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Abstract

Consider the set of probability measures on a product space with the property that all have
the same marginal distributions on the coordinate spaces. This may be viewed as a correspon-
dence, when the marginal distributions are varied. Here, it is shown that this correspondence
is continuous. Numerous problems in economics involve optimization over a space of measures
where one or more marginal distributions is given. Thus, for this class of problem, Berge’s theo-
rem of the maximum is applicable: the set of optimizers is upper-hemicontinuous and the value

of the optimal solution varies with the parameters (marginals) continuously.



1 Introduction.

The issue considered here is the (continuity) relationship between joint distributions
on product spaces and their marginal distributions. Given marginal distributions on a
coordinate space one may associate a set of distributions on the product space with these
marginal distributions. This defines a correspondence for marginal to joint distributions.
The theorem given below asserts that this correspondence i1s nonempty, convex-valued and
continuous. While the result is of independent interest, there are many game theoretic and

economic problems involving optimization where it can usefully be applied.

According to Berge’s maximum theorem, if W and Z are topological spaces and 1 :
W —»Z is a continuous correspondence! with nonempty compact values, and f: W x Z —
J is continuous then (1) the function m(w) = max,ey(w) f(w, z) is continuous, and (2)
the correspondence 3 : X—»Y defined by p(w) = {z € 7 | f(w,z) = m(w)} is upper-
hemicontinuous. There are related results for the cases where f is either an upper or lower
semicontinuous function and g an upper or lower hemicontinuous correspondence. (See
Aliprantis and Border (1994) for details.) In the context of this paper, W is a product
of sets of probability measures, w € W denotes a pair of measures (¢, v) on underlying
spaces, X and Y, z € Z denotes a measure on the product space X x Y and ¢(p, v) the
set of measures on X x Y with both marginals agreeing with (u,v): if 7 € ¢(p,v), then
the marginal of 7 on X is g and the marginal on Y is v. A special case arises when 7
is restricted to agree on only one marginal. For the application of Berge’s theorem a key
question is whether ¢ 1s continuous. Here it is shown that on separable metrizable spaces,
the correspondence 9 is continuous. This has a number of useful applications. Some of
these are discussed below, following a description of the result. The paper concludes with a

proof of the theorem.

2 Framework and Results.

Let X, Y be separable metrizable spaces. A probability measure on X x Y is denoted
7, while measures on X and Y are denoted p and v respectively. Given a set 7, the set of
probability measures on 7 is denoted P(Z). If 7 € P(X x Y), let rx and 7y denote the

marginal distributions of 7 on X and Y respectively.

Define the correspondence ¢ : P(X) x P(Y)—=»P(X x V) as:
Yp,v) ={reP(X xY) |rx = p, v = v}

Thus, (i, v) is the set of measures on X x Y whose marginal distributions agree with g

and v on the coordinate spaces. For example, if X =Y = [0,1] and g = v = Lebesgue,

L' The notation 1 W—»7Z denotes a correspondence, while g : W — Z denotes a function.
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then 7 = Lebesgue on [0, 1]* and 7' uniform on {(z,y) | * = y, and =,y € [0, 1]} are both
in ¢(u,v). Since ¢ is convex, in this case there are a continuum of distinct measures in
(g, v). The correspondence # is nonempty (since p®@v € ¥(u, v)) and convex (for example,
(Or+(1—-0)1)x = 0rx +(1—0)7x ). Below it is shown that ¢ is a continuous correspondence.

The following remarks identify some implications of the theorem.

Remark 1 Consider the correspondence ¢(p) = {r € P(X xY) | 7, = pu}. Note that
Y(p,v) C ¢(u). The previously mentioned result implies that ¢ is a continuous corre-
spondence. Upper hemicontinuity is clear. To prove lower hemicontinuity, suppose that
T € ¢(p). Let 7v = v, so that 7 € ¢(u,v). Let pn, — p so that (p,,v) = (¢, 7). Then,
from the theorem, there exists {77}22,, 7™ € ¥(pin,v) C ¢(py) and 7 — 7. Continuity of
¢ in the case where X 1s compact metric and Y complete, separable and metric is proved
in Hopenhayn (1990). A proof for the case where both X and Y are compact is given in
Bergin (1996), based on the observation that 7 = ¢ ® p can be approximated by ¢° @ u

where ¢° 1s a continuous function from X to the space of probability measures on Y.

Remark 2 One can consider restrictions of the sort where marginals are approximately

restricted. For example, let p(7,¢(p,v)) = ming gy(p,) d(7, 7') where d is a metric on

v
P(X xY) consistent with the weak* topology. For k > 0, define

Uk(p,v) = {r € P(X xY) [ p(r,¥(p,v)) < k}

Thus, ¢ (1, v) is the set of distributions on X x Y within k of a distribution having marginals
exactly equal to (i, v). To see that ¢ (y, v) is continuous, take 7 € ¢y (u, v) and suppose
that (u”, ™) = (p,v). Thus, p(7,¥(p,v)) < k. Suppose first that the inequality is strict, so
that there is some 7 € ¢(u, v), such that d(r, 7) < k. Since ¢ is continuous, 37" € (", ")
and " — 7. So, d(7,7") < d(7r,7) + d(7, ") < k + d(7, 7). So, T € Y (", V"), n > n,
and hence 7 € Wy (u,v). Now, suppose that 7 € ¢ (p,v), and p(r,¢¥(pu,v)) = k. Let
7 — 1 and p(77,¢(p,v)) < k. For n > nj, v € o (p",v™). Thus, 77 € oy (umi,v™),
(p?i v"i) — (p,v) and 77 — 7.

The following discussion describes two important examples.

2.1 Mass Transfer.

The Kantorovich mass transfer problem is the following: Given two measures, p, v, on
a separable metric space U, let (u, v) be the set of measures on U x U with the property
that the marginals coincide with g and v (i.e. if 7 € ¢(p, ) then the marginal on the first
coordinate space is 4 and v on the second.) Let ¢(#,y) be a continuous function on X x V.
The Kantorovich functional is:

q(p,v) = inf / c(z,y)dr
Te(wy) Juxu
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Here, ¢ is the initial distribution of mass, p the final distribution, and ¢(u, v) is the set of
admissible plans for transferring mass from one distribution to the other. This problem arises
in many contexts (infinite dimensional linear programming, probability theory, information
theory and so on). When 7 € ¢(y, v), then 7 = p ® p, where p is a conditional probability
on Y given X — a measurable function from X to the set of probability measures on Y.
Thus, given a Borel set B in Y, [ P(B,z)u(dz) is the transfer of mass from X to B. The
restriction 7, = v is the restriction on the class of transfer schemes to {p : X - M(Y) |
v(B) = [ p(B,z)u(dz), VB Borel. }. There is a substantial literature characterizing ¢ in

various contexts. For example, when ¢ is the metric, d, on U and U is compact,
q(p,v) = Sl;p{l / fd(p=v); [ 1) = f() [< d(x,y), 2,y €U, sup | f(z) [< oo}
U z€

See Rachev (1986) for a survey, and Vajda (1989) for applications in statistics.

In the case where U is complete, the set of measures ¢(u, v), is tight and since ¥ (u, v)
is closed, it is compact. In this case the infimum is attained and Berge’s theorem ap-
plies: ¢(u,v) is a continuous function and 7(p,v) = argmin,eyu ) foU c(z,y)dr is an
upper-hemicontinuous correspondence. A specific case of this is the Gini measure of income

inequality:

G(p,v)= inf / | e —y|dr
rey(ur) Juxu

and from Berge’s theorem, G(u, v) varies continuously with (p, v).

2.2 Anonymous Games.

Consider the problem of choosing optimally a joint distribution on a product space
where the joint distribution is constrained to have a given marginal distribution on one of
the spaces. The problem arises naturally in games with a continuum of players where the
fixed marginal distribution gives the distribution over players, and the joint distribution
gives the distribution over players and actions (a distributional strategy). Distributional
strategies appear widely in the literature. Mas-Colell (1984) gives a discussion of equilibrium
in distributional strategies for one-shot games; Jovanovic and Rosenthal (1988) provide
analogous results for dynamic games. Bergin and Bernhardt (1992, 1995) extend the work
of Jovanovic and Rosenthal to games with aggregate uncertainty. Milgrom and Weber
(1986) use distributional strategies in the context of games of incomplete information. For
such games, an important question is whether the optimal choice(s) vary continuously with
parameters such as the marginal distribution — a question that is particularly important in
dynamic models (and answered affirmatively by the result given here). Phrased this way, the
result may be viewed as identifying particular circumstances under which Berge’s maximum

theorem may be applied.



In economic applications, models that make use of the continuum of agents formulation
are common. Some examples are Lucas and Prescott (1971), Jovanovic (1982), and Hopen-
hayn (1990, 1992) where equilibrium coincides with a social planner “surplus” optimization
problem. In the surplus optimization problem, a characteristics space S and a choice space
X are fixed. Take both to be compact metric spaces. A measure p on agents character-
istics is given, and a distributional strategy is a measure on X x S with marginal g on S
and the set of such measures is C(u). If surplus at strategy 7 is denoted H(r), then the
surplus maximization problem is: max;ec(,y H (7). Provided C(u) is a continuous corre-
spondence, the function h(p) Lef max;ec(y) H(7) is continuous in g and the correspondence
P(p) def argmaxc(u)H(T) is upper-hemicontinuous in p. For a multiperiod problem, similar
considerations apply. To illustrate, consider the following problem in a two period model.
In period ¢ = 1,2, a distributional strategy 7; (on X x S) determines a payoff of fi(r, z,s)
to player s making choice z. Suppose that the state which describes the player evolves
stochastically according to a transition probability P(- | , s), continuous in (z, s). A player
whose state is s and chooses action x has state characteristic for next period drawn from this
distribution. Then, the aggregate distribution next period is given by p/(:) = [ P(- | z, s)dr.
Define this (continuous) mapping by p(7). Then, the problem of maximizing total welfare
is:

max{/flrxsdr—l— max /fzr r,s)dr'}

TeC TreC(p
If C is continuous, then so is hs(7) Lef max,icc(p(ry) | f2(7', 2, 5)dr’" and therefore so also
is: hy(r) def [ fi(r, z, 8)dT + max, €C(o ffz (r',x,s)dr’. In this case, max;ec(u) hi(7)

is a continuous function of yx and the set of maximizers is upper-hemicontinuous. Thus,

continuity of C gives a “well-behaved” problem in the multiperiod setting.

3 The Theorem.

This section gives a statement and proof of the theorem.

Theorem 1 Let X andY be separable metrizable spaces and let ¢ : P(X)xP(Y )P (X x
Y) be defined: ¢(p,v) = {r € P(X xY) | 7x = p, 7v = v}. The correspondence ¢ is

continuous.

Proof: Upper-hemi continuity is straightforward to prove. Let f be a bounded continuous
function on X x Y. Let 7" € ¢(p™,v") with 7 — 7 and with (u",v") — (u,v). Since
™ =T, fX><Y fdr™ — fXXY fdr. Taking f(x,y) = g(x) where g is any continuous bounded

/gdu" :/ gdTy :/ fdr" — de:/ gdrx
X X XxY XxY X

Since fX gdp™ — fX gdp for each continuous bounded g, fX gdp = fX gdtx. Similar

function on X,
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reasoning gives v = Ty, so that 7 € ¢¥(p,v). The remainder of the proof concerns lower

hemi-continuity.

Given a separable metrizable topological space Z there is a totally bounded metric dz
consistent with the topology on 7. On (Z,dz), let C(Z) be the set of real valued bounded
continuous functions on Z, and let U(Z) be the subset of bounded and uniformly continuous
functions on 7. U(Z) is separable. A sequence of measures {7} converges to a measure T
if and only if [, fdr™ — [, fdr for every f € C(Z) (or equivalently, for every f € U(Z)).
Because 7 is separable and the metrization defining U(7) totally bounded, a countable
dense collection in U(Z) and defines the weak* topology on P(7).

In the present context, since X and Y are separable and metrizable, let dx and dy be
totally bounded metrics on X and Y respectively, and let dxy = dx + dy be the totally
bounded metric on Z = X x Y. Thus, the set of bounded uniformly continuous functions
on (X x Y,dxy) is separable. Therefore, 7 — 7 if and only if, for every f € U(X x Y),
fXXY fdrmm — fXXY fdr, or equivalently, for f in a countable dense subset of U(X x V).
In what follows, it is shown that given 7 € P(X x V) with 7x =y, 7v = v, and (4", v") —
(p,v), 3™ € ¢(p, v) and for each f € U(X x V), fXXY fdr™ — fX><Y fdr.

The proof is given in 3 steps: (1) Define a grid on X x Y, (2) On the grid, approximate
T by ™, with 7% = p” and ¢ = v", (3) Put upper bounds on the distance between
7 and 7, and using the grid in (1), find a subsequence 7= € (u™=,v™*) such that the
distance between 77¢ and 7 goes to 0. This completes the proof in view of the fact: If
Y W—V is a correspondence for W to V', where W and V are first countable, then ¢
is lower-hemicontinuous at w if (and only if) w, — w and v € ¢ (w) imply that there is a

subsequence wy, with some vg € ¥(wy, ) for each k and vy — =.

Step 1: Partition X and Y into finite collections of sets {.X;}¥_, and {Y; 7L, such that (a)
at least k =k —1 (o = m—1) of the X;’s (Y;’s) have small diameter and the remaining set
(if any) has small, g-measure (v-measure), and (b) the boundaries of the sets have y (or v

measure 0).

This step makes use of the following facts. Let W be a topological space. For any subset
A, write A to denote the closure of A, A° to denote the interior of A, A° to denote the
complement of A in Z and dA = A\ A° to denote the boundary of A. The boundary

operation, 0, satisfies the following properties:

(1) YAC W, 0A = 9A°,

(2) VA, B CW,3(ANB) CIAUIB,

(3) VA, B CW,3(AUB) CIAUIB, and
(4)

A UEW=XxY VACX YBCY,dAx B)C(JAxY)U (X x dB).



These properties have direct implications for measures of boundaries. For example, (4)
implies that if (0A) = 0 and v(9B) = 0, then 7(9(A x B)) < 71(0A X Y) + (X x IB) =
#(0A) + v(0B) =0, where p = 7x and v = 7y.

Since X and Y are separable, there are countable dense collection of points {z; }ier,
I'={1,2,..}, and {y;};es, J = {1,2,...} in X and Y respectively. Let Bx(xz,d) = {y €
X | dx(z,y) < 0}, be a open ball around « € X. Then, given § > 0 for any {J; }ier,
0 > 4,Vi, X = Ujer Bx (;,6;).

Let g € P(X). Since 0Bx(x;,6;) C {y € X | dx(xs,y) = &}, p(0Bx(x,8)) <
u{ly € X | dx(»i,y) = d;}. There are at most a countable number of distinct values
for ¢; for which pu({y € X | dx(x;,y) = &} > 0, so, in any interval [3,6], 0 < § < 6,
there are a continuum of values for ¢; for which p({y € X | dx(z;,y) = 6;}) = 0, and
hence p(0Bx (#i,6;)) = 0. For each i, choose §; € [4, 6] so that p(dBx(x;,d;)) = 0. Thus,
{Bx (x;i,0;) }ier satisfies X = U;erBx (#4,6;), p(0Bx(2;5,0;)) = 0,¥i € T and § < §; < 4.
Define a collection of spheres in Y, By (y;,d;), similarly, with zero-measure boundaries
relative to v: Y = Ujes By (y;,0;), ¥(0By (j;,0;)) = 0,¥j € jand § < 4§; < 4.

Now, let Bx(r) = Ul_; Bx (#;,06;). Since Bx(r) T X, by continuity of the measure g,
#(Bx (7)) = p(X) = 1. Thus, for any € > 0, there is some k such that y(Bx (k—1)) > 1 —e.
Let B% = Bx(z;,d;), i = 1,...,k — 1, and put B% = X \ Bx(k — 1) so Uf_; B} = X.
Similarly, for V', for some m, the set By (m — 1) = UT:_llBy(yj,éj) satisfies v(By (m —
1)) > 1—ec. Put B, = By(y;,0;), j=1,...,m—1, B = B~ =y \ By(m - 1).
From (1), O(UiZ! Ble:,8)) C UZ 0B(2:,8;) and d(U75 ' Bly;,65)) C UL 9B(y;,6).
Since p(0B(x;,4d;)) = 0, Vi, ﬂ(ﬁ(uf:‘fB(xi,éi))) < Zf;llu(ﬁB(xi,éi)) = 0. Similarly,
V(@(U‘?lz_llB(yj,éj))) = 0. Since dBx (k—1) = 0Bx (k—1)°,0 = p(0Bx (k—1)) = p(dBx (k—
1)) = u(0(X \ Bx (k— 1)) = u(B%). Similarly, u(B%) = 0. Thus, the collection {B%}5_,
satisfies u(0B%) = 0,Vi = 1,...,k and the collection {B]Y 7, satisfies I/(@B%) =0,j =
1

R ¥

Define X; = BL so that u(8X;) = 0. Therefore pu(0X¢) = 0, since X, = 0X¢.
Set Xo = B% N X§, and observe that p(0X2) < p(0B%) + u(0X§) = 0. Let X(2) =
X1 U X5, and note that p(dX(2)) < p(0X1) + p(0X2) = 0. Set X3 = By N X(2)°.
Since p(8X(2)) = 0 = u(9X(2)°), u(dX3) = 0. Proceed inductively: X (i) = Ui_; X and
Xip1 = B 0 X(i)°. This defines {X;}5,, with U X; = X, X; N Xy =0, # ¢ and
p(0X;) = 0,4 = 1...., k. Define {Y;}70, similarly: UL\ Y; =Y, V;NY; =0, j # j" and
v(0Y;) =0, = 1,...,m. By construction, X; C By = Bx(2;,6;),i = 1,...,k — 1 with
d; <d,sothat Ve, 2 € X;,i <k—1,dx(z, &) <26. Similarly, for j=1,....m—1, 4,5 €Y;
implies that dy (y, ¥') < 20. Also, letting X* = Ufz_llXi = Bx(k—1), so that u(X*) > 1—e.



Similarly, for Y= = U/, 1Y , v(Y*) > 1 —¢. Then, since X* xY* = (X* x V)N (X x Y*),

TX" XY ) =7 X" xY)+ 71X xY") = r((X*" xY)U (X x Y7"))
= J(X7) 4 1Y) = H{(XT X V) U (X x V7))
> (1= +(1—¢ -1
>1—2¢

Step 2: In the next step, given (", ¥™), a measure 7" is constructed such that (a) 7% = p”,
my = v" and (b) for all ¢ and j, 7" (X; x Yj) = p}; where, as (u",v") = (u,v), pf; — 75 =
T(X; X Y;).

Now, given the measure 7, let 7;; = 7(X; x Y;) and let T be the matrix with (i, j)'* entry
Tij. Let pu(X;) = i = Zj i and v;(Y;) = vy = >, I > 0, let oy = ’j and if
s = 0, let ay; = % Thus, ag;p; = 135, V1, 7.

Define a matrix, A™:

n n n
Qi Quapy o Ximfy
Qorfly Qoo e Qomfly
A" =
Qpiply  Ogafly o Qpmy

Because Z _, i = 1, row i sums to pf. Because pu(0X;) = 0 for each 4, u” We;ak; p implies
that uf = ¢ (X;) = pu(X;) = s for each 4, so that a;; - uf = a;; - 4; = 73;. Thus, A» - T
Summing vertically, v = Yo . Since Y i = Y T = vy, | vy —vj < > i |
pit — i |, so that for each j, | v} — v; [= 0. Because v" — v = 7y, and v(9Y};) = 0 for each
J, vy =v"(Y;) = v(Y;) = v;. Thus for each j, | 7] — v} |— 0.

The following calculations modify the matrix A" to a matrix R” whose column sums

are equal to {v} (and whose row sums are {u?}%_,). Form this a measure is constructed

] 1
with marginals " and »” and a joint distribution on X x Y that is approximately 7.

Define J* = {j | v} — v} >0} and J~ = {j | o} — v} < 0}. For j € J*, pick r7 such
that r7v7 = v}, Thus, (97 —v}) = (1 —r})v}. Let

Jvi J J
Br=Y (tF—f)==> (5 —vj)= Y (1-r})s
jeJ+ jeEJ~ jeJ+

—(@F-vj)
/@n

From A" define a matrix, R” = {p}} }, satisfying

For j € J~ put 7} = . Note that >, ;- 7} = 1.

LoY(i, ), | oujp — Pi |— 0, (as n > 0)



as follows:

o g ifjeJt,
Py = it + 7Y e (=i )agepl  ifj e J”
Ozij/,L? 1f]§EJ+UJ_
Thus, for j € J*, the column sum is: Zle P =17 Zle iy = rivd =i

For j € J~, the column sum is:

k k
Soor= ol 47 Y (1= ) aepf]
i=1 i=1 teJ+
k k
= agul 4] Y (=) Y
=1 teJ+ i=1
=07 +95 Z(l vy
teJ+
= 1/}1

Finally, for j ¢ J* U J~, the column sum in R® and A" is the same and equal to 1/?(: A‘;l)

Next consider rows. Summing row ¢ of R"|

m
DoA= D0 AT D A DA
j=1

jEJtug— jeJt jeJ—

= > agul+ Y rlagul + Y (egpl A7 > (L= )apl)
jEJtug— jeJt jeJ— teJt

= > gl + Y el + Y g 1Y 1Y (L= et
jEJtug— jeJt jeJ— jeJ— teJt

= > agul 4 Y a4+ Y agul + > (1= o)
jgJrug- jeJt jEJ— teJ+

= DL gl D agul Y i
jeItug- jeJ+ jeJ-
m

=Dk
j=1

= pi

So, the row sum of row ¢ is u'.

pi(B)  ri(©)
pi(Xa) vi(Y;)
Pl i p (Xo)vP (Vi) > 0 and 773 (B x C') = 0 otherwise. Let 7% be the unique extension to a

product measure on X; x ;. Define 7" on X x Y according to 7" (B x C') = >, 73 (B x C).

Define a measure 7 on each rectangle X; xY; according to TZ»T}(B x () =

8



Note that
(B xY) Z (B x Yj)

pi (B V}L(Yj).p@
vi(y;) Y
pi(B)

_ i (B) n
= %) 2

= 1 (B)
Similarly, 7 (X x ') = v7'(C). Thus, the measure 7" has marginals 4" on X and v" on V.
So, " € Y(pu",v"). Also, 7" (X; x Yj) = piy. By construction, as n — oo, pjy — Tij.

Step 3: For any uniformly continuous function f : X x Y — R, and measures 7,7 €
M(X xY), the following calculations place an upper bound on | fXXY fdr — fXXY fd7' |in
terms of the partition on step 1, where 7x = ¢ and 7v = v. Use this to establish convergence

of (the approximating measure) 7" to 7.

Let f: X XY — R be uniformly continuous with | f(z,y) — f(z',y') |< n, whenever
dx(z,2') < ¢ and dy(y,y') < &'. Let by = supeyexxy | flz,y) |. Pick z; € X,
i=1,...,k—1,andy; €Y;,j=1,...,m—1. Thus, (z,y) € X; xY;, i<k—1,j<m-—1
implies that dx(z,2;) < 20 and dy (y,4:) < 20, so if § = %5’, | flz,y) — flzs,y) I< 0.
(Note that § depends on f and 7: §(f,n).) Define f on X x Y as f(x,y) = flz;,y;) if
(z,y) € X; x Y;, and f(z,y) = f(z,y) if (z,y) ¢ (Ufz_llXi) X (U;n:_llY]) The following
calculations place bounds on | fXXY fdr — fXXY fdr' .

[ e gar<
X XY X XY

| fdr—/ fdr| + | fdr—/ fdr'| + | fdr’—/ fdr' |
XxXY XxXY XxXY XxXY XxXY XxXY

and consider the three terms separately. For ease of notation, write 7;; = X; x Y; and
= X" x Y =UZ U X ) Y

|/fdr—/fdr|—|/ fdr—/ fdr|—|—|/ fdr—/*) fdr |

k—1m-—1 k—1m-—1

:|;;/ fdr—;;/ fdr|—|—|/ fdr—/* fdr |
k=1m-1 _
S;;/IfﬂW%*HﬁWT

<r(Z7) + 2bp7((27)°)
< (1 —2€) 4 2b;2¢



Where the last two inequalities follow from 7(Z*) > 1—2¢, and | f—f |[< non Z;; = X; x Y},
t=1,...k—1,7=1,...m — 1, Thus,

fdr — Fdr|< (1= 2€¢) - n+4e- by (1)

| fXxY fXxY

Next, consider | [ fdr' — Sxwy fdr |,

[ gar— [ gari< far' — [ g
XxXY XxXY X*xY* X*xY*
+ fdr' —/ fdr |
(X*xY*)e (X*xY*)e
k—1m-—1

< Flaig) | 7/(Xa x V) = 7(X; x V) |
1 1

o
Il

.
Il

+bs - [F((XT < Y)O) + 7((X™ x Y]

So, Let Ay;(7, 7") = /(X x Y;) — 7(X; X Y;) and for any measurable set A, write (7' 4 7)(A4)
for 7/(A) 4+ 7(A). Then,

| fdr' — / fdr|
XxXY XxXY

k—1m-—1

<D0 D0 flai) [ Ay(n ) [+ - (TP (X7 x Y7 (2)

i=1 j=1
Finally, the calculations for the third term are similar to the first, except that 7/ replaces 7.
This gives

k—1m-—1

Mﬁwjﬁﬂ<22/|fﬂwfﬁ|wﬂw
i=1 j=1 *
Recalling that | f — f |< 5 on Z;;,

| [y Fdr! = [ Fdr' |< e (Z7) + 267 ((Z27)°) (3)
Collecting terms, the bound for | fXXY fdr — fXXY fdr' | is:

| fdr—/ fdr' | < (1= 2¢) -n+4e- by
XxY XxY

k—1m-—1
30D Fwi) L Au(n ) by (7 7) (X7 < Y7)9)
i=1 j=1
+ 7 ((X™ x Y¥)) + 267/ (X7 x Y¥)°)
Note that 8(XZ X Xj) g 8(XZ X Y) U 8(X X Y]), T(@(XZ X X])) S /J(@XZ) + I/(@Y]) =
and O(X™* x Y*)¢ = 9(X* x YV*), 7(0(X* x Y*)°) = 7(0(X™ x Y*)) = 0. Thus, if 7 is
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replaced by 7, 7"(X; X Y;) = 7(X; x Y;), Vi, 7 (so 7" (X* x V™) —» 7(X* x V7)), then
Yot Spn i) | Ag(r,m) | 0 and by - (7 4 7) (X7 x Y5)9) = by - 20((X* x V7)) <
br2e (since T((X* x Y*)°) < 2¢). Then,

lim | fdr" —/ fdr | < [(1—2€)n+ 4ebp] + [2ebs] + [(1 — 2€)n + 4eby]
XxXY XxXY

< 2(1 —2€)n + 10€by
S 27] + 10€bf

Since X x Y is separable and metrizable, a countable collection of functions, {f]}52, in
U(X x Y) may be used to determine convergence in P(X x Y). By the normalization
fs = ﬁﬂl[f; +bs], by = SUP (7 y)e X xY | fi(z,y) |, each f; may be assumed to map
into [0,1]. Put D = {f;}52,. A metric on P(X x Y) (yielding the weak™ topology) is
d(r,7) = Z:ozl(%)s | fXXY fedr — fXXY Jfsdr' |. Given ¢, n and f; € D, there is a
d(e,m, fs) > 0, such that (from step 3):

lim | fsdT"—/ fsdr | < 2np+ 10¢
XxXY XxXY

n

) For each s, let ns,e; > 0 and n; | 0, ¢, | 0. Fix § and put d5 =

(sup, , fs(z,y) < 1.
s < §}. For this “grid size”, let 7 be the measure constructed (with

min{d (7, f) |

marginals agreeing with (u",v")). Then, lim, d(r?,7) < 2ns + 10e5 + (1)°. So, for each

§, choose n(s) so that d(Tg(g),T) < 2[ns + 4¢5]. Thus, d(Tg(g),T) — 0. Since Tg(g) €

(™), v 4 is lower-hemicontinuous at (u, v).

This completes the proof.
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