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Abstract

The fast double bootstrap, or FDB, is a procedure for calculating bootstrap P values
that is much more computationally efficient than the double bootstrap itself. In many
cases, it can provide more accurate results than ordinary bootstrap tests. For the fast
double bootstrap to be valid, the test statistic must be asymptotically independent
of the random parts of the bootstrap data generating process. This paper presents
simulation evidence on the performance of FDB tests in three cases of interest to econo-
metricians. One of the cases involves both symmetric and equal-tail bootstrap tests,
which, interestingly, can have quite different power properties. Another highlights the
importance of imposing the null hypothesis on the bootstrap DGP.
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1. Introduction

The simplest, and usually the most informative, way to perform a bootstrap test is to
compute a bootstrap P value. We first compute the test statistic itself in the usual way.
Then we generate a number of bootstrap samples and use each of them to compute a
bootstrap statistic. Finally, we calculate a bootstrap P value as the proportion of the
bootstrap statistics that are more extreme than the actual test statistic. When this P
value is sufficiently small, we reject the null hypothesis.

Bootstrap tests based on asymptotically pivotal test statistics should generally perform
better in finite samples than tests based on asymptotic theory, in the sense that they
will commit errors of lower order in the sample size n; see, among others, Hall (1992)
and Davidson and MacKinnon (1999). However, this does not mean that bootstrap
tests always perform acceptably well in finite samples. In theory, double bootstrap P
values, which are discussed in Section 3, should lead to more reliable tests than ordinary
bootstrap P values. However, the double bootstrap tends to be very computationally
demanding. Davidson and MacKinnon (2001) therefore suggested what they called
the fast double bootstrap, or FDB. It is very much less expensive to compute than the
double bootstrap itself, but its validity requires stronger conditions.

There is, at present, only limited evidence on how useful the fast double bootstrap
is likely to be in practice. Ideally, it would yield a P value similar to the ordinary
bootstrap P value when the latter is reliable, and a P value more accurate than the
ordinary bootstrap P value when the latter is unreliable. One objective of this paper
is to see whether this is likely to be the case for several commonly encountered tests.

The next section discusses bootstrap tests, especially in the context of two-tailed
tests, where there is more than one way to proceed. The following two sections discuss
double bootstrap tests and fast double bootstrap tests, respectively. Section 5 presents
simulation results for some regression-based tests for serial correlation. Section 6
presents similar results for tests for ARCH errors. Section 7 presents results for t tests
in a model estimated by two-stage least squares. The simulation results suggest that
using the fast double bootstrap can often improve the performance of bootstrap tests.
The improvement is modest in many cases but quite substantial in some.

2. Bootstrap Tests

Let τ denote a test statistic, and let τ̂ denote the realized value of τ for a particular
sample of size n. The statistic τ is assumed to be asymptotically pivotal, so that the
bootstrap yields asymptotic refinements; see Beran (1988). For a test that rejects when
τ̂ is in the upper tail, such as most tests that asymptotically follow a χ2 distribution,
the true P value of τ̂ is 1− F (τ̂), where F (τ) is the cumulative distribution function,
or CDF, of τ .

The problem is that we often do not know the function F (τ). At one time, the only
practical way to estimate F (τ̂) was generally to use an asymptotic distribution func-
tion. With modern computing facilities, however, we can often employ the bootstrap
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instead. A bootstrap DGP is used to generate B bootstrap samples, each of which is
used to calculate a bootstrap test statistic τ∗j for j = 1, . . . , B. We can then estimate
F (τ̂) by F̂ ∗B(τ̂), where F̂ ∗B(τ) is the empirical distribution function, or EDF, of the τ∗j .
This is often called the bootstrap distribution. Then the bootstrap P value is

p̂∗(τ̂) = 1− F̂ ∗B(τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂), (1)

that is, the fraction of the bootstrap samples for which τ∗j is larger than τ̂ . If the level
of the test is α, we reject the null hypothesis whenever p̂∗(τ̂) < α.

In some cases, the τ∗j follow precisely the same distribution as τ . That is, F ∗(τ), the
limit of F̂ ∗B(τ) as B → ∞, is identical to F (τ). In such a case, a bootstrap test is
called a Monte Carlo test and, if B is chosen so that α(B +1) is an integer, it is exact;
see Dufour and Khalaf (2001) for a review of the literature on Monte Carlo tests. In
this paper, however, we will be concerned with the much more common situation in
which F ∗(τ) differs from F (τ) in finite samples.

When τ can take on either positive or negative values, for example, when it has the
form of a t statistic, we often wish to perform a two-tailed test. In this case, there are
two ways to proceed. The first is to assume that the distribution of τ is symmetric
around zero in finite samples, just as it is asymptotically. This leads to the symmetric
bootstrap P value

p̂∗S(τ̂) =
1
B

B∑

j=1

I
(|τ∗j | > |τ̂ |). (2)

As before, we reject the null hypothesis when p̂∗S(τ̂) < α. There is evidently a close
relationship between (1) and (2). Suppose that τ has the form of a t statistic, so that
τ2 is asymptotically χ2(1). Then the P value for τ̂ based on (2) must be identical to
the P value for τ̂2 based on (1), when both are calculated using the same set of τ∗j .
Rejecting when p̂∗S(τ̂) < α is equivalent to rejecting when |τ̂ | is greater than the 1−α
quantile of the EDF of the |τ∗j |.
The symmetry assumption may often be excessively strong. If we do not wish to
assume symmetry, we can instead base a test on the equal-tail bootstrap P value

p̂∗ET(τ̂) = 2min
(

1
B

B∑

j=1

I(τ∗j < τ̂),
1
B

B∑

j=1

I(τ∗j > τ̂)
)

. (3)

Here we calculate P values for one-tailed tests in each tail and reject if either of these
P values is less than α/2. In other words, we reject when τ̂ either falls below the α/2
quantile or above the 1− α/2 quantile of F̂ ∗B(τ). The factor of 2 is needed because it
is twice as likely that τ̂ will be far out in either tail of the bootstrap distribution as
that it will be far out in one specified tail. When τ has the form of a t statistic, the
procedure is analogous to forming an equal-tail percentile t confidence interval. For a
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Monte Carlo test based on the equal-tail P value (3) to be exact, it is required that
(α/2)(B + 1) be an integer.

As we will see below, the power of tests based on symmetric and equal-tail bootstrap P
values against certain alternatives may be quite different. Moreover, these tests may
have different finite-sample properties when the distribution of τ is not symmetric
around zero. There is reason to believe that the bootstrap may perform better for
tests based on (2) than for tests based on (3), because the order of the bootstrap
refinement is often higher for two-tailed than for one-tailed tests; see Hall (1992).

3. Double Bootstrap Tests

The double bootstrap was proposed by Beran (1988). In various forms, it can be used
for a variety of purposes, including the calculation of either confidence intervals or
P values. In particular, it can be used to calculate P values that should, at least in
theory, be more accurate than ordinary bootstrap P values.

Let G(x) denote the CDF of the distribution that the bootstrap P values follow.
If F (τ) = F ∗(τ), and B = ∞, this distribution would just be U(0, 1). In general,
however, it will be unknown. The idea of the double bootstrap is simply to estimate
G(x) by using a second level of bootstrap.

The first step in the double bootstrap is to generate B1 first-level bootstrap samples
that are used to compute bootstrap statistics τ∗j for j = 1, . . . , B1. Then the ordinary
bootstrap P value p̂∗(τ̂) is calculated using one of the formulae discussed in the pre-
vious section. For concreteness, let us assume that (1) is used. The second step is
to obtain a second-level bootstrap DGP for each first-level bootstrap sample indexed
by j, in essentially the same way as the first-level bootstrap DGP was obtained from
the actual sample. Each second-level bootstrap DGP is then used to generate B2

bootstrap samples that are used to compute test statistics τ∗∗jl for l = 1, . . . , B2.

For each first-level bootstrap sample indexed by j, we can compute the second-level
bootstrap P value

p̂∗∗j =
1

B2

B2∑

l=1

I(τ∗∗jl > τ∗j ). (4)

This is the P value for the bootstrap statistic τ∗j based on the EDF of the τ∗∗jl . We
then use the p̂∗∗j to calculate the double-bootstrap P value as

p̂∗∗(τ̂) = Ĝ∗B2

(
p̂∗(τ̂)

)
=

1
B1

B1∑

j=1

I
(
p̂∗∗j ≤ p̂∗(τ̂)

)
. (5)

Thus p̂∗∗ is equal to the proportion of the second-level bootstrap P values that are
smaller (and hence more extreme) than the first-level bootstrap P value. The inequal-
ity in (5) is not strict, because, depending on the values of B1 and B2, there may well
be cases for which p̂∗∗j = p̂∗(τ̂).
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Comparing (5) and (1), we can see that, just as F̂ ∗B(τ̂) is used to estimate F (τ̂), so
Ĝ∗B2

(p̂∗) is used to estimate G(p̂∗). If τ̂ , the τ∗j , and the τ∗∗jl all came from the same
distribution, then the p̂∗∗j should be uniformly distributed on the zero-one interval,
and, as B1 → ∞ and B2 → ∞, we should find that p̂∗∗(τ̂) = p̂∗(τ̂). In this case, the
double bootstrap yields exactly the same inferences as the ordinary bootstrap.

Suppose, instead, that the bootstrapping process causes the distribution of the τ∗j to
contain fewer extreme values than the distribution of τ itself. Therefore, the P values
associated with moderately extreme values of τ̂ must be too small. But it is reasonable
to expect that the distributions of the τ∗∗jl contain even fewer extreme values than the
distribution of the τ∗j . Therefore, the p̂∗∗j should tend to be too small, at least for
small values of p̂∗(τ̂). This implies that the double-bootstrap P value p̂∗∗(τ̂) will be
larger than p̂∗(τ̂), which is exactly what we want. By a similar argument, p̂∗∗(τ̂) will
tend to be smaller than p̂∗(τ̂) when the distribution of the τ∗j contains more extreme
values than the distribution of τ itself.

Of course, we cannot expect even the double bootstrap to work perfectly. Just as
F ∗(τ) may provide an inadequate approximation to F (τ), so may G∗(x), the limit of
Ĝ∗B2

(x), provide an inadequate approximation to G(x). In principle, any bootstrap
procedure, including the double bootstrap, may or may not provide an acceptable
approximation to the true P value associated with τ̂ .

In practice, the most serious problem with the double bootstrap is that it is very costly
in terms of computation. For each of B1 bootstrap samples, we need to compute
B2 + 1 test statistics. Thus the total number of test statistics that must be computed
is 1 + B1 + B1B2. For example, if B1 = 999 and B2 = 399, the double bootstrap will
require the calculation of no fewer than 399,601 test statistics.

4. Fast Double Bootstrap Tests

The double bootstrap is costly because we need to generate B2 second-level bootstrap
samples for every first-level bootstrap sample. This is necessary because the distribu-
tion of the τ∗∗jl may not be independent of τ∗j . If we make the assumption that this
distribution is independent of τ∗j , we can dramatically reduce the cost of the procedure.
This is the key assumption of the FDB procedure.

For the fast double bootstrap test, only one second-level bootstrap statistic, τ∗∗j , is
calculated along with each τ∗j . Let Q̂∗∗B (1− p̂∗) denote the 1− p̂∗ quantile of the τ∗∗j .
This quantile is defined implicitly by the equation

1
B

B∑

j=1

I
(
τ∗∗j > Q̂∗∗B (1− p̂∗)

)
= p̂∗(τ̂). (6)

Of course, for finite B, there will be a range of values of Q∗∗B that satisfy (6), and
we will need to choose one of them in a somewhat arbitrary manner. If p̂∗(τ̂) = 0,
as may happen quite often when the null hypothesis is false, then it seems natural to
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define Q̂∗∗B (1 − p̂∗) = Q̂∗∗B (1) as the largest observed value of the τ∗∗j , although there
are certainly other possibilities. Similarly, when p̂∗(τ̂) = 1, it seems natural to define
Q̂∗∗B (1 − p̂∗) = Q̂∗∗B (0) as the smallest observed value of the τ∗∗j . However, it is quite
possible that different methods of estimating quantiles may affect the performance of
FDB tests when B is not large.

The FDB P value is easily calculated from Q̂∗∗
B (1− p̂∗) and the τ∗j . It is just

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j > Q̂∗∗

B (1− p̂∗)
)
. (7)

Thus, instead of seeing how often the bootstrap test statistics are more extreme than
the actual test statistic, we see how often they are more extreme than the 1 − p̂∗

quantile of the τ∗∗j .

When the distribution of τ∗∗jl does not depend on τ∗j , there is a very close relationship
between p̂∗∗F (τ̂) defined in equation (7) and p̂∗∗(τ̂) defined in equation (5). Let Q∗∗(x)
denote the limit of Q̂∗∗

B (x) as B → ∞, and let p∗ = Pr(τ∗j > τ̂). Then, in the limit,
the FDB P value is simply

p∗∗F (τ̂) = Pr
(
τ∗j > Q∗∗(1− p∗)

)
. (8)

The probability in (8), which is conditional on the original sample, is being taken with
respect to the distribution of the τ∗j . In contrast, from (4) and (5), the limit of the
double bootstrap P value as B1 →∞ and B2 →∞ is

p∗∗(τ̂) = Pr
(
Pr(τ∗∗jl > τ∗j ) < p∗(τ̂)

)

= Pr
(
Pr(τ∗∗jl > τ∗j ) < Pr

(
τ∗∗jl > Q∗∗(1− p∗)

))
,

(9)

where the equality in the second line here uses the the definition of Q∗∗(1 − p∗) that
is analogous to (6). The outer probability in the expression in the second line of (9)
is being taken with respect to the distribution of the τ∗j , and the inner ones with
respect to the distribution of the τ∗∗jl . Since these two distributions are assumed to be
independent, it is clear that

Pr(τ∗∗jl > τ∗j ) < Pr
(
τ∗∗jl > Q∗∗(1− p∗)

)

if and only if
τ∗j > Q∗∗(1− p∗).

But, as we can see from (8), the probability of this event is precisely what p∗∗F (τ̂) is
equal to. Thus we see that, in the limit when B, B1, and B2 are infinite, the FDB
P value (7) must be equivalent to the double bootstrap P value (5) whenever the
distribution of the τ∗∗jl does not depend on τ∗j .
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If we wished to reject when the test statistic was in the lower tail of the distribution,
we would replace equation (7) by

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j < Q̂∗∗

B (1− p̂∗)
)
. (10)

Note that p̂∗ is still defined as in (1) here, so that, in contrast to the usual case, large
values of p̂∗ would lead to rejection by the ordinary bootstrap test. To obtain an
equal-tail FDB P value, we could compute both (7) and (10) and then take twice the
minimum of these two FDB P values, as in equation (3).

In most cases of interest to econometricians, the distribution of a test statistic is
asymptotically independent of the distribution of the parameter estimates under the
null hypothesis, and this also applies to many nonparametric and semiparametric
bootstrap DGPs. Whether or not the fast double bootstrap will perform well depends,
in part, on how much this asymptotic independence carries over to finite samples. Of
course, the independence assumption merely guarantees that the fast double bootstrap
is equivalent to the double bootstrap when B, B1, and B2 are large. It does not
guarantee that the latter will yield accurate inferences in finite samples. In fact, as we
will see in Section 6, double bootstrap P values can be somewhat inaccurate.

Davidson and MacKinnon (2001, 2002) studied several cases in which the FDB works
well. In the case of the “J test” for nonnested linear regression models (Davidson and
MacKinnon, 1981), which is treated as a one-tailed test, the FDB yields substantially
more accurate results than ordinary bootstrap tests in cases where the latter are some-
what inaccurate. There have also been simulations by Lamarche (2004) in the context
of testing for unknown structural breaks, by Omtzigt and Fachin (2002) in the context
of cointegrated VARs, and by Davidson (2006) in the context of testing cointegration
for fractionally integrated processes.

It is of interest to see how well FDB tests work under ideal conditions, when τ , the
τ∗j , and the τ∗∗j all come from the same distribution. To investigate this question, I
generated all three statistics from the standard normal distribution for various values
of B between 99 and 3999 and then calculated ordinary and FDB bootstrap P values.
Ordinary bootstrap tests always rejected just about 5% of the time at the .05 level
and just about 1% of the time at the .01 level. So did the FDB tests, but only when
B was sufficiently large. There was a very noticeable tendency for the FDB tests to
reject too often when B was not large. The overrejection was much more severe for
equal-tail FDB tests than for symmetric or one-tailed tests.

To quantify this tendency, I regressed the difference between the FDB rejection fre-
quency and the ordinary bootstrap rejection frequency on 1/(B + 1) and 1(B + 1)2,
with no constant term. These regressions fit extremely well. Results for tests at the .05
and .01 levels are presented in Table 1. There were 54 experiments for the one-tailed
and symmetric tests and 47 experiments for the equal-tail tests. There were fewer
experiments for the latter because values of B for which α(B + 1) was an integer but
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Table 1. Regressions for overrejection when B is small

Test 1/(B + 1) 1/(B + 1)2 B = 199 B = 999 B = 1999

Symmetric .05 0.3466 (.0102) −6.02 (1.21) 0.001583 0.000341 0.000172

One-tailed .05 0.3489 (.0111) −6.01 (1.32) 0.001595 0.000343 0.000173

Equal-tail .05 1.7654 (.0208) −51.10 (4.77) 0.007550 0.001714 0.000870

Symmetric .01 0.3886 (.0073) −15.84 (0.86) 0.001547 0.000373 0.000190

One-tailed .01 0.3695 (.0073) −13.64 (0.86) 0.001507 0.000356 0.000181

Equal-tail .01 1.6865 (.0174) −140.89 (3.96) 0.004910 0.001546 0.000808

(α/2)(B +1) was not (namely, 99 and 299) had to be removed. Since each experiment
used 1 million replications, experimental error should be very small.

In addition to coefficients and standard errors, Table 1 shows the fitted values from
each of the regressions for B = 199, B = 999, and B = 1999. It can be seen that
all the FDB tests, especially the equal-tail ones, tend to overreject when B is small.
Precisely why this is happening is not clear, although it is probably related to the
way that quantiles are estimated. In practice, however, overrejection should not be a
problem, because any sensible investigator will use a large value of B whenever the
bootstrap P value is not well above, or well below, the level of the test; see Davidson
and MacKinnon (2000) for a discussion of how to choose B sequentially when it is
expensive to calculate bootstrap test statistics.

5. Tests for Serial Correlation

Commonly-used tests for serial correlation are not exact in models with lagged depen-
dent variables or nonnormal errors. Consider the linear regression model

yt = Xtβ + γyt−1 + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), (11)

where there are n observations, and Xt is a 1× k vector of observations on exogenous
variables. The null hypothesis is that ρ = 0. A simple and widely-used test statistic
for serial correlation in this model is the t statistic on ût−1 in a regression of yt on Xt,
yt−1, and ût−1. This procedure was proposed by Durbin (1970) and Godfrey (1978).
The test statistic is asymptotically distributed as N(0, 1) under the null hypothesis.
Since this test can either overreject or underreject in finite samples, it is natural to
use the bootstrap in an effort to improve its finite-sample properties.

In order to bootstrap the Durbin-Godfrey test under weak assumptions about the error
terms, we first estimate the regression in (11) by ordinary least squares. This yields
β̂, γ̂, and a vector of residuals with typical element ût. It is then natural to generate
the bootstrap data using the semiparametric bootstrap DGP

y∗t = Xtβ̂ + γ̂y∗t−1 + u∗t , (12)
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where the u∗t are obtained by resampling the vector of rescaled residuals with typical
element (n/(n−k−1))1/2ût. The initial value y∗0 is set equal to the actual pre-sample
value y0. The bootstrap DGP (12) imposes the IID assumption on the error terms
without imposing any additional distributional assumptions.

A large number of experiments on the finite-sample properties of bootstrap versions
of the Durbin-Godfrey test were performed. In all the reported experiments, the error
terms were normally distributed, the first column of the X matrix was a constant, and
the remaining columns were generated by independent, stationary AR(1) processes
with parameter ρx. A new X matrix was drawn for each replication. Both asymptotic
and bootstrap rejection frequencies were found to depend strongly on k, ρx, σε, and γ,
as well as on the sample size n. Since the performance of the asymptotic test improved
rapidly as n increased, I used n = 20 for most of the experiments.

Asymptotic results are based on 200,000 replications for values of γ between −0.99 and
0.99 at intervals of 0.01. Bootstrap results are based on 100,000 replications for values
of γ between −0.9 and 0.9 at intervals of 0.1 using 1999 bootstrap samples. This is
an unusually large number to use in a Monte Carlo experiment. It was used because
the results in Table 1 suggest that the equal-tail FDB tests will tend to overreject
noticeably if B is not quite large.

Results under the null

Figure 1 shows three sets of rejection frequencies for the performance of asymptotic and
bootstrap tests under the null hypothesis when n = 20. These are representative of the
results for a much larger number of similar experiments. Rejection frequencies for tests
at the .05 level are shown on the vertical axis, and γ is shown on the horizontal axis.
Each row concerns the same set of experiments. Results for the asymptotic test are
shown in both panels. The left-hand panel shows rejection frequencies for symmetric
bootstrap and FDB tests, and the right-hand panel shows rejection frequencies for
equal-tail bootstrap and FDB tests.

The first row of the figure contains results for a case in which all the bootstrap tests
work very well. In the left-hand panel, we see that there is very little difference
between the rejection frequencies for the symmetric bootstrap test, based on (2), and
for its FDB variant. This is not merely true on average, but also for every replication:
The correlation between the two P values was 0.999 for every value of γ. Thus an
investigator who performed both tests would obtain extremely similar results and
would probably conclude, quite justifiably, that the bootstrap P value was very reliable.

In the right-hand panel of the first row of the figure, we see that the equal-tail bootstrap
test is generally not quite as reliable as the symmetric bootstrap test. Moreover, the
FDB procedure yields noticeably different rejection frequencies which are, in most
cases, closer to the nominal level of .05. The correlation between the two P values is
still very high at approximately 0.996 for all values of γ.

The second and third rows of the figure show results for cases in which, on average,
the bootstrap tests do not work as well. In both cases, σ = 10, which is ten times
larger than for the case in the first row, and k = 6, which is twice as large. Thus the
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bootstrap DGP depends on more parameters, and they are estimated less precisely.
The only difference between the two cases is that ρx = 0.8 in the second row and
ρx = −0.8 in the third row.

Several interesting results are evident in the second and third rows of the figure. All
four bootstrap tests generally work much better than the asymptotic test on which
they are based. It is apparent that a symmetric bootstrap test can overreject when an
equal-tail test underrejects, and vice versa. However, the equal-tail tests seem to be a
bit more prone to overreject than the symmetric tests. The FDB tests generally work
better than the ordinary bootstrap tests, especially when the latter are least reliable.
Nevertheless, the correlations between the ordinary bootstrap and FDB tests remain
quite high. They are never less than 0.976 for the equal-tail tests and 0.998 for the
symmetric ones.

It is of interest to see how fast the performance of the ordinary bootstrap and FDB
tests improves as the sample size increases. Figure 2 contains six panels, which are
comparable to the six panels in Figure 1. In each of these experiments, γ is fixed
at a value associated with relatively poor performance of at least one of the tests for
n = 20, and n takes on the values 10, 14, 20, 28, 40, 56, 80, 113, 160, 226, and 320.
Each of these sample sizes is larger than the previous one by a factor of approximately√

2. As before, there were 100,000 replications, and B = 1999.

The left-hand panel of the first row shows that the symmetric bootstrap and FDB tests
work extremely well for all sample sizes when k = 3 and σε = 1. There is essentially
nothing to choose between them. However, as can be seen from the right-hand panel,
the equal-tail tests tend to underreject for very small values of n in this case, with the
FDB tests underrejecting less severely than the ordinary bootstrap tests.

The next two rows of the figure are more interesting. We see both noticeable over-
rejection and noticeable underrejection by the ordinary bootstrap tests. With a few
exceptions, the FDB tests perform substantially better than the ordinary bootstrap
tests when the latter perform badly. The results in the right-hand panel of the second
row and the left-hand panel of the third row are particularly dramatic. In these cases,
the gain from using the FDB procedure is quite substantial.

It appears that the equal-tail FDB tests overreject slightly for large values of n. This
appears to be a manifestation of the phenomenon that we saw in Table 1. Since the
magnitude of the overrejection is just about what we would expect from the results in
Figure 1, allowing for a certain amount of experimental error, it would surely be even
smaller if B were larger than 1999.

Results under the alternative

Figure 3 shows power functions for six sets of experiments. The value of ρ is on the
horizontal axis, and the rejection frequency is on the vertical axis. Asymptotic results
are based on 200,000 replications for 199 values of ρ between −0.99 and 0.99, and
bootstrap results are based on 100,000 replications for 19 values of ρ between −0.9
and 0.9. Every panel shows results for both symmetric and equal-tail tests. Because
the ordinary bootstrap and FDB tests always have essentially the same power, their
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symbols always overlap. Thus it may not be immediately apparent that the same
symbols are used as in Figures 1 and 2.

In the first two rows of the figure, n = 20. In the four panels in these rows, the shapes
of the asymptotic power functions differ dramatically from the inverted bell shape
that they must have asymptotically. The power functions for the symmetric bootstrap
tests always have essentially the same shape as those for the asymptotic tests, although
with a vertical displacement that is quite large in the case of the left-hand panel in the
second row. This vertical displacement arises because the asymptotic test overrejects
quite severely under the null hypothesis. The symmetric bootstrap test, which does
not overreject, inevitably has noticeably less power against all alternatives.

In contrast, the shapes of the power functions for the equal-tail bootstrap tests are
dramatically different from the shapes of the power functions for the symmetric boot-
strap tests. The former have somewhat less power in whichever direction the asymp-
totic tests have high power, but they have much more power in the other direction.
Specifically, when ρx and γ are both positive, the equal-tail tests always have more
power against positive values of ρ than the symmetric tests, and the differences are
often dramatic. Since this is a case that we might expect to encounter quite frequently,
this is an important result.

In the third row of the figure, n = 40. Increasing the value of n brings the shape
of the asymptotic power functions much closer to the inverted bell shape that they
should have, as can be seen by comparing the left-hand panel in the top row with the
left-hand panel in the bottom row and the left-hand panel in the middle row with the
right-hand panel in the bottom row. However, it does not change the results about
the power of the symmetric and equal-tail bootstrap tests. The equal-tail tests have
somewhat less power against negative values of ρ and a great deal more power against
positive values than do the symmetric tests, because the power functions of the former
are much closer to being symmetric about ρ = 0.

Notice that, in several panels of Figure 3, the asymptotic tests are reasonably reliable
under the null. Nevertheless, there are very substantial gains in power to be had
by using equal-tail bootstrap tests instead of asymptotic tests. This suggests that
equal-tail bootstrap tests for serial correlation should be used routinely, even when
(indeed, perhaps especially when) there is no reason to believe that asymptotic tests
are unreliable.

6. Tests for ARCH Errors

Since the seminal work of Engle (1982), it has been recognized that serial dependence
in the variance of the error terms of regression models using times-series data is a very
common phenomenon. In the case of financial data at high or moderate frequencies,
there is not much point simply testing for ARCH errors, because we know that we
will find strong evidence of them, whether or not ARCH is actually the best way to
model the properties of the error terms. However, in the case of low-frequency financial
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data, or non-financial macroeconomic data, the hypothesis of serial independence is
not unreasonable, and it may therefore make sense to test for ARCH errors.

Consider the linear regression model

yt = Xtβ + ut, ut = σtεt, σ2
t = α0 + α1u

2
t−1 + δ1σ

2
t−1, εt ∼ IID(0, 1). (13)

The error terms of this model follow the GARCH(1,1) process introduced by Bollerslev
(1986). It is easy to generalize this process to have more lags of u2

t , more lags of σ2
t ,

or both. In this paper, however, attention is restricted to the GARCH(1,1) process,
partly for simplicity, and partly because this process generally works extraordinarily
well in practice.

The easiest way to test the null hypothesis that the error terms are IID in the model
(13) is to run the regression

û2
t = b0 + b1û

2
t−1 + residual, (14)

where ût is the tth residual from an OLS regression of yt on Xt. The null hypothesis
that α1 = δ1 = 0 can be tested by testing the hypothesis that b1 = 0. For a simple
derivation of the test regression (14), and an explanation of why it has just two coef-
ficients even though the GARCH(1,1) model has three, see Davidson and MacKinnon
(2004, Section 13.6).

There are several valid test statistics based on regression (14). These include the
ordinary t statistic for b1 = 0, which is asymptotically distributed as N(0, 1), and
n times the centered R2, which is asymptotically distributed as χ2(1). Results are
reported only for the second of these statistics, partly because it seems to be the most
widely used test for ARCH errors, and partly because it generalizes easily to tests for
higher-order ARCH and GARCH processes, in which there are more lags of û2

t in the
test regression. It would be interesting to compare the finite-sample performance of
alternative tests, but that would require another paper.

Figures 4 through 7 report results from a number of simulation experiments which
focused on the effects of the sample size and the distribution of the εt. In all the re-
ported experiments, Xt consisted of a constant and two independent, standard normal
random variates, since changing the number of regressors had only a modest effect on
the finite-sample behavior of the tests. The sample size took on the values 10, 14, 20,
28, 40, 56, 80, 113, 160, 226, and 320. The error terms were either standard normal,
Student’s t with 4 degrees of freedom, or rescaled and recentered χ2(2). The first of
these distributions is in some sense the base case, the second involves severe lepto-
kurtosis, and the third involves severe skewness. Since the test statistics can easily
be shown to be invariant to the variance of the error terms under the null hypothesis,
that aspect of the experimental design was not varied.

The top left-hand panel of Figure 4 shows rejection frequencies for the asymptotic
test as a function of the sample size for the three different error distributions. These
results are based on 100,000 replications for each value of n. The test underrejects
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severely in all cases, especially when the error terms are nonnormal. As we would
expect, performance improves with the sample size, but the rate of improvement is
fairly slow, especially when the errors are t(4).

There are several ways to bootstrap this test. One possibility is to use a parametric
bootstrap, drawing the error terms from the normal distribution. It is easy to see
that this will lead to an exact test when the errors actually are normally distributed.
The test statistic depends solely on the X matrix and the vector of innovations ε.
The former is known. If the distribution of the latter is known, then the test statistic
does not depend on any unknown features of the DGP. It then follows by standard
arguments for Monte Carlo tests that, when B is chosen so that α(B +1) is an integer,
the parametric bootstrap test is exact; see Dufour et al. (2004).

The top right-hand panel of Figure 4 shows rejection frequencies for parametric boot-
strap tests, with B = 1999. As expected, these tests work perfectly when the errors
are actually normally distributed. The very small deviations from a frequency of 0.05
are well within the margins of experimental error. However, the tests are evidently
not exact when the error terms are not normally distributed. For the largest sample
sizes, they are no better than the corresponding asymptotic tests. Since the FDB
tests performed almost identically to the parametric bootstrap tests on which they are
based, results for parametric FDB tests are not shown.

Of course, we would not expect parametric bootstrap tests to perform well when they
are based on an incorrect distributional assumption, and we would not expect the FDB
procedure to help. It therefore seems natural to use a semiparametric bootstrap DGP,
like the one in equation (12). Results for this procedure are shown in the bottom
left-hand panel of Figure 4 and in the two left-hand panels of Figure 5. For the
normal distribution, the semiparametric bootstrap test underrejects, quite noticeably
so for the smaller sample sizes. Interestingly, except for the very smallest sample sizes,
the FDB version performs considerably better. It appears to be essentially exact for
n ≥ 80, whereas the ordinary semiparametric bootstrap test always underrejects to
some extent.

It is more interesting to see what happens when the error terms are nonnormal. When
they are t(4), the semiparametric bootstrap test underrejects quite severely for small
sample sizes. However, its performance gradually improves as n increases, and there is
a noticeable gain from using the FDB procedure, except when n is very small. When
the error terms are centered χ2(2), the underrejection is even more severe for small
sample sizes, but the rate of improvement as n increases is much more rapid. Once
again, there is generally a noticeable gain from using the FDB procedure.

The errors committed by the semiparametric bootstrap test must arise from the fact
that the empirical distribution of the residuals provides an inadequate approximation
to the distribution of the error terms. One way to improve this approximation is to
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smooth the bootstrap errors. This can be done by using a kernel estimator. The kernel
estimator of the CDF of u at the point u′, using a sample of n residuals ût, is given by

F̂h(u′) = 1−
n

n∑
t=1

K(ût, u
′, h), (15)

where K(ût, u
′, h) is a cumulative kernel, such as the standard normal CDF, called

the Gaussian kernel, and h is the bandwidth; see Azzalini (1981) and Reiss (1981).
A reasonable choice for h is 1.587σ̂n−1/3, where σ̂ is the standard deviation of the
(possibly rescaled) residuals.

To draw bootstrap errors from (15), we simply resample from the residuals ût and then
add independent normal random variables with variance h2. The resulting bootstrap
errors have mean zero because both the residuals and the normal random variates
do. They also have too much variance, but they can easily be rescaled. However, in
the context of tests for ARCH errors, this rescaling is not needed, because the test
statistics are invariant to the variance of the error terms.

The bottom right-hand panel of Figure 4 and the two right-hand panels of Figure 5
show the effects of using bootstrap errors that were smoothed in this way, where the
Gaussian kernel with the bandwidth given above was used. When the error terms
are actually normal, resampling smoothed residuals works substantially better than
resampling ordinary residuals for small sample sizes. This presumably occurs because
smoothing brings the distribution of the errors closer to normality. Interestingly, there
appears to be no appreciable gain from smoothing when the errors are t(4) or centered
χ2(2). As in the case where smoothing is not used, the FDB rejection frequencies are
always noticeably closer to 0.05 than those of the ordinary bootstrap, except when the
sample size is very small.

Because Figures 4 and 5 deal only with tests at the 0.05 level, they do not tell the
whole story. To show the effect of the level of the test, Figure 6 plots the difference
between the rejection frequency and the level of the test for all levels between 0.005
and 0.25, at intervals of 0.005, for two sample sizes, 40 and 160. The nominal level
is on the horizontal axis, and the “rejection frequency discrepancy” is on the vertical
axis. Several interesting facts emerge from this figure. First, the asymptotic test can
actually overreject for small levels. Second, for nonnormal errors, the distortion of the
asymptotic test becomes steadily worse as the level increases. Finally, and of most
interest for this paper, the improvement from using the FDB rather than the ordinary
bootstrap becomes larger as the level of the test increases. Moreover, the extent of the
improvement is greater for n = 160 than for n = 40, especially in relative terms. To
see this, compare the left-hand and right-hand panels in the second and third rows of
the figure.

It is natural to ask whether the FDB procedure works as well as the full double boot-
strap. Figure 7 provides some evidence on this point. The experiments were similar to
those in the left-hand panels of Figure 5, except that values of n greater than 160 were
omitted. They involve semiparametric bootstrap DGPs that use resampled residuals,
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with errors that are either t(4) or centered χ2(2). There were 100,000 replications.
However, because computational cost was an issue, B1 and B2 were quite small at 399
and 199, respectively. Even with such a small value of B2, the double bootstrap is
about 100 times more expensive to compute than the FDB in this case.

In both panels of Figure 7, it is evident that all the bootstrap procedures work much
better than the asymptotic test. Moreover, there is a clear ordering, with the FDB
performing noticeably better than the ordinary bootstrap, and the double bootstrap
performing a little better than the FDB. The advantage of the double bootstrap over
the FDB is a bit greater for the experiments with χ2(2) errors than for the ones with
t(4) errors, but it is never striking. Thus, at least in this case, the failure of the FDB
to work perfectly appears to be attributable mainly to the limitations of the double
bootstrap itself rather than to a failure of the independence assumption.

7. Two Stage Least Squares t Statistics

There is a large literature on the finite-sample properties of 2SLS estimates, and it is
well-known that inferences based on asymptotic theory can be poor when the instru-
ments are weak. See Bound, Jaeger, and Baker (1995), Staiger and Stock (1997), and
Stock, Wright, and Yogo (2002), among many others.

Various procedures for bootstrapping 2SLS estimates have been proposed, starting
with Freedman (1984), and it is natural to conjecture that using the bootstrap may
solve the problem. However, although published work on the finite-sample properties
of 2SLS bootstrap procedures is scarce, it appears to be well-known that bootstrapping
2SLS often does not work very well. In this section, we investigate whether the FDB
can offer an improvement.

The 2SLS estimator applies to one structural equation from a linear simultaneous
equations model. The structural equation can be written as

y1 = X1β + Y1γ + u = Zδ + u, (16)

where X1 is an n×k1 matrix of observations on exogenous or predetermined variables,
Y1 is n× g1 matrix of observations on endogenous variables, Z ≡ [X1 Y1], and δ>=
[β> γ>]>. The rest of the system is treated as an unrestricted reduced form,

Y1 = XΠ + V , (17)

where there are k = k1 + k2 instruments in the matrix X ≡ [X1 X2]. The error
terms have mean zero conditional on X, and they are assumed to be IID. For every
observation,

E
([

ut

vt

]
[ut vt

>]
)

=
[

σ2 ω>

ω Ω

]
≡ Σ, (18)

where vt is the tth row of V rewritten as a column vector. The matrix Σ is g × g,
where g = g1 + 1.
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The 2SLS, or generalized IV, estimator is

δ̂IV = (Z>PXZ)−1Z>PXy1, (19)

where PX ≡ X(X>X)−1X> is an idempotent projection matrix that projects on
to S(X), the subspace spanned by the instruments. The estimator (19) can also be
written as [

β̂IV

γ̂ IV

]
=

[
X1
>X1 X1

>Y1

Y1
>X1 Y1

>PXY1

]−1 [
X1
>y1

Y1
>PXy1

]
.

The usual covariance matrix estimate is

σ̂2
IV(Z>PXZ)−1, (20)

where
σ̂2

IV ≡ 1−
n
‖y1 −Zδ̂ IV‖2.

In principle, bootstrapping can be used both to obtain more accurate estimates and
to obtain more reliable inferences. Since this paper is concerned with testing, the
experiments concern the latter. They focus on the t statistic for the first element of γ
to equal its true value γ10. This is just

tγ =
γ̂ IV
1 − γ10

s(γ̂ IV
1 )

, (21)

where s(γ̂ IV
1 ) is the square root of the appropriate diagonal element of the matrix (20).

In the experiments, g1 = 1, so that γ1 is the only coefficient on an endogenous variable
in the structural equation.

There are numerous ways to bootstrap the t statistic (21) in the model given by (16),
(17), and (18). The principal procedure that I investigate works as follows:

1. Estimate the reduced form equation(s) (17) by OLS, retaining the parameter
estimates Π̂ and the residuals V̂ . Then use 2SLS to obtain tγ .

2. Estimate the structural equation (16) by 2SLS (or OLS if appropriate) under
the restriction that γ1 equals its true value γ10. This yields parameter estimates
δ̃ = [β̃ .... γ̃] and residuals ũ.

3. Create the n× (g1 + 1) matrix

Ú ≡ [
ũ V́

]
, where V́ =

(
n

n− k

)1/2

V̂ .

4. Obtain n row vectors of bootstrap errors U∗
t by resampling from the rows of Ú.

The bootstrap errors are then U∗ = [u∗ V ∗].
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5. For each bootstrap sample, generate Y ∗
1 as XΠ̂ + V ∗ and then generate y∗1 as

X1β̃ + Y ∗
1 γ̃ + u∗.

6. For each bootstrap sample, estimate the model by 2SLS and calculate the boot-
strap test statistic

t∗j =
γ̂∗1 − γ10

s(γ̂∗1)
. (22)

This procedure imposes virtually no assumptions on the functional form of the joint
distribution of the error terms, but it does assume that they are IID and independent of
the instruments. In this respect, it is more restrictive than the procedure proposed by
Freedman (1984), a variation of the pairs bootstrap, which allows for heteroskedasticity
of unknown form. Moreover, it imposes the null hypothesis on the bootstrap samples,
since these depend on estimates of the structural equation subject to the restriction
that γ1 = γ10.

Especially when one wants to bootstrap more than one test statistic, a good deal of
computation can be avoided by not imposing the null hypothesis; this avoids step 2
and the need to repeat all subsequent steps for each hypothesis to be tested. However,
not imposing the null requires that the bootstrap test statistic be calculated as

t∗j =
γ̂∗1 − γ̂1

s(γ̂∗1)
. (23)

Unlike the bootstrap t statistic (22), which tests a null hypothesis that is not true in
the bootstrap DGP when γ1 6= γ10, (23) tests a null that is always true in the bootstrap
DGP. The bootstrap tests based on restricted estimates and unrestricted estimates are
referred to as bootstrap-R and bootstrap-U, respectively. Theory suggests that the
former should work better; see Davidson and MacKinnon (1999).

In the simulation experiments, there are just two endogenous variables, so that g1 = 1.
The only exogenous variable in the structural equation is a constant, so that k1 = 1.
There are k2 instruments, which are IID standard normal, and the number of over-
identifying restrictions is r = k2− 1 = k− 2. All experiments had 100,000 replications
and 999 bootstraps. Bootstrap P values were based on the symmetric bootstrap P
value (2), because equal-tail bootstrap P values generally worked poorly.

The key parameters in the experiments are n, the sample size, r, the number of
overidentifying restrictions, ρ, the correlation between the error terms of the structural
and reduced form equations, and R2

∞, the asymptotic R2 for the reduced form equation.
The quantity nR2

∞ measures the strength of the instruments. Note that, if there were
exogenous variables other than a constant in the structural equation, nR2

∞ would no
longer be an appropriate measure of instrument strength. Instead, we would need a
measure of the explanatory power of X2 when it is added to the reduced form equation.
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Certain parameters were not varied. In particular, σ2 and γ10 were not varied because,
under the null, tγ is invariant to them. Moreover, because the variance of each column
of X, except the first, is 1, the variance of yt2 is just

σ2
2 =

k∑

j=2

π2
j + σ2

v ,

where πj is the coefficient on the j th exogenous variable in the reduced form equation
for y2. This value was set to 1 in all the experiments. This implies that each individual
instrument becomes weaker as the number of instruments is increased.

Figure 8 shows rejection frequencies for tests at the .05 level as a function of r for
four sample sizes: 25, 50, 100, and 200. The values of ρ and R2

∞ were 0.9 and 0.2,
respectively. Thus the values of nR2

∞ in the four panels of the figure are 5, 10, 20, and
40. As will be apparent from subsequent figures, ρ = 0.9 is a value for which both the
asymptotic and bootstrap tests perform quite poorly. It is evident from Figure 8 that
overrejection increases sharply with the number of overidentifying restrictions. This
is true for all five tests. Both bootstrap tests always overreject less severely than the
asymptotic test, but the bootstrap-R test performs much better than the bootstrap-U
test, especially for smaller sample sizes. Using the FDB generally provides a modest
further improvement. As the sample size increases, all the tests improve, but the
bootstrap tests improve more rapidly than the asymptotic one, as theory suggests.
The FDB does not improve any faster than the ordinary bootstrap, however, and it
offers only a modest improvement for n = 200.

Figure 9 shows rejection frequencies for tests at the .05 level as a function of R2
∞

for the same four sample sizes. In these experiments, ρ = 0.9 and r = 7, so the
performance of all tests is relatively poor. For all sample sizes, the asymptotic test
overrejects very severely when R2

∞ is small. The speed at which this overrejection
diminishes as R2

∞ increases depends on the sample size. The bootstrap-R test always
greatly outperforms the asymptotic test, and the FDB provides a further gain which
is most noticeable for smaller sample sizes and smaller values of R2

∞. Once again, the
gain from using the R instead of the U variant of the bootstrap is generally greater
than any further gain from using the FDB.

Figure 10 shows rejection frequencies as a function of ρ for the same four sample
sizes. In these experiments, R2

∞ = 0.2 and r = 7. The role of ρ is evidently very
important. When it is small, all the tests actually underreject. For small sample sizes,
the bootstrap-U test underrejects more severely than the bootstrap-R test, which in
turn underrejects more severely than the asymptotic test. The fact that both bootstrap
and asymptotic tests can underreject when the instruments are very weak is interesting.

For the bootstrap-R procedure, using the FDB generally improves matters. It leads to
less severe underrejection for small values of ρ and to less severe overrejection for large
values. The gains are quite modest, however, especially when n = 200. For bootstrap-
U, the benefits of using the FDB procedure are much less clear, however. For values
of ρ that are neither very large nor very small, the FDB variant actually overrejects
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more severely than the ordinary bootstrap. In some cases, it even overrejects more
severely than the asymptotic test.

Figure 11 shows the relationship between rejection frequencies and sample size in two
different ways. In all panels, ρ = 0.9. In the two left-hand panels, R2

∞ is held constant
(at either 0.1 or 0.2) as n is increased from 20 to 1280 by factors of

√
2. In the two

right-hand panels, nR2
∞ is held constant (at either 10 or 20) for the same values of n

(except that n = 20 has to be omitted when nR2
∞ = 20). The left-hand panels show

that the bootstrap tests improve more rapidly with the sample size than the asymptotic
test and that the further gain from using the FDB is moderate for small values of n
and negligible for large ones. The right-hand panels show that, in accordance with
theory, it is nR2

∞ and not simply n that must tend to ∞ if asymptotic results are to
hold. As n → ∞, all the tests converge to rejection frequencies that are very much
greater than .05.

Figure 12 is similar to Figure 11, but ρ is either 0.5 (in the top two panels) or zero (in
the bottom two panels). The bootstrap tests based on restricted estimates perform
very well, with the FDB procedure being particularly valuable when ρ = 0. However,
the ones based on unrestricted estimates perform poorly, and FDB-U is actually worse
than bootstrap-U when ρ = 0.5. Moreover, the asymptotic tests outperform the
bootstrap-U tests for large n in both the right-hand panels. Failing to impose the
restrictions of the null hypothesis on the bootstrap DGP can evidently have very
severe consequences when the instruments are weak.

The convergence results that are evident in the right-hand panels of Figures 11 and
12 may be of interest to applied workers who have very large samples with very weak
instruments and who wish to perform simulation experiments to evaluate the perfor-
mance of IV test statistics. Instead of using a DGP with, say, 50,000 observations and
R2
∞ = .0004, one could probably get almost the same results by using a DGP with

1000 observations and R2
∞ = .02. It might even be possible to use a similar trick with

the bootstrap, although this would require some care in specifying the bootstrap DGP.

The mediocre performance of all the tests in many of the experiments reported here
confirms the conventional wisdom that t tests in models estimated by 2SLS often have
very poor finite-sample properties, even if they are bootstrapped. Using the FDB
generally improves matters, but not by very much. Instead of trying to fix a test
that is fundamentally flawed, it would make more sense to start with a test that has
better finite-sample properties, such as the likelihood ratio test or the test proposed
by Kleibergen (2002). See Andrews, Moreira, and Stock (2004).

8. Conclusion

This paper has studied the performance of fast double bootstrap tests for three cases
of interest in applied econometrics, namely, tests for serial correlation, tests for ARCH
errors, and t tests in models estimated by two-stage least squares. In the experiments
reported here, the fast double bootstrap never transforms a bootstrap test that per-
forms poorly into a test that performs perfectly across a wide range of parameter
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values. However, it never worsens the performance of a bootstrap test by very much,
and it sometimes improves performance quite noticeably. In general, the improvement
tends to be largest when the gain from using the single-level bootstrap is relatively
great. The FDB works least well for the bootstrap-U test in a regression model esti-
mated by 2SLS, which is a remarkably poor bootstrap test to begin with.

It is important that B be reasonably large when using the fast double bootstrap
because, as we saw in Section 4, the procedure tends to overreject when B is small.
This problem mainly affects simulation experiments like the ones reported here. For
most bootstrap tests, one can safely use a value of B like 99 or 199 when investigating
test performance under the null by simulation, but that is not true for FDB tests.
This is not really a problem in practice, however, because investigators will generally
use quite large values of B whenever there is any doubt about the outcome of a test.

Several of the most interesting results in this paper are not specifically related to the
FDB procedure. For the experiments discussed in Section 5, equal-tail bootstrap tests
can be much more powerful than either asymptotic tests or symmetric bootstrap tests,
even when the asymptotic tests are well-behaved under the null. This result suggests
that equal-tail bootstrap tests deserve closer investigation for a variety of problems
where two-tailed tests are commonly used.

For the experiments discussed in Section 6, the performance of both asymptotic and
bootstrap tests for ARCH errors is very sensitive to the distribution of the error terms.
Although using resampled residuals works asymptotically, it does not always work
well in finite samples. Surprisingly, smoothing the resampled residuals has little or
no impact on the rejection frequencies for bootstrap tests when the error terms are
nonnormal.

For the experiments discussed in Section 7, using a bootstrap DGP that imposes the
null hypothesis often works dramatically better than using a bootstrap DGP that is
based on unrestricted estimates. No procedure works really well when the instruments
are very weak and the correlation between the structural and reduced form errors is
large. But FDB bootstrap t tests based on a bootstrap DGP that uses restricted
estimates are, in many cases, considerably more reliable than asymptotic t tests or
bootstrap t tests based on bootstrap DGPs that use unrestricted estimates.
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Figure 1. Durbin-Godfrey test rejection frequencies at .05 level under the null, n = 20
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Figure 2. Durbin-Godfrey test rejection frequencies at .05 level under the null
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Figure 3. Power of Durbin-Godfrey tests at .05 level
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Figure 4. ARCH test rejection frequencies at .05 level under the null
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Figure 5. ARCH test rejection frequencies at .05 level under the null
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Figure 7. ARCH test rejection frequencies at .05 level under the null (resampled residuals)
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Figure 8. Rejection frequencies for 2SLS t tests at .05 level, R2∞ = 0.2, ρ = 0.9
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Figure 9. Rejection frequencies for 2SLS t tests at .05 level, r = 7, ρ = 0.9
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Figure 10. Rejection frequencies for 2SLS t tests at .05 level, r = 7, R2∞ = 0.2
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Figure 11. Rejection frequencies for 2SLS t tests at .05 level
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Figure 12. Rejection frequencies for 2SLS t tests at .05 level
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