that is incentive feasible, then for any

optimal contract, limy_ .o uy = u 11%®-a.s. for every ug € [V, V], where u satisfies

u="V(a).
Proof. See Appendix. O

Provided that there are only two states, for any initial condition ug the stochastic process
for u; converges with probability 1 to a unique point distribution. Hence, the availability
of outside enforcement does not prevent the equalization of wealth between the agents
over time or, for the case that the set of incentive feasible first-best allocations is non-

empty, convergence to the “closest” element of this set.!!

It is possible to give a slightly weaker result for the case that there are more than
two states and no first-best allocation is incentive feasible. The optimal contract and
the exogenous process of shocks define a Markov transition function. Continuity of the
policy functions u} establishes the Feller Property for this transition function. Moreover,

the transition function will satisfy a mixing condition whenever the value function V'

Tt is straightforward to show that d* being monotonically increasing in wealth inequality is a nec-
essary condition for u} to be increasing. Moreover, the monotonicity assumption on u} seems rather
weak since numerical solutions given below indicate that these functions are indeed increasing for a wide

range of parameterizations.
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is differentiable everywhere. Then standard results on weak convergence of Markov
processes (e.g., Stokey, Lucas with Prescott [16, Theorem 12.12] yield convergence to a
long-run stationary distribution of wealth independent of initial conditions, provided u}
is an increasing function of the state variable uy. We defer details of this argument to

the appendix.

To summarize our contribution, we have established three important theoretical re-
sults. First, commitment problems are persistent and not completely resolved by the use
of costly third-party enforcement. Second, more unequally distributed bargaining power
leads to greater reliance upon third-party enforcement. Last, the presence of third-party
enforcement never prevents adjustments to a long-run, possibly equal, distribution of

wealth across agents.

5 Numerical Solutions

The main analytical results of this section are derived under certain restrictions. We now
provide further support for the generality of these results by presenting some numerical
solutions for optimal contracts. Before presenting these results, we outline the algorithm
used to solve for the Pareto frontier and the optimal contract, and describe how this

algorithm can be implemented computationally.

The algorithm is based upon dynamic programming techniques. These methods are
generally not applicable when solving incentive constrained problems, since the value
function of the problem itself will influence the constraint set directly as can easily be
observed from problem (FE). Hence, the constraint set will change with every iteration
of the value function when solving the functional equation (FE). More importantly, the
domain of the state variables for which the maximization problem is well defined will
change with each iteration as well. Rustichini [14] demonstrates that one can modify
standard dynamic programming methods in a straightforward way to handle these prob-

lems. He shows analytically that one can iterate directly on a guess for the value function
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in order to obtain convergence to the true value function of the incentive constrained
problem. Conditions for this result are that the value function iteration starts with the
value function of the unconstrained problem as an initial guess and that one adjusts the
domain of the state variables in an appropriate way. Given these conditions, convergence
is then monotonic from above to the true solution of the functional equation (FE). The

details of the algorithm we employ are as follows:

Step 1: Calculate the initial guess Jy for the value function V.

Step 2: Adjust the domain D,, of the state variable ug given the guess J, for the value

function V.

Step 3: Solve the static maximization problem for each realization of the state variable

ug given J,. Use this result to update the guess to J, ..

Step 4: If supy,ep, (Jn(uo) — Jnt1(ug)) > € > 0, go back to Step 2.

Step 5: Use J,41 to calculate policy functions and find the law of motion on D,.

To calculate the initial guess start with the Pareto frontier (which can be calculated
analytically in a straightforward manner for any given utility function u) describing the
first best solution of the risk sharing problem. Then define a new maximization problem
(PRE) by deleting the ex post incentive compatibility constraints for consumer 1 that
contain the value function V' from problem (FE). Solve (PRE) by iterating over the value
function of this problem with the Pareto frontier as the initial guess to obtain the initial

guess for Step 1 of the algorithm above.!?

12By using Blackwell’s sufficient conditions (e.g., Stockey, Lucas with Prescott [16, Theorem 3.3]) it is
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To implement the algorithm described above, we discretize the state space for ug
and, hence, solve the functional equation for a finite number of values for ug in each
iteration. The static maximization routine uses a linear quadratic approximation of the
maximization problem with a cubic spline interpolation of the value function to guarantee
twice continuous differentiability of the objective function. Finally, when computing the
optimal contract, we perform a grid search over the decision variables of the maximization

problem taking the solution of the value function as given.

Below we present the output of two examples that show the value function and the
optimal decision with respect to the level of punishment d* as functions of the state
variable ug. The utility function chosen is CES, u(c) = 0c'=7/(1 — o), where o € (0,1)
and 0 > 0, to satisfy the assumptions of Section 2. Costs are described by ¥ = x - d°,

where ¢ > 1 and y > 0.

The first example exhibits a situation where some first-best allocation is incentive
feasible. The cost function is given by 1 = 4d? and the Bernoulli utility function is
u(c) = y/c. Other parameters are given by # = 0.8 and y, € {1.8,0.2}. Figure 1
compares the frontier of first-best allocations with the value function of problem (FE).
Whereas both functions coincide for first-best allocations that are incentive feasible, the
Pareto-frontier for the incentive constrained problem is bent inward and does not extend
to the axes. Nevertheless, it extends beyond the value of autarky which is given by

Vout = 4.4721 units of utility.

The enforcement choice is depicted in Figure 2. Note that d* = 0 for the region where
the first-best allocation is incentive compatible. The graph also depicts a lower and an
upper bound for the optimal decision d* on the interval [V, u]. Figures 3 and 4 show the
levels of future promised utility «} and the current consumption levels ¢ as a function

of the state variable .

The second example has the same cost function as above. The other parameters are

straightforward to show that iteration over value functions of problem (PRE) is a contraction operator.

This ensures convergence to the “right” guess to apply the method of Rustichini [14].
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changed to 3 = 0.6, 0 = 1, 0 = 0.4 and y, € {1.5,0.5}. For these values, there does
not exist a first-best allocation that is incentive feasible. The Pareto-frontier, therefore,

shifts inward relative to the value of first-best allocations as shown in Figure 5.

The enforcement choice depicted in Figure 6 is strictly positive. Furthermore, the
policy function d* is increasing in wealth inequality, a result we obtained in our numerical
solutions for any parameterization. The non-differentiability of the value function at u
for S = 2 causes some numerical error which is reflected in the small difference between

the law of motion of both states at ug = u (cf. Figure 7).

Last, we stress that Figures 3 and 7 show that u} is an increasing function of the
state ug, a result that can be confirmed in numerical experiments for a wide range of
parameters. This gives us confidence that the results concerning the long-run properties
of the optimal contract are true quite generally as the assumptions of Theorem 4.7 seem

to be satisfied with wide generality.

6 Concluding Remarks

Our analysis demonstrates that commitment problems persist even though the parties
sharing risk have access to costly third-party enforcement. This result is strong in the
sense that we impose rather weak restrictions on the cost structure, thereby giving the
use of enforcement the best possible chance. More importantly, even though the pres-
ence of fixed costs will introduce a barrier to using third-party enforcement, persistence
depends only on the fact that costs are increasing in the use of punishments. As long as
this is the case, there are always incentives to avoid part of these costs by relying also
on intertemporal features of the contract. Since commitment problems become more
severe with increasing differences in the relative position of the agents, the monotonicity
property of optimal enforcement is not too surprising. However, it is striking that the
costs of keeping fixed a specific positive level of inequality always outweigh the exist-

ing incentives to do so; the technology is never “abused” to lock in a specific level of
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inequality.

We have assumed that enforcement cannot depend on the current realization of the
income shock. This can be justified along two lines. First, impartial punishment is
based on the violation of the contract (i.e., leaving the arrangement) disregarding other
circumstances like differences in current income. Second, if punishment depends on the
current realization of the shock, the incentives of the two agents are not properly aligned.
Whoever has a high income realization prefers a strictly lower punishment level than the
other agent. Hence, communicating the current income distribution to the outside would
be difficult if not impossible. This problem does not occur if punishment next period
depends only on the new level of promised utility set endogenously by the agents in the
previous period. Future work should concentrate on modelling a non-cooperative game
between the agents and a third agent providing enforcement. It is then possible to study
not only the incentives of the third party, but also difficulties in the communication

between agents and the outside party.

By using a dynamic contracting approach for our analysis we are silent about any
initial condition that would pin down the dynamic evolution of the long-run relationship.
Since our description of the optimal contract is independent of any initial conditions, the
outcome of any ex ante bargaining procedure would simply consist of the optimal contract
described here evaluated at an initial condition reflecting the relative bargaining power
of the agents. By construction, there would be no incentives for the agents to violate

this contract at any later time.

A final remark concerns decentralizing the environment. Optimal contracts could
be decentralized as a financial markets equilibrium with complete markets and portfo-
lio constraints. These constraints mimic how stringent the incentive compatibility or
participation constraints for the optimal contract are. Since the agents choose the set
of feasible allocations in our problem, the value of the portfolio constraints must vary
dynamically over time as uncertainty is resolved. The decentralization should reflect

the optimal choice of enforcement and, hence, offers a conceptually genuine theory of
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endogenous portfolio constraints.'®> The main difficulty clearly arises from the problem
of distributing the enforcement costs among the agents. The requirement here is to
construct either a market mechanism or a direct mechanism that distributes the costs

without disturbing the properly decentralized financial decisions of the agents.

Appendix A
Proof of Lemma 3.2:

1. Since U € IR%, U is compact if and only if ¢/ is closed and bounded. Obviously,
U C [0,1/(1 — B)u(Y)]? is bounded. Let u, be a convergent sequence such that
u, € U for all n and denote its limit by @. Then, there is a sequence of allocations
(ct,c%,d,) in T such that the n-th allocation generates the utility levels wu,, for all n.
Since I' is compact in the product topology, there exists a subsequence that converges
to an allocation (¢!, ¢, cf) € I'. Since u, converges to i, every subsequence of wu, also
converges to . We can restrict the function u(-) in (1) to the interval [0,Y]; the

utility function defined by (1) is then continuous in the product topology. Hence, @

is generated by the allocation (¢!,¢2,d) € T'. Thus, & € U and U is closed.

2. For i = 1,2, U; is the projection of U into IR. Hence, U; is compact. By symmetry,
Z/{l - UQ.

Proof of Proposition 3.3:

13 Alvarez and Jermann [1] suggest a decentralization of an economy with exogenously given partici-
pation constraints. Their borrowing constraint are “endogenous” only to the extent that they are not

completely arbitrary, but rather determined by the fundamentals of the economy.
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1. Let ug € [Vinin, Vinae) and consider the following maximization problem (UP):

max Ul

subject to
(u',u®) el

u? > Ug.

Since U C IR? is compact, the constraint set of (UP) is compact and by continuity
of the objective function, this problem has a solution in ¢/. Thus, there exists an
incentive feasible allocation that attains these utility levels. Hence, the problem (SP)

has a solution for all ug € [Viuin, Vinax)-

2. Suppose V' is not strictly decreasing over [V,,in, Vinaz]. Since V' is concave and con-
tinuous, V' is either constant over [V, Vinaz| Or constant over a subinterval starting
from V,,;, and strictly decreasing over the remainder of the interval. It is therefore
sufficient to show that V' is strictly decreasing at V,,, which is clearly an element of

Us.

Let ug = V. Suppose first that at the optimal allocation some ex post incentive

constraint for agent 2 is not binding in period ¢ = 0. Then, for some s € S,

U(C(Z),s) + B

> Bulet >] > (1= do) [u(y?) + BVaut] -

t=1
Hence, we can decrease C(Q),s and increase Cé,s slightly without violating incentive fea-

sibility. Thus, there exists @y < Vi, such that V(ag) > V (Vaur)-

Suppose now that for the solution to (SP) given V,,, all ex post incentive compatibility

constraints bind for agent 2 at t = 0. Since ug = V., we have

uo = Y w1 = do)[u(y7,) + BVaut] = (1 = do)Vaur,

seS
which implies that dy = 0. We construct an allocation for some uy < V. that

gives agent 1 a utility which is strictly higher than V' (V,,;). Define the following two
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functions for a given s € S and given the optimal allocation:

ZB%(C?)]

fi(e) = ulcg —¥(e)) + By

and

fa€) = (1 =€) [u(yiy) + BVau] -

Then7 f{(e) = _w,(e)ul(cg,s - w(E)) and fé(ﬁ) - = [u(th,s) +6V;zut] Define B =
u'(5¢5 ). Optimality of the allocation and lim._ou/(c) = oo yields ¢§ , > 0 and hence

B < 0. Since ¢'(0) = 0, for € close to 0, we obtain

fi(e) < =By'(e) < f3(e) < 0.

Hence, there exists an incentive feasible allocation that gives uy < V. to agent 2 and
V (Vaue) to agent 1 such that some ex post incentive compatibility constraint for agent
2 is not binding at t = 0. Thus, we can construct an allocation where agent 2 obtains

Uy < Vaur and V(1) > V (V). By concavity, V must then be strictly decreasing on
[ﬂ07 Vmam]-
Let 4,4 € [V,V] and 4 < @. Let (él,éQ,CZ) and (él,éz,d) be the corresponding

solutions to problem (SP). Since V is strictly decreasing on [V, V], after some history

t a1 21 . . . . . .
W', G5 < Cppq e Strict concavity of u implies strict concavity of V.

Proof of Proposition 3.5:

Let ug € [V, V] be given and let (¢',¢2, d) be an optimal allocation. Define (¢ JLS)
as the continuation allocation from ¢t = 1 onwards when state s € S occurred in period

t=0.

Claim: The continuation allocation (¢ ,, ¢ 621,3) from period ¢t = 1 onwards given s € S

occurred in period ¢ = 0 is an optimal allocation.
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Suppose not. Then after s € S occurs in period ¢ = 0, there exists a continuation
allocation (6%,8, 633,071,8) from period ¢ = 1 that is feasible and yields at least as much
utility for both agents and strictly more utility for one agent than (é%,s,éf’ydl,s), the
one specified in the optimal allocation. Define a new allocation by replacing the part
of the old allocation after the event s occurs in the first period by (¢],, ¢, CZLS). This
allocation is clearly incentive feasible. Furthermore, it delivers at least as much utility
to both agents as the optimal allocation and strictly more expected utility for one agent.
Hence, (¢',¢2,d) is not optimal, which is a contradiction.

Define V(ug) to be the value of the solution to the right hand side of the objective
function in (FE).

Claim: V(ug) < V (up).

Let (61,62,0?) be the optimal allocation given ug. Similarly, let (6178,6%75,65173) be the
continuation allocation of the optimal allocation at t = 1 after s € S occurred in period
t = 0. Define

us = By

> ﬂHU(éis)]

t=1

for all s € §. By the previous claim, for all s € S the continuation allocation is optimal
lies; i.e.,

V(us) = Fy

Zﬂ“U(éi,s)] :
t=1
S

s=1>

Consider now the contract ({3 ,, is dy). This contract is clearly feasible and ex post

incentive compatible for (FE). Furthermore, by the definition of s,

Z ms[u(Co,s) + Bits] = up.

sesS

Since {é!,¢2,d} attains a utility of V(ug) for agent 1, it follows that V (ug) > V (uq).

Claim: V(ug) >V (up).

A~

Let ({¢,,7,}5_,,do) be the solution to the right hand side of the objective function in

(FE) yielding V (uo). Since @, € [V, V] for all s € S, there exists an optimal allocation
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that yields g for agent 2 and V' (us) for agent 1 for every s € S. Call this allocation
(1 & 5o o)
Consider the allocation ({Y —1(d) — &35, ¢l {e,}5.,, ¢, d,dy ). The allocation is
incentive feasible for the problem (SP) and, since ) 7 [u(és) + Bis] = uo, agent 2
receives utility ug. Since agent 1 receives S ¢ ms[u(és) + BV (i)] = V(ug) from the
allocation, V (ug) > V (ug).

U

Proof of Proposition 3.6:

Since the constraint correspondence is compact-valued and continuous, the Theorem
of the Maximum (Debreu [2, Theorem 1.8 (4)]) applies. As V' is strictly concave and
the constraint set is convex, the solution of the maximization problem is unique and,

therefore, given by unique policy functions d and c,, u, for all s € S.

Proof of Lemma 4.1:

1. Using equation (7), pui = 0 for all 7 implies that —V’(us) = X. By the envelope
theorem, A = —V”(u) and the result follows from the fact that V' is strictly decreasing.

2. Using the envelope theorem, equation (7) reduces to

s

Ts + i

—V'(us) = =V'(uo)
Hence, —V'(us) < =V'(ug). Since V is strictly decreasing and strictly concave, u; <
Ug.
3. The proof is analogous to the one given above.

4. If both ex post incentive compatibility constraints are binding in some state s, they
must also be binding in the state s’ where the income of both agents is reversed.
Otherwise, at least one of the agents can be made better off by replicating the contract

for state s’ in state s. Hence the original contract cannot be optimal.
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Thus, the allocations for the pair of states (s, s’) must be symmetric in the sense that
agent 1 receives agent 2’s allocation of state s in state s’. Without loss of generality

assume that y? > y!,. Since uy is increasing in ¢, for given d, we obtain
uy = Vus) > us = V(uy)

and

cy =Y —(d) —cs>c; =Y —(d) — cy.

Strict concavity of V' and symmetry of the problem imply —V’(us) = 1 if and only
if V(us) = us. Since ug > V(uy) and V is strictly concave, —V'(uy) > 1. By

hypothesis, —V"'(ug) < 1. Hence, ugy > uy.

5. The proof is analogous to the one given above.

Proof of Lemma 4.2:

Let u, > ug for some s € S. By Lemma 4.1, 2 > 0 and the ex post incentive compat-
ibility constraint binds for agent 2 in state s. Let s’ be any state such that y% > y2.
Then, since ug is increasing in ¢, it must be the case that uy > us > ug. Hence, /@/ > 0.

The second statement is proved by an analogous argument.

O

Proof of Theorem 4.3:

Suppose d = 0. Then by equation (8), ui =0 for all i = 1,2 and all s € S. By Lemma
4.1, us = ug for all s € S.

Suppose d > 0. Suppose further that u, = ug for all s € S. By the envelope theorem
we have A = —V"(ug). From equation (7) we obtain —u!V'(ug) = p2. If pl = pu?2 =0
for all s, then d = 0 by equation (8), which is impossible. Hence, for some s, pi > 0 for

i=1,2.
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Since Y —1(d) and us are constant across states, it follows from equation (10) that ¢ is
also constant across states. Thus, the utility levels for both agents are constant across
states. This implies that for each agent the ex post incentive compatibility constraint
can be binding for at most one income level. Since for all s € S, y! # 42, we have u’ = 0

for some i = 1,2 in all states s. A contradiction is therefore obtained.

Proof of Lemma 4.4:

Since at ugy the first-best allocation is not incentive feasible, at least some incentive
constraint must be binding and, by Theorem 4.3, d > 0. It is also clear that all the
incentive constraints cannot be binding; otherwise uy = V'(ug) < Vi and the contract

cannot be optimal.

Claim: plp? =0 for all s € {H, L}.

S

Suppose not. Then there exists s € {H, L} such that p’ > 0 for i = 1,2. Then, since
not all incentive constraints can be binding, !, = 0 for some i and s’ # s. Without loss

of generality, assume s’ = L and p} = 0. Then,

uw(Y = (d) —cr) + BV (ur) > u(en) + Pun = (1 — d)[w(yn) + BVau
and

u(er) + Purp > u(Y —(d) — cy) + BV (ug) = (1 — d)[u(yr) + BVau)-

Therefore, both agents receive higher or equal utility in state s = L than in state s = H.
This cannot be optimal since one can replicate the contract for state s’ = L in state s = H

and make at least some agent better off without making the other worse off.
Claim: p! =0 for all s € {H, L}.

Suppose first that pul > 0 (i.e., agent 1’s incentive constraint binds when his income is
low). Hence ug < ug. By Lemma 4.2, u! > 0. By the previous claim, y? = 0 for all s.

Thus, V(up) < ug, a contradiction.
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Suppose now that p} > 0 (i.e., agent 1’s incentive constraint binds when his income is

high). Then, by the previous claim, 2 = 0. Furthermore, pu}, = 0, since otherwise

V(u()) =E [(1 - d) (u(y;) + ﬂ‘/;zut)] < V;zuta

which contradicts ug < .

By incentive feasibility,
u(en) + Bug > uw(Y —(d) —cr) + BV (ur) = (1 — d)[u(yn) + BVau.

Since ug < u, V(ug) > ug. Hence, u(Y —¢(d) —cy) + BV (up) > u(cr) + Pur. Therefore,
both agents receive higher or equal utility in state s = H than in state s = L. This
cannot be optimal since one can replicate the contract for state s = H in state s = L

and make at least some agent better off without making the other one worse off.
Claim: p2 > 0.

The previous claim implies that 2 > 0 for some s € S. If p2 > 0, uy, > up. By Lemma

4.2, 2, > 0 which completes the proof.

Proof of Theorem 4.5:

We show that the policy function for d must be monotone on [V, @]. Symmetry implies
that it must be monotone - with the sign of the slope reversed - on the other part of
its domain. Without loss of generality, we assume throughout the proof that d(ug) > 0
(i.e., that at ug the first-best allocation is not incentive feasible). We proceed first with

an intermediate result.
Claim: Tf y2 > 0 for all s € S = {H, L} at i, then d > d for all g < .

Suppose not. Then, there exists {ly < iy such that d < d. By incentive feasibility,

A~

u(Cs) + Bt > (1= d) [u(y?) + BVau] -
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Since p? > 0 for all s € S = {H; L} at iy, we have

u(és) + Pus = (1 — d) [u(yf) + ﬂ‘/;lut] .

and

A~

g > (1 = d) Ve > (1 = d) Vi = o

This is a contradiction.

Suppose now that the policy function is not monotone on a subinterval of [V, u]. Conti-
nuity implies that there exists iy < g such that d=d > 0. Since d is the same, strict
concavity of V' and w imply that 4y = 4y and ¢y = éy. Using equation (8) and the
claim above, we obtain
S eslV (i) = /(i)
Yes (Y = (d) — &)

=y'(d) =

- W)Vl
w'(Y = 1p(d) — éy) + /(Y — (d) — &)

where v, denotes the value of the outside option if income is given by y,. Since @y < o,

9

iy > g and V is strictly concave,

> V') = V' ()]s > [V'(di0) = V' (itm) v

ses

To satisfy w’(d) = /(d), we need ¢, > ¢;. Since u, is an increasing function of ¢,, we
have @y > @y = tug. Since the allocation for state s = H is the same for 4y and g, it

follows that 4 > g, which is a contradiction.

Proof of Corollary 4.6:

If there exists a first-best allocation that is incentive feasible, d = 0 for some interval

[upp, ] and d > 0 for [V, uprg). The result then follows.

Proof of Theorem 4.7:
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1. Let ug € [V,uprp). Define A = {w € Q®|w, = H for finitely many t}. Clearly,

I1°°(A°) = 1. Hence, limy_.o, u; = upp I*-a.s. if limy_o 4y = upp for all w € A°.

Let w € A°. By Lemma 4.4 and the assumption that wug is non-decreasing in uy,
{u¢}$2, is monotonically non-decreasing. Since us(upp) = upp for all s € {H, L} (cf.
Theorem 4.3), the sequence is bounded from above and, hence, must converge to a
limit.

Define m(ug) = mazsus(up). Since w € A°, for all T' € IN there exists ¢ > T such
that u; > m(ur). For T — oo, u* > m(u*). From the definition of m(-) and Lemma

4.1, we have ug < m(ug) for all ug € [V, urp). Hence, lim;_.o, u; = upp for w € A°.

The argument for uy € (u'?, V] is analogous.

2. Ifug(u) = ufor all s € {H, L}, the result follows by an argument analogous to the one
given above. By Lemma 4.4, for all ug < @, ug(ug) > up and ur(ug) = ug. Conversely,
for all ug > @, ug(ug) = up and ur(ug) < ug. Continuity of u, implies then wug(u) = @

for all s.

Appendix B

We give now a more rigorous analysis of the discussion following Theorem 4.7 in Section
4.3. We assume throughout that there is no incentive feasible first-best allocation and
show that the distribution of wealth converges weakly to a unique long-run distribution
provided that u} is non-decreasing.

Given an optimal contract, the state variable ug follows an endogenous Markov process

S

s=1»

that reflects the policy functions ({c%, u? d) as well as the exogenous Markov chain

of shocks w;. Formally, we can express this Markov process by a transition function Q*.

Let B be the Borel o-algebra on the interval [V, V]. Define Q* : [V, V] x B — [0, 1] by

Q*(ui_y, B) = Prob(Blu;_y(u), .., (uo), uo) = Prob(Blu, 1) (B.11)
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for all B € B. Associated with the Markov transition function is the operator Tt that
maps the space of all bounded, B-measurable, real-valued functions into itself. This
operator is formally given by

S

Ty.f = / F)Q (i dup) = 3 Fut (), (B.12)

s=1
where the function f is any bounded, B-measurable, real-valued function. To prove our

result we use the following mixing condition:

Condition B.1. There exists € > 0 and T' € IN such that Prob(ur(V) > u) > € and

Prob(ur(V) < a) >e.

This condition can be interpreted in our context as follows. Suppose that uy € {V,V'};
i.e., in period t = 0 we have the highest possible degree of inequality. Given Condition
B.1, there is a positive probability that the initial inequality between agents is reversed
within in a finite number of periods.

Let Fy be any distribution function over [V, _}. Furthermore, denote by F; the distribu-
tion function for u; given Fy. We say that the sequence of distribution functions {F;}:2,
converges weakly to F' (or Fy = F) if and only if lim;_, Fi(ug) = F'(up) at every conti-
nuity point ug of F'. The next result formally establishes weak convergence of the wealth

distribution to a unique invariant distribution by adopting an argument of Kocherlakota

7].

Lemma B.2. If V is differentiable everywhere, for all uy € [V, u] there exists s € S

such that ugs(ug) > ug .

Proof. For uy € [V, 4] some ex post incentive feasibility constraint for agent 2 must be
binding. Otherwise, by Lemma 4.1 agent 2 would have an expected utility strictly lower
than ug.

If pul(uo) = 0 and p?(up) > 0 the result follows. If pl(ug)p?(ug) > 0 there exists a state
s" such that pl (ug)u? (ug) > 0. Otherwise, one could replicate the allocation in s’ for

s making one of the agents strictly better off. Since —V'(ug) < 1 for all ug € [V, ul,
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the result follows then from the symmetry assumption on the endowment process and

Lemma 4.1. L]

Theorem B.3. If u} is non-decreasing and V is differentiable everywhere, there exists

a unique distribution F such that Fy = F for any initial distribution Fy.

Proof. By Proposition 3.6, u} is continuous and, hence, the operator T satisfies the
Feller Property. Furthermore, Ty« is monotone as u; is assumed to be non-decreasing.
Since [V, V] is compact and T+ preserves continuity, by Theorem 12.10 of Stokey, Lucas
with Prescott [16] there exists an invariant distribution over [V, V] under the transition
function @*. Furthermore, by Theorem 12.12 of Stokey, Lucas with Prescott [16], the
invariant distribution is unique and weak convergence from any initial distribution occurs
if T+ is monotone and if Condition B.1 for the Markov transition function Q* is fulfilled.
To show that Condition B.1 is satisfied, define m(ug) = mawxsus(up). Define further a
sequence {w,, }>° , recursively by setting w, = m(w,_1) where wy = V.
Suppose there does not exist N € IV such that wy > u. Since the sequence is non-
decreasing and bounded from above by %, it must converge to a limit @w < @. Since

m is a continuous function, m(w) = w. By Lemma B.2, we have m(ug) > ug for all

ug € [V, u]. A contradiction. O
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