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The effects of variation in management objectives on responses to 

invading diseases under uncertainty: Forest Pathogens 

 
 

Abstract 

The real options approach provides a powerful tool for determining the optimal time at which to adopt 

disease control measures given uncertainty about the future spread of an invading pest/pathogen. We 

consider the management of disease invasions in the natural environment typified by woodlands.  

Previous studies considered the timing of control from the point of view of a central planner, for 

example a governmental decision making body. However, decisions regarding the deployment of 

control measures in the landscape are typically taken by individual land managers. Woodlands 

provide both marketable benefits, such as timber, and non-marketable benefits, for example 

biodiversity. The relative importance placed on these types of benefit depends on the land purpose, 

which is determined by a managers’ objectives. We investigate how management objectives influence 

the optimal timing of control adoption. Our results show that differences in objectives lead managers 

to exercise the option to control at different times, and potentially never adopt disease control. Since 

infection can spread from one region to another, managers who do not adopt control therefore transfer 

the risk of infection to other managers within the landscape. For landscapes composed of managers 

with divergent objectives, this creates conflict due to the transferable externality (the disease). We 

show targeted subsidies can reduce differences in the timing of control adoption between managers 

with divergent objectives.  Both lump-sum subsidies and annual subsidies bring forward the adoption 

of control strategies, causing them to be implemented over a wider range of infection proportions in 

an individual woodland.  However, the two types of subsidy have opposite effects on the decision to 

suspend control.  Annual subsidies delay suspension and extend the region over which control 

continues to be implemented.  In contrast, lump-sum subsidies slightly reduce the region over which 

control continues to be implemented.  For high proportions of infection, this implies that a lump-sum 

subsidy can induce a value-maximising manager to suspend control earlier: the opposite effect to that 

presumably intended.  Our results have important implications for national decision making bodies 

and suggest that incentives may need to be targeted at specific groups to ensure a coherent response to 

disease control.  
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1. Introduction 

In the face of an invasive pest or pathogen within the natural environment, such as woodland, 

a key choice facing decision makers is whether or not to adopt control measures to reduce the 

spread of the pest or pathogen (Cunniffe et al. 2015). Initiating control measures, such as 

movement bans or the spraying of chemical treatments, involves costs that cannot be fully 

recovered at a later date (sunk costs), for example the cost of purchasing equipment (Saphores 

2000; Dixit and Pindyck 1994).  Furthermore, there is uncertainty surrounding the potential 

gains from controlling, namely the reduction in losses to benefits provided by the natural 

environment, due to the unpredictability of pest/pathogen spread. The irreversible nature of the 

control initiation costs, combined with the uncertainty in the future returns from control means 

that it can be beneficial to wait before adopting control, even if the expected future 

pest/pathogen damage outweighs the cost of control (Saphores 2000; Sims and Finnoff 2012; 

Sims and Finnoff 2013; Ndeffo Mbah et al. 2010; Marten and Moore 2011). The question 

facing decision makers is therefore when is it optimal to adopt measures to control 

pest/pathogen spread given the uncertainty about the future course of an epidemic or pest 

infestation?  

This question of when, if ever, to adopt control has previously been studied using a real options 

approach, which provides a powerful tool to analyse the effects of uncertainty, in the context 

of irrecoverable adoption costs (Dixit and Pindyck 1994; Saphores 2004). Disease control is 

considered as an option that can be exercised to reduce damage caused by a pest/pathogen. The 

real options approach provides a threshold in the proportion of infected area at which it is 

optimal to deploy control immediately (Saphores 2000; Ndeffo Mbah et al. 2010; Sims and 

Finnoff 2013; Sims, Finnoff, and Shogren 2016).  The greater the uncertainty in the spread of 



3 
 

the pest/pathogen, the larger the infected area must be for it to be optimal to adopt control and 

so essentially the longer a decision maker would wait before undertaking control measures 

(Saphores 2000). If, however, the control measure can be cancelled in the future and some of 

the costs recouped (i.e. the initial costs of control are not entirely irreversible), this reduces the 

threshold in infected area for control and so control is adopted sooner (Sims and Finnoff 2013). 

Typically in real options the future uncertainty in infected area is described by an unbounded 

process, typically geometric Brownian motion (GBM) (Saphores 2000; Dixit and Pindyck 

1994). However, the potential area that can be infected by a pathogen/pest is limited. Inclusion 

of this upper boundary also leads to control being adopted earlier (Dangerfield et al. 2017; Sims 

and Finnoff 2012). 

Previous studies consider the timing of control from the point of view of a central planner, for 

example governmental decision making bodies such as Defra in the UK (Sims and Finnoff 

2013; Sims and Finnoff 2012; Marten and Moore 2011). However, for many diseases in the 

natural environment, decisions regarding the deployment of control measures are typically 

taken by individual land managers responsible for specified regions. In this paper we consider 

the timing of control from the perspective of an individual manager. We motivate the problem 

for the control of woodland pathogens/pests in a landscape but the results have broader 

applicability to other systems in which there are multiple ecosystem services with differing 

associated benefits from controlling disease.  

Woodland provides marketable benefits, such as timber, and non-marketable benefits, for 

example in supporting biodiversity. The key difference between these two types is that non-

marketable benefits accrue over time, while marketable benefits provide a financial return at 

discrete time points, for example at the end of a rotation in forestry or season in crop 

production. The relative importance placed on the two benefits depends on land managers 
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objectives (Urquhart and Courtney 2011). In this paper we investigate how diverging objectives 

affect the waiting time before adopting control.  

We use the issue of invasive pests and pathogens within UK forestry as a motivating example. 

Pests and pathogens can cause significant reductions in the marketable and non-marketable 

benefits provided by forests (Pimentel, Zuniga, and Morrison 2005). For a number of current 

invasive species threats within the UK, such as Dothistroma needle blight1 or Heterobasidion 

annosum2, the decision of whether or not to adopt control measures is taken at the level of the 

land manager. At the landscape scale, there is significant variation in the objectives of different 

UK forest managers (Urquhart and Courtney 2011; Urquhart, Courtney, and Slee 2010), where 

privately owned forests account for 70% of forested area. Urquhart and Courtney (2011) 

identify six distinct groups of forest manager, based on the relative importance they place on 

marketable and non-marketable benefits. The groups in Urquhart and Courtney (2011) include 

‘investors’ who only seek to obtain marketable benefits from the forest, such as timber 

production and ‘conservationists’ who seek to maximise the non-marketable benefits such as 

biodiversity and disregard the marketable benefits (Urquhart and Courtney 2011). Due to the 

differences in the timing at which marketable and non-marketable benefits are obtained, 

variations in the implicit or explicit weightings placed on these two types of benefits by each 

forest manager are likely to affect how they respond to a particular pest or pathogen risk. 

Using a real options approach to incorporate uncertainty into the decision process, we explore 

how varying the function that describes the value of the forest (the owner’s objective function) 

influences the threshold at which control should be adopted immediately. This provides insight 

into how variations in the different benefits obtained from a forest affect the optimal timing of 

control for individual owners. These benefits could reflect the value which a forest owner gets 

                                                           
1 https://www.forestry.gov.uk/dothistromaneedleblight 
2 https://www.forestry.gov.uk/fr/rootandbuttrot 
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from both timber and non-timber attributes, and/or a Payment for Ecosystem Services that they 

receive for producing public good-type benefits along with the financial benefits of timber 

production. We model the forest manager as taking decisions over control measures in his/her 

forest independently of other managers, in the sense that expectations over the actions of others 

do not enter into the decision-making process.   

Our results suggest there can be significant variation in the optimal timing of pest or pathogen 

control measures between forests managed under different management objectives. Since 

disease can spread from one region of land to another, a manager who does not adopt control 

therefore transfers the risk of infection to other managers within the landscape. When the 

landscape is composed of managers with divergent objectives, this creates conflict due to the 

transferable externality (the disease). We thus further investigate the impact of subsidies on 

control strategies and the extent to which targeted subsidies can reduce the divergence in the 

timing of control adoption between forests managed with different objectives. We consider two 

different types of subsidy: the first reduces the upfront costs of initiating control while the 

second reduces the ongoing costs of control. The dynamic nature of our epidemiologically-

based real options modelling framework allows analysis of both adoption and cancellation of 

control measures as the impact of pests or pathogens varies over time. In particular it allows us 

to analyse the impact of the different types of subsidy on both the timing of control adoption 

and cancellation.    

Our results identify the combinations of disease characteristics for which the timing of control 

adoption is likely to differ significantly for forests managed according to different objectives. 

Furthermore the results indicate how subsidies affect these disease control strategies and hence 

suggest which form of subsidies (lump-sum or ongoing) are more likely to be effective in 

increasing the long-term incidence of disease control. The results of this paper have important 

implications for local and national decision making bodies, such as the UK Government 
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Department for Environment Food and Rural Affairs (Defra), the Forestry Commission in 

England and Scotland and Natural Resources Wales, which seek to achieve reductions in pest 

or pathogen spread at a larger spatial scale than an individual forest. The structure of the 

remainder of the paper is as follows.  Section 2 introduces the model, Section 3 presents the 

results, and Section 4 concludes. 

2. Method 

In this article, we use terminology typically associated with an invasive pathogen rather than 

pest, and so we refer to trees as being infected or diseased, rather than invaded. This is for ease 

of writing, but we note that the model frameworks described here apply equally well to invasive 

pests, such as oak processionary moth3 and oriental gall wasp4, two pests that have been found 

in England in recent years. 

2.1 Value of the Forest in the Absence of Disease 

Consider an area of even-aged forest composed of a single species that is of size L hectares. 

We assume the value generated by the forest over a fixed period of time, T years, is composed 

of two parts: a single payment that is received at the final time T, which represents the net 

return from selling the timber, 𝑀(𝐿), and an annual payment that characterises the value 

obtained from a flow of non-timber benefits, 𝑆(𝐿). We assume that T is an exogenous time, 

such as the length of a pre-determined rotation period. Non-timber benefits include amenity, 

recreation or biodiversity values, for which the owner either derives utility or receives a 

payment from a third party, such as the government. Therefore, the present value of benefits 

from the forest, in the absence of disease, is given by the following, 

                                                           
3 https://www.forestry.gov.uk/oakprocessionarymoth#Further information 
 
4 https://www.forestry.gov.uk/gallwasp 
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𝑀(𝐿)𝑒−𝑟𝑇 + ∫ 𝑆(𝐿)

𝑇

𝑡

𝑒−𝑟(𝑠−𝑡)𝑑𝑠, 
(1) 

 

where 𝑟 is the discount rate. 

We assume that functions 𝑀(𝐿) and 𝑆(𝐿) take the following forms, 

 𝑀(𝐿) = 𝑝𝐿 (2) 

 

 𝑆(𝐿) = 𝑏𝐿, (3) 

 

where p is the net return per hectare from timber sold at the end of the rotation and b is the 

value per hectare of annual non-timber benefits.  

2.2 Value of Forest in the Presence of Disease  

Consider the outbreak of a disease within the forest of interest. We assume that the future 

progress of area infected is uncertain due to the variability in infection transmission as a result 

of external factors such as weather. Therefore, the proportion of area infected over time (𝐼) 

changes according to the following stochastic differential equation SDE, which we term the 

logistic SDE, (Dangerfield et al. 2017), 

 𝑑𝐼 = 𝛽𝐼(1 − 𝐼)𝑑𝑡 + 𝜎𝐼(1 − 𝐼)𝑑𝑊, (4) 

 

where 𝛽 is the mean transmission rate and 𝜎 is the level of uncertainty, (Keeling and Rohani 

2008). We describe the evolution of the infected area using the logistic SDE rather than GBM 

that is typically used in the literature (Saphores 2000; Sims and Finnoff 2013), because the 

logistic SDE better captures key epidemiological features of disease spread (Dangerfield et al. 

2017). In particular, this approach incorporates the upper boundary in the infected area, which 

arises due to the limited number of available hosts within a given spatial domain, directly into 

the equation for the growth in the proportion of area infected (equation (4)). 



8 
 

We assume that both the timber and non-timber benefits from the forest are reduced by disease 

(e.g. because of lower timber volume as a result of reduction in tree growth rate resulting in 

lower price for infected timber or lower amenity value from a diseased forest landscape). In 

particular we assume infected timber value is reduced to a proportion, 𝜌, of the original value, 

so when 𝜌 = 0 timber is worth nothing and when 𝜌 = 1 timber value is unaffected by disease. 

Similarly we assume annual non-timber benefits from infected trees are reduced to a 

proportion, 𝜑, of the original value. We assume that 𝜌 and 𝜑 are independent and consider the 

impact of a range of different combinations of 𝜌 and 𝜑 on the optimal timing of control. The 

value of the forest, per hectare, in the presence of disease is given by 

 
𝐸 [𝑝 𝐿 (1 + (𝜌 − 1)𝐼(𝑇))𝑒−𝑟𝑇 + 𝐿 ∫ 𝑏(1 + (𝜑 − 1)𝐼(𝑠))

𝑇

t

𝑒−𝑟(𝑠−𝑡)𝑑𝑠],   
(5) 

 

where 𝐼(𝑠) is the proportion of the forest area (𝐿) that is infected at time 𝑠. Note that this is the 

expected value of the forest (𝐸 in equation (5) represents the expectation), since the future 

forest value is stochastic, due to the uncertainty in the future level of infection.  

2.3 Optimal Timing of Disease Control 

Consider a control policy that reduces the rate at which the disease spreads by a factor 0 ≤

ω ≤ 1, so the transmission rate after a control option is implemented  is  𝛽𝐴 = 𝛽 × 𝜔. 

Examples of such measures include increased biosecurity measures or chemical spraying 

treatments that reduce the susceptibility of trees but not the removal of trees.  

We assume that control can be adopted for a fixed cost of 𝐾𝐴 per hectare, and that there is a 

yearly maintenance cost of 𝑚𝐴 per hectare to continue control. Fixed costs are non-recoverable, 

and represent a one-off upfront cost that could, for example, be the initial investment in 

specialist equipment, or the cost of time taken to initiate the control policy. The yearly cost 
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represents the annual payment needed to continue the control programme, for example this 

could be the yearly payment to contractors to remove weeds or apply chemical sprays or 

alternatively the ongoing cost of increased biosecurity measures. Since many control measures 

can be cancelled at some point in the future, we assume that the control measure is temporary, 

and so we can consider the decision to invest in control as reversible. Therefore, if control is 

currently being adopted then such a programme can be cancelled at some point in the future. 

Cancellation incurs no additional costs, but leaves open the option to readopt control at some 

future time, if optimal. Therefore the decision to cancel is reversible and can be thought of as 

suspension of control measures.  

Let 𝑊𝑁(𝐼, 𝑡) be the value of the forest when control is not currently adopted. It comprises two 

parts: the discounted expected value of the forest if control is never implemented and the value 

of the option to adopt control in the future. This option value arises since the future uncertainty 

in the proportion of infected area means that there is an opportunity cost of applying control 

immediately, rather than waiting to see what happens in the future. Similarly, if control 

measures are currently being applied then there is an opportunity cost associated with 

cancelling now rather than waiting. Therefore the value of the forest when control is being 

adopted,  𝑊𝐴(𝐼, 𝑡), is the discounted expected value of the forest obtained when control is 

applied indefinitely plus the value of the option to cancel control in the future. 

If there are currently no control measures in place, then control should be adopted as soon as 

the area infected reaches 𝐼𝐴, which we term the adoption threshold. At 𝐼𝐴 the following two 

boundary conditions are satisfied: 

 𝑊𝑁(𝐼𝐴, 𝑡𝐴) =  𝑊𝐴(𝐼𝐴, 𝑡𝐴) −  𝐾𝐴 
 

(6) 

 𝜕𝑊𝑁

𝜕𝐼
(𝐼𝐴, 𝑡𝐴) =

𝜕𝑊𝐴

𝜕𝐼
(𝐼𝐴, 𝑡𝐴), 

(7) 
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where 𝐾𝐴 is the fixed cost of adopting control. The first condition is called the value matching 

condition and ensures that the payoff from adopting control immediately is equal to the payoff 

from not adopting control. The second condition is called the smooth pasting condition and 

requires 𝑊𝑁(𝐼, 𝑡) and 𝑊𝐴(𝐼, 𝑡) to meet tangentially at 𝐼𝐴 to ensure the optimality of 𝐼𝐴 (see 

(Dixit and Pindyck 1994) for further discussion).  

Similarly if control measures are currently being adopted then control should be cancelled as 

soon as the area infected reaches 𝐼𝐶, which we term the cancellation threshold. At 𝐼𝐶 the 

following two boundary conditions are satisfied: 

 𝑊𝐴(𝐼𝐶 , 𝑡𝐶) =  𝑊𝑁(𝐼𝐶 , 𝑡𝐶) (8) 

 

 𝜕𝑊𝐴

𝜕𝐼
(𝐼𝐶 , 𝑡𝐶) =

𝜕𝑊𝑁

𝜕𝐼
(𝐼𝐶 , 𝑡𝐶).       

(9) 

 

Once again, the first condition ensures that the payoff from cancelling control immediately is 

equal to the payoff from not cancelling control while the smooth pasting condition (equation 

(9)) ensures optimality of 𝐼𝐶 (Dixit and Pindyck 1994). 

Following the standard dynamic programming approach, the value of the forest when control 

is not adopted, 𝑊𝑁(𝐼, 𝑡), and when it is adopted, 𝑊𝐴(𝐼, 𝑡), will satisfy the following partial 

differential equations (PDEs) 

𝜕𝑊𝑁

𝜕𝑡
+

1

2
𝜎2𝐼2(1 − 𝐼)2

𝜕2𝑊𝑁

𝜕𝐼2
+  𝛽𝐼(1 − 𝐼)

𝜕𝑊𝑁

𝜕𝐼
− 𝑟𝑊𝑁 + 𝑏 +  𝑏(𝜑 − 1)𝐼 = 0,   

 

(10) 
  

𝜕𝑊𝐴

𝜕𝑡
+

1

2
𝜎2𝐼2(1 − 𝐼)2

𝜕2𝑊𝐴

𝜕𝐼2
+ 𝛽𝐴𝐼(1 − 𝐼)

𝜕𝑊𝐴

𝜕𝐼
− 𝑟𝑊𝐴 − 𝑚𝐴 + 𝑏 +  𝑏(𝜑 − 1)𝐼 = 0,   

 

(11) 

 

subject to the boundary conditions given by equations (6) – (9),  
∂2𝑊𝑁

∂I2⁄ = 0 at  𝐼 = 1, 0 

and terminal conditions 
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 𝑊𝑁(𝐼, 𝑇) =  𝑝(𝜌 − 1)𝐼(𝑇) + 𝑝, (12) 

 

 𝑊𝐴(𝐼, 𝑇) =  𝑝(𝜌 − 1)𝐼(𝑇) + 𝑝. (13) 

 

Since the boundary conditions (6) – (9) are specified at points that are yet to be determined, 

this system is a free-boundary problem. The Appendix gives further details of the solution 

method. Solving the system (6) – (13) determines the adoption and cancellation thresholds, 

which are functions of time since we consider the timing of control over a finite time horizon. 

In this article we are primarily concerned with the optimal timing of control at the beginning 

of the time horizon of interest, that is 𝐼𝐴(0) and 𝐼𝐶(0). Therefore, unless specified otherwise, 

we use 𝐼𝐴 and 𝐼𝐶 to denote the adoption and cancellation thresholds at time t = 0.  

Due to the logistic nature of both the drift and diffusion terms in the logistic SDE, it is not 

possible to obtain closed-form solutions to this problem. Therefore we solve the free boundary 

problem given by equations (6) - (13) numerically using the Euler method in MATLAB 

(Wilmott, Howison, and Dewynne 1995). Further details are given in the Appendix. 

2.3 Managing for Timber versus Non-timber Objectives 

Consider two managers with different objectives: a ‘timber manager’ who is concerned solely 

with the timber benefits (𝑏 = 0 in equation (5)), and a ‘non-timber manager’ concerned only 

with maximising the non-timber benefits (𝑝 = 0 in equation (5)). We assume that both 

managers take decisions with regard to disease control independently of the other and so they 

do not take into account expectations of the other’s actions in their decision-making process. 

To ensure a fair comparison between the two cases, we set our baseline value of 𝑏 so that the 

initial value of the forest in the absence of disease for the non-timber manager is the same as 

for the timber manager when 𝑝 = 1. See Table 1 for a description of the parameters and the 

values used in simulations.  
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3. Results 

We initially investigate the adoption and cancellation thresholds for the two managers when 

disease renders both the timber and non-timber benefits worthless. For both managers we find 

that there exist two adoption thresholds, 𝐼𝐴
𝐿 and 𝐼𝐴

𝑈 (Figure 1a and b), and similarly two 

cancellation thresholds 𝐼𝐶
𝐿 and 𝐼𝐶

𝑈 (Figure 1c and d).  The two adoption and cancellation 

thresholds arise because of the bounded nature of the stochastic process used to describe the 

future uncertainty in the level of infection.  When no control measures are in place, our results 

show that it is optimal for both managers to apply control immediately when the level of 

infection lies within the two adoption thresholds, that is providing 𝐼𝐴
𝐿 ≤ 𝐼 ≤ 𝐼𝐴

𝑈.  We term this 

range of 𝐼 values the adoption region. If the area currently infected, 𝐼, is too small, the benefits 

of control do not outweigh the costs and so control should not be adopted until the proportion 

of area infected is large enough. Similarly when the proportion of area infected is close to 1 

there is little benefit from adopting control measures, as most of the forest is infected. Such an 

upper threshold may be exceeded even at the initial time if the damage remains undetected, 

which could occur, for example, if insufficient resources are devoted to surveillance efforts.  

If control is adopted then our results suggest that both managers should cancel control and go 

back to doing nothing as soon as the level of infection drops below or above the cancellation 

thresholds, that is when  𝐼 ≤ 𝐼𝐶
𝐿 or 𝐼𝐶

𝑈 ≤ 𝐼. We term this the cancellation region and we note 

that this region is disjoint. Similarly to the adoption thresholds, the upper and lower thresholds 

arise since at very low or high levels of infection the benefits from control no longer offset the 

costs, and so control measures should be cancelled immediately.  

While both managers should not either adopt or cancel control when the level of infection is 

correspondingly high or low, the sizes of the adoption and cancellation regions vary between 
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the timber and non-timber managers (compare Figure 1a and b, and also Figure 1c and d). This 

results from the differences in timing of the benefits from the forest (and loss of benefits 

resulting from infection) for each manager. Therefore, there is a larger region in the level of 

infection over which the timber manager should adopt control. In practice this can lead to 

situations where the non-timber manager may adopt control later than the timber manager 

(Figure 2a) or indeed the non-timber manager may never adopt control (Figure 2c). 

 

3.1 Impact of increasing disease damage on timing of control 

Independently varying the reduction in timber (𝜌) and non-timber benefits (𝜑) as a result of 

disease, we examine the impact of increasing disease damage on the adoption regions (in Figure 

3a and c) and cancellation regions of control (in Figure 3b and d) for the two managers. We 

find that for both forest managers, when the damage due to infected trees is very low (so 1 −  𝜌 

or 1 − 𝜑 are close to zero), the adoption thresholds do not exist and so it is never optimal to 

apply control. This result is denoted in Figure 3a and c by the ‘never adopt control’ region. 

The advantage of adopting control is the reduction in the speed of infection spread and the 

resulting increase in the timber and non-timber benefits as more trees remain healthy for longer. 

When infection reduces the timber benefits by very little, the increase in the value of the forest 

when adopting control versus not adopting is small. Indeed, in the never-adopt region, the 

reduction in benefits from the forest due to slower spread of disease leads to an increase in the 

value of the forest under adopting control that does not outweigh the additional costs. Therefore 

the benefits of control do not justify the costs and so there is no level of infection at which 

control measures should be undertaken. As the damage due to disease increases (1 − 𝜌 or 1 −

𝜑 increase towards 1), the difference in the value of the forest when adopting control versus 

not adopting increases. This leads to the appearance of two adoption thresholds and so there is 
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a region in which it is optimal to apply control.  As 𝜌 or 𝜑 approach zero, the benefit from 

adopting control rises and so the adoption region becomes larger (Figure 3a and c). Similarly 

the size of the cancellation region becomes smaller (Figure 3b and d). We term the level of 

damage at which the optimal strategy switches from ‘never control’ to ‘control within the 

adoption region’ the strategy switch point. 

Providing the disease affects both timber and non-timber benefits to the same extent, that is 

𝜌 =  𝜑, in the region where the adoption thresholds exist we find that the lower adoption 

threshold for the timber manager is always smaller than for the non-timber manager  (Figure 

3a). The opposite is true for the upper thresholds, so the adoption region for the timber manager 

is always larger than for the non-timber manager. Furthermore, the strategy switch point for 

the non-timber manager is higher than for the timber manager. Therefore, the reduction in non-

timber benefits due to disease must be greater before it is optimal for the non-timber manager 

to adopt control for any level of infected area. However, the difference between the strategy 

switch points is very small when 𝜌 =  𝜑 and so the range where it is optimal for the timber 

manager to control within their adoption region, while the non-timber manager should never 

control, is very small. While in general we find that there are differences in the size and 

positioning of adoption regions between timber and non-timber managers, for diseases for 

which ρ= φ there is a large overlap in the region in which both managers should adopt. 

Similarly, the cancellation regions for the two managers are very similar (Figure 3b). 

Therefore, in these situations differences in management objectives lead to similar control 

strategies for the two types of managers. We investigate the sensitivity of these results to 

epidemiological parameters in Section 3.2. 

The reduction in timber and non-timber benefits will not always be the same and depends on 

the impact of a given disease on the trees. For example, Dothistroma needle blight, which 

affects pine trees, reduces timber values significantly, but has little effect on (the flow of) 
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biodiversity or amenity value5, whereas oak processionary moth has a relatively low impact on 

timber values but has detrimental health effects on human and animal contacts, potentially 

leading to a significant loss of amenity value6. We find that when 𝜌 ≠  𝜑, the difference 

between the adoption regions for the timber and non-timber managers diverge significantly. In 

Figure 3c we show the adoption regions for both types of manager in the case where 𝜌 =  1 −

𝜑, so along the x-axis reduction in timber benefits is increasing (1 − 𝜌 is increasing) while the 

reduction in non-timber benefits is decreasing (1 − 𝜑 is decreasing). When the reduction to 

timber or non-timber benefits is in an intermediate range there is an overlap in the adoption 

regions between the optimal strategies of the timber and non-timber managers. However this 

overlap is significantly smaller than when 𝜌 =  𝜑. Similarly Figure 3d shows that the 

cancellation regions for the two managers begin to diverge as 𝜌 and 𝜑 diverge. The difference 

between the optimal strategy for the timber and non-timber managers is greatest for extreme 

levels of reduction in benefits, i.e. when the disease has either a large impact on timber values 

(𝜌 close to zero) but a negligible effect on non-timber values (𝜑 close to 1) or vice versa. In 

particular, depending on the extent to which 𝜌 and 𝜑 differ, it may be optimal for the non-

timber manager never to adopt control, while the timber manager should control when the 

proportion of area infected lies within the adoption region (and vice-versa). Such cases are 

summarised in the bottom two rows of Table 2, along with examples of diseases where such a 

situation arises.  

3.2 Impact of Epidemiological Parameters on Adoption and Cancellation Thresholds 

In Figure 4 we investigate the sensitivity of the adoption thresholds for each manager to 

epidemiological parameters, namely the transmission rate (Figure 4a), 𝛽, the reduction in 

spread (Figure 4b), 𝜔, and the level of uncertainty (Figure 4c), 𝜎 (the results for cancellation 

                                                           
5 https://www.forestry.gov.uk/pdf/fcrn002.pdf/$file/fcrn002.pdf 
6 https://www.forestry.gov.uk/oakprocessionarymoth 
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thresholds are similar).  Other parameters are as before with an equal proportional reduction in 

timber and non-timber value (𝜌 =  𝜑 = 0). 

As the mean transmission rate, 𝛽, increases, the upper adoption thresholds increase while the 

lower adoption thresholds decrease for both managers (Figure 4a). An increased transmission 

rate increases expected future infection levels and the resulting loss of benefits, hence 

increasing the relative benefits of control. Therefore, the range of 𝐼 (level of infection) over 

which either manager should adopt control is widest when the rate of spread (𝛽) is large. 

Furthermore, the rate of change in the thresholds as the transmission rate increases is greater 

for the non-timber-objective manager. This is because of differences in the timing of benefits 

from the forest: non-timber benefits accrue gradually over time, whereas timber benefits arise 

solely at the final time T. Whilst increases in  𝛽 increase expected future losses for both types 

of manager, the effect is greater for the shorter-dated benefits because the forest area infected 

is limited above by the size of the forest itself. The non-timber managers’ adoption thresholds 

are thus more sensitive to changes in 𝛽. This means the difference in the size of the adoption 

regions between the timber and non-timber manager is greatest for slow spreading pathogens 

(𝛽 small). Indeed, when 𝛽 is very small, it is actually optimal for the non-timber- manager 

never to adopt control (left of dotted green line in Figure 4a), while the timber manager should 

adopt control providing the level of infection lies within a relatively large adoption region (for 

example when 𝛽 = 0.05, the timber manager would adopt for 0.19 ≤ 𝐼 ≤ 0.75). 

As the proportional reduction in spread due to control (1 − 𝜔) increases, the upper thresholds 

increase and lower thresholds decrease (though to a lesser extent) for both types of manager 

(Figure 4b). Therefore, the more effective the control is at reducing the rate of spread of the 

pathogen, the greater range in the level of infection at which control should be adopted. The 

rate of change in the adoption thresholds is similar for both managers and so the difference in 

the adoption regions does not vary significantly as  𝜔 varies. 
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Figure 4c shows that as uncertainty increases (𝜎), the upper adoption thresholds decrease while 

the lower adoption thresholds increase for both the timber and non-timber managers, reducing 

the size of the adoption region. When uncertainty is high it is more valuable to wait before 

adopting control. Greater uncertainty increases the value of delaying and waiting for further 

information about the future evolution of infection. Switching (adopting or suspending control) 

only occurs when the benefits outweigh the costs, including the loss of the value of this option 

to delay. So the difference between the lower (upper) adoption and the lower (upper) 

suspension thresholds increases with uncertainty. The rate of change in the thresholds is once 

again greater for the non-timber manager and so the non-timber managers’ thresholds are more 

sensitive to changes in 𝜎.  The difference in the size of the adoption regions between the two 

managers is greatest for large values of 𝜎 (Figure 4c).  

 In summary, the difference in adoption regions is greatest when the rate of infection is slow 

(low 𝛽) or when uncertainty about the transmission rate is high (high 𝜎).  In all these cases, the 

timber manager adopts disease control for a wider range of proportions of area infected than 

non-timber managers.  

3.3 Summary of differences in the control strategies of the two types of manager 

Differences in adoption (and cancellation) regions can arise for the two types of manager either 

because of the differing impact of a disease on timber and non-timber benefits (𝜌 ≠  𝜑) or 

because of each manager’s sensitivities to disease-related parameters.  These differences are 

smaller when the impact of the disease on timber and non-timber benefits is similar (𝜌 ≈  𝜑), 

when the disease is fast spreading (high 𝛽) or the level of uncertainty (𝜎) is low. In these cases, 

the adoption regions for the two managers largely overlap, and so there are no significant 

differences in the timing of control adoption for the different types of manager. 
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When the impact of disease on the different benefits of the forest are disparate, such as for 

Dothistroma needle blight or oak processionary moth, our results show the contrasting 

objectives between forest managers lead to significant dissimilarities in their optimal disease 

management strategies. This is important for the control of disease at the landscape scale since 

infection can spread from one forest to another (i.e. the spread of infection does not respect 

land ownership boundaries). Therefore if, for example, the non-timber manager never controls 

the disease, the benefits of control may be reduced for a neighbouring timber manager, as a 

result of an increase in the level of infection pressure from the non-timber manager’s forest.  

 

3.4 Subsidies to align disease control strategies of different forest managers 

Heterogeneities in the adoption of control at the landscape scale due to divergent management 

objectives and the presence of a transferrable externality (the disease) may prompt a 

government or other national or regional decision-making body to attempt to align disease 

control boundaries more closely (for example, by targeting subsidies at managers for whom 

thresholds for control would not otherwise be triggered).  We use our model to investigate the 

effect of subsidies on a managers’ adoption and cancellation thresholds.  In practice, subsidies 

for the adoption of disease control could have two components: a reduction in the one-off cost 

of initiating control or a reduction in the annual ongoing control cost.  We consider two extreme 

types of subsidy: the first pays out a one-off fixed amount when control is initially adopted 

while the second pays out a yearly subsidy for the whole period over which control is adopted. 

The first scheme essentially reduces the fixed cost of adopting control, while the second 

decreases the yearly maintenance costs that a manager incurs whilst adopting control measures.  

We take as an example a disease that has a high impact on timber benefits (𝜌 = 0.4) but lower 

effect on non-timber benefits (𝜑 = 0.6). In this case it is optimal for the timber manager to 

adopt control immediately, providing that the proportion of infected area is within the region 
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[0.054, 0.73], while the non-timber manager should never adopt control.  Figure 5 shows the 

adoption (a and c) and cancellation (b and d) regions respectively for the non-timber manager 

as the proportional reduction in fixed costs, that is subsidy scheme 1 (top), and the proportional 

reduction in yearly costs, that is subsidy scheme 2 (bottom), increase.  For comparison we also 

show the adoption and cancellation thresholds for the timber manager. Note that we assume 

that both subsidy schemes are only targeted at non-timber managers: the timber managers’ 

costs remain fixed at the baseline values.  

Both subsidy schemes switch the optimal strategy for the non-timber manager from never-

adopt-control to one where control should be adopted, providing that the level of subsidy is 

high enough (Figure 5a and c). Both types of subsidy therefore succeed in increasing the range 

of infected area for which the non-timber manager would start to control, bringing the non-

timber manager’s adoption thresholds closer to those of the timber manager. 

While the adoption thresholds behave in qualitatively the same way for both subsidy schemes, 

this is not the case for the cancellation thresholds. For the lump-sum subsidy, the upper 

cancellation threshold decreases, while the lower threshold increases as the reduction in fixed 

costs increases (Figure 5a). Therefore, the overall effect is to increase the size of the 

cancellation region as the subsidy increases. In particular, when fixed costs are completely 

eliminated, the adoption and cancellation thresholds are identical (cf Figures 5a and b). This 

suggests that while there is a region over which it is optimal for non-timber managers to adopt 

control, they may cancel control almost immediately upon adoption (if the proportion of area 

infected moves back into the cancellation region). In contrast, for the annual subsidy, the 

cancellation thresholds behave in the same way as the adoption thresholds, and so the size of 

the cancellation region decreases as yearly costs are reduced (Figure 5d). Indeed, if subsidy 

payments are large enough to remove all yearly costs there is no longer a cancellation region. 

Therefore, once control has been adopted, the non-timber manager will not cancel control.   
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To further illustrate the impact of the difference in the cancellation regions for the two subsidy 

schemes on the control strategy we plot an example path in Figure 6. While under both schemes 

the non-timber manager would adopt control at the start of the outbreak, when fixed costs are 

eliminated (subsidy scheme 1) the manager would later cancel control (Figure 6a), while when 

yearly costs are eliminated (subsidy scheme 2) the manager would not cancel (Figure 6b).  

These results rely on two effects. Firstly, in this dynamic model with two possible states 

(currently controlling / not controlling), the thresholds for moving between states take account 

of future costs only. Whilst both lump-sum and annual subsidies decrease future costs of 

control, once control has started, annual subsidies give greater incentives to continue 

controlling than lump-sum subsidies, which will only be received if control is first suspended 

and then re-started. Secondly, since the future infection proportion is stochastic, thresholds 

depend on the degree of irreversibility, (difficulty of switching back and forth between states). 

Lump-sum and annual subsidies have very different effects on irreversibility: lump-sum 

subsidies decrease irreversibility (reduce the costs incurred if control is adopted and 

subsequently cancelled), whereas annual subsidies leave irreversibility unchanged but instead 

increase the value of ongoing control. It is well-known in real options models that the lower 

the irreversibility, the closer together are optimal adoption and cancellation thresholds. In our 

model this increases the size of the region over which control is adopted and reduces the size 

of the region over which control continues to be implemented. For lump-sum subsidies and 

adoption thresholds, these two effects reinforce each other. However, for cancellation 

thresholds they work in opposite directions, and particularly for the upper cancellation 

threshold, the irreversibility effect dominates, so a larger lump-sum subsidy can cause a 

manager to cancel infection control earlier when his proportion of infected area is high. The 

dissimilarity in the effects of different types of subsidies on the cancellation thresholds suggests 
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that subsidising ongoing costs (rather than one-off upfront costs) may be more effective in 

ensuring the continuation of disease control once it has been initiated.   

 

4. Conclusions 

There is a wide range of different management objectives amongst forest managers in the UK, 

as in other countries (Urquhart and Courtney 2011; Mizaraite and Mizaras 2005; Wiersum, 

Elands, and Hoogstra 2005). Understanding how this heterogeneity affects the disease control 

strategies adopted by forest managers, and, in particular, when individual managers initiate 

control measures, is therefore important for national decision-making institutions. The aim of 

decision-making institutions, such as Defra and the Forestry Commission, is primarily to 

minimise the spread of disease at the national, rather than at the individual forest, level.  

We have used a real options approach to investigate how forest management objectives affect 

when (if ever) it is optimal for the forest manager to adopt control measures to reduce damage 

due to disease. Our analyses take account of uncertainty in the future spread of infection. We 

compare the adoption region for two forest managers with divergent objectives: the first 

manages the forest for the timber benefits only while the second manages the forest for the 

non-timber benefits only. We show that there are two adoption and two cancellation thresholds 

for both types of manager, and so it is not optimal for either manager to adopt control when the 

level of infection is very small or very high. However, the range of infected area over which it 

is optimal to adopt control (the adoption region) is broader for the timber than the non-timber 

manager. Therefore in practice it is optimal for the timber manager to adopt control earlier than 

the non-timber manager. 

We find that when the reduction in benefits (timber and non-timber) is small the adoption 

thresholds do not exist and so control should never be adopted for either type of manager. As 
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the reduction in benefits increases, the size of the adoption region also increases since there is 

more to be gained from adopting control measures. This is the case irrespective of the 

manager’s objectives.  

When the disease reduces timber and non-timber benefits to the same degree, the adoption 

thresholds for the non-timber manager are higher than for the timber manager but there is 

significant overlap between the two adoption regions (Figure 3a). Therefore, while it is optimal 

for the timber manager to adopt control earlier than the non-timber manager, the difference in 

adoption time is generally small, particularly when the disease is slow-spreading, there is little 

uncertainty and the control is very effective. For policy makers, this implies that in such 

situations the diversity in management objectives at the landscape scale does not lead to 

significant differences in the disease control strategy of timber- and non-timber managers. A 

uniform approach to disease management could therefore be achieved without the need for 

external intervention.  

Discrepancies in the adoption regions for the two managers are enhanced for slow (𝛽 small) 

spreading epidemics or those characterised by large degrees of uncertainty (𝜎 large).  The 

divergence in adoption thresholds occurs even if the disease impacts equally on the value of 

timber and non-timber benefits: the extent of divergence increases as the impact of disease 

differs for the two classes of benefits. Indeed it can be optimal for some managers to adopt 

control while for others it is never optimal to adopt control (Figure 3c). In these situations, the 

divergent management objectives create a tension in landscapes with some managers 

controlling and others not, due to a transferable externality (the disease).  

Our results have important implications for policy makers since they show that the diversity in 

management objectives alone does not lead to significantly different disease management 

strategies between different manager types. Rather, it is a combination of the diversity in 
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management objectives and the way in which the disease affects these benefits that determines 

how uniform the adoption of control measures is at the landscape scale. Hence, it is important 

for decision makers to consider both the balance of management objectives and of the disease 

impacts on benefits to ensure effective adoption of control across the whole landscape. 

When disease impacts differently on timber and non-timber benefits, we find that subsidy 

schemes that reduce either the fixed or yearly maintenance cost could modulate the discrepancy 

of adoption times for disease control between the two types of manager (Figure 5a and c). 

However, while a subsidy scheme that reduces only the fixed cost would bring forward the 

adoption for the non-timber manager (the manager-type targeted by the subsidy scheme), it 

would also bring forward the subsequent cancellation of control. Indeed, when fixed costs are 

eliminated then the cancellation and adoption thresholds coincide and hence control subsidies 

would not be sustained in the long term. Note however, that lump-sum subsidies combined 

with a penalty payment on cancellation would increase the irreversibility of control and so 

would increase the region over which the manager would continue controlling. However, such 

penalty payments may be difficult to enforce in practice. 

Alternatively, a subsidy scheme that reduces yearly costs ensures that once adopted, control 

measures are likely to be sustained, since the size of the cancellation region decreases as the 

subsidy payments increase (yearly costs decrease). This has implications for policy makers on 

the performance of different types of subsidy schemes to support effective control of disease 

at the landscape scale. Subsidy schemes that reduce yearly maintenance costs may be more 

effective in ensuring continued implementation of disease control measures over the longer 

term.  

The main aim of this article is to investigate the effect of contrasting management objectives 

on the timing of control, rather than to explore behavioural interactions between forest 
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managers at the landscape scale. In particular, we have assumed that each manager makes 

decisions independently of neighbouring forest managers. However, the decision of a manager 

to adopt control measures or not impacts on the spread of the disease to their neighbours. A co-

ordinated response is therefore required for effective control at the landscape scale.  

Fenichel, Richards, and Shanafelt (2013) incorporate the potential increased risk of disease if 

a manager’s neighbours do not adopt control measures by incorporating a constant term directly 

into the model of the disease dynamics. On the other hand, Epanchin-Niell and Wilen (2015) 

directly incorporate expectations of neighbours actions into the decision problem of a manager, 

which allows for the study of local cooperative and coordinated control agreements to manage 

invasions in a landscape. They find that the level of co-operation needed to mitigate damage 

caused by disease depends on the cost of controls. In particular, their work shows that strategic 

interactions between independent landowners can be important to ensure a successful control 

response at the landscape scale. An interesting extension to the work presented here would be 

to incorporate the expected actions of neighbouring forests into the decision-making process 

for a given manager. 

In this article we have considered a control measure that reduces the rate at which a tree disease 

spreads, which could, for example, be the spraying of fungicides or pesticides that reduce the 

susceptibility of trees, removal of weeds to increase the vigour of the trees and reduce humidity 

or movement restrictions that reduce the chance of infected material being bought in from 

elsewhere. Other control measures involve the removal of infected material, or treating 

currently infected trees, (Ndeffo Mbah and Gilligan 2010; Cunniffe, et al. 2015; Cunniffe et al. 

2016) rather than altering the transmission rate parameter. The model presented here could be 

extended to explore how the optimal timing of control depends on the way in which a control 

measure alters disease spread. The model could also be extended to consider the optimal timing 
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of control over multiple timber rotation periods, which would allow us to take into account 

non-timber benefits that accumulate over multiple rotations. 

This article represents the first attempt to investigate how the interaction between uncertainty 

in disease spread and forest management objectives affect when (if ever) it is optimal for an 

individual forest manager to adopt control measures to reduce damage due to invasive 

pathogens or pests. We have shown that managers adopt control at different times depending 

on the management objectives for the forest, specifically according to the relative value and 

impact of disease on timber and on-timber benefits from the forest. Furthermore, whilst 

subsidies always accelerate the adoption of disease control measures (the adoption region 

widens), once control has been adopted, different forms of subsidy can have opposite effects 

on the continuation of disease control (either widening or narrowing the cancellation regions). 

Therefore, policy makers need to take into account not only the range of different management 

objectives but also the effectiveness of alternative intervention measures if they wish to ensure 

a uniform approach to disease control at the landscape scale. 
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Tables 

Table 1: Parameter values used in numerical simulations. 

Model Parameter Description Base case (Range) 

𝛽 Initial infection transmission rate (i.e. 

transmission rate when no control 

deployed) 

0.15 

(0.05, 0.25) 

𝜔 Reduction in infection transmission rate as 

a result of adopting control measures 

0.1 

(0.4, 0) 

𝜎 Volatility of infection transmission rate 0.5 

(0, 1) 

𝑏 Net value per hectare of annual non-

timber benefits 

0 for timber manager 

 𝑟𝑒−𝑟𝑇/(1 − 𝑒−𝑟𝑇) for non-

timber manager 

𝑝 Net return per hectare from timber sold  1 for timber manager 

0 for non-timber manager 

𝜑 Factor by which non-timber benefits are 

reduced as a result of infection   

0 

0.6 (in Figure 5),   

(0, 1) 

𝜌 Factor by which timber benefits are 

reduced by as a result of infection   

0  

0.4 (in Figure 5),  

(0, 1) 

𝐾𝐴 Fixed cost of control measures  0.0116 ([0, 0.0116) 

𝑚𝐴 Yearly maintenance cost of control 

measures  

0.0005 ([0, 0.0005]) 

𝛼 Proportion of initial sunk cost that is 

recouped upon cancelling control 

measures 

0 

𝑟 Risk-free interest rate 0.03 

𝑇 Time period over which to consider the 

value of the forest 

40 years 

 

 



27 
 

Table 2: Impact of different combinations of reductions to timber (𝜌) and non-timber (𝜑) 

benefits on the optimal control strategy for a timber and non-timber manager, along with 

examples of diseases for which these combinations of 𝜌 and 𝜑 arise. 

 

Reduction in 

timber benefits 

Reduction in 

non-timber 

benefits 

Control strategy 

for timber 

manager 

Control strategy 

for non-timber 

manager 

Disease 

example 

High (𝜌 = 0.1) High (𝜑 = 0.1) Control when 

proportion of 

area infected 

within adoption 

region  

Control when 

proportion of 

area infected 

within adoption 

region  

Ash dieback 

Low (𝜌 = 0.9) Low (𝜑 = 0.9) Never adopt 

control 

Never adopt 

control 

 

High (𝜌 = 0.1) Low (𝜑 = 0.9) Control when 

proportion of 

area infected 

within adoption 

region  

Never adopt 

control 

Dothistroma 

Low (𝜌 = 0.9) High (𝜑 = 0.1) Never adopt 

control 

Control when 

proportion of 

area infected 

within adoption 

region  

Oak 

Processionary 

moth 
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Figures 

Figure 1: Adoption (a and b) and cancelation (c and d) regions for the timber manager (a and 

c) and non-timber manager (b and d). The interval in the proportion of area infected over which 

a manager should adopt control immediately is shown by the green box in a and b. The region 

in the level of infection over which the manager should cancel control immediately is disjoint 

and in shown by the two red boxes in c and d. Note that the lower cancellation threshold is very 

close to 0 and so it appears as a line. Parameter values used are the baseline values given in 

Table 1. 

Figure 2: Individual realisations in the level of infection and the time at which the timber 

manager (red dots) and non-timber manager (blue line) should adopt/cancel control for four 

different initial levels of infection. 

Figure 3: (a) and (c) Adoption regions for timber manager (red) and non-timber manager (blue) 

when (a) the reduction in timber benefits equals the reduction in non-timber benefits (1 − 𝜌 =

1 − 𝜑) and when (c) the reduction in timber benefits is not equal to the reduction in non-timber 

benefits (1 − 𝜌 = 𝜑). Dashed lines show the switch points when moving from a region where 

the adoption thresholds exist to one where control should never be adopted. (b) and (d) 

Cancellation regions for timber manager (red) and non-timber manager (blue) when (b) the 

reduction in timber benefits equals the reduction in non-timber benefits (1 − 𝜌 = 1 − 𝜑) and 

when (d) the reduction in timber benefits is not equal to the reduction in non-timber benefits 

(1 − 𝜌 = 𝜑). Dashed lines show the switch points when moving from a region where the 

cancellation thresholds exists to one where control should never be cancelled. 

Figure 4: Upper and lower adoption thresholds ((a), (b) and (c)) and cancellation thresholds 

((d), (e) and (f)) for timber manager (red lines) and non-timber manager (green square lines) as 

a function of: (a) and (d) the transmission rate 𝛽, (b) and (e) the reduction in transmission rate 
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due to control 𝜔 and (c) and (f) the volatility 𝜎. The reduction to timber and non-timber is 

assumed to be fixed 𝜌 = 𝜑 = 0. 

Figure 5: Impact of reducing fixed costs (a) and (b) and non-going costs (c) and (d) on the 

adoption region ((a) and (c), blue shaded area) and cancellation region ((b) and (d), red shaded 

area) for the non-timber manager, when the reduction in timber benefits is high (𝜌 = 0.4) and 

the reduction in non-timber benefits is low (𝜑 = 0.6). The dashed lines show the 

adoption/cancellation thresholds for the timber manager when adoption costs are baseline 

values 

Figure 6: Individual realisations in the level of infection and the time at which the non-timber 

manager should adopt/cancel control for a subsidy scheme that eliminates fixed costs (a) and 

one that eliminates ongoing costs (b). 
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Appendix 

The free boundary problem is given by equations (10) and (11) in the main text along with the 

boundary conditions given by equations (6) to (9), (12) and (13), in the main text, and 

conditions at 𝐼 = 0 and 𝐼 = 1. We solve this in MATLAB using the Euler method (Wilmott, 

Howison, and Dewynne 1995). To ensure numerical convergence, the time step used for 

numerical simulation, 𝑑𝑡, must satisfy the following condition, 

𝑑𝑡 <
1

2(𝜎 × 𝑑𝐼)2
 , 

where 𝑑𝐼 is the mesh size for the infected area variable (𝐼) that is used in simulation (we take 

𝑑𝐼 = 0.002 in all simulations). In order to obtain the finite difference scheme at the 

upper/lower boundaries (Insley 2002), we apply  
∂2𝑊𝐴

∂I2⁄ =
∂2𝑊𝑁

∂I2⁄ = 0 at  𝐼 = 1, 0. 


