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Abstract

This paper reconsiders the literature on non-cooperative foundations of cooperative solutions. The goal of
non-cooperative foundations is to provide credible non-cooperative models of negotiation and coalition formation
whose equilibrium outcomes agree with a given cooperative solution. Here we argue that this goal is best
achieved by explicitly modeling the physical environment and individual preferences, and constructing game
forms independent of preferences to implement the cooperative solution. In addition, the game form should
reflect salient aspects of negotiation. We propose a general model (called a strategic environment) of the physical
environment; we characterize the coalitional functions arising from strategic environments; we demonstrate our
approach for the case of the core; and we provide conditions under which core payoffs correspond to payoffs

from core outcomes.
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1 Introduction.

The cooperative approach in game theory takes an abstract view of social interaction, combining the
details of the physical environment and individual preferences in a coalitional function V.!' The process
of bargaining and negotiation, through which conflicting individual interests are ultimately resolved, is
summarized by a cooperative solution — a mapping that associates sets of payoff vectors to coalitional
functions. For example, the core picks payoff vectors such that no subcoalition can separately guarantee
more for all its members, while the Shapley value assigns to each individual the average of their marginal
contribution to every coalition. Cooperative solutions are often accompanied with informal stories of
individual interaction but lack formal non-cooperative models describing the process of negotiation and
the outcomes finally agreed upon. The development of such formal models, reconciling the predictions
of cooperative solutions with the realities of individual incentives, goes back to Nash (1953) and is
commonly referred to as the “Nash program.”

In the work of Nash and much of this literature, models of bargaining and negotiation are built
directly on the coalitional function. Typically, negotiation is modeled in terms of proposals and counter
proposals over payoffs that coalitions can achieve: a proposal to coalition S is restricted to the payoffs,
V(S), achievable for S, and therefore different coalitional functions result in different games. We argue
that this approach is unsatisfactory. Because the coalitional function implicitly incorporates the timing
of coalitional deviations and punishments, i.e., effectivity, this important aspect of negotiation is not
explicitly reflected in traditional non-cooperative foundations. Furthermore, because individual utility
functions act through the coalitional function, the procedural rules described in non-cooperative foun-
dations technically depend on the preferences of individuals, distinguishing them from the kind of rules
written down in a constitution, a legal code, or the charter of a corporation. As a consequence, models
based on the coalitional function may be difficult to compare to existing institutions and their support
for a cooperative theory may be limited.

The applicability of traditional non-cooperative foundations to problems of institutional design,
where a social planner desires the outcomes prescribed by a cooperative theory but does not know indi-
vidual preferences, 1s also limited. Here, the planner must construct a set of rules, defined independently
of individual preferences (called a mechanism or game form), that achieves socially desirable outcomes
as non-cooperative equilibrium outcomes. The central problem of mechanism design, an unavoidable
consequence of the planner’s incomplete information, is to ensure that socially desirable outcomes are
achieved by a fired mechanism as individual preferences vary over some predetermined domain. This
fundamental constraint significantly restricts the outcomes achievable by such decentralized means,?

but it does not arise in the Nash program, because bargaining institutions described in terms of coali-

L For a coalition S, V(S) denotes the vectors of payoffs to coalition members achievable (or guaranteeable) by S.

2 Maskin (1977) showed that, if the normative goals of the planner are achievable in Nash equilibrium, they must
satisfy a strong monotonicity condition. See Abreu and Sen (1990) and Moore and Repullo (1988) for other “preference
reversal” restrictions under the subgame perfect equilibrium hypothesis.



tional functions are not fixed — they depend on individual preferences. Without preference information,
traditional non-cooperative foundations offer little guidance in the design of institutions to achieve the

outcomes of a cooperative solution.

There are cases in which it may matter little which approach one uses. Serrano (1996) argues
persuasively that non-cooperative foundations can sometimes be transformed, overcoming the above
difficulties, into game forms independent of preferences: if V' is derived from a private good economy
then the set V() of payoff vectors achievable by the coalition S can be replaced by a fixed set of physical
allocations, namely, redistributions of the endowments of the coalition’s members. This is true, however,
only when the underlying environment is a private good economy, where externalities are not present and
effectivity is not an issue. Many interesting environments (see Examples 2-5) do exhibit externalities, and
in them the payoffs achievable by a coalition may fail to correspond to a fixed set of allocations or, more
generally, physical outcomes. This point, and with it the concomitant inadequacies of the coalitional
function, has received attention by Scarf (1971), Rosenthal (1971), and Shapley (1982), among others.?
Moreover, we show that the above-mentioned failure can be critical: in Example 8, we describe a simple
environment in which the core is not implementable in Nash or subgame perfect equilibrium, despite the

existence of non-cooperative foundations of the core based on the coalitional function.

We therefore propose a direct approach to non-cooperative foundations that disentangles the pro-
cedural rules of bargaining from modeling primitives by: (1) explicitly modeling physical outcomes and
individual preferences, (2) formulating cooperative solutions in terms of outcomes rather than payoffs
(as mappings from the underlying environment to sets of outcomes), and (3) defining rules of negotiation
that are independent of preferences, that attempt to capture the salient aspects of actual bargaining,
yet are consistent with the cooperative solution of interest, 1.e., the equilibrium outcomes of negotiation
agree with the outcomes of the cooperative solution over the domain of possible preferences. In particu-
lar, a non-cooperative foundation for a cooperative solution should implement the solution, now viewed
as a social choice correspondence, in terms of an appropriate non-cooperative equilibrium concept. This

allows us to compare actual bargaining arrangements to those described by our non-cooperative foun-

3 Shubik (1982) identifies zero-sum games and games with “orthogonal coalitions” as games where the coalition function
adequately captures the strategic considerations in the game. A game with orthogonal coalitions is one where “nothing
can happen to change a player’s fortune (payoff ) unless he himself is party to the action .... In this case the only threat by
outsiders against a coalition is not to belong to it.” But he observes that many games do not fall into this category: “More
importantly, many games do not allow the clean separation that we need between questions of strategic optimization and
questions of negotiation. Although we can still define the characteristic function for such variable threat situations, we
cannot analyze them properly without additional information about the actual rules of play — information that is lost when
one passes to the characteristic function.” A similar point is made by Scarf (1971), “In a model where each consumer
begins the trading period with a stock of commodities, and has a utility function for final consumption, the utility vectors
achievable by a coalition are most naturally taken to be those arising from an arbitrary redistribution of that coalitions
assets.” However, he observes: “If, for example, some of the goods are undesirable and require the use of real resources for
their disposal, the players not included in a given coalition may, by their actions, modify the distribution of utilities within
the coalition. Similar difficulties arise if external effects in consumption are introduced into the model of exchange, and
in many other variations of the neoclassical model as well.” Thus, he concludes: “These examples illustrate the general
proposition that the possibilities open to a coalition should perhaps be viewed as derived from a prior specification of the
game in its normal form; that is, in terms of the strategic choices open to the individual players, and their evaluations of
the outcomes.” Rosenthal (1971) also expresses this viewpoint arguing that the coalition function may be inadequate in
its “restricted view of threat possibilities.”



dation, lending (to the extent that they correspond to one another) non-cooperative support to the
predictions of a cooperative theory. From the mechanism design perspective, our non-cooperative foun-
dation provides rules of negotiation that give individuals non-cooperative incentives consistent with the
cooperative solution of interest.

This “implementation-theoretic” approach i1s not new: several papers have developed non-cooperative
foundations, in the sense proposed here, for various cooperative solutions. Nevertheless, because both
approaches involve the construction of games or game forms whose equilibria have specific features, con-
siderable confusion surrounds the relationship between the Nash program and implementation theory. In
Section 2, we review the literature on the Nash program and the relevant implementation literature, their
connections, and the fundamental difference between them: because preferences are embedded in the
V’s over which a cooperative solution is defined, traditional non-cooperative foundations are necessarily
parameterized by preferences. We highlight this difference in Proposition 1, which demonstrates that
from a purely technical perspective the problem of providing a non-cooperative foundation in the Nash
tradition (a collection of parameterized games with the correct equilibrium payoffs) is trivial. This is not
true of the implementation problem, where game forms must be defined independently of preferences.

In Section 3, we develop a model of the physical environment, similar in spirit to Debreu’s (1952)
generalized games or Ichiishi’s (1981,1993) concept of a society, generalizing strategic games and private
good economies. We assume that each coalition has a fixed set of conceivable joint plans of action,
though we allow for the feasibility of a coalition’s plans to depend on the plans of outsiders. A feasible
action correspondence combined with a profile of utility functions for the individuals completes our model
and is called a strategic environment. Fixing a feasible action correspondence, we define a cooperative
solution as a mapping from strategic environments (i.e., profiles of utility functions) to subsets of feasible
joint plans representing possible outcomes of social interaction. We define the core in this setting, but,
in contrast to work in private good economies, we must take up the issue of effectivity. Following the
conventions proposed by Aumann and Peleg (1961), we consider two concepts, a- and S-effectivity,
whereby strategic environments are mapped to coalitional functions, and we define two corresponding
notions of the core.

In Section 4, we extend the results of Shapley and Shubik (1969), Billera and Bixby (1973, 1974),
Billera (1974), and Mas-Colell (1975), who characterize the coalitional functions derived from “market
games” (i.e., private good economies), thereby establishing the domain of any cooperative theory appli-
cable in this class of environments. We take up a logically prior but, to our knowledge, untouched issue:
we establish bounds on the domain of any cooperative theory by characterizing the coalitional functions
derived from, or supported by, general strategic environments. Moreover, these bounds are tight: we
provide complete characterizations of the coalitional functions supported, in either the a- or S-senses,

by strategic environments.* The conditions characterizing supportability are quite permissive, strictly

4 In fact, strategic games are sufficient to generate all coalitional functions supported by strategic environments — the
extra flexibility of our strategic environment model is unnecessary for this purpose.



more so for G-supportability. While these results are of independent interest, they also help elucidate
the connections, discussed in Section 2, between implementation-theoretic non-cooperative foundations

and traditional ones.

In Section 5, we fix an arbitrary feasible action correspondence and illustrate our approach with
implementation-theoretic non-cooperative foundations for the two versions of the core: our game forms
subgame perfect implement these versions of the core, imposing no restrictions on individual preferences
and without invoking stationarity (which is often done in the work on non-cooperative foundations).
Play takes place in continuous time and formalizes the usual core story, with challenging proposals
upsetting non-core outcomes. In contrast to traditional non-cooperative foundations, where effectivity is
embedded in the coalitional function (and unlike implementation-theoretic non-cooperative foundations
in private good economies, where effectivity is moot), our game forms reflect the distinction between a-
and [-effectivity through the timing of punishments incurred by deviating coalitions. This dependence
is unavoidable in our framework: if different assumptions about effectivity entail distinct cooperative

solutions, the rules of bargaining on which those solutions are predicated must be distinct.

Section 6 takes up an important, but overlooked, technical point. If the coalitional function of a
strategic environment 1s calculated and the core solution applied to this coalitional function, the resulting
core payoffs may not correspond to the payoffs from core plans of action in the strategic environment.
We show, in Example 10, that without typical regularity conditions, e.g., compactness and continuity,
on the physical environment a payoff inconsistency may arise: one individual receives a core payoff of
zero, despite the fact that the individual can guarantee himself (in the a-effectivity sense) a positive
payoff.> We then provide appropriate regularity conditions, for a- and B-effectivity, under which payoff

consistency ensured.

2 Implementation and Non-cooperative Foundations.

2.1 Comparison of Approaches.

Non-cooperative foundations traditionally begin with a cooperative solution ¥ specifying a set ¥(V)
of payoffs for each coalitional function V' within a given class V. Given V, the objective is to design
a game I' whose equilibrium payoffs coincide with ¥(V') and which provides a “natural” description
of individual interaction, thereby offering some justification of the cooperative theory in terms of self-
interested individual behavior. Writing T'(V) for the game corresponding to V, Figure 1 depicts this

non-cooperative foundations problem.

5 The individual can guarantee a positive payoff, but not one bounded above zero: the other individual in the example
can bring the former’s payoff arbitrarily close to zero.
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Figure 1

In the literature on the Nash program, authors have gone to great lengths to design games remi-
niscent of actual bargaining and negotiation. An important distinction of these games is that they are
(necessarily) parameterized by coalitional functions, but, as the next proposition demonstrates, if the
nature of this parameterization is unrestricted then it is a simple matter to define non-cooperative games
with any desired equilibrium payoffs. In what follows, n denotes the number of individuals, indexed by

i and j, and y = (y;)ien denotes an n-tuple of payoffs.

Proposition 1  Assume n > 3. For every cooperative solution ¥ and every coalitional function V|
there exists a strategic game with Nash equilibrium payoffs equal to ¥(V).

Proof: Assume for now that W(V) # @), pick an arbitrary point y* € W¥(V), let each individual i’s
strategy set be M; = ¥(V) and let M = X;en M; with elements m = (mq,...,my). Define ¢’s payoff
function u; : M — R as follows: u;(m) = y; if at least n — 1 individuals j use strategy m; = y, and
u;(m) = y? otherwise. The Nash equilibrium payoffs of this game are exactly ¥(V). If ¥(V) = @, let
M; = R and u;(m) = m;. This game has no Nash equilibria, as required. (Alternatively, preferences may

be parameterized by the coalitional function and strategy spaces defined independent of preferences.) [

The games used in the proof of Proposition 1 are not adequate models of social interaction, and
we do not suggest that they constitute satisfactory non-cooperative foundations for ¥. Nevertheless, it
is clear that the technical problem confronted in the Nash program is substantially simpler than that
of implementation theory, where, because of the inherent difficulty of finding a single game form that
works for all preference profiles, naturalness is often secondary.®

In this paper, we take as the point of departure a fixed set, A, of conceivable joint plans of action
(and a fixed feasible action correspondence, defined in Section 3) and a set U of possible profiles of
utility functions. Each u = (u;);eny € U then determines one possible strategic environment in which
negotiation might take place. Given a cooperative solution F', formulated as a correspondence from
U to A7 our approach is to construct a fixed game form, G, ideally capturing the salient aspects

of negotiation, but also consistent with F' in the following sense: the game form, when played with

6 Work with natural mechanisms in implementation includes Jackson, Palfrey, and Srivastava (1994), Dutta, Sen, and
Vohra (1995), and Saijo, Tatamitani, and Yamato (1996).

7 Implicit in F' is some formulation of effectivity. In Section 4, we consider the core correspondences derived from a-
and (-effectivity.



preference profile u, entails a strategic form game, say G(u), and we require the equilibrium outcomes of
G (u) to coincide with the outcomes, F'(u), of the cooperative theory. Thus, as in Figure 1, a collection
of games, {G(u)}, is determined, but the collection of games is generated from a fired game form as
preferences of individuals vary, incorporating a restriction — not present in the traditional approach —
on how these games can depend on individual preferences.®In sum, the game form G implements the

correspondence F'. Figure 2 depicts this implementation-theoretic approach.

F

G Equilibrium
outcomes
{G()}

Figure 2

On the one hand, the approach we propose confronts the usual incentive problems in implementation
theory; and, on the other, it provides a non-cooperative foundation for the solution F'. How are the
two approaches connected? Returning to the primitives of the traditional approach, ¥V and ¥, we may
presume that V is generated by some notion of effectivity applied to some class of strategic environments.
If we further assume that the physical environment (the actions available to individuals and coalitions) is
fixed, so that the members of this class correspond to the possible preferences of individuals, unobservable
by a social planner or other outside agent, we get the top arrows of Figure 3, below. In Section 4, we
provide necessary and sufficient conditions on V, for a- and g-effectivity, under which this correspondence

in fact holds.

effectivity
1% U
supportability
v F
(7
R A
Figure 3

Because the correspondence F' maps to A, the set of payoffs to individuals at utility profile u 1s
u(F(u)). At the same time, applying a given notion of effectivity, « induces a coalitional function V.

Depending on the definition of F'| the structure of the physical environment, and the type of effectivity

8 Ona positive note, we have also added a source of variability that is not available in the traditional approach: because
G does not necessarily depend on u through the coalitional function, we may have G(u) # G(u') though V and V', the

coalitional functions corresponding to « and «/, are equal.



employed, the payoffs «(F(u)) may or may not match the payoffs ¥(V*) of the cooperative solution
of interest, i.e., Figure 3 may or may not commute. When 1t does, equilibrium payoffs from the game
G/(u) agree with the predictions of ¥ applied to the coalitional function V*, and the implementation-
theoretic non-cooperative foundation extends to the original cooperative solution. In Section 6, we
give conditions on the physical environment sufficient for payoff consistency of the core, under a- and

F-effectivity, ensuring commutativity of Figure 3 for the core.

2.2 Literature Review.

There is an extensive literature on non-cooperative foundations, following Nash’s (1950, 1953) work on
bargaining. Hart and Mas-Colell (1994) provide non-cooperative foundations for various cooperative
solutions. Starting with an arbitrary coalitional function, they develop a general bargaining model that
provides a non-cooperative foundation of the n-person Nash bargaining solution in the pure bargaining
case and for the Shapley value in the transferable utility (TU) case. In general, as the probability of
breakdown in their bargaining process goes to zero, the stationary subgame perfect equilibrium payoffs
of their game converge to the consistent values of Maschler and Owen (1992). Bossert and Tan (1995)
develop a multi-stage demand game which yields the egalitarian bargaining solution at every Nash
equilibrium.

Recently, the non-cooperative foundations of the core have received substantial attention. Chat-
terjee, Dutta, Ray, and Sengupta (1993) provide, among other things, a partial foundation for the core
of a strictly super-additive TU coalitional function, showing that the limiting payoffs of a sequence of
“no delay” stationary subgame perfect equilibria converge to a core payoff. Perry and Reny (1994)
consider the core of an arbitrary TU coalitional function, and provide a non-cooperative foundation that
formalizes the usual story accompanying the core: negotiation takes place in real time, individuals may
make feasible proposals to coalitions, and they may accept a proposal currently on the table. They
show that every stationary subgame perfect equilibrium of their game leads to payoffs in the core, and,
for balanced TU coalitional functions, every core payoff 1s supported by a stationary subgame perfect
equilibrium. Given a strictly convex TU coalitional function, Serrano (1995) constructs a class of games
with subgame perfect equilibrium payoffs matching the core payoffs. Moldovanu and Winter (1995)
and Serrano and Vohra (1996, Theorem 2) extend non-cooperative foundations of the core to general
coalitional functions. Lagunoff (1994) maintains generality with respect to the non-cooperative game

9 he defines a class of games, each of which

producing core outcomes. Given a coalitional function,
yields the core outcomes as subgame perfect equilibria. Okada and Winter (1995) propose axioms iso-
lating a class of non-cooperative games and equilibrium concepts (refinements of stationary subgame

perfect equilibrium) that produce core payoffs given any super-additive, totally balanced TU coalitional

o Lagunoft’s formulation of the coalitional function gives the outcomes (rather than payoffs) achievable by the coalitions.
It is most easily interpreted in the context of an economic environment.



function.™®

Several papers have contributed non-cooperative foundations, in the sense we have proposed, by
formulating cooperative solutions as social choice correspondences and implementing them. These pa-
pers follow Jackson (1992) in using especially simple mechanisms. Moulin (1984) defines the Kalai-
Smorodinsky bargaining solution as a social choice correspondence and implements it in subgame perfect
equilibrium. Howard (1992) implements the Nash bargaining solution in subgame perfect equilibrium.
Conley and Wilkie (1995) define the Nash extension solution for two-person bargaining problems and
implement it in subgame perfect equilibrium. Miyagawa (1997) defines the normalized utilitarian bar-
gaining solution as a social choice correspondence and implements it in subgame perfect equilibrium.
Einy and Wettstein (1993) implement the core and bargaining set of a private good exchange economy
in subgame perfect equilibrium, and Vohra and Serrano (1996, Theorem 1) subgame perfect imple-
ment the core of a private ownership economy (a generalization of private and public good production
economies).!! The results of Section 5 generalize the core implementation results of the latter two pa-
pers by considering general environments (possibly exhibiting externalities) and addressing the issue of

effectivity.

3 General Framework.

In this section, we impose on the physical environment the minimal structure necessary to discuss coali-
tion formation, generalizing many familiar types of economic models. We then extend the conventional
notions of effectivity to our general class of environments, and we define two core social choice corre-
spondences. The analysis takes as given a society, denoted N, consisting of individuals i = 1,...,n.
Let A denote the collection of non-empty subsets of N (coalitions), denoted S. The complement of .S
is denoted simply —S. A coalitional function, V, maps each S € N to a set V(5) C N° consisting of
vectors ys = (yi)ies such that S can guarantee each member i € S a payoff of at least y;.1? We do not
require V(S) to be non-empty. A cooperative solution, generically denoted ¥, operates on coalitional
functions V, assigning a set W(V) C RV of payoffs (possibly empty) to the individuals. The core of the
coalitional functions V' is denoted C'(V') and defined as the set of vectors y € V(N) such that, for all
S € N, there does not exist zg € V(S) with zg > ys.'3

10 Non-cooperative foundations have also been developed for other solution concepts. Harsanyi (1974) develops a non-
cooperative bargaining game that yields stable sets as outcomes; Selten (1981) develops a model of bargaining that produces
the “semi-stable” demand vectors; Gul (1989) provides a non-cooperative foundation of the Shapley value in terms of a
dynamic matching game; and Serrano (1993) constructs a non-cooperative foundation for the nucleolus.

I 1 related work, Wilson (1978) constructs a model of bargaining in a market context that possesses at least one
equilibrium outcome in the core, but there may be other (Pareto efficient) equilibria as well. Kalai, Postlewaite, and
Roberts (1979) implement the core of an economy but in strong Nash equilibrium, so their approach is not entirely non-
cooperative. Bagnoli and Lipman (1989) implement the core of a public good economy in undominated perfect equilibrium.

12 Formally, we treat ®° as the set of functions from S to ®. Thus, given disjoint coalitions S and S’, along with

ys € R% and yo € §RSI, it makes sense to write ysys = (¥i)iesus’ € RSV We write yn € RY simply as y. These

conventions apply to other vector notation in the paper as well.

13 For two vectors yand z in RY and S € N, we write yg 3> zg if y is greater than z in every component ¢ € S, and
we write yg > zg if y is at least as great as z in every component : € S.



We suppose that each coalition S has some non-empty set A° of conceivable joint plans of action,
denoted ag, and that individuals have payoffs determined by the plans eventually adopted. The set of
conceivable joint plans for the coalition of the whole is denoted simply A, and elements are denoted by
a. Given a_g € A7 let pg(a_g) C A® be the set of joint plans feasible for S. The set of plans feasible
for the grand coalition, N, is the subset ¢n of A. Call the pair (A, ¢) an environment if the following
conditions are satisfied:

(a) forall S e N and alla_s € A7, pgs(a_s) # 0,

(b) for all S, 8" € N with SN .S =0, A5 x A5 C AT where T = SU S,

(c) for all S, 8" € N with SN.S" =0, and for all ag € A®, ag: € A5 and a_p e AT, pg(ag,a_r) x
psi(a_g,a_r) Cor(a_p), where T = SUS".

Condition (a) guarantees that coalitions always have feasible joint plans. Conditions (b) and (c) merely
formalize the notion that independent action is a special case of cooperation. Note that the expression
pg(agr,a_r) in (c) is well-defined, since, by (b), ags € A% and a_p € A=T implies (asi,a_r) € A™%.
For each individual i, let u; : ¢y — R denote a utility function giving the individual’s payoffs
from feasible joint plans of action; let us = (u;)ics; and let u = uy. A triple (A, ¢, u) is a strategic
environment. The following examples illustrate the flexibility of the model. Note that, as in Example
5, the set A® may contain joint plans that are not decomposable into plans for each member of S — in
the example, each 7’s plans consist only of mixed strategies over the individual’s pure strategies, but A°

consists of possibly correlated probability distributions on pure strategy profiles of the members.

Ezample 1. (Private good economy) Assuming there are k& commodities, for each coalition S, let
A% = %|+S|~k denote the set of conceivable joint plans for S, with elements ag = (a;)ies, each a; € Rk,
Assume each individual i has an endowment w; € % | and let X C R* denote an aggregate production
set. Define pg(a_s) = {as € A%|3r € X, ZiES a; = v+ ZiES w; }, which is independent of a_g. In this
example, ¢’s utility function w; i1s independent of a_; and additional restrictions, such as monotonicity

or continuity, may be imposed.

Ezample 2. (Strategic game) Let (A%, u;)"_; be a game in strategic form. This is a strategic environ-

ment in which, for all S € N, A% = x;c5A" and pg = A° is independent of a_g.™*

Erample 3. (Generalized game) Let (A®, u;, ;)" be a generalized game, where ;(a_;) # 0 is
the set of strategies available to ¢, when the other individuals use strategies a_;. This can be viewed
as a strategic environment, setting A° = x;egA?, provided that, for all S € N and all a_g € A7,
vs(a_g) = {ag € A° | Vi € S,a; € pi(a_;)} # 0. In words, for all conceivable joint plans of action
for non-members of 5, there must be actions for members of S that are individually feasible for each

member.

14 Note that a g may be an agreement among the members of S as to how to play an extensive form game. When binding
commitments are possible, as we implicitly assume, the temporal aspects of a strategic situation may be suppressed.



Ezample 4. (Splitting a pie) Suppose the individuals must allocate a fixed amount of a transferable
good. Here, a plan for i consists of the fraction of the pie that i intends to consume, so A’ = [0, 1].
Define A% = xjesA' and ps(a_s) = {as € A% ;cga; < max{0,1 — >_j¢s ajth. Utility functions
may take any form, though monotonicity is a usual requirement. Thus, “splitting the pie” environments

differ from private good economies in that coalitions may feasibly claim any good left by non-members.

Erample 5. (Game with correlated strategies) Let X* be the set of pure strategies of player 7, let
X% = x;e5 Xt and let U; : X» — R be individual i’s (measurable) utility function. Define A° = A(X?),
the set of probability measures on X*° | and g5 = A%. Given S, S’ € N with SN S =0, as € A°, and
agr € ASI, associate (ag, ags) with the product probability measure ag X ag: on Xx5us’, Thus, conditions

(b) and (c) are satisfied. Given p € A(X™Y), the payoff to i is u; (1) = [y~ Ui(x)dp.

Given a strategic environment (A, ¢, u), there are many ways to define a corresponding coalitional
function. We extend the a- and S-representations, defined by Aumann and Peleg (1961) for strate-
gic games, to arbitrary strategic environments. The two representations differ in their outlooks on
coalitional power: the a-representation embodies a pessimistic view while the S-representation em-
bodies a more optimistic one. For each coalition S, the joint plans that are always feasible, denoted
A2 = (Nu_ea-s ¢sla-s), will play an important role in our analysis. Note that condition (c) implies
that, for all S and S’ with SN S =0, A3 x A5 C ASYS'

We extend Aumann and Peleg’s definitions as follows. The a-representation of (A, ¢, u), denoted

VY 1s defined as

VE(S) = {ys € R% | (Fas € A7) (Ya_s € p_s(as))(us(as, a_s) > ys)},

for all S € A.'® Thus, a coalition S can guarantee payoffs ys for its members in the a-sense if there is
a joint plan ag for its members that is always feasible for S and such that, for every feasible joint plan
a_g of non-members, the joint plan a = (ag, a_g) gives each member ¢ of S a payoff of at least y;. The

(G-representation of (A, ¢, u), denoted V}', is defined as
¥ s
VE(S) = {ys € N7 | (Va_s € A7%)(3as € ps(a—s))(us(as, a—s) > ys)}

for all S € V. A coalition S can guarantee payoffs of at least yg in the 3-sense if, no matter which joint
plan is decided on by non-members, there is a feasible response for S, constrained by feasibility of a_g,
that delivers at least yg. Clearly, a guarantee in the $-sense is weaker than one in the a-sense.'®

The next example illustrates these constructions in the context of a strategic game.

Ezample 6. (Effectivity) Suppose n = 2 and the environment is such that each individual has two

feasible plans of action, independent of the other’s plans: individual 1’s available actions are {U, C, D}

15 Note that (as,a_g) € ¢ in the expression for V#(S), so ug(ag,a_g) is well-defined.

16 14 is easily verified that V* = Vé‘ for private good economies. Generally, V¥(S) C Vé‘(S).
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and individual 2’s are {L, M, R}. Thus, nine joint plans are feasible for the coalition of the whole.

Consider the following two profiles of utility functions.

U= (ul’ UZ) u' = (ull’ U/Z)

L M R L M R
U353 0.0 (-5 U (3-8 (L) (22
c| (-1 (-1,1) (1,-1 C (0,0)  (1,-1) (1,-1)
D (_2’_2) (_1’1) (_1’1) D (%’_%) (_1’1) (1’_1)

Here, VX({1}) = (=00, —2], V¥({2}) = (—0o0, 0], and V¥({1,2}) is the set of payoff vectors dominated

by elements of the lefthand matrix; V' ({1}) = (—o0,0],V¥ ({2}) = (=0, —2], and V4 ({1,2}) is the

set of payoff vectors dominated by elements of the righthand matrix. Turning to S-effectivity, Vj*({1}) =

(=00, —3], V3 ({2}) = (=00, 3], and V3 ({1,2}) = Vi ({1,2}); V3" ({1}) = (o0, 3], V3" ({2}) = (o0, =3,
and V' ({1,2}) = V¥’ ({1,2}).

Given an environment (A, ¢), we reformulate ¥ as a social choice correspondence, generically de-
noted F', which maps profiles u to subsets, F'(u), of feasible joint plans in A. For example, in the spirit

of a-effectivity, we define the a-core social choice correspondence, Fl,, as
Fo(u) ={a € pn | (BS € N, as € A7) (Va_s € p_s(as))(us(as, a-s) > us(a))}

A joint plan for the coalition of the whole is in the a-core if no coalition has a joint plan that is always
feasible and yields higher payoffs to its members, no matter how non-members react to that plan. The

B-core soctal choice correspondence, Fg, is defined as
Fp(u) = {a € o | (35 € N)(Va—s € AZ")(3as € s(a-s))(us(as,a-s) > us(a))}

A joint plan 1s in the F-core if there is no coalition that, whatever the plans of non-members, can devise
a joint plan in response that yields higher payoffs to its members.

In Example 6, it is easily verified that F.(u) = {(U, L), (U, M), (U, R)}, Fa(u') = {(U, L), (C, L),
(D,L)}, and Fg(u) = Fg(u') = {(U,L)}. Generally, Fg(u) C Fo(u), and for private good economies,
Fo(u) = Fg(u). In Section 6, we consider the relationship between core payoffs, given by C', and payofts
from core plans, given by F, or Fj.

Alternatively, we could have defined these social choice correspondences in terms of coalitional
functions derived using the appropriate notion of effectivity, that is, we could have defined F,(u) as the
Jjoint plans a € ¢ for which there does not exist S € N and yg € V¥(S) such that ys > ug(a); and we
could have defined Fjs(u) as those a € ¢ for which there does not exist S € N and yg € V;(S) such
that ys > ug(a). Example 10 in Section 6 demonstrates that these alternative definitions can actually
produce different sets of joint plans, though, under typical regularity conditions, they are equivalent to

the definitions above.
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4 Supporting Coalitional Functions.

In this section, we fully characterize the coalitional functions arising from strategic environments, com-
plementing the results of Shapley and Shubik (1969), Billera and Bixby (1973, 1974), Billera (1974), and
Mas-Colell (1975) on the representation of market games. The main result of this line of work is that,
under certain ancillary assumptions, a coalitional function arises from (is “supported by”) a private good
economic environment if and only if it is totally balanced. Sprumont (1995) considers the coalitional
functions arising from public good economies.!” Though the literature begins with the game-theoretic
structure of private and public good economies, the topic of our analysis is, in a sense, more fundamen-
tal: When does a coalitional function represent, in the «- or [-senses, a strategic environment? The
answer to this question gives us bounds on the domain of any cooperative theory, and, as discussed in
Section 2, it helps clarify the connection between implementation-theoretic non-cooperative foundations
and traditional ones.

We say a strategic environment (A, ¢, u) a-supports a coalitional function V if V.= V¥. Thus, V is
a-supportable if and only if it represents (in the a-sense) the opportunities for coalitional action in some
strategic environment. Similarly, a strategic environment G-supports V if V = Vg The necessary and
sufficient conditions for there to exist a strategic environment supporting a given coalitional function
are very weak. For example, comprehensiveness, super-additivity, effectiveness, and the weak projection
property (defined below) fully characterize the coalitional functions representing a strategic environment
in the a-sense.

In fact, our results are stronger than this in two ways. First, our proofs only rely on the structure
of strategic games: any coalitional function supported by a strategic environment (generalized game,
private good economy, etc.) is supported by a strategic game. Second, we state our results for arbitrary
collections of coalitional functions: if each member of the collection satisfies our necessary and sufficient
conditions, a single environment can be constructed to support the entire collection as individual utility
functions are varied.

Several conditions on coalitional functions are immediately necessary for f-supportability: effec-
tiveness, comprehensiveness, and the weak projection property. We say V is effective if V(N) # 0, and
it is comprehensive if, for all S € N, all ys € V(9), and all z5 € R°, ys > zs implies z5 € V(S).
Effectiveness is often incorporated into the definition of a coalitional function, and comprehensiveness
merely captures the notion that if a coalition S can guarantee its members at least yg and zg is no
higher in any component, then .S can guarantee its members at least z5. V' satisfies the weak projection
property if, for all S € A and all yg € V(S), there exists y_s € R™° such that y = (ys,y_s) € V(N).
This condition requires that, if a coalition S can guarantee its members payoffs of at least yg, then the
coalition N can also guarantee those individuals at least yg.

An additional condition, super-additivity, is necessary for a-supportability. V' is super-additive if, for

17 Qee Sprumont (1995) for additional references on this topic.
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all 5,5 € N with SNS" =0, ys € V(S) and ys: € V(') implies ysus € V(S U S’). Super-additivity
is not generally necessary for S-supportability, though it follows if V' is F-supported by a game with
correlated strategies.

An environment (A, ¢) a-supports a collection V of coalitional functions if, for each V' € V| there
is a profile u of utility functions such that V' is a-supported by (A, ¢, u). G-support is defined similarly.
If V is a-supportable then, clearly, each V' € V must satisfy effectiveness, comprehensiveness, the weak
projection property, and super-additivity. Theorem 1 shows that these conditions characterize the a-

supportable collections of coalitional functions.

Theorem 1 A collection V of coalitional functions is a-supportable if and only if each V € V satisfies

effectiveness, comprehensiveness, the weak projection property, and super-additivity.

Proof: First we show that the a-representation, V¥, of a strategic environment (A, ¢, u) satisfies these
four conditions. Effectiveness follows from (a). Comprehensiveness follows directly from the definition of
VU, If yg € VE(S) then there exists ag € A2 such that, for all a_g € p_g(as), us(a) > ys. Pick some
a_s € p_s(ag), which is non-empty by condition (a). By condition (¢), (ag,a_g) € ¢n. Note that
u(a) > (ys,u—g(a)). Then (ys,u_g(a)) € V¥(N), so the weak projection property is satisfied. Checking
super-additivity, take S and S’ such that S NS = §§, and take ys € V¥(S) and yg» € V4(S'). Let
T = SUS” and yr = (ys, ys'). There exists a'y € A3 such that, for all a_s € p_g(a%), us(as,a_s) > ys,
and similarly for S’. By condition (c), a% = (a%,d%,) € AL. Take any a’ ; € p_7(a}), and note that
ur(a’) > yr, as desired.

Next, we show the sufficiency of these four conditions by constructing a strategic game that a-
supports V. Let A = {(S,w,k) | S C N,w € [0,1],k € Z;}, where Z, denotes the non-negative
integers, with representative element a; = (a},a?,a?). For all V € V and all S with V(S) # 0, let
WV = (hy’s)ieg be a function from [0, 1] onto V(S). Given a = (a1,...,a,), say that S forms at a if
V(S) # 0 and there exists w € [0, 1] such that, for all i € S, (a},a?) = (S, w). Note that an individual
may belong to at most one coalition forming at a. If S forms at a and ¢ € S, define u;(a) = hz/’S(w).
Let R be the collection of individuals who belong to no coalition forming at a, and set S* = N \ R.
By super-additivity, ug«(a) € V(S*). Then let zg(a) be any R-tuple such that (ug«(a), zr(a)) € V(N),
the existence of which is guaranteed by the weak projection property. Let a® = max; a? and, for i € R,
define u;(a) = min{z;(a), —a®}, completing the description of the strategic game. By comprehensiveness,
u(a) € V(N).

Clearly, for all S, V(S) C VE(S), since S can form and guarantee any payoff in V(S). To see the
opposite inclusion, consider a proper coalition S # N. The coalition S can protect its members from
arbitrarily low payoffs only by forming, or by partitioning itself into smaller coalitions, each of which
forms. In the first case, the coalition can achieve only payoffs in V(S), and in the second case, this is

true by super-additivity. The inclusion holds for N since, for all a € A, u(a) € V(N). |

Super-additivity drops out of the conditions characterizing g-supportability.
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Theorem 2 A collection V of coalitional functions is f-supportable if and only if each V € V satisfies

effectiveness, comprehensiveness, and the weak projection property.

Proof: We first show that the [-representation, Z8 of a strategic environment (A, ¢, u) satisfies
these three conditions. Effectiveness and comprehensiveness again follow directly. If yg € V;(S) then,
for all a_g € A", there exists ag € pg(a_g) such that us(a) > ys. Using condition (a), pick such
an a_g and as € ps(a—g). By condition (b), (as,a_s) € ¢n. Note that u(a) > (ys,u—g(a)), so
(ys,u_s(a)) € V;(N) and the weak projection property is satisfied.

Next, we show the sufficiency of these three conditions by constructing a strategic game that j-
supports V. Let A® = {(S,w,k) | S C N,w € [0,1],k € Z;}, with representative element a; =
(a},a? a?). For all V € V and all S with V(S) # 0, let AV = (hy’s)ieg be a function from [0, 1] onto
V(S). Given a = (ay,...,ay), say that S forms at a if: (i) V(S) # 0, (4) there exists w € [0,1] such
that, for all i € 5, (aj,a?) = (S,w), and (i1) maxjes af > max;¢s aj. Note that at most one coalition
can form at a. If S forms at a and i € S, define u;(a) = hz/’S(w). Let R = N\ S, and let zg(a) be any
R-tuple such that (ugs(a), zr(a)) € V(N), the existence of which is guaranteed by the weak projection
property. Let @® = max; a? and, for i € R, define u;(a) = min{z;(a), —a®}, completing the description
of the strategic game. By comprehensiveness, u(a) € V(N).

Clearly, for all S, V(S) C V;(S), since given a_g, S can form and secure any payoff in V(S). To
see the opposite inclusion, consider a proper coalition S # N. The coalition S can avoid arbitrarily low
payoffs for its members only by forming, in which case the coalition can achieve only payoffs in V(S).

The inclusion holds for N since, for all @ € A, u(a) € V(N). |

It is straightforward to check that, if V(S) # § for all S € N, super-additivity implies the weak
projection property, allowing a simpler statement of Theorem 1. Without the non-emptiness condition,
however, the implication need not hold.

A condition stronger than the weak projection property is the projection property: if S C S’ and
ys € V(S) then there exists zg» € V(S') with zg = yg. Again, if V(5) is always non-empty then
superadditivity implies the projection property. However, this condition is not necessary for supporta-
bility in either sense. The next example demonstrates this for the case of S-supportability, maintaining

non-emptiness of V(.S) for all coalitions.

Ezample 7. (Projection property) Let n = 3 and consider the following strategic game: for each
individual i, A® = ®; let i(a) denote the agent with the highest action (ties going to lower indexed
agents) at joint plan a, and define

IS if i = i(a)
uia) = —2?21 la;| else,
for all @ € A. Note that, for each 7, V§*({i}) = %. Now, set S = {1} and set 5" = {1,2}. Consider any
(y1,y2) € N? and the action az = max{|y1], |y2|} + 1 for individual 3. The only way S’ can secure at

14



least g1 for individual 1 is by having him take an action a1 > as. But then individual 2 receives utility

strictly less than ys. Therefore, Vﬁ“(S’) = §, violating the projection property.

It may seem counterintuitive that both individuals 1 and 2 in the example can, in the S-sense,
guarantee any payoff for themselves separately, while together they are apparently powerless. The
problem is that individual 1 can guarantee himself a high payoff only by making 2 worse off. And the
extent to which 2 must be put out may be arbitrarily great, depending on the action taken by 3.

5 Implementing the Core Social Choice Correspon-
dences

In this section, we fix an arbitrary strategic environment (A, ¢, u), imposing no structure on (A, ¢) and
placing no restrictions on individual utility functions. We then construct procedural rules governing
negotiation that, under the hypothesis of subgame perfect equilibrium, induce behavior resembling the
informal story accompanying the core. A common approach in the literature is to consider sequences
of games with the sequence described in terms of time between moves going to zero, probability of
continuation going to one, or the rate of time discounting between periods going to zero. An alternative
is to work directly in continuous time, as do Perry and Reny (1994). Both lines of approach are attempts
to provide realistic models of interaction in real time. We choose the latter alternative and construct
an extensive game form, denoted G, with subgame perfect equilibrium joint plans Fy(u).'® A minor
alteration of the model (regarding the timing of punishments) produces subgame perfect equilibrium joint

19 we provide an

plans Fg(u). Thus, by implementing the a- and S-core social choice correspondences,
implementation-theoretic non-cooperative foundation for the core.

Informally, we suppose that individuals may either agree to a joint plan of action for the grand
coalition or propose an alternative joint plan to a coalition. At most one proposal (in effect, the earliest)
is considered by the members of the proposed coalition, any of whom can veto it. If the proposal
passes, the members are committed to a joint plan of action, and the remaining individuals decide
how to respond. Our analysis highlights a well-known difficult of the a- and S-cores: supporting core
outcomes in equilibrium may require punishment of deviating coalitions that is harmful to the punishers
themselves. We can circumvent this problem when there are three or more individuals by assuming
punishments are decided by near-unanimity vote; as we show in Example 8, however, the problem is
critical if there are only two individuals.

Formally, define G, as follows. At time ¢ = 0, each individual i announces a joint plan a' € A for
the grand coalition and may make a proposal (¢, ak,t%,t*), where i € S°, @k, € A2, and ti = (t;)jeg

associates a time t; € (0, 1] with each member j of S*. The time t; is j’s assigned time to vote on i’s

18 Coherency problems may arise in continuous time models in relating outcomes to strategies. It can be verified that
strategy profiles determine outcomes unambiguously in our model, so that these problems do not arise. The issues are
discussed at length in Bergin (1992).

19 See Moore and Repullo (1988) and Abreu and Sen (1990) for general treatments of subgame perfect implementation.
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proposal, and ¢* € [0,1] is the time at which the proposal is put to the grand coalition. A proposal
must schedule individuals to vote sequentially, so t; + tz for distinct j,k € S, and it must satisfy
maxjeg{t;»} < t*. Thus, a proposal consists of a coalition, a joint plan for the coalition, and a vote
schedule.

If no individual makes a proposal, negotiation terminates at ¢ = 0 with an outcome determined as
follows: it is a if, for at least n — 1 individuals ¢, ¢’ = a; in the absence of such agreement, the outcome
is an exogenously determined status quo point @ € A. Let g(al,...,a™) denote the outcome associated
with (al,... a") according to this default rule.

If at least one individual makes a proposal and j is the individual with the earliest scheduled vote,
the members of S7 vote sequentially on j’s proposal. If a member accepts the proposal, the vote passes
to the next in line. If any member rejects the proposal, negotiation terminates with default outcome
g(al,...,a"). In case all the members of S7 accept j’s proposal, they are committed to the joint plan
El‘gj. Proposals scheduled after j’s are not considered. (If two or more individuals make a proposal and
the individual who schedules the earliest vote is not uniquely determined, the outcome is again given by
the default rule.)

Following a successful proposal, the actions of the remaining individuals (if there are any) are then
determined in a general vote at time ¢*. Each individual ¢ announces Eli_Sj € @_Sj(d‘gj). If at least
n — 1 individuals agree on a_gi, negotiation terminates with outcome (El‘gj,gl_sj). In the absence of

agreement, negotiation ends with an arbitrary feasible joint plan (El‘gj ,d_gi) € PN.

Theorem 3  Assume n > 3. The joint plans determined by the subgame perfect equilibria of G, are
exactly Fo(u).

Proof: First, observe that each a € F,(u) is a subgame perfect equilibrium outcome at u supported by
the following strategy profile. At ¢ = 0, each individual 7 announces @’ = a and no proposal. In sequential
voting, individuals vote no unless they have a strict preference for the proposal to pass. To define
announcements in the general vote, note that, for any proposal (S, ag,ts), there is some a_g € ¢_gs(ag)
and some ¢ € S such that w;(dg,d_g) < u;(a). In the general vote following announcements of @ at t = 0
and a proposal by any individual, let all individuals announce a_g, ensuring that every proposal will be
rejected. Thus, no individual can gain by reporting @ # a at t = 0 or making a proposal to a coalition.
Now suppose we have a subgame perfect equilibrium strategy profile leading to an outcome a ¢
F.(u). Thus, there is some coalition S and some g € A2 such that, foralla_g € ¢_g(as), us(as, a_g) >
ug(a). Pick any i € S and consider the following deviation for i: announce a' as before and pro-
pose (S,dg,tg), where tg preempts the proposal process by scheduling the earliest vote. If all other
members have accepted i’s proposal, the last individual to vote, say k, effectively chooses between

g(al,... ,a") and @, where d_g is the outcome of the general vote upon passing the proposal. If

ug(g(at, ... a")) < ug(ds,d—s) then subgame perfection demands that k accept the proposal. If this

strict inequality holds for every member of S, each will accept ¢’s proposal and the outcome of the
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deviation is (dg,a—g). Since u;(as,d—s) > u;(a), this deviation is improving for ¢, contradicting the
supposition that the original strategy profile is a subgame perfect equilibrium.

If there is some member j € S for whom u;(g(a',...,a")) > u;j(as,a—_s), the individual need not
accept i’s proposal, and ¢’s deviation is not necessarily improving for i. But note that u;(g(a',...,a")) >
u;(a). In this case, j has an improving deviation: announce a’ as before, make any proposal scheduling a

vote before anyone else, and reject it. This changes the outcome from a to g(a', ..., a"), and contradicts

our supposition. |

A minor modification of G, gives a non-cooperative foundation for the F-core. A proposal is now
simply a pair (Si,tg). If no individual makes a proposal or the individual who schedules the earliest
vote is not uniquely determined, the outcome is as before. If j schedules the earliest vote, say at ¢/, then
a general vote is held at time ¢'/3, where each ¢ announces Eli_Sj € Ar_]Sj. If at least n — 1 individuals
agree on @_g;, the non-members of S/ are committed to @_g;. In the absence of agreement, they are
committed to an arbitrary joint plan a_g; € Ar_]Sj. At time 2¢'/3, j announces El‘gj € pgila_gi). If no
such El‘gj exists, then the proposal is discarded and the outcome is g(a', ... a"). Voting on j’s proposal
then proceeds sequentially, as before. If all members accept, negotiation terminates with members of 7
committed to the joint plan El‘gj. Otherwise, negotiation ends with g(at, ..., a").

Call this modified game form Gj. Thus, as would be expected, the non-cooperative foundations
for the a- and [F-cores differ with respect to the timing of punishments and a deviating coalition’s

commitment to a joint plan. In the case of the a-core, a deviating coalition commits to a plan before

punishment is decided, and in the case of the §-core this timing is reversed.

Theorem 4  Assume n > 3. The joint plans determined by the subgame perfect equilibria of G'g are
exactly Fg(u).

Proof: If a € Fp(u) then, for every challenging coalition S, there exists @_g such that, for all
is € pgla_g) with d_g € ¢_g(ds), there is an ¢ € S with w;(dg,a_g) < w;(a). To obtain a as an
equilibrium, let a be proposed by all players at ¢ = 0. Following the announcement of @ at ¢ = 0 and
a proposal to coalition S, all individuals announce a_g, as defined above, in the general vote. Again,
in sequential voting individuals vote no unless they have a strict preference for the proposal to pass. If

a ¢ Fg(u), the argument proceeds as in the proof of Theorem 3. |

In the discussion above, the number of individuals was assumed to be at least three. When there
are just two individuals, the a-core is not generally implementable in subgame perfect equilibrium, as

the next example shows.??

In contrast, the distinction between the two and three individual cases
is not significant in traditional non-cooperative foundations, where games are parameterized by coali-
tional functions, and, as evidenced by Proposition 1, difficult technical problems of incentives cannot be

addressed.

20 Example 8 works by demonstrating a violation of Moore and Repullo’s (1990) condition 12, which is necessary for

Nash and subgame perfect implementation when there are only two agents.
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Ezample 8. (a-core not implementable) Suppose n = 2 and the environment is such that each
individual has two feasible plans of action, independent of the other’s plans: individual 1’s actions are
{U, D} and individual 2’s are {L, R}. Thus, four joint plans are feasible for the coalition of the whole.
Consider the following two profiles of utility functions.

U= (ula uz) u' = (ulla U/Z)

L R L R

U (0,00 (=1,1 U ((2,-2) (0,0
D (((_2’2)) El,—l;) D (E—l,l; (5’_1)))

It can be verified that (U, L) € Fy(u) and (U, R) € Fo(u'). If F, is implementable in subgame perfect
equilibrium then there exists an extensive form mechanism and strategy pairs s = (s1,s2) and s’ =
(s, s5) such that s is a Nash equilibrium at u with outcome (U, L) and s’ is a Nash equilibrium at «’
with outcome (U, R). Since (U, L) is a Nash equilibrium outcome at u, any deviation by individual 2
leads to an outcome in {(U, L), (D, R)}. In particular, (s1, s5) yields an outcome from {(U, L), (D, R)}.
Similarly, since (U, R) is a Nash equilibrium outcome at «’, any deviation by individual 1 gives an outcome

in {(D, L), (U, R)}. In particular, (s1, s5) yields an outcome in {(D, L), (U, R)}, a contradiction.

The same argument used in Example 8 to prove that F, is not implementable can be applied
in Example 6 to show that F, is not implementable, though Fj, which is constant, is trivially Nash
implementable over the restricted domain consisting of « and «'. This demonstrates the important (but
often implicit) role played by effectivity in the definition of a cooperative solution.

The next example shows that we cannot avoid Example 8 by restricting traditional non-cooperative
foundations to “good” coalitional functions, ones arising from strategic environments where the core is
subgame perfect implementable: implementability of the core cannot be inferred from a given collection
of coalitional functions. In the example, we define an environment and two profiles of utility functions
such that (1) individual utility functions generate the same coalitional functions (under a-effectivity) as

in Example 8, and (2) the a-core is Nash implementable on the pair of profiles.

Ezample 9. (a-core is implementable) Let individual 1’s actions be {U, C, D} and individual 2’s be
{L, M, R}, and consider the following two profiles.

U= (Ul, Uz) u' = (ulla U/Z)
L M R L M R
U (0,00 (=1,1) (1,-1) U (0,00 (0,00 (2,-2)
o (0,00 (=3,-3) (=3,-3) ol -1 (=33 (=3,-3
D\ (-2,2) (-3,-3) (-3,-3) D\ (=1,1) (=3,-3) (-3,-3)

Here, Fo(u) = Fo(uw') = {(U,L),(C,L), (U, M)}. Thus, the a-core is constant on these to profiles,
and it 1s Nash implementable by the obvious mechanism: both individuals announce an outcome in
{(U,L),(C, L), (U, M)}, if they announce the same pair then that is the outcome; and if they announce
different pairs, the outcome is (D, R).
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6 Payoff Consistency of the Core.

A natural question, related to the commutativity of Figure 3 in Section 2, is the following: Do payoffs
from the core plans, u(F,(u)), match the core payoffs, C(V}¥) (and likewise for f-effectivity)? There are
two ways in which the answer may be “no,” one definitional and the other more substantive. First, by
convention, the coalitional function is defined to be comprehensive, so the payoff frontier of V/(N) may
contain line segments and C(V}¥) may be infinite, even if the underlying space of actions is finite — so
that in general it cannot be that u(Fy(u)) = C(V¥). Therefore, we need to consider the comprehensive
hull of w(F,(u)), L(u(Fa(u))), where L(Y) = {2 € R | (Jy € Y)(y > z)} denotes the comprehensive
hull of Y C R¥. With this notation, our equivalence requirement is that u(F,(u)) C C(V¥) (as before)
and C'(V¥) C L(u(F(u))). The second issue is technical: as the following example shows, without some

rather weak regularity conditions on the strategic environment, payoff consistency may not obtain.

Erample 10.A. (Payoff discontinuity) Let n = 2 and consider the following strategic game: A! =
A2 =1[0,1], uy(a) = 1 —az,as < 1; us(a) = 1,a3 = 1, and us(a) = 0. In this case, V¥({1}) = V¥({2}) =
(—00,0] and V¥(1,2) = (—o0, 1] x (—o0,0], so that (0,0) € C(V}¥), although there is no a € A with
u(a) = (0,0).

Erample 10.B. (Non-compactness) Let n = 3, and consider the following strategic game: A! =

10,1}, and A% and A3 equal the positive integers; payoffs are given by

uy(a) = GZ;B
uz(a) = ug(a) = —ay

So, VE({1}) = (—00,0] and V¥({1,2,3}) = {(v1,¥2,¥3) | ¥1,92,y3 < 0or y; < 1,y2,y3 < 1}. For this
example (0,0,0) € C(V¥), though (0,0,0) ¢ u(Fg(u)): individual 1 can guarantee himself a positive
payoff by choosing a; = 1.

The previous example shows that under a-effectivity, lower semi-continuity and compactness are

needed for general equivalence. The next theorem asserts that they are sufficient as well.

Theorem 5 In general, u(Fy(u)) C C(VY). Conversely, C(VY) C L(u(Fy(u))) if (i) for all S € N,
¢s is compact-valued, and (ii) for all i € N and all a; € A’, u;(a;,-) is lower semi-continuous on A~".
Proof: Take any a € Fy(u). If it is not true that u(a) € C'(V¥) then there exists S and ys € V¥(S)
such that yg > ug(a). Since yg € VY(S), there exists ag € A2 such that, for all a_g € p_slas),
us(as,d_g) > ys > ug(a). But then a ¢ F,(u), a contradiction.

Now take y € C(V¥). Thus, y € {z € V¥(N) | (VS € M)(Fz5 € V¥(S))(#% > zs)}. Since
y € VY¥(N), there exists a € ¢y such that u(a) > y. Clearly, u(a) € C(V¥), and we claim that
a € Fo(u). Otherwise, there exists a coalition S and joint plan G5 € A2 such that, for alld_gs € ¢_g(ds),
us(as,d_g) > ug(a). Note that a solution, (a* g, j), to

~ min w(ds,a-s) — ui(a)
G_s€p_s(as)i€S
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exists by our assumptions. Let k = u;(ds,a” g) — u;(a), and define ys € N° by y; = u;(a) + k for all
i € S. Then yg € V¥(S) and yg > ug(a) imply u(a) ¢ C(V¥), a contradiction. |

In view of the Example 10, the conditions of the theorem are tight: if one is violated, there may be
core payoffs that do not correspond to any a-core plans. Equivalence for g-effectivity can be obtained
under similar assumptions, though now lower hemi-continuity of the feasibility correspondence plays a

crucial role.

Theorem 6 In general, u(Fg(u)) C C’(V;). Conversely, C’(Vﬁ“) C L(u(Fg(u))) if (i) for all S € N,
pg Is a lower hemi-continuous correspondence with compact values, and (ii) for all i € N, u; is upper
semi-continuous on A.
Proof: Take any a € Fj(u). We need to show that u(a) € C(Vj'). If not, there exists 5 € N and
Ys € Vﬁ“(S) such that ys > ug(a). This implies that for all a_g € AR? there exists ag € pg(a_g) such
that us(as,a—s) > ys > us(a). But then a ¢ Fs(u), a contradiction.

Now take y € C’(V;). Since y € V;(N), there exists a € ¢pn such that u(a) > y. Clearly,
u(a) € C(Vj'). We claim that a € Fg(u). Otherwise, there exists S € N such that, for all a_g € A7”,
there exists as € pg(d—g) such that ug(as,d—_g) > ug(a). Suppose

inf sup  wui(ds,da—s) — ui(a) < 0.
d-s€AL"iEN Gs€ps(a_s)

Take any sequence {a” ¢} satisfying a* ¢ € A7 and

sup ui(ag, El’is) —ui(a) <
aSEWS(ais)

o =

for all k. (Since N is finite, we fix ¢ without loss of generality.) By our assumptions, this sequence
has some limit point a_s € A5®. By supposition, however, there is some ag € pg(@_g) such that
u;(ds,a_s)—ui(a) > 0. Since @g is lower hemi-continuous, there is a sequence {a%} with a% € pg(a” ¢)
for all k such that (a%,a* ¢) — (ds,@_s). Since each u; is upper semi-continuous, liminfy ug(a%, a* o) >
ui(@g,a_g) —u;(a) > 0, contrary to our choice of {a’is}. Therefore, infsup u;(as, d—s) — u;(a) = k for
some k > 0. Defining ys € R by y; = u;(a) + k/2 for all i € S, we have ys € Vﬁ“(S). Then ys > ug(a)
implies u(a) ¢ C'(Vj'), a contradiction. |
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