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Abstract

When individual statistics are aggregated through a strictly monotone function to an aggregate statistic, com-
mon knowledge of the value of the aggregate statistic does not imply, in general, constancy of the individual
statistics. This paper discusses two circumstances where it does occur. The first case arises when partitions
are independently drawn: in this case common knowledge of the value of the aggregator function implies (with
probability one) constancy of the individual statistics. The second case is where private statistics are related:
affiliation of individual statistics and a lattice condition imply constancy of the individual statistics when the
value of the aggregate statistic is common knowledge.

1 Introduction.

A well known paper of Aumann (1976) formalized the notion of common knowledge and provided a
mathematically tractable way of modeling hierarchies of knowledge. In addition he gave an equivalence
theorem on the value of posterior distributions when a common knowledge condition is satisfied: when
the values of every agent’s posterior distribution is common knowledge, then the posteriors are equal.
This result was strengthened substantially by McKelvey and Page (1986) who showed that common
knowledge of an aggregate statistic of the posteriors was sufficient to imply equality of the posteriors.
The key requirement of the aggregating function was stochastic monotonicity, or equivalently, additive
separability into strictly monotone components. This paper considers the case where the aggregator
function is strictly monotone, but not necessarily additively separable. In this case (strict monotonicity
without additive separability), common knowledge of the value of the aggregating function does not
imply constancy of the posteriors (see McKelvey and Page for a counter-example). Nevertheless, additive
separability is a significant restriction and it is natural to consider circumstances under which it may be
relaxed. Here, we consider two such situations: (a) when agents’ partitional information is independently
drawn and (b) when agents’ signals are affiliated.

The two main results in the paper are (roughly) the following. If agent’s partitions are drawn
randomly and with probability 1 the cardinality of each partition is small relative to the cardinality of
the state space, then common knowledge of the value of a strictly monotone aggregator function implies
constancy of each of its arguments. In the special case where the individual statistics are expectations of
some random variable conditional on private information, this implies equivalence of all the arguments.
The second result is that if that if individual agents statistics are affiliated, then, under a lattice condition,
common knowledge of the value of the aggregator function implies constancy of the arguments of the

function.



2 The Framework.

A probability space, (Q,F,p) is given. FEach player i € N = {1,...,n} is defined by a signal
(a random variable) X;, and an information partition P; on Q. Let P;(w) denote the element of P;
containing w. Write M = A;P;, to denote the meet of {P;}7_, or finest common coarsening with M (w)
the element of M containing w. Similarly, let J = V;P; denote the join of {P;}7, or coarsest common
refinement. Finally, let G denote the set of all partitions of 2. With this notation, common knowledge

of an event 1s defined:

Definition 1 An event Q is common knowledge at w* if M(w*) C Q.

Given an event A C Q, let X;(w) = ¢;(w) = p(A | B;(w)) def E{xa | Pi(w)}, where x4 is the

characteristic function of A and p(A | P;(w)) posterior distribution on some event A. Fix § = (¢1,...,qn)
and let £ = {w | Vi, ¢(w) = ¢}, where ¢(w) = (q1(w), ..., gn(w)). The result of Aumann is that common

knowledge of posteriors implies that they are equal:
Theorem 1  If the event E' is common knowledge at w*, then for all ¢+ and j, ¢; = q;.

Because M (w*) C E, common knowledge of F requires that each agent’s posterior distribution ¢; is
constant on the meet, M(w*). A substantial improvement on this theorem was obtained by McKelvey
and Page (1986) who considered the case where posteriors are aggregated according to some function f.
Consider the event E' = {w | f(q(w)) = ¢}, where ¢ is a constant. McKelvey and Page proved that when
f 1s stochastically monotone then common knowledge of E’ implies that the posteriors are constant and

equal.

Theorem 2  If the event E' is common knowledge at w*, then for all i and j, ¢;(w) = ¢;(w), Vw €
M (w*).

A simplified proof of McKelvey and Page’s theorem is given by Nielsen, Brandenburger, Geanako-
plos, McKelvey and Page (1990) (see also Bergin and Brandenburger (1990)). There, it is also observed
that {¢;}7_, may be replaced by {X;}7—, = {F{X | P;}}/=;, where X is any random variable. Additive
separability of the “aggregating” function f is a strong assumption, and it is natural to ask if the theorem
remains valid when stochastic monotonicity is replaced by the weaker assumption of strict monotonicity
of f. McKelvey and Page give a simple counter example to this conjecture, so in general the answer is
no.

In what follows we first develop a model of independent information partitions and in this context
give a common knowledge theorem for a set of measure 1 of information partitions. After that, we
consider the case where private signals are affiliated and again provide a theorem on constancy of signals
under the common knowledge condition. In both cases the aggregating function is assumed to be strictly

monotonic but not necessarily additively separable.

3 Partition and Random Partitions.

In this section, we begin by describing agents with private or independent information — modeled

by having partitions drawn randomly and independently — and then show that generically, random
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partitions have no elements (or unions of elements) in common. This result is used to develop a common
knowledge theorem for random partitions.

Denote the set of partitions of € by G. In what follows, attention 1s restricted to the case of
partitions of a countable state space Q@ = {w; };cz (£ is the set of positive integers). A partition can be
represented as a point s = (Swy, Swy, .- .) NS 4 za (sw € Z, Vw € Q), where s, = s, if and only if
w and w’ belong to the same partition. If s € S, the corresponding partition of Q, ¢(s), the partition
determined by s, is defined ¢(s) = {{w € Q| sw = klrez} € G. Any given partition of Q is associated
with many points in .S,' but one may use either formulation — here, it is usually more convenient to
view a partition as an element of S. Formulating partitions in terms of S simplifies the discussion of
randomization on the set of partitions. A partition of €2 into k& non-empty sets is called a partition of
size k. Let S* = {s € S| s, € Ni}, where N = {1,...,k}. Random partitions of size k are then

identified as “draws” from some distribution on S*.

Definition 2 Let p(k) = {p§}§:1 with p"f > 0 for each j. For each w € Q put p* = p(k) and define a

random k-partition as a draw from the measure pi* = @ eau®.

A partition of Q is finitely generated if it is an element of S* for some k. Note that S¥ C S¥*1 C S, and
one may view p* as a measure on S, where p* has support on S¥. Call S* the set of finitely generated

partitions of  where S* = U2 S*.

Definition 3 Let A\ >0, >", Ap = 1. A random partition is a draw from the measure i on S*, defined:

=) 4 Axptr, where py is a random k-partition.

Thus a draw from a random partition is an element s € S*. With probability 1, the partition is
finite, but the expected size of the partition may be infinite.?

If A and B are two partitions, then although they may have no elements in common, it may be
that the union of some members of A coincide with a member (or union of members) of 5. In such
a case, some strict subset of 2 would be common knowledge at some state. The next theorem asserts
that this is not the case (generically), for random independently drawn partitions. (All proofs are in the

appendix.)

Theorem 3  Let {Py,...,P,} be n independent randomly drawn partitions. Then for each i, for any
G € 0(Vj%P;), G#0, Q, there is 0 probability that G € P;.

In words, random partitions have no “overlap”, with probability 1. Thus, the property that an event
is common knowledge at some w is non-generic. (The intuition is simple. Suppose there are a hundred
balls labeled 1 to 100 and an individual randomly distributes the balls between two urns. This gives a

collection of balls in each urn (a partition): C4 and Cp. If the experiment is repeated by another agent,

Logf s, 5 € S satisfy (a) sw = 5, implies §, = 5,/ and (b) sw # 5, implies 5, # 5,/, they determine the same partition
of Q.

2 With probability A, the partition is in S* with an expected size of m; = Zle lpf7 so the expected size of the
partition is Z:():l Apmyg. If pf = % then mj; = %(k +1) and Z:():l Agmg > %Zzozl Ark. For e € (0,1), define {k;},;>1
as k; = mink21/€j kyj=1,2,..., let Ay, = (1 — e)et, ki € {k;}j>1; and A = O otherwise. For these choices, the sum

Zzo_l Apmy diverges.



there is very small probability that the same division (C'4 and Cg) will be obtained: and as the number
of balls becomes larger, this probability goes to 0.)

If we represent “public information” by a partition H, then, for example, if H = {0, Q}, there is
no useful public information in the sense that o(P;) = o(P;) V H. In general, one will model public
knowledge, #, as being finer than {#},2}. (In the appendix we show that, if # is a random partition
then with probability 1 H consists of a finite number of sets, each with an infinite number of elements.)
On each member of H having an infinite number of elements the partitions induced by the {P;} have
no members (or unions of members) in common: P; and V;;P; have no overlap. In this case, each
element of #H is common knowledge, and with probability 1, these are the only events that are common
knowledge. In particular, given w, there is some w’ and 7 with w and w’ in different partition members
for ¢ and in the same partition member for all j # i. If X(@) = (X1(®),...X,(@)) is a R"-valued
random variable with X; constant on each member of P;, and f a strictly monotone function on R”,
then f(X(w) = f(X(w')) implies X;(w) = X;(w’). This discussion leads to the main theorem of the

section.

Theorem 4 Let f be a strictly monotone function, f : R® — R. Let {P;}?",, 1 be random
independently drawn partitions, and Pf = P; V H. Let {X;}7_, be a collection of random variables on
1, such that X; is P; measurable. Put g(w) = f(X(w)), C = {c| I w, g(w) = ¢} and for c € C, let
E. = {w | g(w) = ¢}. With probability 1, if E. is common knowledge at w*, then for each i, X; is

constant on F..

So, if private and public information partitions are independently and randomly drawn, then with
probability 1, common knowledge of the value of the aggregating function implies constancy of the

individual statistics.

4 Co-varying Signals.

This section provides a common knowledge result in the case where the aggregator function is not
additively separable, but restrictions are imposed on the distributions of the random variables, or on the
measure over the underlying probability space. Taking the partition structure as given, what conditions
of association on the individual statistics lead to common knowledge of the constancy of the aggregator
function implying constancy of the individual statistics? Here we show that affiliation plus a lattice
condition yield the result.

A key feature of additive separability of the aggregator function is the co-variation of the aggregate
function with the individual signals. Consider two points w and w’ with # = X(w) and 2’ = X(v').
Even though the vector of changes {#} — #;}?_; may not all have the same sign, the vector of changes
{f (=) = flx)][x; — x]}7_, are all non-negative, and strictly positive when for some ¢, [#} — 2;] # 0
because each f; is strictly increasing. In this case, constancy of > fi on the range of X = {X;}_,,
over M;(w*), is inconsistent with variation of any X; on the meet. When f is not additively separable,
without some restriction on the co-variation on the variables {X;}? ,, constancy of the aggregator
function cannot imply constancy of the individual X;’s: an upward movement in one could be offset

by a downward movement of another, compensating to a constant value of f. This suggests that if the
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co-movements of the variables are restricted, a common knowledge result might continue to hold. The

restriction considered here is that of affiliation.

Definition 4 A random vector X (in R*) with density p is said to be affiliated (or multivariate totally
positive of order 2 (MTP,)) if p satisfies p(x V y)p(x Ay) > p(2)p(y).

(Here x Vy = (max(z1,41),...,max(zy, yn)) and 2 Ay = (min(z1,y1), ..., min(z,, y,)).) Note that if p
satisfies the affiliation condition, then on any sub-lattice, S, of R* (2,2 € S= 2V €5, 2 Az €8S),
the affiliation condition is also satisfied: the density, g of the random vector X, conditional on being in

S is an affiliated density: p(z) = ﬁp(r), z €S.

Theorem 5 Let X : 2 — R” be an affiliated random vector on Q. Let f : R® — R be a strictly
monotone function and set g(w) = f(X(w)). Suppose that:

1. At w* it is common knowledge that g = ¢,

2. 8= X(M(w*)) is a lattice.
Then X(w) = (Z1,...,%,), Yw € M (w*).

Proof: Since the event F = {w | f(X(w)) = ¢}, where ¢ is a constant and suppose that F is common
knowledge at w*, so for any constant k, f(X(w)) —k = ¢ — k, Yw € M(w*). For w € M(w*), let
plw) = mp(w), plw) = 0w € M(w™), let py = ZweM(w*)Xi(w)ﬁ(w) and let X be the random
vector with distribution determined by p — so that X conditional on S has the same distribution as X.
Then,

0= Z [f(X(w)) — k][Xi(w) — p]p(w)

WEM (w*)
=E{[f(X) —K][Xi — ] | S}, S =X(M(w"))
=Ep{[f(X) = k][Xi — ]}
=E A Ep{[f(X) — k] | Xi}[X: — pui]}
Suppose that #¢ < #!, then since f is strictly monotonic, f(z#, X_;) < f(#?,X_;), YX_;, and so
E{f(20, X_g) | Xf = 20} < Ep{f(2}, X_;) | X{* = #}}. Because X is affiliated, E;{f(&?, X_;) | X¢ =
59} < Ep{f(a, X-5) | X0 = al}, so noting that Ey{f(a, X—i) | X7 = a} = Ex{f(X¢, X_i) | X7 = a},

and combining inequalities:
XP<X? = Ep{f(X7,Xo0) | X7} < Bp{F(X7, Xa) | X7}

Thus, E5{f(X;, X_;) | X;} is strictly increasing in X;. Choose so that E;{[f(X) — k] | X;} > 0 when
X; > i and E,{[f(X) — k] | X;} <0 when X; < p;. Thus, E{E{[f(X) — k] | Xi}[X; — ] |} > 0,
with strict inequality unless E5{ | [XZ —ui] |} =0.

|

The result can be strengthened substantially by “piecing” sub-lattices together. Call {L; }“le an
overlapping paving of the set (not necessarily lattice) S if (a) each L; C S is a lattice, (b) for any
z, ' €S, e =2,...,25 =2 such that z; € L; " L1, j=1,...,J — L. In this case say that S has

an overlapping paving.



Corollary 1 Condition 2 in the previous theorem can be replace by the requirement that S has an

overlapping paving.

Proof: On each sub-lattice L;, proceed as in the theorem. On overlapping sub-lattices, equivalence of
the values of X at the intersections with constancy on each sub-lattice implies a constant value of on
any such pair of sub-lattices. Since all the sub-lattices are connected, this implies constancy over the

union of the sub-lattices.

A similar result may be obtained when the distributional restriction is placed on the underlying probabil-

ity space (so 2 = x7_,Q;, where £; is totally ordered, the distribution on  affiliated and X; : ; — R.)
4.1 Affiliation and Posterior Distributions.

Finally, we conclude with an example showing that, in general, posterior distributions on the same
event are not affiliated. The state space is © = {w11, w12, w21, w22} and w;; has prior probability p;;.

The information structures and probabilities are given by the following figure.

I’s Information II’s Information Prior distribution
J1 Ja
Iy |ewi1 ewin * Wi | ® W2 P11 P12
I, | ®wa1 e wss ® W3 | W P21 P22

Let A = {w11,waz}, so p; = prob(A | I;) and ¢; = prob(A | J;) are the posterior distributions conditional
on the information. Take prob(I;)prob(J;) > 0 for 4,5 € {1,2}, so the posterior distributions are
unambiguously defined. Thus,

P11 P22 P11 P22

h=—7"7"— P2= , 41 = y Qo= ———
P11+ pi2 P21 + pa2 P11+ pa P12+ pa2

The distribution of the posterior distributions is: p(pi,¢;) = pij, 4, € {1,2}. Suppose that p,
p1 and g2 > ¢q1. In this case, there is one affiliation inequality to be satisfied: p(p1,¢1)p(p2, ¢2)
p(p1,92)p(P2,41), OF p1ipaa > prapar ((P1,42) V (P2, q1) = (P2, 42) and (p1,2) A (p2,01) = (p1,91)). So,
the posteriors are not affiliated when, for example, p11 = .1, p12 = paa = p21 = .3 (while ps > p; and
q2 > q1 at these values).

This observation may also be seen in terms of expectations. If ¢ is the posterior function for person
2, q(wi;) = prob(A | J(ws;)) where J(w;;) is the partition member containing w;;, then, in terms of

expectations, some calculations yield:

E(q|p2)— Elqg|p) =(g2 — fh){( D22P11 — P21P12 ) }

P21 + p22) (P11 + P12
p(p1, 01)p(p2, 92) — p(p1, 42)p(p2, 1) }
p(p2, 1) + p(p2, ¢2)llp(p1, 1) + p(p1, 42)]

:(92 - fh){ [

Although ps > p1 and g2 > ¢1, the term on the left is negative if the affiliation inequality fails.



Appendix

In the appendix we first establish some properties of random partitions that are used in the proofs of

theorems 3 and 4.

In the set S*, one may identify partitions of size less than k. For example, the partition consisting
of just one member  is identified with s = {s, },eq where for some j € {1,... k}, s, = J, Yw € Q.

However, a random & partition puts probability 0 on partitions of size less than .

Lemma 1  Let u* be a random k-partition and S* = {s € S¥ |3j € {1,...,k},Yw € Q, s, # j}. Then
p"(S*) = 0. Furthermore, with probability 1, each member of the partition has an infinite number of
elements.

Proof: The proof of the first part of the lemma is immediate: p*(S*) < Z?:l[XwEﬂ(l -p§)] =0.
Thus, in a random k partition, the partition has & members with probability 1, with p**+1(S*) = 0,
prtL(Sk+L\ %) = 1) and since S¥ C S**L pF(S*+7) = 1, j > 0. The next observation establishes the

second claim. To see that in a random k-partition, with probability 1 each member of the partition has

an infinite number of elements, let
. L ¥f S, =T
wi T 0, sl #Fr

and note that (by the law of large numbers), for almost all draws of s € S*
I,
]:

This implies that for almost all s € %, 5w, = r for an infinite number of times.

Thus, with probability 1, each element of a random partition contains an infinite number of elements,
and with probability Az, the partition has & members.

Partitions s(1),s(2),...s(r) € S* are drawn independently if drawn from a distribution g =
®T_ p(é) on (S™)", with u(é) a random partition. In terms of partitions defined directly on €, the
partitions s(1),s(2),...s(r) € S* are interpreted as (¢(s(1)), ¢(s(2)),...¢(s(r))) = (P1,...,Py), and
the vector (P1,...,P;) is a vector of random independently drawn partitions. Given a partition &, let
o (&) be the set of subsets of © obtained by taking unions of members of £ (the sigma field generated by
£). Next we show that if the partitions {P};_; are random independently drawn partitions, then with
probability 1, the only elements o(P;) and ¢(P;) have in common are §§ and €2; or more generally, the
only elements o(P;) and o(V;2;P;) have in common are @) and . Consequently, “generically”, the only
event that is common knowledge is Q. These observations are formulated in lemmas 2 and 3.

The next lemma asserts that given any draw, s € S*, from a random k-partition, the probability
that this partition has any overlap with any other partition (common element or union of elements) is
0. Given s € S, let r(s) = {j | Fw € Q,s, = j}, the “range” of s, and Q;(s) = {w | s, = j}, those
points w that s “assigns” the value j. For I C Ni, Q1(s) = U;er€(s). Elements of a partition may be
combined to form additional sets. Let s € S*. Say that Q is generated by s if there is some I C Nj,
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sw €I, wé€E Q and s, € I°,we Qc. Thus, Q may be written as the union of members of the partition

determined by s if and only if this condition is satisfied. Let s € S*
¢F(s) ={s' € S¥ |3, J C Ni, Qs(s") = Q1(s)}.

So, ¢*(s) consists of those partitions s’ € S* generating some ' that is also generated by s.

Lemma 2 In a random k-partition, for any s € S¥,

pr({se st |sedt(s)}) =0

Proof: Since s generates a finite number of subsets of €, it is sufficient to show that the measure

of the set of partitions generation any set €2 is 0. Let I be a subset of K with § # I # K. Let
I _ 9 I _ Ae A I _ il I

By ={s|sw €1,Vw e Q}and Ny = {s| s, ¢ [,Vw € Q°}, Vj/here QC Q. Put S;, = E; NN . Thus,

/Jk(Sé) < max{uk(Eé),uk(Né)}. At least one of the sets Q and Q¢ is infinite, and since uk(ESI]) =

Xweﬁﬂw(l) = Xweﬂ[Zkejpk] and ﬂk(Néc) = Xweﬂcﬂw(lc) = Xweﬂc[Zkejcpk]~ Since 0 < Zke[pk =
L= pere e <1, uk(Sé) = 0. Since I is finite, there are a finite number of ST, I C k, so that:

|
Let ¢*(s) = {Q' C Q | IR C Ni, ' = Qg(s)}: ¥*(s) is the set of subsets of Q that can be identified

with unions of members of the partition (determined by) s. Given two collections of subsets of Q, @ and
Q' write @ A Q' to denote the set of subsets of 2 common to both @ and Q’.

Lemma 3 Let @ = {Q;} be a finite or countable collection of subsets of 2. Then:

pF({s € S QA YH(s) #£0}) =0.

Proof: With this notation, the previous lemma asserts that for any Q, u*({s € S* | Q € ¢*(s)}) = 0
or (*({s € S* | Q ¢ ¢*(s)}) = 1. Since

u’“({SES’“IQAwk(S)iV)})SZu’“({SES’“ | €™ (s)}) =0

this completes the proof.

|
= 1/)k(s)(5).
=1

since

For s € 5%, 3k such that s € S* let k(s) = min{k € K | s € S*} and define 1*(s)
If @ = {€;} be a finite or countable collection of sets, then pu({s € S* | @ A ¢*(s)} = 0)
i({s €57 | QA U7 (5) = 1)) = X ik ({s € 5 | Q A #(s) = 0}) = 0.
Theorem 3  Let {Py,...,P,} be n independent randomly drawn partitions. Then for each i, for any
G € 0(Vj%P;), G#0, Q, there is 0 probability that G € P;.

bl
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Proof: By assumption, the probability that all of the partitions {P;};2;, have no more than m
elements is no less than 3, = (3., M) =D Since B, 1 1, with probability 1, o(V;2iP;) contains a
finite number of sets. In this case, by lemma 3, the probability that o(P;) has any set in common with

0'(\/]'752'77]') 1s 0. |

Theorem 4 Let f be a strictly monotone function, f : R® — R. Let {P;}?",, 1 be random
independently drawn partitions, and Pf = P; V H. Let {X;}7_, be a collection of random variables on
1, such that X; is P; measurable. Put g(w) = f(X(w)), C = {c| I w, g(w) = ¢} and for c € C, let
E. = {w | g(w) = ¢}. With probability 1, if E. is common knowledge at w*, then for each i, X; is

constant on F..

Proof: Let {Py,...,P,,H} be n+ 1 independent randomly drawn partitions, and for i = 1,...,n, let
Pr =P; VH. Then for each ¢, for any G € 0'(\/]'752'7?;‘), there is 0 probability that G € P}. Then, from
the lemma 1, with probability 1, each element of H contains an infinite number of points. Given H € H,
#H = oo, define pff = x,expf, and on this new space, all of the previous results may be applied.
Henceforth, assume the reference space is H with the relevant definitions modified accordingly. Let P}
be the partition induced on H. From the previous results, the probability that o(P}) has any set in
common with 0'(\/]';,52'7?;‘) 1s 0. An implication of this is that with probability 1, for each @ € 0'(\/]'752'77;‘),
there is some G € P} such that GNQ # 0 and GNQ° # 0.

Since the partitions {P;}?_; and H are independently drawn, with probability 1, A7_,PF = .
Suppose that w* € H € . On the member of @ € A;j£/P; containing w”, every G intersecting with ¢
has a constant value for X;. There is some G € Pf overlapping ¢ and some @’ both in Njz;/P5. Since

i
X_; is constant on @, the value of X; (determined by ) must be constant on @'. Thus, X; is constant
on Q U Q. Proceed inductively to cover H with X; constant. |
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