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1 Introduction

The literature on limited commitment was very successful in explaining empirical pat-

terns of consumption as the optimal response to commitment frictions. In particular, as

pointed out by Kocherlakota (1996), models with commitment frictions seem to be able

to explain the positive correlation between consumption and current as well as lagged

income. We show here, however, that Kocherlakota’s result depends on the efficient fron-

tier of risk sharing being differentiable which need not be the case.1 As a consequence it

can be efficient for current consumption to be uncorrelated with past income in the long

run even if a commitment problem prevents first-best risk sharing.

There is a sense in which we replicate a finding of Kehoe and Levine (2001) that describe

an economy with limited participation where the stochastic steady state equilibrium is

history independent. The authors, however, fail to make the connection to the non-

differentiability of the efficient frontier. This in turn allows us to go further by partially

characterizing when the long-run properties of efficient allocations with limited commit-

ment exhibit history dependence. Interestingly, for our stylized model which features

symmetry these conditions are closely linked to differentiability of the value function at

the point where all agents are promised the same level of utility.

We proceed as follows. First, we formulate a stylized framework along the lines of

Kocherlakota (1996). We then provide a counterexample to the differentiability of the

value function and give sufficient conditions for history dependence which are based on

differentiability. Finally, we conclude with a short discussion of our findings.

2 Framework

Consider the following stylized environment where people mutually share their endow-

ment risk under limited commitment. Time is discrete and indexed by t = 0, 1, . . . .

1In fact, Kocherlakota (1996) falsely claims that the efficient frontier is differentiable.
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There are two infinitely lived agents i = 1, 2, who receive each period a stochastic en-

dowment of a single good. Let θ = {θ1, θ2, . . . } be a sequence of independently and

identically distributed random variables each having finite support Θ = {1, 2, . . . , S}

and denote the probability of θt equaling s by πs > 0 for all s ∈ Θ. Define a t-history of

θ by θt = {θ1, θ2, . . . , θt} and let Θt be the set of all possible t-histories of θ.

The endowment for agent i = 1, 2 in period t is determined by the realization of θt and

denoted by (y1
s , y

2
s) with aggregate endowment Ys when θt = s for t = 0, 1, . . . . We assume

that the joint distribution of the endowment is symmetric; i.e., for every s ∈ S there

exists s′ ∈ S such that yi
s = yj

s′ and πs = πs′ . Preferences for both agents are described

over θt-measurable consumption processes ci ∈ C = {{ci
t}∞t=0|ci

t : Θt −→ [0, Y ]}, i = 1, 2,

and - given any history θt - represented by the utility function

Et

[
∞∑

τ=0

βτu(ci
t+τ )

∣∣∣θt

]
, (1)

where β ∈ (0, 1). We assume that u is increasing, strictly concave, twice continuously

differentiable and that limc→0 u′(c) = ∞.

An allocation (c1, c2) ∈ C2 is given by a consumption process for each agent and is

feasible if

c1
t (θ

t−1, s) + c2
t (θ

t−1, s)+ ≤ Ys for all (θt−1, s) and t ≥ 1. (2)

Furthermore, we say that an allocation is incentive feasible if it is feasible and incentive

compatible for i = 1, 2, i.e.,

u(ci
t(θ

t−1, s)) + Et

[
∞∑

τ=1

βτu(ci
t+τ )

∣∣∣(θt−1, s)

]
≥ u(yi

t,s) + βVaut (3)

for all (θt−1, s) and t, where Vaut = 1
1−β

E[u(ys)] is the ex-ante expected utility of autarky

which is equal for both agents.

The concept of incentive feasibility allows us to define optimal allocations. An allocation

(c1, c2) ∈ C2 is optimal if there exists no other incentive feasible allocation that provides

both agents with at least as much expected utility at period 0 and at least one of them
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with strictly more expected utility at period 0. It is possible to show that optimal

allocations are described by the following functional equation:2

V (u0) = max
{cs,us}S

s=1

S∑
s=1

πs [u(Ys − cs) + βV (us)] (4)

subject to
S∑

s=1

πs [u(cs) + βus] = u0 (5)

u(Ys − cs) + βV (us) ≥ u(y1
s) + βVaut ∀s (6)

u(cs) + βus ≥ u(y2
s) + βVaut ∀s (7)

us ∈ [Vaut, V (Vaut)] ∀s. (8)

The state variable u0 expresses expected utility promised to person 2 while us is the level

of future expected utility promised when state s is realized. The constraints (6) and (7)

are recursive equivalents of the sequential ex-post incentive compatibility constraints for

agent 1 and agent 2 respectively. Denote S1 (S2) the set of states for which the constraint

for agent 1 (agent 2) is binding. We assume throughout the paper that V (Vaut) > Vaut,

i.e., there exists some incentive feasible allocation besides autarky.

Notice that S1 ∩ S2 = ∅. Furthermore, V is continuous and strictly concave. By Rock-

afellar (1970), Theorem 25.3 and Theorem 25.5, V is differentiable almost everywhere

and, since V is a proper concave function, the set D where V is differentiable is a dense

subset of the domain [Vaut, V (Vaut)]. However, as we show next and in contrast to the

statement in Kocherlakota (1996), V can fail to be differentiable everywhere.

2For details on this result and others stated in this section see Kocherlakota (1996).
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3 Differentiability and History Dependence

3.1 Counterexample

We proceed now by demonstrating that the value function V is not necessarily differ-

entiable everywhere. Assume for the remainder of the paper that there exists ys such

that
1

1− β

S∑
s=1

πsu(Ys/2) < u(ys) + βVaut. (9)

This condition implies that no first-best allocation is incentive feasible. Denote the fixed

point of V by ū.

Proposition 3.1. If S = 2, the value function V is not differentiable at ū.

Proof. Denote the set of states by S = {H, L} indicating high and low income for agent

2. Hence, assuming symmetry amounts to Ys = Y and πs = 1
2
. Guess the following

solution to problem (4) for u0 ∈ [Vaut, ū]: uH(u0) = ū; uL(u0) = u0; yH ≥ cH(u0) > Y/2

is the lowest level of consumption that satisfies inequality (7) given uH(u0); cL(u0) solves

equation (5) given cH(u0), uL(u0) and uH(u0). For u0 ∈ [ū, V (Vaut)] reverse the agents.

Since Y − cL(ū) = cH(ū) and cL is increasing in u0, it is straightforward to verify

that these policy functions are incentive feasible. Suppose now that V is differentiable

on (Vaut, V (Vaut)). Since V is strictly concave, we only have to check the first-order

conditions to verify that the guess is a solution. From the Lagrangian we obtain,

−V ′(u0) =
u′(Y − cL)

u′(cL)
(10)

and

V ′(ū) = −u′(Y − cH)

u′(cH)
≤ V ′(u0). (11)

Using the guess, one finds that V ′(u0) = − 1
2−β

u′(Y − cL)∂cL

∂u0
. Since ∂cL

u0
= (2− β)/u′(cL)

and cH > cL, both conditions hold and the guess is correct. Finally, we check whether
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V is differentiable. The solution implies that

lim
u0↗ū

V ′(u0) =
u′(Y − cL(ū))

u′(cL(ū))
6= lim

u0↘ū
V ′(u0) =

u′(Y − cH(ū))

u′(cH(ū))
(12)

which shows that V is not differentiable at ū.

The solution for the two state case shows that the state variable u0 converges with

probability one to a degenerate distribution of u0 at ū independent of initial conditions.

Hence, it is optimal for consumption in the long-run to be non-autarkic and iid, i.e., to

be completely history independent.

3.2 Sufficient Conditions

The problem of non-differentiability arises from the fact that - at some point in the

domain of V - for every state s the incentive constraint of either agent 1 or agent 2 is

binding, i.e., S1∪S2 = S. In the two state case presented above this is precisely the case

at the fixed point of the value function ū where the role of the agents switches.3

Lemma 3.2. Suppose S1 ∪ S2 6= S at u0. Then V is differentiable at u0.

Proof. Let û0 ∈ (Vaut, V (Vaut)) be given and suppose that {1} /∈ S1∪S2 at û0. Denote the

allocation that maximizes the functional equation at û0 by {c∗s(û0), u
∗
s(û0)}S

s=1. Define

γ(u0) = u−1

(
1

π1

(
u0 −

S∑
s=2

πs

(
u(c∗s(û0)) + u∗s(û0)

)))
− c∗1(û0). (13)

Define further c1(u0) = c∗1(û0) + γ(u0) and define a new allocation by

{(c1(u0), c
∗
2(û0), . . . , c

∗
S(û0)), (u

∗
1(û0), . . . , u

∗
S(û0))}.

Since û0 ∈ (Vaut, V (Vaut)), c∗1(û0) > 0 and for state s = 1 both incentive constraints are

not binding, the new allocation is feasible for a small enough neighborhood around û0.

3In case some first-best allocation is incentive feasible, one can show that S1 ∪S2 6= S for all u0 and,
hence, that V is differentiable everywhere.
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Consider now the function v(u0) that expresses the value of this new allocation for agent

1. Then, v(u0) ≤ V (u0) with equality at û0. Furthermore, v is differentiable in u0. Since

u is increasing, v is a concave function in u0. Hence, we have constructed a function v

that satisfies the conditions in Lemma 1 of Benveniste and Scheinkman (1979), which

proves that V is differentiable.

This lemma is helpful for establishing a link between differentiability of V and the long-

run property of current consumption to depend on lagged income. Denote the Markov

process for promised utility associated with the efficient allocation by the sequence of

random variables ut, where ut = us(ut−1) with probability πs for all s.4

Proposition 3.3. If S1 ∪ S2 6= S at ū, the Markov process ut converges weakly to a

non-degenerate invariant measure φ∗.

Proof. From the analysis of the first part of Proposition 4.2 in Kocherlakota (1996), it

follows that the process ut converges weakly to a unique invariant measure φ∗ independent

of initial conditions.

Since no first-best allocation is incentive feasible, for all u0, S1∩S2 6= ∅. Hence, symmetry

implies that at ū there exists s′ ∈ S2. By Lemma 3.2, V is differentiable and the first-

order conditions of problem (4) imply that us′(ū) > ū. Using the argument of the second

part of Proposition 4.2 in Kocherlakota (1996) then proves the result.

Suppose now, the number of states is odd, i.e., S/2 /∈ IN . Then, it must be the case

that S1 ∪ S2 6= S at ū. Otherwise, by symmetry, the incentive constraint for both

agents is binding in the state where both agents have equal endowment. But then

S1 ∩ S2 6= ∅, which cannot be the case. Applying Proposition 3.3 this leads immediately

to the following corollary.

Corollary 3.4. If S/2 /∈ IN , φ∗ is non-degenerate.

4This result is essentially a correction of Proposition 4.2 in Kocherlakota (1996). I am thankful to
Narayana Kocherlakota for discussions on this issue from which conjectures of these results arose.
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Whenever the invariant distribution φ∗ is non-degenerate, consumption is related to

lagged income in the long run. What is interesting, however, is that this invariant

distribution is non-degenerate precisely when the Pareto frontier V is differentiable at

ū, i.e., at the point where both agents receive the same promised utility. Hence, there is

a link between differentiability of V and the long-run property of current consumption

to depend on lagged income. The results here give then sufficient conditions for history

dependence of optimal risk sharing allocations.5

5In light of the findings on history dependence, our results are then useful for differentiating a static
limited commitment model (e.g. Coate and Ravaillon (1993) and Ligon et al. (2002)) - with transfers
restricted a priori to be independent of history - from a dynamic limited commitment model.
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