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I. Introduction

How should a seller price an asset when facing a sequence of potential buyers whose
valuations are drawn from an unknown distribution? When all buyers’ valuations are random
draws from a given distribution, it is well known that the optimal posted prices for the seller
are time-invariant: the seller offers a fixed price to each sequentially arriving buyer (cf.
Riley and Zeckhauser, 1983; McAfee and McMillan, 1988). However, in many economic
situations, a seller may not know precisely the valuation distribution of the potential buyers.
For example, a seller of an asset, such as a house or a firm, may not know the exact market
conditions which affect the willingness to pay of all buyers in a similar way. As time goes by,
the seller learns more about the distribution of buyers’ willingness to pay, and thus adjusts
the price accordingly. One purpose of this note, therefore, is to contribute to the theory of
dynamic pricing by characterizing the optimal prices in a situation where learning in the
selling process plays an important role in price determination.

We consider a model in which a seller with one indivisible object tries to sell it to potential
buyers in countably many periods. Potential buyers arrive sequentially, one in each period.
(Equivalently, we can think of a procurer approaching potential producers of a product
sequentially.) The seller posts a price at each period, and if a buyer does not buy at the
posted price, she departs within the period. We interpret this as the seller making a take-
it-or-leave-it price offer to each buyer when she arrives.! All buyers’ valuations are drawn
from the same distribution, which the seller is uncertain about. In this note, this uncertainty
is modelled simply by assuming that there are two possible valuation distributions. In the
selling process, the seller obtains more information about each buyer’s valuation and updates
her belief about which distribution these valuations were drawn from.

Our main finding is that the sequence of optimal prices for the seller decline over time

under the commonly used assumption that the hazard rate of one distribution is higher

'We are, thus, studying the optimal pricing problem within a specific selling mechanism. We focus on
situations where selling formats that involve direct competition among buyers, such as auctions, are not
practical. This may be due to the infrequent arrival or the impatience of buyers. It is discussed further in

the concluding section.



than that of the other. When the true distribution is common knowledge, this condition
captures the property that that buyers’ valuations are uniformly higher in one distribution
than in another, and it guarantees that the monopoly price with the former distribution is
higher than that with the latter distribution. When the true distribution is unknown, as
time passes, the seller becomes more convinced that the true distribution is the lower one
and thus sets prices towards the monopoly price corresponding to the lower distribution.
Thus the hazard-rate relation seems a natural condition to ensure that the monopoly seller’s
prices will monotonically decline over time.

In a model of learning, one might think that the optimal prices should always be declining
as the seller becomes less optimistic. We provide a counter-example to this intuition. In this
example, where the hazard-rate condition is violated but one distribution still first-order
stochastically dominates the other, the optimal prices actually increase over time. This
suggests that the hazard-rate condition we have obtained is not only natural, but also rather
tight.

Our findings offer a possible explanation for the empirical observations that the price for
an asset tends to decline as time passes (when it remains unsold), such as in the housing
market. Such observations might appear to be at odds with the behavior of an optimizing
monopoly seller (i.e., charging a constant price) as predicted by the existing theories, but
they should be expected when the optimizing monopoly seller faces uncertainty about the
true distribution of buyers’ valuations.

In Section II, we set up the model and examine various properties of the optimal price

path. Concluding remarks are offered in Section III.

II. The Model and the Analysis

A seller has a single object to sell. Potential buyers arrive sequentially, one in each period.
Denote periods by ¢, ¢t = 1,2, ... A potential buyer’s valuation u is a random draw from either
distribution F'(u) or distribution G(u), both of which are continuous and differentiable on

support [u, @], with 0 < u < @ < co. The associated density functions are f(u) and g(u),



respectively. Both f(u) and g(u) are strictly positive and differentiable on [u, u]. We assume
that F(u) < G(u) for u < u < @. Thus, F(u) strictly first-order stochastically dominates
G(u). The ex ante probability that u is drawn from F(u) is oy € (0,1). The seller offers
a take-it-or-leave-it price to the buyer in each period, until the good is sold. The seller’s
objective is to maximize the present value of the expected proceeds from the sale, which we
shall call the seller’s expected profit, with her discount factor being ¢.

Let the probability that the seller assigns to distribution F'(u) be oy at ¢. If the seller

charges p, in period 7, 7 =t,t + 1, ..., then her profit is given by

W(pmptﬂa - CYt)

_— in F(pe)[1=F(p,)lpr6™ " + (1-a) f: H G(pe)[1-G (pr)ps6™"

= Ja(1 = F(pe)) + (1 — o) (1 = G(po))Ip
+0[ar F(pe) (1 = F(peg1)) + (L — a)G(pe) (1 — G(pry1))Per
+52[atF(pt)F(pt+1)(1 — F(piy2)) + (1 — ) G(p1) G (Pr41) (1 — G(prs2))Pesa

+...,

where [Ti_} F(px) = 1 by definition.
Therefore, the seller’s continuation value (expected profit) of owning the object at the
beginning of ¢ with belief oy is
m(oy) = sup  m(Pe, Prets e ). (1)
Pt sPt+1,---

Without loss of generality, we can restrict all p, to the interval [u, @]. That is, u < p, <,

V7. Since
in F(po)[1=F(p,)] = in Glp)1-G(p,)] = 1,

and 0 < 1, it is easy to see that 7(p;, pyi1, ---; o) is bounded by u and @. Therefore, the 7 ()
defined by (1) must be finite.



The optimization problem defined by (1) is difficult to solve. Therefore, instead of solving
(1) directly, we use the techniques of dynamic programming to analyze this problem. Given
the seller’s belief a; in period t and the price p;, her belief in period ¢ 4+ 1 conditional on the
good being unsold in period ¢ is given by

Pr(u < p; |F) Pr(F)
Pr(u < p; |F) Pr(F) + Pr(u < p; |G) Pr(G)

(O7AR ]

_ F(pt)at . N
= e G —an = t+1(0, pr). (2)

Using this updated belief, we can rewrite (1) as
m(ag) = max{[ay(1 = F(p)) + (1 = ) (1= G(po))]ps

+ [an F(pr) + (1 — ) G (po) ] (g1 (s pi)) }

max 7(p; o) (3)

Any solution to (3) with the property that m(«) < @ for any « € [0, 1] must be the value
function defined in (1). Furthermore, 7(«) is continuously differentiable since F'(-) and G(-)
are continuously differentiable. (cf. Stokey and Lucas [1989; Theorem 4.11, p.85]) Clearly,

m(a) > 0 for any a. In what follows, we use both (1) and (3) when deriving the optimal

price path.
Define
Hp(pe o, praas ) = pi[l = F(p)] + 0F (p)[1 = F(pesr)Ipes
+02F (po) F(pes1)[1 = F(pero)pesa + -
and

He(pes ey ity ) = pi[l — G(pe)] + G (p)[1 — G(prg1)prsa

+02G (pr) G (prs1)[L — G (prg2) e + ...



It is easy to see that w > Hr > uw and u > Hg > u.

Using the notation above, we can again rewrite (1) as

(o) = sup {aHp(p,pit1,-..) + (1 — o) Ho(pe, g1, o) } (4)

Pt ,Pt+1,---

Define

Hp = sup Hp(py,prsa,---)
Pt Pt+1,---
as the seller’s optimal expected revenue when it is common knowledge that a buyer’s valua-

tion follows F'(-). Similarly, define

HEZ sup HG(ptapt-i-la---)

Pt,Pt+1,---

as the seller’s optimal expected revenue when it is common knowledge that a buyer’s valua-

tion follows G(-). Since Hj}, is obviously independent of ¢, we have
Hp = max{p[l — F(p)] + 0 F (p)Hr}.

Let p}, be the maximizer of Hy.. It is then optimal for the seller to charge p}. each and every

period if buyers’ valuations are known to be from F(-). Thus,

Hp = HF(pF7pF’ ) - W

Similarly, Let pg, be the maximizer of Hf,, we have

He = HG(pG7pG’ ) - ClJ_T(Q('%S)]

We can now establish some useful lemmas.
Lemma 1 Assume that f(u)u < 1%5 and g(u)u < ﬁ. Then u < pf <u,Vt=12, ..

Proof First, note that p; € [u, u]. Next, at the optimal prices, we have

aﬂ'(ptapt—l-l,...; CYt) _ atf(p*) [1 - F(p;‘)

—p; + 5HF(pZ‘+1,pZ‘+2, ..

Ope Pi=pi=tt+1,... f(pr)
+(1 = ay)g(p}) [A —pi + 0Ha(P} 11, Pl o )]
9(pr)

= 0,



if p} is interior. If pj = u, we would have

O (e, Pry1,..; )
Opy

pi=p; i=t,t+1,...

= Oétf(ﬂ) [@ —u—+ (5HF(p:+1ap:+27 )]

1

+(1 —ar)g(w) [@ —u+ 0Ha(piyr, piyo )]

> 0,

noting that Hp > u and Hg > w. This implies that p; is not optimal. A contradiction.
Thus, p; > u.
Finally, p; < @. If not, pj = 4. Then, oy = o4 and 7(ay) = dm(ay) from equations (2)

and (3). But then 7(a;) = 0, which cannot be true.0

The above lemma provides a sufficient condition for the optimal prices to be interior.
The assumption in Lemma 1 requires the lower end of a buyer’s valuation distribution or
its density be sufficiently low, so that setting a price equal to w is never optimal. (Note
that this assumption is always satisfied if u = 0.) In the rest of the paper, we maintain this

assumption to guarantee that interior solutions are always obtained.
Lemma 2 At the optimum, ay1 < oy, Vt.

Proof First, notice that at the optimum u < p; < @ for all ¢ from Lemma 1. Therefore,

F(p;) < G(p;), and

oy = F(p:)&t < Qi
" Fpf)oy +Go) (1 —ay) oy + (1 —ay)

= (¢.



Thus, as one would expect, the seller becomes less and less optimistic about the buyers’
valuation distribution as the good remains unsold over time.

If the seller charges the same price every period, then since F(-) strictly stochastically
dominates G(-), one would expect that the seller can expect to earn more when the true

distribution is F'(-) than when it is G(-). This is confirmed in the following lemma.

Lemma 3 Hr(p,p,...) > Hg(p,p,...), V p € (u, u).

Proof  Since
Hp(p,p,...) =p[l = F(p)] + 0F (p)Hr(p,p, ),
we have
He(p,p, ) = pil[l__(;;g;] |
Similarly,
He(p,p,..) = pil[l__égg] .
Therefore,
Hp(p,p,...) — Ha(p,p, ...)
_ pll = FWI[1 = dG(p)] - plt = G(p)][L — 0F(p)]
[1 = dF(p)][l —6G(p)]
(1 -9Gw) - F)] _
[1 = dF(p)][l —6G(p)]
(I

We are now ready to establish some properties for the seller’s profit function and the

optimal prices.

Proposition 1 () > 0, Yoy € [0, 1).




Proof
m(ow) = aeHp(py,piyr, ) + (1 — ) Helpr, pigas --)-
So,
m'(ew) = Hp (D}, Pisrs ) — Ha D) Piyas )
by the envelope theorem.

Since 7(0) = He (g, g,y --.) = HE, we have

7'(0) = Hp(pg, pers ---) — Ha(pg, gy ) > 0

from Lemma 3.

We now claim that 7'(cy) > 0 for all a; € [0,1). Suppose the claim is not true. Then
there exists some @ € (0,1) such that 7'(&) < 0. Recall that 7'(«) is continuous. From
the properties of continuous functions, there must exist at least one o € (0,&) such that
m'(a) = 0. Let @ = sup{a € [0,a] : 7'(«) = 0}. Since 7'(«) is continuous, 7'(@) = 0.
Furthermore, 7'(ay) < 0for oy € (@, &]. Thus (&) < 7(@).

But since 7'(@) = 0, we have

Hp(pi (@), piy1 (@), ...) = Ha(p[ (@), Py (@), -..).

Therefore,

), ...)

)
o)

m(@) = aHp(pi(@),pi1(a),..) + (1 = @) Ha(p; (@), iy
= aHp(p;(@),p;11(@), ) + (1 = @) Ha(py (@), piya (@), )

< 7(a),

where the inequality above is due to the fact that pi(a@), p5(@),... may not be the optimal

prices associated with a. But then we have a contradiction.O

The above proposition states that the seller’s expected profit is an increasing function of

her belief that the true distribution is F(-). From Lemma 2, this belief is decreasing over



time. Therefore, the seller’s expected profit declines as time passes.

Proposition 2 (The declining price property) Assume that lfgf()p) < lfg’()p) for p €

(w,u). Then p; > p;,,, fort =1,2, ...

Proof First, note that Hp(p},p},1,...) > Ha(p},p}y1,---) from 7'(cy) > 0 and the

envelope theorem.

Next,
OT Pty Prt1,..;0 . *
= oo ! = auf(p}) Ar + (1 = ar)g(p}) A = 0, (5)
Pt pi=p} i=tt+1,...
where
1 - F(p})
Ap = ——— — Dy T OHp(D 1, Diyas ),
f(p7) ' (Phor Pz -]
and
1—G(p;)
A= ——— =D TO0Hc(D1: iy )
G g(pt) t G( t+1 t+2 )

3 * * * * 1-F(p; 1-G(p?
Since Hp(pf, 1, Df19s ) > Ha(Di1,Piygs ---) and f(p(f))t) > g(p(zp)t)

t

Since oy € (0,1) by assumption, p; € (u, @) from Lemma 1, we have a; € (0,1) from

, we have Ap > Ag.

Equation (2). Aslo, the density functions are strictly positive by assumption. Therefore
arf(p;) > 0 and (1 — ay)g(p;) > 0 for any ¢. Equation (5) thus implies Ap > 0 and Ag < 0.

Therefore,

= f(p})Ar — g9(p;)Ac > 0.

pi=p;,i=t,t+1,...

0 aﬂ-(ptapt-l-la ey at)
3at apt

On the other hand, at pj, the first-order condition %ﬁt’a” = 0, must also be satisfied, where

7(pr,c) is defined in equation (3). Taking the total derivative of both sides of %}Ef“) =0

with respect to a;, we have

d (aﬂ—(p:‘faat)> — aQW(praat)@ a (aﬂ—(p:aat)> =0

da, \ op; Opi2  doy  Oay \ Opt



2 *
Because p; is the optimal price, % < 0. But since
t

i or (p;, cu) 2827r(pt7pt+17"';at)
oy op;§ oy Opy

>0,

pi=p; i=t,t+1,...

equation (6) above can hold only if % < 0. Thus,
t

o (9n(p;.)
dp}  Bm ("55) -0
dat - 827‘-(1):7at) ’

8pf2

Since oy > ayqq, for t = 1,2, ..., from Lemma 2, we must have p; > p;,,, fort =1,2,...0

Given the condition on the hazard rates of F(-) and G(-), the prices will fall over time.
This is a natural condition for the declining-price property since it guarantees that the
optimal price is higher when the true distribution is known to be F'(-) than when it is known
to be G(-). As time passes, it is more likely that the distribution is G(-). Therefore, the
prices are adjusted downward towards the monopoly price for G(-).

The hazard-rate condition is satisfied by many familiar distributions, such as F(u) =

u?, G(u) = u, u € [0,1]. Note that lfgf()p) < lfg’()p) implies F(+) first-order stochastically
dominates G(-). This is because by integrating both sides of the above inequality, we have
—In[1 — F(p)] < —In[1 — G(p)], which implies that F'(p) < G(p). Nevertheless, the hazard-
rate condition is a fairly tight condition; it cannot be relaxed to a condition of first-order
stochastic domination. When the hazard-rate condition does not hold, the optimal prices
with learning can surprisingly be increasing over time, even though one distribution still

stochastically dominates the other, as the following example illustrates. For computational

convenience, the example uses discrete distributions.

Example Let F(u) be such that v = 0 with probability 0.1, v = 1 with probability 0.6,
and u = 2 with probability 0.3, and let G(u) be such that v = 0 with probability 0.7, u = 1
with probability 0.1, and u = 2 with probability 0.2. It is straightforward to check that F'(u)
first-order stochastically dominates G(u). Suppose that 6 = 0.5, and «; = 0.95.

In this example, the only candidates for the optimal prices are p = 1 and p = 2. Simple

calculations show that the seller should first set the optimal price at 1. If the good remains

10



unsold, the seller becomes less optimistic about the true distribution being F'(u) and oy
continues to drop. When a; drops below the critical level, 0.852, the seller’s optimal price
jumps up to 2, and remains at 2 thereafter.

The reason that optimal prices actually increase over time in this example is quite intu-
itive: When « is high, the seller should set the price to 1 since the optimal price would be
1 if the true distribution were known to be F'(u); and when « is low, the seller should set
the price to 2 since the optimal price would be 2 if the true distribution were known to be
G(u). The discrete equivalence of the assumption in Proposition 2 is violated here, as that
assumption implies that the optimal price would be lower when the distribution is known to

be the stochastically dominated one.?

As a corollary of Proposition 2, we have

f(p) 9(p) =
Corollary Assume that i) < T=G(p) for p € (u,@). Then o — 0 as t — oo.
Proof First, note that since p; monotonically decreases as ¢ increases and since u

< p; < U, p=Ilimy, p; exists. Next, p > u. If not, then p = w. For any T,

o - 9nPr. iy -sar)
Ipr
= arf(py) [f(T()T) —pr+ 6HF(pT+17pT+27 )]
T

1 - G(py)
9(r7)

By assumption, as T goes to infinity, p7 goes to u. Therefore, from the assumption in Lemma

1,

+(1 — ar)g(py) l — P+ OHG (D1, Do )] : (7)

1 — F(pr)
f(p7)

2Note that for continuous distributions on [0,2] that can be approximated by our discrete distributions,

lim f(p7) [

—pr+ 5HF(p§“+lap;“+2v )]

it is also possible that optimal prices will increase over time, at least for some periods.

11



1
> f(—)|‘f(u)_ﬂ+6ﬂ >0
Similarly,
tlgilog(pT) [ g(p%)T —pr + 0Ha(Pry1: Pryss )

> g(u) [

9(u)
Hence, the right-hand side of (7) does not converge to zero as T goes to infinity. We have a

contradiction. Thus, p; > p > 0, Vt.

Let
G *
ﬁ:min{ (pi)},
t F(pr)
Since p; decreases as t increases, u < p < p; < p; < @ for all . Therefore, we have 3 > 1.
Now,
. o F(p;)
Qi1 = * *
aF(p;) + (1 — o) G(p})
- 07
< O‘t
ar+ (1 —ay)p

But since oy + (1 — ay) 8 decreases in «y when 3 > 1, and «; > a4, we have
a+(1l—a)f>a+(1—ay)pf>1.

Thus

< (6 1 !

Q = o,
Mg+ (l-—m)f \a+Q—a)3) !
which goes to 0 as t — oo.0

Thus, if the good remains unsold for a sufficiently long time, the seller must believe that

the true distribution is almost surely G(u).

12



III. Concluding Remarks

The study of optimal pricing in dynamic settings has typically assumed that the distribu-
tion of buyers’ valuations is known. The seller’s optimal prices exhibit stationary properties
in such situations. In this note, we have studied a model where the distribution of buyers’
valuations is unknown but can be learned as the seller experiences rejections of her price
offers by buyers. Under a very natural condition, the seller’s optimal prices decline over
time, as she becomes less optimistic about the possible distribution of buyers’ valuations.
This offers an explanation of why prices for an asset tend to be lower the longer it remains
unsold, as is often observed in the housing market.?

While the optimal behavior of the seller necessarily involves learning in our model, it does
not follow that the seller in our model will do better than a seller in a similar environment
where learning is not possible. To see this, consider a situation that is the same as our
model except where each buyer’s valuation is an independent draw from a known distribution
a1 F(u) + (1 — a1)G(u). Clearly, there can be no learning about the distribution in such a
situation. Denote the seller’s revenue by 7 in this case. We have

s {p[l — o F(p) — (1 - al)G(p)]}
b\ 1—darF(p)—6(1 —a1)G(p) [

But since

m(ar) = [aa(1=F(py)) + (1 —a1)(1 = G(p}))lp] +
o[ar F(p}) + (1 — a1)G(py)]m(az(ar, pi))
< a1 = F(pD)) + (1 —a1)(1 = G(p}))]p; +

Olar F(py) + (1 — an)G(pi)]m(an),

3There can be other reasons why prices decline over time, such as the seller is unable to commit to a

fixed price. Our point here is that even if the seller has all the commitment power, the optimal prices may

still decline due to learning.

13



we have

pll —auF(p}) — (1 — au)G(pi)]

m(o1) < T sy F(p}) — 6(1 — ay)G(p)
pll = F(p) — (1—a)G)]| _ .
= mﬁx{l — a1 F(p) — 6(1 - O‘I)G(p)} o

Thus, comparing our model with a model without information updating in the selling
process, and supposing that the seller starts with the same prior belief about the buyers’
valuation distribution in both cases, his expected profit will actually be higher when there
is no new information being learned in the selling process.

Our model is closely related to the literature on optimal selling strategies, such as Chen
and Rosenthal (1996), McAfee and McMillan (1988), and Wang (1993). The novel part
of our model is to add uncertainty to the distribution of the buyers’ valuations. Our as-
sumption that the seller is uncertain about only two distributions is strong, and is made for
tractability. We believe that our main finding, that prices decline overtime when the hazard
rates of distributions can be ranked uniformly, will continue to hold when there are more
than two distributions. Of course, the actual analysis would be much more complicated. An-
other restriction of our analysis is that we have set up our model as one of optimal pricing,
rather than one of finding the optimal selling mechanism. We have chosen the less ambitious
approach in this note because the dynamic optimal pricing problem with unknown buyers’
valuation distribution is itself interesting and the time path of prices in such a model has not
been studied before. Furthermore, posted-price selling is the most commonly seen selling
format, and it is also likely to be an optimal mechanism when the arrival of buyers are in-
frequent or buyers are myopic. For future research, nevertheless, it is desirable to generalize
our model to address the design of optimal selling mechanisms in environments involving

learning.
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