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SIMULATION-BASED TESTS THAT CAN USE ANY NUMBER OF
SIMULATIONS

JEFF RACINE AND JAMES G. MACKINNON

ABSTRACT. Conventional procedures for Monte Carlo and bootstrap tests require that B,
the number of simulations, satisfy a specific relationship with the level of the test. Otherwise,
a test that would instead be exact will either overreject or underreject for finite B. We
present expressions for the rejection frequencies associated with existing procedures and
propose a new procedure that yields exact Monte Carlo tests for any positive value of B.
This procedure, which can also be used for bootstrap tests, is likely to be most useful when
simulation is expensive.

1. INTRODUCTION

The use of simulation methods for inference in finite samples is well established. In the
case of Monte Carlo tests, where the simulated test statistics follow the same distribution as
the actual one under the null hypothesis, these methods yield exact inferences; see Dwass [5],
Jockel [10], and Hall and Titterington [9]. In the case of bootstrap tests based on asymptot-
ically pivotal test statistics, they generally yield inferences that improve more rapidly with
the sample size than tests based on asymptotic theory; see Beran [1], Hall [§], and Mammen
[11], among many others.

Standard procedures for Monte Carlo and bootstrap tests require that B be chosen so
that a(B+ 1) is an integer, where « is the level of the test. When computation is expensive,
this condition may be burdensome, especially if « is small. For o = .01, it is impossible to
perform a Monte Carlo test with B < 99 using standard procedures.

In this paper, we propose a new procedure for performing Monte Carlo tests when B, the

number of simulations, can take on any positive value. Formally, our analysis deals only
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with the case in which the distribution of the test statistic 7, of which the realized value
is 7, is identical under the null hypothesis to the distribution of the simulated statistics

T3

+,J = 1,..., B. However, this procedure can also be applied to bootstrap tests based on

asymptotically pivotal test statistics. In the latter case, it will generally not yield an exact
test, but, as in Hall [7], where the condition that a(B +1) is an integer is satisfied, the error
due to bootstrapping as n — oo will be of the same order for any finite B as it is for B = oo.

Our procedure is not needed when computation is cheap. However, there are many situa-
tions in which it is not. One such situation is when simulation-based methods are required
to estimate the model; see van Dijk and Monfort [12] and Gouriéroux and Monfort [6] for
introductions to simulation-based methods in econometrics. Another situation is when simu-
lation is required to compute standard errors, or, more generally, covariance matrices. Even
when standard errors can be calculated without simulation, they may not be reliable. In
such cases, the double bootstrap proposed by Beran [1] can be used to obtain more accurate
inferences. But this requires a substantial number of second-level simulations for each of B
first-level simulations and can therefore be very expensive.

Monte Carlo tests with finite B involve some loss of power relative to (infeasible) tests
that use B = oo; see Jockel [10] and Hall and Titterington [9]. Of course, our procedure is
not immune to this problem. But, as we show in Section 4, our procedure does not introduce

any additional power loss, and power seems to increase monotonically with B.

2. CONVENTIONAL EDF P VALUES

One can perform a Monte Carlo or bootstrap test either by comparing the actual test
statistic 7 with a critical value computed from the 77 or by computing a bootstrap P value
using both 7 and the 77 and then comparing it with the level of the test. Our procedure is
based on the P value approach, which we now describe.

The most intuitive way to compute a bootstrap P value based on B simulated test statis-

tics, for a test that rejects in the upper tail, is to estimate the empirical distribution function



(EDF) of the bootstrap statistics. Then the bootstrap P value is

(1) szl_ = Z Z T>T

UCJ|2

where I(-) is the indicator function, F/(7) is the EDF of the bootstrap statistics, and N =
Zle I(r; > 7) is the number of simulated test statistics greater than 7. We reject the
null hypothesis whenever P; < . This procedure is equivalent to using F (7) to estimate a
critical value and rejecting the null whenever 7 exceeds that critical value.

When B is chosen so that «(B + 1) is an integer and the test statistic is pivotal, this
procedure yields an exact test. The reason why Monte Carlo tests are exact in this case is
easy to see. If 7 and the 77 all follow the same distribution, then the probability that 7 will
be among the o(B + 1) most extreme values by chance is exactly «. But this is precisely
the situation in which P} is less than a.

Some authors (for example, Davison and Hinkley [4]) use a modified version of the EDF

approach in which Pj is replaced by

N 1
2 P, =
2) B B+1+B+1

and reject whenever Py < «. This biased EDF approach leads to precisely the same infer-
ences as the usual EDF approach based on (1) whenever a(B + 1) is an integer, but it leads
to different results when this condition is not satisfied. A test based on (2) can never reject
at all when B is less than the smallest value for which a(B + 1) is an integer.

It is well known that F'(7) has a rectangular (discrete uniform) distribution. Therefore,
sowill P =1-— F(%) Thus, under the null, P} assumes B + 1 equally probable potential
outcomes. The expected rejection frequency for a test based upon Pj under the null can be
shown to be

ceiling(aB)

(3) E[I(P} < a)) = Pr(Pj < a] = =282,



where ceiling(x) is a function returning the smallest integer not less than x. It can similarly

be shown that

floor(a(B + 1))
B+1 ’

(4) E[I(P; < a)] =Pr[Pp <a] =

where floor(z) is a function returning the largest integer not greater than z. From these
results, it can be seen that tests based on Pj; and Pj yield identical inferences when either
a(B+1) or aB is an integer. Both tests are exact in the former case and underreject in the
latter. Expressions (3) and (4) do not appear to be well known.

Figures 1 and 2, which are based on these results, plot rejection frequencies under the
null for the standard and biased EDF approaches as a function of B when a = .05 and
a = .01, respectively. The standard EDF approach often overrejects severely. The biased
EDF approach never overrejects, but it often underrejects severely. Both approaches can
work very badly when B is small.

Let Buin(a) denote the smallest value of B such that «o(B+1) is an integer. From equations
(3) and (4), it is easy to see that Buyin(a) =9 when o = .10, 19 when o = .05, and 99 when
a = .01. The constraint that B not be less than By,,(«) is particularly troublesome when
« is small. When computation is expensive, it may be burdensome to have to perform at

least 99 simulations to perform a test at the .01 level.

3. ConTINUOUS EDF P VALUES

The size distortions associated with the conventional EDF approach arise because Pj; (and
also Pp) can take on only B+ 1 discrete values. Our proposal is to modify P} so that it is
uniformly distributed on the [0, 1] interval by making use of a single draw from the uniform
distribution in addition to the B simulated statistics.

The modified (continuous) EDF P value is given by

N U

pe —
(5) B= 511 Bi1




where U ~ U[0,1]. Thus it has almost the same form as the biased EDF P value Pj, but
the quantity that is added is U/(B + 1) instead of 1/(B 4 1). Because this quantity is a
continuous random variable, Py must be continuous. It is easy to see that the smallest value
it can take is 0 and the largest value it can take is 1, and that these extremes both occur
with zero probability.

In fact, under the null hypothesis, Pr[Pj; < o] = « for any finite B. In other words, P§
is itself distributed as U[0,1]. It is easy to see why this is the case. The first term on the
right-hand side of equation (5) is a discrete random variable that can take on B + 1 possible
values. Under the null hypothesis, each of these values is equally probable. The second term
is a continuous random variable that follows the U[0,1/(B + 1)] distribution. This second
random variable fills in the gaps between the values that the first random variable can take.
For each value of N, P is uniformly distributed between N/(B + 1) and (N +1)/(B + 1).
Since every value of N is equally probable, P§ must be U0, 1]. For a formal proof of this
proposition, see the Appendix.

Our procedure is formally quite similar to a randomization test; see [2], Section 4.5. It may
thus be subject to the criticism that we are adding a source of randomness which has nothing
to do with the original problem. However, there is a fundamental difference between our
procedure and randomization tests. In our case, the underlying test statistic 7 is continuous,
not discrete. Any Monte Carlo or bootstrap test based on finite B involves simulation error,
whether or not our procedure is used. This error can always be made arbitrarily small by
making B sufficiently large. That is as true for the simulation error associated with U as
for the errors associated with the 77, because the randomness in the second term on the
right-hand side of equation (5) is, in principle, no different from the randomness in the first
term that arises from simulating the 7.

It is easy to see that Pj must yield exactly the same inferences as Pj; and P whenever
a(B + 1) is an integer. In this special case, Pr(P§ < «) = Pr(N < «(B + 1)) because,

whenever N < «(B+1), it must be less by at least 1. But this implies that N+U < a(B+1).



4. POwWER L0OSS AND B

It is well-known that the randomness introduced by simulation causes Monte Carlo and
bootstrap tests to lose power, and that this loss of power is proportional to 1/B. For
discussions of this type of power loss, see Jockel [10], Hall and Titterington [9], and Davidson
and MacKinnon [3]. Our procedure is, of course, subject to exactly the same type of power
loss as standard ones based on P}, or Pj. However, evidence from simulation strongly
suggests that the power of our procedure is monotonically increasing in B. Moreover, as
we have noted, our procedure yields exactly the same inferences as standard ones whenever
a(B+1) is an integer. It follows that using our procedure can never harm test power. If we
have performed B simulations, where a(B + 1) is not an integer, it is always better to base
a test on P§ than to throw away b simulations so that a(B — b+ 1) is an integer and base a
test on Pp_,.

There is potentially a severe loss of power whenever B < By, («). In this case, the power
of the test is bounded from above. Suppose that the null hypothesis is seriously false, so that
the power of the test when B = oo is unity. This implies that 77 < 7 for every simulation,

so that N = 0. When N = 0,
(6) Pr(Pp <a)=Pr(U/(B+1)<a)=Pr(U <a(B+1))=«a(B+1).

Thus the test can never have power greater than (B + 1). When B and « are both small,
this bound may be quite low. For example, when B = 9 and o = .01, it is just .10. Of
course, the bound in equation (6) has no force when B > By, ().

Figures 3 and 4 show power functions for tests at the .05 and .01 levels for various values
of B. The test statistic actually follows the N(d,1) distribution, with § = 0 under the
null hypothesis. In both figures, the topmost curve, which is labelled B = oo, is based on
the N(0,1) distribution, and the other curves are based on 5 million replications with the

indicated values of B. In both figures, it can be seen that there can be quite a lot of power



loss when B < Bpyn(«). Using B = Bpn(«), which is 19 for a = .05 and 99 for a = .01, still
leads to noticeable power loss. This is essentially halved by using B = 2B, () + 1.

The effect of B on power loss is more clearly seen in Figures 5 and 6. The first of these
shows the difference between power when B = oo and power for a specified value of B
plotted against B for tests at the .05 level for three different values of §. As the bound in
equation (6) suggests, power loss is very great when ¢ is large, and it declines very rapidly as
B increases towards B, (a). There are sharp kinks at B = Bp,in(«). Beyond the kinks, the
curve is initially almost flat, but it then falls again much more slowly than before. There are
also kinks at B = 2B () + 1, B = 3Bpin(a) + 1, and so on. However, power loss becomes
very small, and the curves become quite flat, as B increases.

Figure 5 is similar to Figure 6, but it shows power loss for tests at the .01 level. The loss
of power when § = 1 is quite modest because there is not much power to be lost, as can be
seen from Figure 4. For B < By,(«), where there are once again noticeable kinks, the loss
of power is much greater when 6 = 2 and very much greater when 6 = 3, and it declines

more rapidly as B increases.

5. CONCLUSION

We have proposed a very simple procedure for performing Monte Carlo and bootstrap
tests that is valid for any positive number of simulations B. This procedure is closely related
to the EDF and biased EDF methods of calculating P values that are widely used, and it
yields identical results whenever a(B + 1) is an integer. The new procedure produces exact
tests whenever a test statistic is pivotal. For test statistics that are only asymptotically
pivotal, it produces tests with an error in rejection probability that is of the same order in

the sample size for all B.



APPENDIX
The fundamental result of this paper is that the continuous EDF P value Pj defined in
(5) follows the U|0, 1] distribution under the null hypothesis, and therefore Pr[P§ < o] = «

for any B > 0.

Proof. Recall that N = Zle I(r; > 7). Thus N € {0,..., B}, each outcome occurring with
probability 1/(B + 1) under the null. The probability function for N under the null, P(N),
and the density function for U, f,(U), are independent, having joint probability density
function f(NV,U) = P(N) x f,(U). The expected rejection frequency is therefore

N
Pr[P§<a]—Pr[ +U<oc]

B+1

:ZP(N)/ldFu(U<a(B+1)—N)

=0

:(Bil)z/o dF, (U < a(B+1) = N).

F,, being the uniform CDF, assumes values

0 if a(B+1) < N,
Fua)=14 1 if «(B+1)—1> N, and
a(B+1)— N otherwise.

Recalling that N is an integer,

N<ceiling(a(B+1)—1)

1 a(B+1)—- N
P PC < = _— B ——
P <ol 2 B+l > B+1

N=0 N=ceiling(a(B+1)—1)
B
0
P SR ==
N>ceiling(a(B+1)—1)
ceiling(a(B+1) —1) (B +1)—ceiling(a(B+1) — 1)
= +
B+1 B+1

Therefore, Pr[Pf < a] = a for any B > 0. O
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Figure 1. Rejection frequencies for tests at .05 level
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Figure 2. Rejection frequencies for tests at .01 level
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Figure 3. Power functions for tests at .05 level
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Figure 4. Power functions for tests at .01 level
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Figure 6. Power loss for tests at .01 level

12






