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Abstract

Consider the set of probability measures on a product space with the property that all have

the same marginal distributions on the coordinate spaces� This may be viewed as a correspon�

dence� when the marginal distributions are varied� Here� it is shown that this correspondence

is continuous� Numerous problems in economics involve optimization over a space of measures

where one or more marginal distributions is given� Thus� for this class of problem� Berge�s theo�

rem of the maximum is applicable� the set of optimizers is upper�hemicontinuous and the value

of the optimal solution varies with the parameters �marginals	 continuously�



� Introduction�

The issue considered here is the 	continuity
 relationship between joint distributions

on product spaces and their marginal distributions� Given marginal distributions on a

coordinate space one may associate a set of distributions on the product space with these

marginal distributions� This de�nes a correspondence for marginal to joint distributions�

The theorem given below asserts that this correspondence is nonempty� convex
valued and

continuous� While the result is of independent interest� there are many game theoretic and

economic problems involving optimization where it can usefully be applied�

According to Berge�s maximum theorem� if W and Z are topological spaces and � �

W��Z is a continuous correspondence�with nonempty compact values� and f � W � Z �

� is continuous then 	�
 the function m	w
 � maxz���w� f	w� z
 is continuous� and 	�


the correspondence � � X��Y de�ned by �	w
 � fz � Z j f	w� z
 � m	w
g is upper


hemicontinuous� There are related results for the cases where f is either an upper or lower

semicontinuous function and � an upper or lower hemicontinuous correspondence� 	See

Aliprantis and Border 	����
 for details�
 In the context of this paper� W is a product

of sets of probability measures� w � W denotes a pair of measures 	�� �
 on underlying

spaces� X and Y � z � Z denotes a measure on the product space X � Y and �	�� �
 the

set of measures on X � Y with both marginals agreeing with 	�� �
� if � � �	�� �
� then

the marginal of � on X is � and the marginal on Y is �� A special case arises when �

is restricted to agree on only one marginal� For the application of Berge�s theorem a key

question is whether � is continuous� Here it is shown that on separable metrizable spaces�

the correspondence � is continuous� This has a number of useful applications� Some of

these are discussed below� following a description of the result� The paper concludes with a

proof of the theorem�

� Framework and Results�

Let X� Y be separable metrizable spaces� A probability measure on X � Y is denoted

� � while measures on X and Y are denoted � and � respectively� Given a set Z� the set of

probability measures on Z is denoted P	Z
� If � � P	X � Y 
� let �X and �Y denote the

marginal distributions of � on X and Y respectively�

De�ne the correspondence � � P	X
 �P	Y 
��P	X � Y 
 as�

�	�� �
 � f� � P	X � Y 
 j �X � �� �Y � �g

Thus� �	�� �
 is the set of measures on X � Y whose marginal distributions agree with �

and � on the coordinate spaces� For example� if X � Y � ��� �� and � � � � Lebesgue�

� The notation � �W��Z denotes a correspondence� while g �W � Z denotes a function�

�



then � � Lebesgue on ��� ��� and � � uniform on f	x� y
 j x � y� and x� y � ��� ��g are both

in �	�� �
� Since � is convex� in this case there are a continuum of distinct measures in

�	�� �
� The correspondence � is nonempty 	since ��� � �	�� �

 and convex 	for example�

	���	���
� 
X � ��X�	���
�X 
� Below it is shown that � is a continuous correspondence�

The following remarks identify some implications of the theorem�

Remark � Consider the correspondence 		�
 � f� � P	X � Y 
 j �x � �g� Note that

�	�� �
 � 		�
� The previously mentioned result implies that 	 is a continuous corre


spondence� Upper hemicontinuity is clear� To prove lower hemicontinuity� suppose that

� � 		�
� Let �Y � �� so that � � �	�� �
� Let �n � � so that 	�n� �
 � 	�� �
� Then�

from the theorem� there exists f�ng�n��� �
n � �	�n� �
 � 		�n
 and �n � � � Continuity of

	 in the case where X is compact metric and Y complete� separable and metric is proved

in Hopenhayn 	����
� A proof for the case where both X and Y are compact is given in

Bergin 	����
� based on the observation that � � q � � can be approximated by qc � �

where qc is a continuous function from X to the space of probability measures on Y �

Remark � One can consider restrictions of the sort where marginals are approximately

restricted� For example� let 
	�� �	�� �

 � min� �������� d	�� �
�
 where d is a metric on

P	X � Y 
 consistent with the weak� topology� For k � �� de�ne

�k	�� �
 � f� � P	X � Y 
 j 
	�� �	�� �

 � kg

Thus� �k	�� �
 is the set of distributions onX�Y within k of a distribution having marginals

exactly equal to 	�� �
� To see that �k	�� �
 is continuous� take � � �k	�� �
 and suppose

that 	�n� �n
� 	�� �
� Thus� 
	�� �	�� �

 � k� Suppose �rst that the inequality is strict� so

that there is some �� � �	�� �
� such that d	�� ��
 � k� Since � is continuous� 	�n � �	�n� �n


and �n � �� � So� d	�� �n
 � d	�� �� 
 � d	��� �n
 � k � d	��� �n
� So� � � �k	�
n� �n
� n 
 �n�

and hence � � �k	�� �
� Now� suppose that � � �k	�� �
� and 
	�� �	�� �

 � k� Let

� j � � and 
	� j � �	�� �

 � k� For n 
 nj � � j � �k	�n� �n
� Thus� � j � �k	�nj � �
nj
�

	�nj � �nj
� 	�� �
 and � j � � �

The following discussion describes two important examples�

��� Mass Transfer�

The Kantorovich mass transfer problem is the following� Given two measures� �� �� on

a separable metric space U � let �	�� �
 be the set of measures on U � U with the property

that the marginals coincide with � and � 	i�e� if � � �	�� �
 then the marginal on the �rst

coordinate space is � and � on the second�
 Let c	x� y
 be a continuous function on X � Y �

The Kantorovich functional is�

q	�� �
 � inf
��������

Z
U�U

c	x� y
d�

�



Here� � is the initial distribution of mass� � the �nal distribution� and �	�� �
 is the set of

admissible plans for transferring mass fromone distribution to the other� This problem arises

in many contexts 	in�nite dimensional linear programming� probability theory� information

theory and so on
� When � � �	�� �
� then � � p � �� where p is a conditional probability

on Y given X � a measurable function from X to the set of probability measures on Y �

Thus� given a Borel set B in Y�
R
P 	B� x
�	dx
 is the transfer of mass from X to B� The

restriction �y � � is the restriction on the class of transfer schemes to fp � X � M	Y 
 j

�	B
 �
R
p	B� x
�	dx
� �B Borel� g� There is a substantial literature characterizing q in

various contexts� For example� when c is the metric� d� on U and U is compact�

q	�� �
 � sup
f
fj

Z
U

fd	� � �
� j f	x
 � f	y
 j� d	x� y
� x� y � U� sup
x�U

j f	x
 j��g

See Rachev 	����
 for a survey� and Vajda 	����
 for applications in statistics�

In the case where U is complete� the set of measures �	�� �
� is tight and since �	�� �


is closed� it is compact� In this case the in�mum is attained and Berge�s theorem ap


plies� q	�� �
 is a continuous function and 
	�� �
 � argmin��������
R
U�U

c	x� y
d� is an

upper
hemicontinuous correspondence� A speci�c case of this is the Gini measure of income

inequality�

G	�� �
 � inf
��������

Z
U�U

j x� y j d�

and from Berge�s theorem� G	�� �
 varies continuously with 	�� �
�

��� Anonymous Games�

Consider the problem of choosing optimally a joint distribution on a product space

where the joint distribution is constrained to have a given marginal distribution on one of

the spaces� The problem arises naturally in games with a continuum of players where the

�xed marginal distribution gives the distribution over players� and the joint distribution

gives the distribution over players and actions 	a distributional strategy
� Distributional

strategies appear widely in the literature� Mas
Colell 	����
 gives a discussion of equilibrium

in distributional strategies for one
shot games� Jovanovic and Rosenthal 	����
 provide

analogous results for dynamic games� Bergin and Bernhardt 	����� ����
 extend the work

of Jovanovic and Rosenthal to games with aggregate uncertainty� Milgrom and Weber

	����
 use distributional strategies in the context of games of incomplete information� For

such games� an important question is whether the optimal choice	s
 vary continuously with

parameters such as the marginal distribution � a question that is particularly important in

dynamic models 	and answered a�rmatively by the result given here
� Phrased this way� the

result may be viewed as identifying particular circumstances under which Berge�s maximum

theorem may be applied�

�



In economic applications� models that make use of the continuum of agents formulation

are common� Some examples are Lucas and Prescott 	����
� Jovanovic 	����
� and Hopen


hayn 	����� ����
 where equilibrium coincides with a social planner �surplus� optimization

problem� In the surplus optimization problem� a characteristics space S and a choice space

X are �xed� Take both to be compact metric spaces� A measure � on agents character


istics is given� and a distributional strategy is a measure on X � S with marginal � on S

and the set of such measures is C	�
� If surplus at strategy � is denoted H	� 
� then the

surplus maximization problem is� max��C��� H	� 
� Provided C	�
 is a continuous corre�

spondence� the function h	�

def
� max��C��� H	� 
 is continuous in � and the correspondence

�	�

def
� argmaxC���H	� 
 is upper
hemicontinuous in �� For a multiperiod problem� similar

considerations apply� To illustrate� consider the following problem in a two period model�

In period i � �� �� a distributional strategy �i 	on X � S
 determines a payo� of fi	�� x� s


to player s making choice x� Suppose that the state which describes the player evolves

stochastically according to a transition probability P 	
 j x� s
� continuous in 	x� s
� A player

whose state is s and chooses action x has state characteristic for next period drawn from this

distribution� Then� the aggregate distribution next period is given by ��	

 �
R
P 	
 j x� s
d� �

De�ne this 	continuous
 mapping by 
	� 
� Then� the problem of maximizing total welfare

is�

max
��C���

f

Z
f�	�� x� s
d� � max

� ��C������

Z
f�	�

�� x� s
d� �g

If C is continuous� then so is h�	� 

def
� max� ��C������

R
f�	� �� x� s
d� � and therefore so also

is� h�	� 

def
�
R
f�	�� x� s
d� � max� ��C������

R
f�	�

�� x� s
d� �� In this case� max��C��� h�	� 


is a continuous function of � and the set of maximizers is upper
hemicontinuous� Thus�

continuity of C gives a �well
behaved� problem in the multiperiod setting�

� The Theorem�

This section gives a statement and proof of the theorem�

Theorem � LetX and Y be separable metrizable spaces and let � � P	X
�P	Y 
��P	X�

Y 
 be de�ned� �	�� �
 � f� � P	X � Y 
 j �X � �� �Y � �g� The correspondence � is

continuous�

Proof� Upper
hemi continuity is straightforward to prove� Let f be a bounded continuous

function on X � Y � Let �n � �	�n� �n
 with �n � � and with 	�n� �n
 � 	�� �
� Since

�n � � �
R
X�Y

fd�n �
R
X�Y

fd� � Taking f	x� y
 � g	x
 where g is any continuous bounded

function on X� Z
X

gd�n �

Z
X

gd�nX �

Z
X�Y

fd�n �

Z
X�Y

fd� �

Z
X

gd�X

Since
R
X
gd�n �

R
X
gd� for each continuous bounded g�

R
X
gd� �

R
X
gd�X � Similar

�



reasoning gives � � �Y � so that � � �	�� �
� The remainder of the proof concerns lower

hemi
continuity�

Given a separable metrizable topological space Z there is a totally bounded metric dZ

consistent with the topology on Z� On 	Z� dZ
� let C	Z
 be the set of real valued bounded

continuous functions on Z� and let U 	Z
 be the subset of bounded and uniformly continuous

functions on Z� U 	Z
 is separable� A sequence of measures f�ng converges to a measure �

if and only if
R
Z fd�

n �
R
Z fd� for every f � C	Z
 	or equivalently� for every f � U 	Z

�

Because Z is separable and the metrization de�ning U 	Z
 totally bounded� a countable

dense collection in U 	Z
 and de�nes the weak� topology on P	Z
�

In the present context� since X and Y are separable and metrizable� let dX and dY be

totally bounded metrics on X and Y respectively� and let dXY � dX � dY be the totally

bounded metric on Z � X � Y � Thus� the set of bounded uniformly continuous functions

on 	X � Y� dXY 
 is separable� Therefore� �n � � if and only if� for every f � U 	X � Y 
�R
X�Y

fd�n �
R
X�Y

fd� � or equivalently� for f in a countable dense subset of U 	X � Y 
�

In what follows� it is shown that given � � P	X � Y 
 with �X � �� �Y � �� and 	�n� �n
�

	�� �
� 	�n � �	�� �
 and for each f � U 	X � Y 
�
R
X�Y fd�n �

R
X�Y fd� �

The proof is given in � steps� 	�
 De�ne a grid on X�Y � 	�
 On the grid� approximate

� by �n� with �nX � �n and �nY � �n� 	�
 Put upper bounds on the distance between

�n and � � and using the grid in 	�
� �nd a subsequence �ns � �	�ns � �ns
 such that the

distance between �ns and � goes to �� This completes the proof in view of the fact� If

� � W��V is a correspondence for W to V � where W and V are �rst countable� then �

is lower
hemicontinuous at w if 	and only if
 wn � w and v � �	w
 imply that there is a

subsequence wnk with some vk � �	wnk
 for each k and vk � z�

Step �� Partition X and Y into �nite collections of sets fXigki�� and fYjgmj�� such that 	a


at least �k � k� � 	 �m � m� �
 of the Xi�s 	Yj �s
 have small diameter and the remaining set

	if any
 has small� �
measure 	�
measure
� and 	b
 the boundaries of the sets have � 	or �

measure �
�

This step makes use of the following facts� Let W be a topological space� For any subset

A� write A to denote the closure of A� A� to denote the interior of A� Ac to denote the

complement of A in Z and �A � A n A� to denote the boundary of A� The boundary

operation� �� satis�es the following properties�

	�
 �A � W � �A � �Ac�

	�
 � A� B � W � �	A �B
 � �A � �B�

	�
 � A� B � W � �	A �B
 � �A � �B� and

	�
 If W � X � Y � � A � X� � B � Y � �	A � B
 � 	�A� Y 
 � 	X � �B
�

�



These properties have direct implications for measures of boundaries� For example� 	�


implies that if �	�A
 � � and �	�B
 � �� then � 	�	A � B

 � � 	�A � Y 
 � � 	X � �B
 �

�	�A
 � �	�B
 � �� where � � �X and � � �Y �

Since X and Y are separable� there are countable dense collection of points fxigi�I�

I � f�� �� � � �g� and fyjgj�J � J � f�� �� � � �g in X and Y respectively� Let BX 	x� �
 � fy �

X j dX	x� y
 � �g� be a open ball around x � X� Then� given � � � for any f�igi�I�

�i 
 �� �i� X � �i�IBX 	xi� �i
�

Let � � P	X
� Since �BX 	xi� �i
 � fy � X j dX	xi� y
 � �ig� �	�BX 	xi� �i

 �

�	fy � X j dX	xi� y
 � �ig� There are at most a countable number of distinct values

for �i for which �	fy � X j dX	xi� y
 � �ig � �� so� in any interval ��� ��� � � � � ��

there are a continuum of values for �i for which �	fy � X j dX	xi� y
 � �ig
 � �� and

hence �	�BX 	xi� �i

 � �� For each i� choose �i � ��� �� so that �	�BX 	xi� �i

 � �� Thus�

fBX 	xi� �i
gi�I satis�es X � �i�IBX 	xi� �i
� �	�BX 	xi� �i

 � �� �i � I and � � �i � ��

De�ne a collection of spheres in Y � BY 	yj � �j
� similarly� with zero
measure boundaries

relative to �� Y � �j�JBY 	yj � �j
� �	�BY 	jj � �j

 � �� �j � j and � � �j � ��

Now� let BX 	r
 � �ri��BX 	xi� �i
� Since BX 	r
 � X� by continuity of the measure ��

�	BX 	r

� �	X
 � �� Thus� for any � � �� there is some k such that �	BX 	k��

 
 ����

Let Bi
X � BX 	xi� �i
� i � �� � � � � k � �� and put Bk

X � X n BX 	k � �
 so �ki��B
i
X � X�

Similarly� for Y � for some m� the set BY 	m � �
 � �m��
j�� BY 	yj � �j
 satis�es �	BY 	m �

�

 
 � � �� Put Bj
Y � BY 	yj � �j
� j � �� � � � �m � �� Bm

Y � Bm����
Y � Y n BY 	m � �
�

From 	�
� �	�k��i�� B	xi� �i

 � �k��i�� �B	xi� �i
 and �	�m��
j�� B	yj � �j

 � �m��

j�� �B	yj � �j
�

Since �	�B	xi� �i

 � �� �i� �	�	�k��i�� B	xi� �i


 �
Pk��

i�� �	�B	xi� �i

 � �� Similarly�

�	�	�m��
j�� B	yj � �j


 � �� Since �BX 	k��
 � �BX 	k��
c� � � �	�BX 	k��

 � �	�BX 	k�

�
c
 � �	�	X n BX 	k � �

 � �	Bk
X 
� Similarly� �	Bm

Y 
 � �� Thus� the collection fBi
Xg

k
i��

satis�es �	�Bi
X 
 � �� �i � �� � � � � k and the collection fBj

Y g
m
j�� satis�es �	�Bj

Y 
 � �� j �

�� � � � �m�

De�ne X� � B�
X so that �	�X�
 � �� Therefore �	�Xc

�
 � �� since �X� � �Xc
��

Set X� � B�
X � Xc

� � and observe that �	�X�
 � �	�B�
X 
 � �	�Xc

�
 � �� Let X	�
 �

X� � X�� and note that �	�X	�

 � �	�X�
 � �	�X�
 � �� Set X� � B�
X � X	�
c�

Since �	�X	�

 � � � �	�X	�
c
� �	�X�
 � �� Proceed inductively� X	i
 � �is��Xs and

Xi�� � Bi��
X � X	i
c� This de�nes fXig

k
i��� with �

k
i��Xi � X� Xi �Xi� � �� i �� i� and

�	�Xi
 � �� i � �� � � � � k� De�ne fYjgmj�� similarly� �mj��Yi � Y � Yj � Yj� � �� j �� j� and

�	�Yj
 � �� j � �� � � � �m� By construction� Xi � Bi
X � BX 	xi� �i
� i � �� � � � � k � � with

�i � �� so that �x�  x � Xi� i � k��� dX	x�  x
 � ��� Similarly� for j � �� � � � �m��� y�  y � Yj

implies that dY 	y� y
�
 � ��� Also� letting X� � �k��i��Xi � BX 	k��
� so that �	X�
 
 ����

�



Similarly� for Y � � �m��
j�� Yj� �	Y

�
 
 �� �� Then� since X� � Y � � 	X� � Y 
 � 	X � Y �
�

� 	X� � Y �
 � � 	X� � Y 
 � � 	X � Y �
 � � 		X� � Y 
 � 	X � Y �



� �	X�
 � �	Y �
 � � 		X� � Y 
 � 	X � Y �




 	�� �
 � 	�� �
� �


 �� ��

Step �� In the next step� given 	�n� �n
� a measure �n is constructed such that 	a
 �nX � �n�

�nY � �n and 	b
 for all i and j� �n	Xi � Yj
 � 
nij where� as 	�n� �n
� 	�� �
� 
nij � �ij �

� 	Xi � Yj
�

Now� given the measure � � let �ij � � 	Xi � Yj
 and let ! be the matrix with 	i� j
th entry

�ij� Let �	Xi
 � �i �
P

j �ij and �j	Yj
 � �j �
P

i �ij � If �i � �� let �ij � �ij
�i

and if

�i � �� let �ij �
�
m
� Thus� �ij�i � �ij � �i� j�

De�ne a matrix� "n�

"n �

�
BB�
����

n
� ����

n
� 
 
 
 ��m�

n
�

����
n
� ����

n
� 
 
 
 ��m�

n
�

���
���

� � �
���

�k��
n
k �k��

n
k 
 
 
 �km�

n
k

�
CCA

Because
Pm

j���ij � �� row i sums to �ni � Because �	�Xi
 � � for each i� �n
weak

�

�� � implies

that �ni � �n	Xi
� �	Xi
 � �i for each i� so that �ij 
 �ni � �ij 
 �i � �ij� Thus� "n � !

Summing vertically� ��nj �
P

i �ij�
n
i � Since

P
i �ij�i �

P
i �ij � �j� j ��nj � �j j�

P
i�ij j

�ni � �i j� so that for each j� j ��nj � �j j� �� Because �n � � � �Y � and �	�Yj
 � � for each

j� �nj � �n	Yj
� �	Yj
 � �j� Thus for each j� j ��nj � �nj j� ��

The following calculations modify the matrix "n to a matrix Rn whose column sums

are equal to fvjjg
m
j�� 	and whose row sums are f�ni g

k
i��
� Form this a measure is constructed

with marginals �n and �n and a joint distribution on X � Y that is approximately � �

De�ne J� � fj j �vnj � vnj � �g and J� � fj j �vnj � vnj � �g� For j � J�� pick rnj such

that rnj �v
n
j � vnj � Thus� 	�v

n
j � vnj 
 � 	�� rnj 
�v

n
j � Let

�n �
X
j�J�

	�vnj � vnj 
 � �
X
j�J�

	�vnj � vnj 
 �
X
j�J�

	� � rnj 
�v
n
j �

For j � J� put �nj �
���vnj �v

n
j �

�n
� Note that

P
j�J� �nj � ��

From "n de�ne a matrix� Rn � f
nijg� satisfying

�� �	i� j
� j �ij�ni � 
nij j� �� 	as n��


�� �j�
P

i 

n
ij � �nj � �i�

P
j 


n
ij � �ni �

�



as follows�


nij �

��
�
rnj �ij�

n
i if j � J��

�ij�
n
i � �nj

P
t�J� 	�� rnt 
�it�

n
i if j � J�

�ij�
n
i if j �� J� � J�

Thus� for j � J�� the column sum is�
Pk

i�� 

n
ij � rnj

Pk
i�� �ij�

n
i � rnj ��

n
j � �nj �

For j � J�� the column sum is�

kX
i��


nij �
kX
i��

��ij�
n
i � �nj

X
t�J�

	�� rnt 
�it�
n
i �

�
kX
i��

�ij�
n
i � �nj

X
t�J�

	�� rnt 

kX
i��

�it�
n
i

� ��nj � �nj
X
t�J�

	�� rnt 
��
n
t

� ��nj � �nj �
n

� �nj

Finally� for j �� J� � J�� the column sum in Rn and "n is the same and equal to �nj 	� ��nj 
�

Next consider rows� Summing row i of Rn�

mX
j��


nij �
X

j 	�J��J�


nij �
X
j�J�


nij �
X
j�J�


nij

�
X

j 	�J��J�

�ij�
n
i �

X
j�J�

rnj �ij�
n
i �

X
j�J�

	�ij�
n
i � �nj

X
t�J�

	�� rnt 
�it�
n
i 


�
X

j 	�J��J�

�ij�
n
i �

X
j�J�

rnj �ij�
n
i �

X
j�J�

�ij�
n
i � �

X
j�J�

�nj �
X
t�J�

	�� rnt 
�it�
n
i 


�
X

j 	�J��J�

�ij�
n
i �

X
j�J�

rnj �ij�
n
i �

X
j�J�

�ij�
n
i �

X
t�J�

	�� rnt 
�it�
n
i 


�
X

j 	�J��J�

�ij�
n
i �

X
j�J�

�ij�
n
i �

X
j�J�

�ij�
n
i

�
mX
j��

�ij�
n
i

� �ni

So� the row sum of row i is �ni �

De�ne a measure �nij on each rectangle Xi�Yj according to �nij	B�C
 � �ni �B�
�n
i
�Xi�



�nj �C�

�n
j
�Yj�





nij � if �
n
i 	Xi
�ni 	Yi
 � � and �nij	B�C
 � � otherwise� Let �nij be the unique extension to a

product measure on Xi�Yj � De�ne �n on X�Y according to �n	B�C
 �
P

ij �
n
ij	B�C
�

�



Note that
�n	B � Y 
 �

X
j

�nij	B � Yj


�
X
j

�ni 	B


�ni 	Xi



�nj 	Yj


�nj 	Yj


 
nij

�
X
j

�ni 	B


�ni 	Xi


 
nij

�
�ni 	B


�ni 	Xi


X
j


nij

� �ni 	B


Similarly� �n	X �C
 � �nj 	C
� Thus� the measure �n has marginals �n on X and �n on Y �

So� �n � �	�n� �n
� Also� �n	Xi � Yj
 � 
nij� By construction� as n��� 
nij � �ij�

Step �� For any uniformly continuous function f � X � Y � �� and measures �� � � �

M	X�Y 
� the following calculations place an upper bound on j
R
X�Y

fd� �
R
X�Y

fd� � j in

terms of the partition on step �� where �X � � and �Y � �� Use this to establish convergence

of 	the approximating measure
 �n to � �

Let f � X � Y � � be uniformly continuous with j f	x� y
 � f	x�� y�
 j� �� whenever

dX	x� x�
 � �� and dY 	y� y�
 � ��� Let bf � sup�x�y��X�Y j f	x� y
 j� Pick xi � Xi�

i � �� � � � � k� �� and yj � Yj� j � �� � � � �m� �� Thus� 	x� y
 � Xi � Yj � i � k � �� j � m� �

implies that dX	x� xi
 � �� and dY 	y� yi
 � ��� so if � � �
��

�� j f	x� y
 � f	xi� yj
 j� ��

	Note that � depends on f and �� �	f� �
�
 De�ne �f on X � Y as �f 	x� y
 � f	xi� yj
 if

	x� y
 � Xi � Yj � and �f 	x� y
 � f	x� y
 if 	x� y
 �� 	�k��i��Xi
 � 	�m��
j�� Yj
� The following

calculations place bounds on j
R
X�Y

fd� �
R
X�Y

fd� � j�

j

Z
X�Y

fd� �

Z
X�Y

fd� � j �

j

Z
X�Y

fd� �

Z
X�Y

�fd� j � j

Z
X�Y

�fd� �

Z
X�Y

�fd� � j � j

Z
X�Y

�fd� � �

Z
X�Y

fd� � j

and consider the three terms separately� For ease of notation� write Zij � Xi � Yj and

Z� � X� � Y � � �k��i�� �
m��
j�� Xi � Yj�

j

Z
Z

fd� �

Z
Z

�fd� j � j

Z
Z�

fd� �

Z
Z�

�fd� j � j

Z
�Z��c

fd� �

Z
�Z��c

�fd� j

� j
k��X
i��

m��X
j��

Z
Zij

fd� �
k��X
i��

m��X
j��

Z
Zij

�fd� j � j

Z
�Z��c

fd� �

Z
�Z��c

�fd� j

�
k��X
i��

m��X
j��

Z
Zij

j f � �f j d� �

Z
�Z��c

j f � �f j d�

� �� 	Z�
 � �bf� 		Z
�
c


� �	�� ��
 � �bf��

�



Where the last two inequalities follow from � 	Z�
 
 ����� and j f� �f j� � on Zij � Xi�Yj�

i � �� � � �k � �� j � �� � � �m � �� Thus�

j
R
X�Y

fd� �
R
X�Y

�fd� j� 	�� ��
 
 � � �� 
 bf 	�


Next� consider j
R
X�Y

�fd� � �
R
X�Y

�fd� j�

j

Z
X�Y

�fd� � �

Z
X�Y

�fd� j � j

Z
X��Y �

�fd� � �

Z
X��Y �

�fd� j

� j

Z
�X��Y ��c

�fd� � �

Z
�X��Y ��c

�fd� j

�
k��X
i��

m��X
j��

f	xij
 j �
�	Xi � Yj
 � � 	Xi � Yj
 j

� bf 
 ��
�		X� � Y �
c
 � � 		X� � Y �
c
�

So� Let #ij	�� �
�
 � � �	Xi�Yj
�� 	Xi�Yj
 and for any measurable set A� write 	� ��� 
	A


for � �	A
 � � 	A
� Then�

j

Z
X�Y

�fd� � �

Z
X�Y

�fd� j

�
k��X
i��

m��X
j��

f	xij
 j #ij	�� �
�
 j �bf 
 	� � � �
		X� � Y �
c
 	�


Finally� the calculations for the third term are similar to the �rst� except that � � replaces � �

This gives

j

Z
Z

fd� � �

Z
Z

�fd� � j �
k��X
i��

m��X
j��

Z
Zij

j f � �f j d� � �

Z
�Z��c

j f � �f j d� �

Recalling that j f � �f j� � on Zij �

j
R
Z
fd� � �

R
Z

�fd� � j� �� �	Z�
 � �bf� �		Z�
c
 	�


Collecting terms� the bound for j
R
X�Y fd� �

R
X�Y fd� � j is�

j

Z
X�Y

fd� �

Z
X�Y

fd� � j � 	�� ��
 
 � � �� 
 bf

�
k��X
i��

m��X
j��

f	xij
 j #ij	�� �
�
 j �bf 
 	� � � �
		X� � Y �
c


� �� �		X� � Y �

 � �bf�
�		X� � Y �
c


Note that �	Xi � Xj
 � �	Xi � Y 
 � �	X � Yj
� � 	�	Xi � Xj

 � �	�Xi
 � �	�Yj
 � �

and �	X� � Y �
c � �	X� � Y �
� � 	�	X� � Y �
c
 � � 	�	X� � Y �

 � �� Thus� if � � is

��



replaced by �n� �n	Xi � Yj
 � � 	Xi � Yj
� �i� j 	so �n	X� � Y �
 � � 	X� � Y �

� thenPk��
i��

Pm��
j�� f	xij
 j #ij	�� �n
 j� � and bf 
 	�n� � 
		X� �Y �
c
� bf 
 �� 		X��Y �
c
 �

bf�� 	since � 		X� � Y �
c
 � ��
� Then�

lim j

Z
X�Y

fd�n �

Z
X�Y

fd� j � �	�� ��
� � ��bf � � ���bf � � �	�� ��
� � ��bf �

� �	�� ��
� � ���bf

� �� � ���bf

Since X � Y is separable and metrizable� a countable collection of functions� ff �sg
�
s�� in

U 	X � Y 
 may be used to determine convergence in P	X � Y 
� By the normalization

fs � �
�	jbf�s

j �f
�
s � bf �s �� bf �s � sup�x�y��X�Y j f �s	x� y
 j� each fs may be assumed to map

into ��� ��� Put D � ffsg�s��� A metric on P	X � Y 
 	yielding the weak� topology
 is

d	�� � �
 �
P�

s��	
�
�


s j
R
X�Y

fsd� �
R
X�Y

fsd�
� j� Given �� � and fs � D� there is a

�	�� �� fs
 � �� such that 	from step �
�

lim
n
j

Z
X�Y

fsd�
n �

Z
X�Y

fsd� j � �� � ���

	supx�y fs	x� y
 � ��
 For each s� let �s� �s � � and �s � �� �s � �� Fix �s and put �	s �

minf�	�s� fs
 j s � �sg� For this �grid size�� let �n	s be the measure constructed 	with

marginals agreeing with 	�n� �n

� Then� limn d	�
n
	s � � 
 � ��	s � ���	s � 	�� 


	s� So� for each

�s� choose n	�s
 so that d	�n�	s�	s � � 
 � ���	s � ��	s�� Thus� d	�n�	s�	s � � 
 � �� Since �
n�	s�
	s �

�	�n�	s�� �n�	s�
� � is lower
hemicontinuous at 	�� �
�

This completes the proof�
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