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Abstract

We study the implementation of social choice rules in incomplete information environments. A sufficiency
condition called posterior reversal is given for extensive form implementation. The condition has a natural
interpretation in signaling terms: consistent posterior distributions under truth-telling are different from consistent
posteriors under deception. This variation in the distribution over player types leads to variation in the distribution
over actions and outcomes (comparing truth-telling and deception). We exploit this feature to implement social

choice rules.



1 Introduction.

When agents interact within an institutional framework, the structure of the institution plays a cen-
tral role in determining outcomes: it determines the choices agents can make, the strategic considerations
involved, and how actions translate into outcomes. For example, in the context of voting, when a group of
individuals must select some alternative, voting by veto, majority rule, and so on, are alternative institutions
that select outcomes. The design of institutions which produce desirable outcomes (by some criteria) is a
fundamental problem of economic theory.

The theory of implementation and mechanism design is concerned with institutional design in situations
where outcomes in an environment are exogenously given and where the objective i1s to specify rules of
interaction between agents that lead to desirable outcomes. What constitutes a desirable outcome will
typically depend on the characteristics of the agents involved (the state), varying as these characteristics
vary. For example, in designing a voting procedure to select between two candidates, a common requirement
1s that the chosen candidate be top ranked by at least half the voters. Here, at any state the desired outcome
(among two alternatives) is that preferred by the majority. In this case, as preferences of voters change, so
does the best choice of candidate. If the institution is to survive over time and produce appropriate outcomes
as participants (preferences) vary, the institutional details should be independent of the characteristics of
individuals. The institution must, for a given collection of participants, generate strategic considerations
that lead the interaction of those agents to a desired outcome, and as preferences vary, the institution must
generate new and appropriate strategic considerations, leading to the correct outcome at the new state.
Given a rule associating outcomes to states (a social choice rule), this implicitly imposes requirements on the
variation of preferences across states in order to structure incentives appropriately, so that as preferences vary
the outcome generated by the institution varies accordingly. This leads to the central difficulty arising in the
design of mechanisms in implementation theory, and when a mechanism exists with equilibrium outcomes
that track the social choice rule as states vary, the choice rule is said to be implementable.

Different forms of mechanism reflect different institutional features. Thus, for example, majority voting
i1s a situation in which agents move simultaneously and the outcome is then selected. This is naturally
modeled as a strategic form game. Voting by veto highlights important temporal features — the choice made
by one agent may restrict the choices of others, and is most naturally modeled as multi-stage game.

For mechanisms modeled as strategic form games the central characterizing property of implementable
social choice rules is monotonicity. Monotonicity is a necessary property of a social choice rule for the rule
to be implementable in a strategic form mechanism. Monotonicity was introduced by Maskin (1977) and
requires that if an outcome is selected by the social choice rule at some state and in moving to another
state the outcome falls in no agent’s ranking, then the social choice rule should select the same outcome at
the new state. The intuition is natural: if the outcome doesn’t fall in anyone’s ranking and was previously
chosen, then since no one previously wished to challenge the outcome they will not do so in the new state
where it is now ranked at least as highly. Alternatively, if the outcome selected by the social choice rule
varies in moving from one state to another it must be that at the new state the outcome chosen at the old
state is ranked lower than it was at the old state (relative to some alternative), for some individual. Phrased
this way, the requirement highlights the need for sufficient variability in preferences relative to the social
choice rule. Maskin’s monotonicity condition applies to complete information environments. In the context of
incomplete information environments, which we focus on here, there is an analogous condition called Bayesian

monotonicity. Bayesian monotonicity was identified by Postlewaite and Schmeidler (1986) as a necessary
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condition for strategic form implementation. Jackson (1991) provides necessary and sufficient conditions for
strategic form implementation in incomplete information economic environments. The problem of finding
necessary and sufficient conditions in general incomplete information environments is far more difficult. See,
for example, Dutta and Sen (1994 and 1995). Subsequent to the work on strategic form implementation,
research proceeded in at least three directions. Palfrey and Srivastava (1989) consider strategic form games,
and focus on a refinement of Nash equilibrium, excluding those equilibria in which some agent plays a
weakly dominated strategy. Abreu and Sen (1991), Abreu and Matsushima (1990) and Matsushima (1990)
reformulate the problem by working with lotteries on outcomes and exploit the linearity of vonNeumann-
Morgenstern preferences. Extensive form implementation in subgame perfect equilibrium is considered by
Abreu and Sen (1991) and Moore and Repullo (1988).

Use of extensive forms is particularly well suited to incomplete information implementation since these
games provide a natural framework for signaling and information transmission. Recently, Baliga (1993),
Bergin and Sen (1993), and Brusco (1995) have considered the impact of using extensive form games to
implement social choice rules. In the complete information context, subgame perfection is a natural choice
for the solution concept. In incomplete information environments, the analogous requirement is sequential
rationality — that players should make optimal choices whenever called on to move. Sequential rationality
is standard in most solution concepts' and requires that agents make rational choices relative to some belief
system. The specification of beliefs is implicitly determined by the choice of solution concept (such as sequen-
tial equilibrium, perfect Bayesian equilibrium, equilibrium based on forward induction belief restrictions, and
so on). However, because equilibria are sensitive to belief specification, whether a game implements a given
social choice rule or not depends critically on how belief restrictions are imposed. We approach this problem
by focusing on beliefs (posterior distributions) that are sufficient to permit implementation, independent of
the solution concept. Apart from having the advantage that the conditions are independent of the equi-
librium concept (given sequential rationality), the approach allows the results to be interpreted in terms of
standard signaling ideas. We primarily consider games that have no equilibria that go beyond a first stage.
(This is conventional in complete information extensive form mechanisms.) We refer to such a game as a
game with one round of signaling. In the context of incomplete information a significant virtue is that it
avoids the difficulty of having to track sequences of posterior distributions and inevitable dependence of the
implementation on the precise manner in which a solution concept restricts beliefs.

A key insight of the recent literature on implementation theory is the crucial role played by appropriate
preference reversals in successful implementation. In normal form implementation this reversality require-
ment is called Bayesian monotonicity and postulates the existence of an allocation that undergoes preference
reversals vis-a-vis the allocations that arise under truth-telling and deception. An important feature of these
reversals is that they occur with respect to the prior distribution on types. Allowing for multiple stages in
the game form permits a significant weakening of the Bayesian monotonicity requirement: we can now addi-
tionally use posterior distributions to generate reversals, and we can create more finely tuned incentives in
the multistage framework. For example, a type report when an agent reports “truthfully” conveys different
information than the same report when the agent reports “dishonestly”, and hence may lead to different
behavior.

To motivate the signaling role of beliefs in the simplest possible way, consider a situation where a player

1 Baliga uses perfect sequential equilibrium, Brusco adopts perfect Bayesian equilibrium and Bergin and Sen (1993) use

sequential equilibrium.



has two possible and equally likely types, @ and b. Suppose that the player’s strategy i1s to announce a
type. Suppose also that one strategy (say &) announces a when the player is type a and announces b when
the player is type b. Another strategy, &, announces b when the player 1s type a and announces a when
type b. Under &, the posterior distribution over types given the announcement b is that the agent is type b
with probability 1, while under & and given b, the posterior distribution puts probability 1 on type a. Let
P;(- | y) denote the posterior distribution conditional on y when strategy d is used, so that P4(a | ) = 0 and
Ps(a | b) = 1. Thus, the posterior distributions are distinct.? In this discussion Bayesian updating is used
— the relevant event in each case has positive probability. Generally, in multistage games in deriving beliefs
two complications arise: 1t’s necessary to consider the structure of beliefs on zero probability events and
secondly, with many agents and correlated types, these beliefs are not uniquely defined when conditioning
on events that have zero probability. Nevertheless, 1t turns out that properties similar to those described
above are preserved in belief systems. We exploit this fact in a game form to generate different behavior in
subforms of the extensive form, depending on the strategies used by agents (in particular “truth-telling” and
“deception” strategies). From a technical perspective, there are two ways in which this variation in behavior
may occur. A change in the distribution over nodes in a subform may change the distribution over outcomes
simply because different choices are made at different nodes; and a change in the distribution over nodes of
the subform may alter the choices made at a given node.

In section 2 we describe the model and introduce extensive form implementation in section 3. There,
we provide three examples that are central in motivating the discussion. The first two illustrate the ideas
described above (on the impact of variation in distributions over subform nodes). The third example gives
a social choice function that can be implemented in the extensive form but fails the Abreu-Matsushima
necessary condition (measurability) for implementation in the normal form. This is in contrast to the
complete information case where normal form refinements are more powerful than subgame perfection in
the extensive form. The example is constructed so that the interim expected utilities are type independent
(although the ex post utilities depend on the type profiles). As a result, the only Abreu-Matsushima
measurable functions are constant on the type space, and any social choice function that varies over types
fails measurability. Implicitly, the measurability of a social choice function depends on the prior distribution
over types via the interim expected utilities. Implementation is possible in the extensive form by shifting
the problem to a subform where posterior distributions are such that different types of an agent have
different incentives as the (consistent) posterior distributions vary between truth-telling and deception. In
section 4 we describe the posterior reversal condition and give a sufficiency condition for extensive form
implementation. A central requirement of posterior reversal is that for any deception there is some signal
such that the posterior under truth-telling at that signal is distinct from the posterior under deception (in
fact at out of equilibrium signals we deal with sets of distributions, so the condition is formulated in terms of
disjointedness of sets of posterior distributions.) We illustrate the condition with the examples and give some
simplifications of the condition for special cases. In addition, we contrast the ideas in posterior reversal with

Bayesian monotonicity and some extensions. In section 5 we conclude with a discussion of the literature.

2 The Model.

The set of agents is denoted I, with I = {1,2,... n}. In the incomplete information environment, each

2 Note that this observation remains valid if mixed strategies are used. Suppose that an arbitrary strategy, -y, puts positive
probability on b when the agent is type a. Then the posterior distribution under gamma puts positive probability on a; given

the announcement b, P~ (a | b) > 0, whereas under the truth-telling strategy &, Ps(a | b) = 0.
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agent ¢ has a set of types, S;. In addition, a fixed prior distribution, u, over types S = x7_;S; is given. We
assume that S is finite and that for each s € S, p(s) > 0. The set of outcomes is denoted A. An allocation

is a rule that assigns outcomes to types. Formally,
Definition 1 An allocation is a function x : S — A.

Denote by X the set of all allocations. The utility function of player ¢ is a function from A x S to R,
u; : Ax S = R. Given an allocation # and a distribution g on S (the prior distribution), the expected
utility of agent ¢ conditional on type s; € S; is Vi(w,s; | p) = Zs_,eS_, ui(z(s), s)p(s—s | si). (Given a
vector x, _; is obtained from z by deleting the i® component.) A binary relation on allocations (X) is
then defined according to: zR'(s;, )y < Vi(z,s; | p) > Vi(y,s; | ). When the inequality is strict write
P (s, pt)y.

Definition 2 A social choice correspondence (SCC), F, is a subset of X, the set of allocations. In

the case where the SCC contains just one element of X so F' = {x}, it is called a Social Choice Function

(SCF).

Intuitively, the outcome #(s) is the preferred social outcome at player type profile s. However, the types
vector s is not observable. In a mechanism where agents report their types with report s leading to outcome
z(8), then under truthful reporting the desired outcome is achieved. In general, agents incentives may conflict
with truthful reporting and this in turn may lead to deceptions by agents, reporting types other than the
true type.

Definition 3 A deception for i isa a; : S; — S;, a; € D; = {&; : S; — S;}. A deception is a function
a={a}ly,ae D=x" D, ={a|a:5— x5}

Denote by &; the identity function on S; and by & the identity function on 5. Given an outcome function
z and o € D, define z4: 24(s) = z(a(s)), ¥s € S. Thus, if agent ¢ adopts the reporting strategy &;, then
the agent plans to report truthfully. If the agent adopts the reporting strategy o # &, then for some type
of s; of ¢, the player plans to report dishonestly, reporting, say, §; = o;(s;) # s;. When, for each ¢, truthful
reporting by other agents leads to it being optimal for i to report truthfully, then the social choice function

satisfies “self selection”. Formally,

Definition 4 The social choice function F = {x} satisfies self selection if

xRi(si,u)x(~“&_l),VO~zi € D; s, € 55,1 €l
Self selection (or incentive compatibility) is an essential requirement of “implementable” social choice func-
tions. If the social choice function satisfies self-selection, then in a type announcement game (a “direct
mechanism”) truth-telling is a Nash equilibrium in the game where agents receive z(s) when the announce-
ment is s. If the social choice function fails self-selection then there is no mechanism (direct or otherwise),

in which the equilibrium leads to the outcome s at type profile s, for all s € S (Myerson (1979)).

Remark 1 Throughout the paper we focus on pure strategies and restrict attention to pure strategy
equilibria. This is conventional although not universal. The concept of Bayesian monotonicity (see below)
is central in the literature and is defined for deceptions that do not involve randomization. Working with
pure strategies has the virtue that we maintain comparability with much of the existing literature. However,
many of our characterizations require no reference to the issue of pure versus mixed strategies. Since the
distinction is important, we will indicate where the distinction is not significant or does not play a crucial

role.



2.1 Normal Form Implementation.

Mechanism design in incomplete information environments has been studied by Postlewaite and Schmei-
dler (1986), by Palfrey and Srivastava (1989) and more recently by Jackson (1991). A key necessary condition

for implementation in normal form games in Nash equilibrium is Bayesian monotonicity.

Definition 5 A social choice function x satisfies Bayesian monotonicity if given « € D, z, # =z,
Jeel,s; €5; and y € X such that:
xRi(ti,/i)yal(sl), Vi, € 5;
2. yocpi(siaﬂ)xoc

where yqo, (s, (t) = y(t_i, ai(si)), VL € S.

Remark 2 When Bayesian monotonicity holds, conditions 1 and 2 are satisfied at every a (with z4 # ).
When 1 and 2 hold at some given «, we say that Bayesian monotonicity is satisfied at a.

Motivation for this condition is given in Palfrey and Srivastava (1989) and Palfrey (1992). Necessary and
sufficient conditions for Nash implementation in economic environments are given in Jackson (1991). Given
z,y € X, and T' C S, define zpy = xrx + (1 — x7)y, where xr is the indicator function of 7. Call
S, {wity, A, X} an environment.

Definition 6 An environment is economic at y if given z € X and s € S, i, j €I (i #j), v,y € X z,y
both constant with (x72)Pi(s;, )z and (yrz)PI(sj, p)z, YT C S such that s € T.

Say that an environment is economic if for each u € A(S), the environment is economic at .

In “economic environments” with n > 3, a social choice function is implementable in Nash equilibrium if

and only if it satisfies both self selection and Bayesian monotonicity (Jackson (1991)).

3 Extensive Form Implementation

We denote an extensive form game of incomplete information by I'. A detailed description of extensive
form games is given in Selten (1975), and is too involved to fully review. Here we give a minimal description
of the relevant components. A path in the game is a state (type) profile s € S and a history, h, of actions
chosen by the players. Thus a path is a pair (s, ). The set of all paths is denoted S x H. A payoff for each
player is associated to each path: w(h,s) = {m;(h,s)};, where m;(h,s) is the payoff to player ¢ if the type
profile 1s s and the action history is h. An information set for player 7 is a subset of the set of histories,
identifying those paths indistinguishable to the agent when required to move and a type, s; € 5;. Let
o; € X; be a behavioral strategy for player 7 in I'; specifying an action choice at each information set of ¢.
Thus, a strategy for ¢ can be written as {o;(s;)}s,es,, where o;(s;), specifies an action for i, type s; at each
information set. Given a strategy, ¢ = (01, 02,...,0,) € & = x;3;, and a realization s € S, a payoff to agent
iis determined, say 7 (o, 5). A prior distribution g on S determines an expectation operator E, such that the
expected payoff to player ¢ under strategy o is E, {7} (o, s)} and the conditional payoff to player i, type s; is
E, {7} (o, s) | s;}. Alternatively, note that each strategy, o, and type distribution u determine a distribution,
P(o,u), on H xS with associated expectation operator E(, ,). Formulated in this way, the expected payoff to
player i is E¢, ,y{mi(h,s)}, and the expected payoff to player i type s; is E¢; ) {mi(h,s) | si}. Let Z; denote
the collection of information sets of player i. If o* is a Nash equilibrium and the information set I; € Z; 1s

reached with positive probability given the strategy ¢ and type distribution p, then:

E(g*yu){ﬂ'i(h,s) | I} > E({g*_“gl}yu){ﬂ'i(h,s) | L}, Vo, eXy.
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This condition is called sequential rationality at I; and any Nash equilibrium strategy of the strategic form
of the game induces sequential rationality along the equilibrium path. Beliefs on the equilibrium path are
determined by Bayes’ rule. However, it is necessary to model rational behavior of a player faced with an
unanticipated decision problem (i.e. choosing optimally off the equilibrium path). If I; has probability 0
under (o, 1), an “appropriate” conditional distribution is assigned. Different solution concepts (perfection,
sequential equilibrium, and various forms of perfect Bayesian equilibrium) develop different procedures for
restricting out of equilibrium beliefs. This raises the difficulty that equilibrium outcomes of a given extensive
form may vary with the solution concept and is obviously important for the implementation problem. We
will return to this issue later. For now, we fix some equilibrium criterion such as sequential equilibrium or
perfect Bayesian equilibrium and use the term “equilibrium” to mean that some such solution concept has

been adopted and the equilibrium is in terms of the solution criterion.

Definition 7 An extensive form mechanism is an extensive form game of incomplete information, T,
with type space x[_,S;, prior distribution u over types, and outcomes determine by histories according to a
rulea : H— A.

That a depends only on H, and not H x 5, reflects the fact that the mechanism cannot depend on unobserv-
ables (the player types). Thus, to each path in the game the mechanism associates an outcome. If the player
type vector drawn by p is s, then the payoff to agent i is u; (a(h), s). Thus with m;(h, s) = w;(a(h),s), the ex-
pected payoff to i is E(5 ,){ui(a(h), s)}, and the expected payoff to player i type s; is E(o ) {ui(a(h),s) | s;i}.

Given the extensive form game T', let ¥r be the set of equilibrium strategies, or write ¥r(u) to make
explicit the dependence on p. Thus, Ur : A(S) — X. Let 0 € ¥rp(u). A strategy profile and the prior
distribution, (o, i), determine a distribution over histories, which we denote ¢. For each s € S a conditional

distribution on A is determined according to
S0 (B | 5) = g(oey (1h € H | alh) € BY | 5), B C A.

Let supp ¢(o+ ,y(B | s) be the support of this distribution in A.

Definition 8 The allocation « : S — A is implementable in the extensive form in sequential
equilibrium if there exists an extensive form mechanism T' (with prior distribution y on S), such that the
game has a sequential equilibrium and such that if o™ is a sequential equilibrium, then x(s) = supp ¢(o+ .)(B |

s),¥s € S.

Remark 3 Implementation in perfect Bayesian equilibrium is defined by replacing “sequential equilibrium”
with “perfect Bayesian equilibrium” in this definition. Implementation in other extensive form concepts is
defined analogously. When we need to work with a specific solution concept, we use sequential equilibrium.

Other solution concepts that impose sequential rationality at every information set would do equally well.

3.1 Examples.

In this section we discuss three examples. The first example shows how the majority rule social choice
function can be implemented in a public goods problem where Bayesian monotonicity fails. We provide a
complete description of the (simple) implementing game form. The key feature of this example is that in
moving from truth-telling to deception, the posterior distribution over types of some agent varies. As long
as different types act differently, this gives a different distribution over outcomes, comparing truth-telling

to deception. The second example illustrates how the variation in the posterior (between truth-telling and
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deception) can cause the same type of a player to play differently. This is again an example of posterior
reversal, but also of chain reversal. The third example shows how complex strategic behavior generated by
variation in beliefs may be exploited. We choose a social choice function that violates Abreu-Matsushima
measurability and show how it can be implemented in the extensive form. The example is constructed so
that interim expected utilities are type independent (making it impossible to elicit distinct type-dependent
behavior). The example shows that it is sometimes necessary to use extensive form games to implement a

soclal choice function.

3.1.1 Example 1: Implementing a Non-monotonic SCF

The following example is discussed in Palfrey and Srivastava (1989) and Palfrey (1992). There are three
players and each player has two types, S; = D = {a,b},i = 1,2,3. Types are independently drawn: a with
probability p, and b with probability gty = 1—p,. Preferences are given by: w;(d,s;) =1, s; = d € {a,b} and
ui(d,s;) =0, s; # d € {a,b}. Whatever “state” s € S = x?_,S; is realized, at least two agents are drawn
with the same type. The social choice function is majority rule: z(s1,s2,s3) = d, if 3 # j, 5, = 5; = d.
This allocation fails Bayesian monotonicity for some values of the prior distribution (g, pp). Hence, at such
prior distributions, the social choice function cannot be implemented as a Nash equilibrium in a normal form
game. However, this social choice function can be implemented in an extensive form game as follows. Define
an extensive form game with two stages. In the first stage each player announces their type. In addition,
player 1 announces an element of {¢, n}. If agent 1 announces n, then the game terminates at stage 1 with
the majority announcement selected: if two agents choose d € {a, b}, then d is selected. If agent 1 announces
¢ and if either of the profiles (a,a,a) or (b, b,b) are announced, then the game goes to stage 2 where player
2 is allowed to choose the outcome in {a,b}.

First, truth-telling is an equilibrium. For each type of each player, truth-telling weakly dominates non
truthful reporting. If agent one announces ¢, the game goes to stage 2 when either (a,a,a) or (b,b,b) are
announced, but in the first case player 2 picks a (since given 2 announces a, 2 is type a with probability 1)
and in the second b, so the outcome is unaffected. Thus truthful reporting by all players, player 1 selecting
n in period 1 and 2 selecting his type if stage 2 is reached forms an equilibrium.

Next, there is no deception equilibrium where both a and b are announced with positive probability. To
see this, suppose otherwise. Then 3j, k such that p(a | j)p(b | k) > 0 (when j = k each type of j announces
differently). In this case player r ¢ {j, k} faces a distribution where both ¢ and b have positive probability
of being announced by other players and so has a unique best response — reporting truthfully.

The only remaining possible “deception” equilibrium is one where p(d | 1)p(d | 2)p(d | 3) = 1 for some
d € {a,b}. Suppose that this holds for d = a. In this case the (consistent) posterior distribution over player
2’s types coincides with the prior (since o2(a) = o2(b) = 1, where o(s;) is the probability that player i type
s; announces d).

a5 (b) e o duy
o2 () + o3 (@)pa Ly + lpa

P(b]a) = "

When player 1 plays o4(a) = o4(b) = 1 and each type of 1 chooses n, then neither player 2 or 3 has
any incentive to defect. However, if agent 1 type b “defects” to the signal ¢ then conditional on agent 1
being type b, the game goes to stage 2 with probability 1, since a is played with probability 1. Here, the
posterior probability on agent 2’s type is the prior, so that with probability s, agent 2 will choose b. Thus,
the defection leads to b being chosen with probability pp. Since pp > 0, agent 1 type b has the incentive

to defect, thus upsetting these strategies as equilibrium strategies. Finally, note that there cannot be an
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equilibrium where in the first stage each agent announces (independent of type) (a,a, ), say, and agent 1
type b announces c¢. In this case the game goes to stage two with positive probability (us), and conditional on
reaching stage two, b is chosen with positive probability (again p). This cannot be an equilibrium because
agent 3 type a has an incentive to announce b: if agent 3 type a announces b, then conditional on agent
3 being type a, the outcome (a,a, b) occurs with probability 1 in stage 1 — so that a is chosen. A similar
discussion applies when each player plays b with probability 1. This completes the example.

The key feature here is the variation in the support of the distribution over player 2’s types in the
second stage, depending on whether reporting is truthful or dishonest. The second stage can be reached
in two ways: player 1 announces ¢, and the type profile reported is either r4 = (a,a,a) or r, = (b,b,b).
Suppose (e,74) occurs in the first period, so the game goes to stage 2. There are eight possible states:
{(a,a,a),(a,a,b), -, (b,b,b)}, according to the type of each player, (s1, 2, s3). Player 2 knows the true state
isin either Z¢ = {(a, a, a), (a,a,b), (b,a,a), (b, a,b)} or Z° = {(a, b, a), (b, b, a), (a, b,b), (b,b,b)}, corresponding
to whether 2 is type a or b. At information set Z%, independent of the distribution over elements of 7%, 2 has
a dominant strategy — choose a. Similarly, at information set Z° 2’s dominant strategy is to choose b. In
the truth-telling equilibrium, (¢, r,) leads to information set Z% with probability 1 (where a is selected by 2),
while in the deception equilibrium, (¢, 74) leads to information set Z* with probability p, and information set
7% with probability p, (where b is selected by 2). Thus, the difference between truth-telling and deception
in stage 2 is that the distribution over states changes while the action chosen at each state is the same in
both cases. At state s = (s1, s2, s3) the action chosen is sz in both truth-telling and deception, but in the

truth-telling case prob(Z® | ¢,r,) = 1, whereas in the deception, prob(Z® | ¢, rq) = g < 1.

3.1.2 Example 2: Implementing a SCF through posterior induced preference
variation.

In this example we illustrate how posterior distributions directly play a key role in implementing a choice
rule — the change in the support of the distribution alters sequentially rational behavior, so that different
behavior occurs at the same state, as the posterior distribution varies from truth-telling to deception.

Suppose there are three agents. Agents 1 and 2 have singleton type sets while agent three has two
possible types — S5 = {a, b}. There are four alternatives — A = {a,b,d, e}. Agents 1 and 2 have preferences
that depend on the type of agent 3. The preferences of each agent i are described by a function wu; :
A x S3 — R. The social choice rule, # : S3 — A is z(a) = @ and z(b) = b. Assume that for i = 2,3,
ui(a,a) = ui(a,b) = u;(b,a) = u;(b,b). For player 2, put us(d, a) > ua(e, a), ua(e,b) > ua(d,b), choosing d
over e when the true state is a, and e over d when the true state is b. Letting V;(2) = prow; (2, a) + ppui(z, ),
assume that Va(e) > Va(d). For player 3, assume that us(a, a) > u(z,¢) for z € {d,e} and ¢ € {a,b}. Finally,
for player 1, assume that ui(e,a) = ui(a,a) = uy(b,b) > uy(e,b) > ui(b,a) = u1(a,b) = u1(d, a) = uy(d, b).
These imply that Vi(e) > Vi(a), and assume Vi(e) > V4 (b). The social choice rule is implemented by the
following game. In stage 1 player 3 announces a type s3 € {a,b} and player 1 either challenges with an
announcement ¢ € {c4, ¢y} or does not, nc. If the pair chosen in stage 1 is either {c,,a} or {ep, b} the game
goes to stage 2 where player 2 chooses from {d, e}. Otherwise, the game ends with the choice of 3 selected.

First, observe that truth-telling by player 3 and no challenge by 1 is an equilibrium. If player 1 challenges,
¢q takes the game to stage 2 when 3 announces a and here 2 will pick d (u2(d, a) > us(e, a)), which is worse
for 1 than a (ui(d,a) < ui(a,a)). Similarly, ¢, takes the game to stage 2 when 3 announces b and here 2 will
pick e (uz2(d,b) < us(e, b)), which is worse for 1 than b (ui(e,b) < uy(b,b)). Next, there are three types of

deception to consider: (i) both types announce a, (#¢) both types announce b, and (éi¢) each type announces

8



the opposite type. We discuss these in turn. (¢) If both types of 3 announce a, the challenge ¢, takes the game
to stage 2 where 2 picks e, since Va(e) > Va(d). Since Vi (e) > Vi(a), player 1 will select the challenge ¢,. With
the challenge, player 3 type b gets us(e, b) < ug(b,b), so player 3 type b would wish to switch to announce b.
(Here, we use the fact that any sequentially consistent beliefs assign the same distribution over the types of
player 3 following the challenge as is assigned by the prior distribution.) (é¢) If both types of 3 announce b,
the challenge ¢, takes the game to stage 2 where 2 picks e, since Va(e) > Va(d). Since Vj(e) > Vi (b), player 1
will select the challenge ¢;. In this case, player 3 type a gets us(e, a) < uz(b, a) = us(a, a), so player 3 type a
would wish to switch to announce a. (éi7) Finally, if each type of player 3 announces the opposite type, then
the challenge ¢, leads to choice e by player 2 when a is announced (since 3 is type b), giving player 1 utility
uy(e,b). Since uy(e,b) > ui(a,b), 1 has the incentive to challenge. In this case, player 3 type b gets ug(e, b)
whereas announcing b gives player 3 type b the payoff uz(b,b) > us(e,b). Challenge ¢, is not profitable for 1
since it produces the outcome d at state a giving utility u1(d, a) = uy(b, a). This completes the example.
The important point in the example is the variation in behavior in period 2 of player 2, due to a change
in the posterior distribution. Player 2 has just one type, but that type plays differently depending on the
posterior distribution over three’s types. To see this in terms of information sets, consider the challenge ¢,
with choice a by player 3 in stage 1. This takes the game to stage 2. Here, player 2 has just one information
set, T = {a,b} — 2 cannot distinguish the type of player 3. If 1 challenges with ¢, in the truth-telling
equilibrium then if a is chosen by 3 in stage 1 the game goes to stage 2 where the posterior distribution puts
probability 1 on a. Since us(d, a) > ua(e, a), player 2 will choose d. In the deception equilibrium where 3
chooses a independent of type, the challenge ¢, takes the game to stage 2 where the posterior distribution

is the same as the prior (p4, ). Now, 2 chooses e because Va(e) > Va(d).

3.1.3 Example 3: Implementing a Non-Measurable SCF.

In the literature on complete information games 1t is known that normal form refinements such as elim-
inating weakly dominated strategies are more powerful than extensive form mechanisms for implementing
social choice functions (Palfrey and Srivastava (1989)). Similarly, with iterative elimination of strictly dom-
inated strategies very permissive results obtain (Abreu and Matsushima (1991)). In incomplete information
games these solution criteria are also powerful. Therefore, it is somewhat surprising that in incomplete
information games, there are social choice functions that cannot be implemented by either of these criteria,
but can be implemented in the extensive form. This section provides an example. Rather than provide
details of the extensive form, we show how a “wedge” arises in the posterior distributions (in a game where
agents announce types), depending on whether strategies are truth-telling or otherwise in the first stage of a
two stage game. This creates variation in the posterior distributions as type announcement strategies vary,
and this is sufficient for implementation in this example. A detailed construction of an implementing game
form is given later.

In this example there are three agents. Agents 1 and 2 have two types and agent three has only one
type. Thus 51 = {s},s7}, So = {si 53} and S3 = {s3}. The joint distribution over S; x Sy is uniform:
u(sﬁ,sg,:;g) = %, Vi, j € {1,2} and /,L(S‘g,é?g | i) = %, i,j = 1,2. The set of outcomes is a subset of R?,

so A C R? with representative element a = (a1, as). Preferences are specified as follows. For all @ € A,

Player 1 Player 2
ui(a, st, sy, s3) = 3a; + 9as us(a, si, s}, s3) = 4a; + 10as
ui(a, st,s3,s3) = 9ay + 3as us(a, s3, 53, s3) = 8ay + 2as
ui(a, s7, 51, s3) = 4a; + 8as us(a, st, s3,s3) = bay + Tas
ui(a, s7,s3,s3) = 8ay + 4as us(a, 57,53, s3) = Tay + Has



And for player 3, us(a, s3,53,s3) = a; + as, Vsy, sa.

9 T2
Player 1 Player 2

The figure illustrates indifference curves of these preferences. Because the preferences are linear, they may be
interpreted as preferences over lotteries. Thus, Vi (a, si | p) = 6[ay +as]. Similarly, Vi (a, s} | p) = 6[a1 + as].
Thus, Vi(a,st | p) = Vi(a,s? | p) = 6[a1 + as], Ya € A. The function us also has the property that the
(interim) expected utility determined by us and p is independent of so: Va(a, s | p) = Vi(a,s3 | p) =
6[ay + as], Va € A. The figure depicts indifference curves for agents 1 and 2. Thus for either player, in any
game form the best response set is the same for both types, any strategy which is not weakly dominated
for one type is also not weakly dominated for the other type. Because Vi(a,st | p) = Vi(a, s} | p),Va € A
and Va(a,ss | p) = Va(a,s3 | u),Ya € A, the partition, P*, generated by iteration on equivalence classes
determined by these functions is the coarsest partition: P* = {51} x {S2} x {S3}. The only functions
measurable relative to this information are constant functions.

Let {t,u,v,w} be four points in A C R2. (There is no difficulty concerning the existence of incentive
compatible allocations. For example, 21 4+ 2o = k,¥z € {{, u, v, w}, then all allocation values lie on an indif-

ference curve of the (type independent) interim expected payoff and hence satisfy incentive compatibility).

Now, assume that Ja € A, a; > 0,7 = 1,2, such that a € A, if 0 < a; < a;,7 = 1,2. Consider the social
choice function x defined: z(si,s3,s3) = (t,¢,a—2t), (5%, 53, 85) = (w,u,a—2u), x(si, s3, s3) = (v,v,a—2v),
z(s?,52 s5) = (w,w,a — 2w). This is interpreted as follows: at state (s, sl,s;), the allocation to agents is
(t,t,a—2t), with a similar interpretation applying to the other states. Finally, assume that Vz € {¢, u, v, w},
a; —22z; >0,i=1,2.

Since this function varies over S it 1s not measurable with respect to P*. Now, consider a two stage
game where in the first period agents announce types. Whether or not the game goes to stage two depends
on some action of the third player. Because the third player has just one type, all consistent distributions
over the types of players 1 and 2 are determined by Bayes’ rule. Consider a deception o = (1, ova) where
a1 = a1 (truth-telling), while aa(s3) = s3, as(s3) = si. Let s* = (s1, s2). Now consider two possibilities. In
the first, both agents play the truth-telling strategy (&) = (&1, &2). In this case, if s* is announced (and this
event has positive probability), then if the game goes to stage two, the posterior over types puts probability
1 on s* (since agents are using the truth-telling strategy &. Then, if agent 1 is faced with a choice between

y and z, with probability 1 agent 1 will choose y.
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Now, suppose that the deception « is played and s* is announced. If the game goes to stage two, then
the posterior distribution puts probability 1 on § = (s, s3). If agent 1 is faced with the choice between y and
z, with probability 1 agent 1 will choose z. This variation in behavior is all that is required at stage two for
extensive form implementation. Other possible deceptions are treated similarly. For any a an appropriate
(y, z) pair exist which yields a preference switch. A general mechanism that implements this social choice

rule 1s given later.

Remark 4 The mechanism we give implements the social choice function in pure strategies. If mixed
strategies are allowed, and we permit randomization in deceptions, the social choice rule in this example is
still implementable. The reason is simple. Even when randomization 1s allowed, under any deception the
posterior distribution at some type announcement will necessarily be different from the posterior distribution
under truth-telling at that announcement. For example, if agent 2, type si announces s with positive
probability, then the posterior distribution on two’s types following signal s2 puts positive probability on
type si, whereas in truth-telling, the signal s3 leads to a posterior which puts probability 1 on s2. Detailed

computations are given in Bergin and Sen (1993).

4 Sufficient Conditions for Implementation of a SCF.

Below, we introduce posterior reversal, a condition that relates to the reversal of ranking of outcomes
by some agent at different posterior distributions. Before giving the condition it is necessary to introduce

some terminology relating to belief systems in extensive form games.

4.1 Belief Systems.

Let o 1 S; — A(S;), i=1,...,n, a = (a1, as,...,a,) and a : S — x;A(S;). Thus, o' associates a
probability distribution on S; to each s; € S;. Write «}* to denote the distribution on S; at s;, so «;*(5;)
denotes the probability of §; under the distribution «;*. Given the prior distribution p and a deception «,
the probability of 5 is u*(8) = 3, cg[xFo 0 (5:)]p(s).

Provided p®(8) > 0, define the (posterior) distribution:

[X?zlafl(s})]/’t(s) Vs c S.
seslxiiof (3)lu(s)

p(s | 5) =

If *(8) = 0, the definition is arbitrary.

Different equilibrium refinements use different means of restricting beliefs off the equilibrium path, but
all beliefs refinements satisfy Bayes’ rule whenever it is applicable. The case of primary interest is where
an event has 0 probability because of a deviation by just one agent. In the present context, this case
occurs when p(s) > 0, [xj#a;j(gj)] > 0 and o} (3;) = 0,Vs; € S;. Thus § has 0 probability because of i
(Prob(5_;) > 0 and Prob(5_;, 5;) = 0). In this case, given a theory for defining beliefs along paths that have
zero probability, denote the set of posterior distributions consistent with the theory by § by C(8,4, «). (For
example, sequentially consistent beliefs of sequential equilibrium are obtained by taking any sequence {a”}
that is fully mixed, so af : S; — interior(A(S;)) ), with {a”} — «. Taking any limit of the associated belief
sequence gives a consistent beliefs system.)

If all agents are playing truth-telling strategies, so that for each j the reporting strategy is a7, o?jj (5;) =
1,1if s; = 5; and 0 otherwise. Or, letting (5;j denote the distribution with unit mass at s;, o?jj = (5;j. Then

Prob(5_; | §-;) = 1. In this case, the set of consistent distributions has the form:
C(5,i,0) = [x20,] x A(S)).
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Next, suppose that for some j # i, there is a pair s;,5; with s; # 5; and ozjj(§j) > 0. Pick s; and sy,
k #1,j such that a*(5;) > 0,Vk # 4, j. Thus, s_; # §_; and [x;z;a;*(5;)] > 0, so that Prob(s_; | ;) > 0.
So, if fiis in C(8,4,), then > fi(s_i,s;) = fi(s—;) > v > 0, where the lower bound 7y depends only on
[xj;,gia;j(sj)] and the prior distribution p. Thus, there is some s; such that g(s_;,s;) > [1/#Si]y =7 > 0.
Recall that the set of consistent distributions under truth-telling is C'(8, ¢, ) = [xj#id;] x A(S;). Thus, if i
is a posterior distribution on S in the consistent set under truth-telling, then given the observation of 5, with
S_i # §_4, fi(s-i,8) = 0,Vs; € S;, while under the deception «, ji(s_;,s;) > 0, for some s;. Summarizing,
(s—;,si) is a point in type space which in any consistent distribution under the deception has probability
greater than or equal to ¥ (> 0) and in any consistent distribution under truth-telling has probability 0.
(In sequential equilibrium out of equilibrium beliefs are generated as the limits of posterior distributions
determined by fully mixed strategies. A detailed discussion of belief systems in the present context is given

in Bergin and Sen (1993).)

4.2 Posterior Reversal.

The next condition is central to our sufficiency result. The notation supp; ¢ denotes the support of the

distribution in S; (the support of the marginal of y on 5;).

Definition 9 The social choice function x satisfies posterior reversal if for each « € D\ {a}, ¢ # z,,

di,j€1,5€ a(S) and constant allocations §,z € X such that

1. Va, € D;, s; €5;

xRi(si,u)y(a“&_l) where y(5) = y, y(s') = x(s'),s' £ 5

2. Jp' € C(s,i,«) such that V s; € supp;p’, j # 1, and Vs; € S; if j =i

gl (s5,4)%.

3. V'€ C5,i,a), 3t; € supp;p/, if j # i, and 3t; € S; if j = i, such that
2P (ty, 1)y

4. da* € A, s; € 5;,

ui(a®, s)p(s—i | si) > > ui(2(5),s)p(s—i | si),
{s—il(s—i,5:)€a=1(5)} {s—il(s—i,5:)€a=1(5)}

As with Bayesian monotonicity we say that the social choice rule satisfies posterior reversal at a when
these conditions are satisfied at that «. Because posterior reversal imposes conditions on preferences at
posterior distributions, Bayesian monotonicity is not a special case of posterior reversal. (We consider how
posterior reversal relates to other concepts in section 4.4.) Recall that the consistent belief sets C(s, ¢, ) can
be calculated solely with knowledge of the sets of player types and the prior distribution. Thus, posterior
reversal can be checked without reference to a specific game form. Intuitively, in truth-telling, if the game
goes to stage 2, then gy is supported as an equilibrium (condition 2). Therefore the challenge (by ¢) in stage
1 is not profitable (condition 1). In the deception, g is not supported in stage 2 and the switch (by j) to

12



alternative z forces an equilibrium switch to outcome a*, desired by the challenger (condition 4) (in the game
we construct, the switch from g to Z is used to make player ¢ a dictator in stage 2). Posterior reversal is
most easily explained in terms of the examples given earlier. However, before discussing them, some general

remarks are appropriate.

Remark 5 Observe that conditions 2 and 3 of posterior reversal imply that 34 € C(5,4, &), {4} € C (5,14, o).
In the context of an extensive form game, the interpretation of this requirement 1s straightforward. In truth-
telling we wish to support some equilibrium outcome with equilibrium behavior on the subform reached by
signal, 5. If the truth-telling posterior were also in the set of consistent beliefs under the deception, then
the equilibrium behavior at that subform in truth-telling is also equilibrium behavior under the deception
at that signal. In this case, the signal triggers the same outcome under truth-telling as deception and the

extensive form adds nothing that is not achievable in a normal form game.

Remark 6 It is worth noting that for any deception o # & the sequential consistency condition of sequential
equilibrium implies that there is some § such that C(5,4,&) N C(5,4, @) = §. Furthermore, this observation
1s valid whether or not randomization is allowed. The reason is simple: in a deception, some type of some
player is announcing another type with positive probability. For example, suppose that s; announces s; with
positive probability. Then, the conditional probability on s; given §; is positive, whereas in truth-telling the
signal §; implies the true type is 5; with probability 1. This observation also applies to most forms of perfect

Bayesian equilibrium.

Remark 7 In a general extensive form game agents’ strategy choices at any point may be much larger
than their type space. Thus, the uncertainty facing a player at any point in the game may be not just the
types of other players, but also (for example) previous choices made. Therefore, in general, the consistent
distributions may be defined on a larger space than the set of types. Nevertheless, given any social choice
rule that fails Bayesian monotonicity at some deception a, if the rule is implemented in an extensive form
game with one round of signaling, then it 1s necessarily the case that at some subform of the game the beliefs

in the “truth-telling” equilibrium are disjoint from the beliefs implied by the candidate deception.

Ezample 1 (Voting). Consider the deception a(s) = (a,a, a), ¥s € S in the majority voting model. Observe
that in truth-telling, the posterior distribution puts probability 1 on player 2 being type a, so type a is
the only player in the support of the truth-telling distribution (in truth-telling 1/ € (5,4, &) implies that
suppap’ = {a}). In the posterior reversal condition, take i =1, j = 2, let § = (a,a,a), y = a and Z = b. Let
s; in condition 2 be a and let ¢; in condition 3 be b. Since type a prefers a over b, condition 2 is satisfied —
every type of player 2 in the support of the truth-telling posterior ranks a at least as good as b. Condition 1
is satisfied because y(a, a,a) = a = #(a, a,a), so that  and y are identical. For condition 3, in the deception
the posterior distribution coincides with the prior, so that b is in the support of the distribution over two’s
types. Since type b of player 2 strictly prefers b to a (Z to ¥), condition 3 is satisfied. Finally, consider
condition 4. Pick a* = b € A and put s; = b. Since a=1(5) = S, the left side of inequality 4 is (recall
s €5, ui(b,0)p(s-1 | b) = w;(b,b) and the right-hand

side reduces to u;(a,b). Since u;(b,b) > u;(a,b), condition 4 is satisfied.

preferences in the example satisfy private values): >

Example 2 (Type preference variation). Consider the deception where both types of player 3 announce a.
Put s = a and set y = d, Z = e. Thus, y(5) = d and y(b) = z(b) = b. In the posterior reversal condition put
i =1 and j = 2. Condition 1 is satisfied since u1(a, a) > u1(d,a). To see that condition 2 is satisfied note

that the truth-telling posterior distribution puts probability 1 on 3 being type 1. Player 2 has just one type
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so the support condition just requires that the optimal choice for player two given this posterior distribution
is to choose d. Since us(d, a) > ua(e, a), this is satisfied. Under the deception the posterior coincides with
the prior and then the optimal choice for 2 is e since Va(e) > Va(d), so that condition 3 is satisfied. Finally,
condition 4 is satisfied since for player 1, Vi(e) = uy(e, a)pa + ui(e, b)pp > ui(a, a)piq + ui(a, b)ps = V().

The third example is similar and will not be discussed. The main result of this section is:

Theorem 1 Let n > 3. Suppose that the SCF, F = {«} satisfies self-selection, posterior reversal at any
a which fails Bayesian monotonicity, and economic environments. Then F' is implementable in an extensive

form game in sequential equilibrium.
Proof: The implementing game form is given in the appendix. |

Remark 8 Any equilibrium concept that satisfies sequential rationality and which in a direct reporting
mechanism generates beliefs (where beliefs are computed conditional on the report) at every information set
such that (PR) holds, is adequate. We use sequential equilibrium.

Posterior reversal may be relaxed in two directions: (a) in challenging a given a, many §’s may take the
game to stage 2 (so that any report in a subset, S, C a(S) may take the game to the second stage), and (b)

instead of constant allocations in stage 2, type dependent allocations may be allowed.

4.3 Distribution-Free Cases of Posterior Reversal.

It may sometimes be useful to have conditions which imply posterior reversal but are not phrased in
terms of posterior distributions. In what follows we give two sets of conditions which imply posterior reversal

in different circumstances. In the case of private values the conditions are relatively simple.

Theorem 2  Posterior reversal holds if the following conditions are satisfied. Taking each « and associated
triple ¢, j, s and constant outcomes y, z.
1. [wi(2(8),5-4,8:) — w;(y,5-i,8)] > 0,Vs; € 5;
2. (21)ifi#j,  u;(y,5-,8") > u;(Z,5-;,8), somes!ES;
(2.2)ifi =37, wi(y,5-58) > w(Z,5_;,8;), Vs; €S
3. (3.1)ifi #j, 35 € o '(55),

ui(z,85,t;) > uj(y,s_;,t;),Ys_; € p(a,5,{i,j}) x ;.

(3.2)ifi =4,3t; € S;,  wil(z,s) >ui(y,s),Ys € p(o, 5,4) x {£; }.
4. a* € A, s; € 55,

> ui(a”, s)u(s—i | si) > > ui(z(s), s)u(s—i | si),
{s—il(s—i,5:)€a=1(5)} {s—il(s—i,5:)€a=1(5)}

Proof: The proof is given in the appendix. ]

In point 3 of the theorem, ¢ is defined as follows. Given I' C I, let o(a,5,I') = {s, € Sk | k ¢ I', i (sp) =
5 +. This identifies the set of agents not in I’ whose types could be mapped under « to 5. In particular, if
' € C(8,i, ), then p' has support in ¢(«, §,4) x S;.

A special case is private values: for each ¢, u;(a,s_;, ;) = ui(a,s;), Ya € A,s_; € S_;,s; € S;. In this

case, theorem 2 specializes further.
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Theorem 3 Suppose that preferences satisfy private values. Then with « ¢,j, 5,y and z as in theorem

2, posterior reversal condition is satisfied if and only if i # j and:

L. u;i(x(5),5:) > ui(y,si),Vs; € Si
2 ui(y,55) > wi(z,55)
3. ;e ozj_l(éj), u;(z,t5) > ui(y,t;)
4. da* € A, s; € S, ui(a™, s;) > ui(2(9), s;)
Proof: The proof follows directly from theorem 2 with the modified utility function. |

Note that in this case ¢ cannot equal j. (In condition 2, the specialization would give (for ¢ = j),
ui(y,8:) > ui(z,8:),Vs;, while condition 3 would require that 3¢; € S; such that w;(z,s;) > wi(y,s:).)
Condition 1 requires that given a deception «, there is some § € a(S), such that x(s) is (weakly) preferred
by all types of player i (condition 1) to y. Condition 2 requires that player j, type 5; (weakly) prefer y to
z, while condition 3 requires that some type of player j reporting 5; in the deception (some t; such that
a(t;) = §;), strictly prefer z to y. Finally, condition 4 requires that there is some type of player ¢ for which

z(8) is not top ranked.

4.4 Posterior Reversal, Bayesian monotonicity and related condi-
tions.

Posterior reversal emphasizes the role of belief variation between truth telling and deception to eliminate
candidate deception equilibria. This contrasts with Bayesian monotonicity which emphasizes the comparison
between alternative outcomes under truth telling and deception. In this section we develop a connection
between Bayesian monotonicity and posterior reversal.

When multistage games are considered, players reports in earlier stages may influence subsequent be-
havior. Here, we focus on the case where there is one round of reports. Given a deception « and a function
f 8 x S5 to A define fo(s',s) = fa(s'),s). Interpret f(s',s) as the outcome when there is an initial
report s’ and the true type profile is s. Thus f(s,s) is the value of f on the diagonal of S x S at (s, s)
and fo(s,s) is the value of f at (a(s),s), and gives the outcome at type profile s when the deception « is
played. Also, fa,(s,8) = f((i(si),5-3),s), so that the notation parallels standard usage. If « is not the
identity function, then for some s', a(s’) # s'. Define Vi(f,si | p) = 32, cq_. ui(f(s,8),8)p(s_i | si). Write
FR(si,p)g it Vi(f,si | 1) > Vilg,si | 1) and fP(s;, p)g if the inequality is strict. If the function g : S — A,
then Vi(g,s; | 1) is defined as earlier (following definition 1).

Posterior reversal utilizes variation of beliefs on a subform (comparing truth-telling and deception) to
generate preference reversals. As mentioned earlier, there are two distinct ways in which this can occur.
The first occurs when stage two behavior doesn’t change with beliefs;, but the change in beliefs alters the
distribution over outcomes and generates the preference reversal. We shall call this generalized Bayesian
monotonicity. The second case arises when variation in beliefs at stage two leads to a change in behavior by
specific types of some players. We shall call this chain reversal. Next, we give formal definitions and relate
them to the earlier examples.

Definition 10 A social choice rule, x, satisfies generalized Bayesian monotonicity (GBM) if given
a€D zoFx, i€l s; €S andy: S xS — A such that:

a. 2R (ti, )Y, (s, Vi € Si

b. yocpi(sia /J)l‘a
Note that when y in the GBM condition is independent of the second argument, GBM reduces to Bayesian

monotonicity. Intuitively, the first argument of y(s',s), s’, corresponds to the reported type and the second
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argument corresponds to the “true” type profile. GBM arises when at the relevant subform, each player
uses the same strategy (on that subform) in both the truth-telling equilibrium and the candidate deception
equilibrium. However, with “truth telling”, the report § means that subsequent stage choices are made
by the types in §; whereas in a deception with s’ # § reporting §, a report of § in stage 1 means that the
choices made in subsequent stages are with positive probability made by s’. The voting example given earlier
illustrates GBM.

Ezample 1. Consider the deception a(s) = (a,a,a),¥s € S. Define y(a, a,a, s1,s2,53) = y(b,a,a, s1,52,83) =
sz and y($1, 82, 83, 51, S2, s3) = #(a, §2, §3), if either s3 # a or s3 # a. Let i = 1 and s; = b in the definition

of GBM.

In general, changes in beliefs will alter the behavior of given types; the same type may act differently as

beliefs change. This is captured by chain reversal.

Definition 11 A social choice rule, x, satisfies chain reversal (CR) if given o € D, xo # x, 3i,§ € I,
s;i €5, s; €S; and functionsy and z, y : S x S = A, z: 5 x5 = A,
xRi(tia/'L)yoc,(s,); Vtz S Si;

Yori(s) IV (tj’ﬂ)zoc,(s,); Vt; €55

c. 2a P (85, 1) Ya

Here, in truth telling, « is supported by y — a challenge by ¢ leads to y which is no better than z for any
type of i; and y is preferable to some z by all types of player j so that y is “supported by y thus deterring
a challenge by . In deception, some type of j has a preference flip, choosing z over y under the deception
(zq preferred to yo). The preference reversal of j leads to different choices by j and may be used to create
differential incentives for i, comparing truth-telling and deception — hence the term “chain reversal”. Chain

reversal is illustrated by example 2.

Ezample 2. Consider the deception «(s3) = a,Vsz € S5. Let y(a,a) = y(a,b) = d and y(b,a) = y(b,b) = b.
Also, let e = z(a,a) = z4(a, a) = z(a,b) = z4(b,b) and put z(b,a) = z(b,b) = b.

We conclude this section by relating these concepts to games with one round of signaling. Call an incomplete
information extensive form game a game with one round of signaling, if all players move simultaneously in a
first stage, and there are no equilibria where later stages are reached with positive probability.® Thus, player
¢ has a stage 1 message space C;, and the set of possible stage 1 messages, C' = x?_; (j;, is partitioned into
two sets C! and C?. A message ¢ € C'! terminates the game with some outcome g(c) € A, while a message
¢ € C? leads to a subsequent stage. A Strategy for 4, (0, ;) associates a choice at each information set: the
first stage component of ¢’s strategy has the form o; : .S; — C}, and the second stage component ; : S; x C',
(where 7; is constant on all ¢’s in any given information set of ¢.) By assumption, if (o, 7) is an equilibrium,

then for all s € S o(s) € C'. (And 7 is assumed to satisfy sequential rationality at every information set.)

3 Recently, Brusco (1997) has provided an example of social choice rule that is not implementable in a game with one round
of signaling. In the example, what a player knows about other players varies with that player’s type; and the solution concept
imposes the “non-expanding support” belief restriction. In this paper, we assume that each player only knows their own type:
player 7 type s; knows only that the true state is {s; } X S_;, a situation that we may define as “private information”. The issue
of how the support of the distribution varies along subforms doesn’t arise here because we start with full support and with one

round of signaling the way in which beliefs are determined beyond the second stage is not relevant.
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Proposition 1 Let [' be a game with one round of signaling which implements x, with implementing
strategy (&, 7). Suppose that for some system of (stage two) beliefs consistent with ¢ o « there is some 7
yielding an equilibrium on every subform of the game (in stage 2).* Then:
a. If, under a belief system determined by & o «, T remains an equilibrium across subforms (reachable by
a deviation of just one player from & o ), then z satisfies GBM at «.
b. If, under any belief system determined by o o o, T does not define an equilibrium on each subform
(reachable by a deviation of just one player from & o «), then x satisfies CR.

(See Bergin and Sen (1997) for a proof.)

Remark 9 Suppose that the social choice rule fails Bayesian monotonicity at some « but is implemented
by a game with one round of signaling. Suppose that in the implementing game, b. of proposition 1 holds, so
that chain reversal applies. Then, with player i, type s; as in the definition of chain reversal, Jw : Sx .S — A
such that we P! (s;, p)x,. Thus, for player i one obtains l‘Ri(ti,/i)ya(sl), Vt; € S; and w, P(si, pt)zs. The
interpretation is that in the deception ¢ type s; gets w, with the elimination of y, by j. In example 2 above,

define w = z.)

5 Related Literature.

Baliga (1993) and Brusco (1995) develop general necessary and sufficient conditions for extensive form
implementation in incomplete information environments. Both consider extensive form mechanisms with
an arbitrary but finite number of stages. Baliga considers the case of private values and independent
types, using perfect sequential equilibrium as the solution concept. This refines sequential equilibrium with
forward induction requirements. Brusco allows correlated types and individuals preferences may depend
on the types of others; perfect Bayesian equilibrium is used as the solution concept. In the construction
of our implementing game form, we use sequential equilibrium. Thus, in terms of solution concepts, the
one used by Baliga is a refinement of the concept we use, and this in turn refines the solution concept use
by Brusco. The use of different solution concepts is not unimportant (especially if trying to narrow the
game between necessary and sufficient conditions for extensive form implementation.) In all three papers,
candidate “deception” equilibria are “knocked out” by play off the equilibrium path. Thus, for example, for a
given game form, using perfect Bayesian equilibrium (instead of sequential equilibrium) makes it is easier to
support ”truth-telling” as an equilibrium since there is a larger set of beliefs to support continuation payoffs
along a path reached by deviation; on the other hand it is more difficult to eliminate deception equilibria —
for the same reason — because there 1s a larger set of equilibrium continuation payoffs available to support
the deception as an equilibrium. The converse applies when perfect sequential equilibrium is used.

In the works of Brusco and Baliga, the necessary conditions parallel the complete information conditions
given in Abreu and Sen (1990) and Moore and Repullo (1988). In both, the necessary conditions require a
string of social choice rules and associated beliefs, such that at the end of the string, a preference reversal
occurs (when expected utility is computed with the posterior distribution defined under truth telling vis-a-vis

the expected utility computed with the posterior distribution defined under deception.) Their sufficiency

4 One other possibility, raised by a referee, is that the game might have no equilibrium on some the subform (with beliefs
determined relative to & o @.) Then there is a “preference-flip” — such as player j in the chain reversal condition — but no
direct connection back to the first stage. This is particularly clear in the case where the subform is reached by a correlated
deviation in stage 1 (relative to & the first component of the implementing equilibrium strategy). Here, the precise way in

which beliefs are constructed is critical to establishing a connection back to stage 1.
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conditions build on the necessary conditions, and are somewhat complex. Since the sets of consistent or
admissible beliefs vary with the solution concept, the circumstances under which a preference reversal occurs
will also.?

Our sufficiency condition starts from the same fundamental requirement — that somewhere a preference
reversal occurs in the extensive form, comparing truth-telling to deception. As mentioned above, in both
Baliga’s and Brusco’s work, this observation forms the basis for the necessary conditions. On the other hand,
we take a different direction and pursue further the way in which a reversal occurs; identifying “splitting”
properties of posterior distributions comparing truth-telling to deception, and identifying the exact ways
in which variations in beliefs translate into variations in the distributions over outcomes. A key central
observation in our work is that somewhere in the extensive form, at some subform there must be some belief
determined in truth-telling which 1s disjoint from the set of possible beliefs under deception. In our framework
this then leads to the identification of conditions under which this belief separation can be translated into a
preference reversal. (Regardless of the solution concept use, this belief separation must occur somewhere, so
the basic idea is applicable, whatever solution one has in mind.) This viewpoint lends itself naturally to a
signaling interpretation: a given signal generates different beliefs under truth-telling than under deception.
For many problems of mechanism design in incomplete information environments, this signaling viewpoint
provides a useful approach.

Finally, some comments on the use of different solution concepts and the “gap” between necessary
conditions and sufficiency conditions are appropriate. Consider a multistage game. The possibility exists
that a candidate deception equilibrium is eliminated by the non-existence of equilibrium at a subform which
is unreachable by a unilateral deviation of any player. At first sight, this would imply that it may not
be necessary to have a connection back to the first stage (in terms of preference reversals) to eliminate a
candidate deception equilibrium. When perfect Bayesian equilibrium is the solution concept, beliefs on a
subform reached by a correlated deviation are a superset of the beliefs determined by a unilateral deviation
— comparing subforms at the same stage that are identical, apart from assigned beliefs. (Furthermore,
beliefs are determined by local considerations at each of the subforms: the assignment of beliefs at one
subform does not restrict the assignment of beliefs at the other.) As a consequence, in perfect Bayesian
equilibrium, nonexistence of equilibrium for any beliefs at the subform reached with a correlated deviation
implies nonexistence under all beliefs at the subform reached by the unilateral deviation (when identical
subforms, apart from beliefs, are considered). This in turn is used to provide the chain leading to a preference
reversal in the necessary conditions of Brusco. (With independent types (as in the work of Baliga), the issue
may not arise.) In contrast, with sequential equilibrium, beliefs are assigned simultaneously with one test
sequence. The issue of whether or not one can identify beliefs at certain subforms as subsets of beliefs at
another is then central in determining whether or not the preference reversal in the extensive form must be

connected back to the first stage through a chain of preferences.

5 With many stages, the issues become more complex. For example, if the sequential consistency condition of sequential
equilibrium is used to determine distributions on subforms, then posteriors under multiple deviations quickly become non-
informative (recall that with just one deviationin truth telling, the “off the equilibrium path” posterior had the form C(5,7,) =
[><J¢,'5J§j] x A(S;).) Use of the non-expanding support condition of perfect sequential equilibrium can alleviate this problem;

but at least with sequential equilibrium the benefits from having additional stages is mixed.
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6 Appendix.

6.1 Proof of Theorem 1.

We describe a game form and then confirm that it implements the social choice function. We assume
that at each «, posterior reversal is satisfied. When Bayesian monotonicity is satisfied at a, we can build

this into the first stage of the game directly, and there is no need to exploit posterior reversal at all.

A. The Game Form

If posterior reversality is satisfied, then a unique (4, 4, 8, y, ) may be associated with each o € D\ {&}.
Identify these respectively by i(a), j(e), s(a),y® and z®. Set D(i) = {a € D\{&} | i(er) = ¢}

The game has two stages: 1 and 2. In stage 1, agent ¢ selects (conditional on type) an element of the set
M; = 5; x D x N where A is the set of non-negative integers. Thus, agent ¢ “announces” a type, s; € S;, a
deception a(i) € D, an integer n; € N.

A detailed description of the sequencing of events is as follows.

Stage 1
(1) If either
(a) #{k € Ilny =0} <n—2or
(b) 3 i,j € I such that «(i) # & # a(j), then a unique player, i* is identified: ¢* = minargmax; n;}.
This player (a dictator) selects an outcome in A.
(2) If 3i € I such that
1.Vj#ia(j)=ada(i)=a#d&and o € D(i)
2. #{kelny =0} =n.
3. sy = 8 V k € I where § = s(a).
then the game proceeds to Stage 2.
(3) In all other cases, the outcome is z(s1, sa, ..., $n).
Thus, an “integer game” is played if more than one agent announces a non-zero integer or if there are
at least two agents who announce non-identity deceptions. The game moves to Stage 2 if and only if (a)
all agents pick zero (b) all but one agent announces & with the remaining agent, say ¢ announcing some
o € D(i),0 # & and (c) § = s(«) is the vector of types announced by agents.
In the game, the message space in stage one is partitioned into three categories: (1) messages which lead
to trivial subforms, identifying a unique player to select an outcome in A (denote these Hy), (2) messages
leading to stage 2 (denoted Hy) — to subforms where player interaction is critical, and (3) messages (the set

M\ (Ho U Hy)) which lead to termination of the game with outcome #(s). From the description above:
Hy = {(sg,a(k),ni)ker|3i, a(d) # &, a(f) = &,5 #4, s = (s1,...,s1) = s(a), np =0,Vk}

Hy={m e M| #{klnr > 0} > 2, or #{k|a(k) # &} > 2, or both}

Furthermore, if m = (my,ma,...,my) € Hy, my, = (sg,a(k), ng), a unique 7 is associated to m according
to ¢ = min{argmax; n; }. Thus, the set of messages Hy can be partitioned into n sets, {H,;};er where:
H,i = {{m;}icr € Holi = min{argmax; n; }}. H,; are those messages in Hy which lead to ¢ being selected

as dictator.

Stage 2

19



Suppose that Stage 2 is reached because player ¢ announced o # & in Stage 1, & € D(i) and 5 = s(«) is
the vector of types announced by the players. Let j € I and y* , 2% € X be the “other” player and the
allocations respectively associated with « in the posterior reversal condition. In Stage 2, each agent must
select an element in the set B = {R, W} x N x A. Agent ¢ chooses a color ¢; € {R, W} (red or white), an
integer ; € N and an outcome ¢; € A.° Qutcomes are determined as follows.
1. If #{k € Ile;, = R} > n — 1, then the outcome is a;.
2. W#{kel|leg =W} >n—1and

(a) j € {k € I|ex, = W}, then the outcome is y(5).

(b) j & {k € Ilcy = W}, then the outcome is z%(s).
3. In all other cases, the outcome is eg where k = min{arg max; ¢; }.

The extensive form is depicted in the figure.

B. Strategies and Equilibrium

Strategies

A strategy for agent ¢ is a triple (fi, gio,9i) = o3 where fi @ si = M;, gio + Si X Hjp, = A and g; :
S; x Hy — B. If the state chosen by the prior distribution on types is s = (s1,...,,) € S, then agents play
F(s) = (fi(s1), ..., fa(sn)) in Stage 1. If there is a double defection (some i, j pair with () # & # a(j),
or n;,n; > 0 or both), the message m € Hy is in one of the sets Hy,, say the it" and agent i chooses
an outcome according to a = gio(s;, m). If Stage 2 is reached, then given history h € H;, agents choose

g(s,h) = (g1(s1,h), ..., gn(8n, h)), with g;(s;, h) € B.

Sequential Equilibrium

The set of paths in the game is given by S x H, where H = (M \ [Ho U Hy]) U[Ho U AJU[H; U B]. Each
history h € H determines an outcome a(h) € A. In the game, the initial history is null: . Depending on
the actions taken initially, the game terminates, or some history A € H,; is announced and agent ¢ asked to
choose a point in A, or some history in A € H; is announced and the game proceeds to stage 2. For agent ¢,
the collection of information sets in the game is given by a pair (s;, h) where s € S; and h € {§} x H;, x Hy}.
Definition 12 A Sequential Equilibrium is a strategy ¢* and a collection of distributions ¢ =
{([¥(si, h1)]s,e5,)ier) thyem, where ¢(s;, k1) is the conditional distribution of agent i type s;, on S_;, con-

ditional on h;.

1. The distribution vector 1 is required to be consistent in the sense that it is obtained as the limit of a
sequence of conditional distributions which are fully determined by a sequence of fully mixed strategies
o”, which converge to ¢*.

2. For each i, (h,s;) € Hy x S;,

Ey o {ui(a(h), s) | (h, 1)} = By ox o {uila(h), s) | (h, i)}, Voi.

—i

Note that the action sets of agents are countable, so the definition of sequential equilibrium extends directly:
sequential rationality is checked at every subform and beliefs are determined as limits belief sequences
generated by fully mixed strategies. We now show that the game form implements the social choice function

in sequential equilibrium.

6 Using ¢; and e; to distinguish second stage integers and outcomes from the first stage integers and outcomes (n; and a;).
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STAGE
Vk, agent k

(si,a(k),ng) € Sy x Dx N

1
picks

At least one of
(i) 3i # J,a(i) # & # a(j)
(ll) di# G, > O0,n; >0

#{kla(k)=a} >n—1
#{klnpg =0} >n—-1

identify *

i* = arg min, {7 | n; = maxg ng }

If any of:

(1) Bk, a(k) # o

t* picks a;+ € A

Outcome 18 a@;+

(ii) 3k, ng > 0

(¢) 3 a unique ¢, a(i) £ &,
(i1) ng = 0, Vk,

(#3i) s = s(a), a = «a(i)

(#ii) a = a(k) # &,

s # s(a)
1

Outcome is x(s)

STAGE 2
Yk, agent k picks
(ci,ni,ai) S {R, W} < N x A

X (a4

a=j=jla)y* 2

Outcome is a;

#{k|cx = R} #k|ep =W} All other
>n—1 >n—1 cases
Ac such that
#{k [ ex=c}
>n—1

IijE{k|Ck:W}

IijQ{k’|Ck:W}

Outcome is y“

Outcome 1s z%

C. Implementing Equilibria

We proceed in the usual way. In Step 1 we show that there is a sequential equilibrium of the game which

i*

Identify ¢*
= arg min, {7 | n; = maxg ng }

Outcome 18 a@;+

supports z. In Step 2, we shall show that z is the unique sequential equilibrium outcome.

(1) The allocation x is an equilibrium allocation

Consider the following strategy profile (f*, fx, g*) (and associated consistent beliefs), defined as follows:

1.Vs;eSpandiel, ff(s) = (s5,4,0).
2. ¥ s; € S;,¢ €I and histories h € Hyy, fio(si, h) is optimal relative to the belief system.
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3. V¥s; € S;,¢ € I and histories h € Iy, gi(s;, h) = (W, 0,a"), where a* is some arbitrary element in A.

For all a € D\ {a}, let hi(a) € Hy denote the unique history” which leads to Stage 2 following player
i’s announcement of o # & with the type vector announcement 5 = s(a). Let p/(a) € C(s(a),i, &) be the
sequentially consistent distribution chosen to satisfy part 2 of posterior reversal. Since Ua;&& hi(e) = Hy,
{1t (@) }aza associates a belief-system with every history h; € Hy. We claim that (f*, 7, ¢*, {«/ () }aza)
constitutes a sequential equilibrium which supports z.

The outcome of (f*,¢*) is . Suppose that Stage 2 has been reached following the history hj(a). The
strategy ¢~ requires all players to play W irrespective of type. This yields the allocation y* as the outcome.
The only player who can change the outcome is player j and the outcome that obtains if he deviates is 2. But
according to part 2 of posterior reversal, y* R’ (s;, p'(a))z® for all types of j which have positive probability
under p/(a).® Therefore, the actions prescribed by g* are sequentially rational relative to the beliefs p/(«).
Consider a deviation where some player does not truthfully report types: fi(s;) = (i(si), &, n;). The
outcome is then z(,, 4_,). But xRi(si, u)x(a“&_l), according to Self-Selection.

Next consider a deviation by some player ¢ of the kind: fi(s;) = (&;(si), «,n;) where & € D; and
« € D(i). If the game goes to stage two (§ = s(«) is realized), then the outcome is y*, otherwise (Vs € S\{s})
the outcome is x(4,,4_,)(s) (or #(s’) where s’ # 5 is the announced state). Thus, the outcome over states is

w®, so the strategy of player i yields the allocation w(o‘& . Part 1 of posterior reversal ensures that this

zyd—z)
deviation is not profitable.
Finally, note that histories in Hy are reachable only by joint deviations of two agents. Therefore, the

strategies and beliefs constitute a sequential equilibrium.

(2) The allocation z is the unique equilibrium allocation

We first claim that there can be no sequential equilibrium in which some type of player either announces
a deception not equal to & or a non-zero integer. Suppose that this is false. Then there is a sequential
equilibrium in which player ¢ of type s; sends a message such that either a; # & or n; # 0. Let the outcome
of this strategy profile be some allocation b € X. Let T'=s; x S_; C S. Since the environment is economic
there exists an individual j # ¢ and a constant allocation ¢ € X such that (ezb)P(s;, u)b for all s; € ;.
Note that any type s; of player j can attain the allocation cpb be precipitating the “integer game” and
announcing an integer greater than the maximum of all integers announced by all other players. This yields
a history in Hy where j is dictator (H,;). The details of the argument may be found in Jackson (1991). By
an analogous argument, it follows that all sequential equilibria must have the property that in Stage 2, all
types of players unanimously announce either R or W.

The only candidate sequential equilibrium left to consider is the one where Stage 1 strategies are of the
form: Vs; € S; and ¢ € I, fi(s;) = (@i(s;), &, 0) for some «; € D;. In this case the game is over in Stage 1
and the outcome is #,. Let ¢ € I be such that o € D(¢), § = s(«), chosen according to the posterior reversal
condition. Also, let C'(8,4,«) be the collection of consistent distributions at the unique history hy € H;
determined by «. Consider the following deviation by player i : f/(s;) = (5;, «,0).” The game now carries

over to Stage 2 with positive probability. Consider the strategy profile where all players in this subform

7 Recall if i announces o # & stage 2 s reached only if every agent k announces ny = 0 and 55 = si (o) and all agents other

than ¢ announce o(j) = &.

8 Tn fact, under truth-telling, if 5 is announced then the posterior puts probability 1 on player j type 5;: only when j = ¢

is the posterior not determined on Sj.

% or f1(si) = (@i(si), @,0) since this will reach the second stage with positive probability.
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choose W so that the outcome is y*. For any system of beliefs p/ € C(5,1, «), there exists a type of player
J,t; who is better-off defecting in order to get allocation 2* (using part 3 of posterior reversal). Therefore,
the unique equilibrium in this subform is the one where all players choose R (that it is an equilibrium is
immediate). As a consequence of the Stage 1 deviation by player s;, the outcome is an allocation of the form
(wrpay) where T = {s € S|a(s) = s} and w is a constant allocation chosen by 4, type s;. From condition
4 of posterior reversal, such an allocation exists. Player s; will therefore deviate and the strategy profile f

cannot be part of a sequential equilibrium.

6.2 Proof of Theorem 2.
Consider condition 1 in PR. For given a and the associated ¢,j € I, 5 € 5,

xRi(si,u)w(a“&_l),Vai eD;, s €85;.

This can be rewritten

Yo uile(sisi)ysoiysiduls—i | 80) > ) wilw(soi, ailsi)), s—i, si)p(s—i | i)

5_i
Since w(s) = x(s),Vs # 5, the right side of this expression can be written:

Zui(w(S—i7ai(Si))75—i75i)#«(S—i | s0) = Z wi(@(s—, i (s:)), s—i,si)p(s—i | s¢) + wi(w(5-;, ai(s:)), 5—i, 5 )pu(5-; | 54)

s s_iFE_g

Adding and subtracting w; (#(5_;, o;(s;)), 5—i, 8;) from the right side of this expression gives

D wilw(si ailsi), sy si)p(s—i | 5i) + [ui(w(E-i, ailsi)), 5, 50) = wi(@ (5, @i(si)), 5-0, 50) (54 | 1)

5_4

Thus

bl

Yo uile(sisi)ysoiysiduls—i | 80) > ) wilw(soi, ailsi)), s—i, si)p(s—i | i)

5_4

1s satisfied if and only if
[wi(w (i, ilsi)), 505 81) = wi(w(5-5, @ilsi)), 54, 8) (5 | 53) <0
If «i(s;) # 85, then
[wi(w(S_s, i(8;)), 55, 8:) — wi(@(5-s, @i(s4)),5-4,81)] =0
and in this case the inequality is automatically satisfied. If «;(s;) = s;, then the expression becomes
[wi(y, 5-i,5i) —wi(@(5), 54, 50)lp(5-i | i)
For each s; € S; this must be non positive. Consequently,
[ui(2(8),5-5,8:) — wi(y,5-5,8)] > 0,Vs; € 5;

Given a prior distribution with full support, condition 1 of PR 1s equivalent to this.
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Next, consider condition 2 of PR. This condition requires that 3’ € C(5,1, &), such that,
ij(Sj,/,L/)Z,VSj € suppjp’, when j # i, and Vs; € S;, when j = 1.
Given &, every distribution in C(8,4, &) has support on {s_;} x S;. The condition may be written

D uiys_g s i (5o 1s5) > > gz, 5-j, 550 (5= | 55)

S—j S—j

for some p' € C(8,4,&). In view of the support restriction, the condition can be rewritten. For ¢ # j, the
condition becomes

u;(y, 524, 87) > uj(%,5-4,87), somes; €5;
For ¢ = j, the condition becomes
ui (Y, 5-4,5;) > ui(2,5_4,5:), Vsi € 5;

Finally, consider condition 3 of PR. This condition is: V' € (5,4, &), 3t; € supp;p’ when j # ¢ and 3¢t; € S;
when j = ¢ such that
ZPJ (t5, 1)y.

This can be rewritten

D uilz s ) (5o 115) > ui(ysj ) (s—5 | )

S—j S—j

Given I' C I, Let p(a,s,I') = {si, € Si | k € I' ax(sx) = S }. This identifies the set of agents not in
I’ whose types could be mapped under « to 5. In particular, if g’ € C(s,4,«), then g’ has support in
ola,s,1) x S;.

If i = j, then for some s;, there is a ¢/ € C(5,4, @) with support on ¢(«,s,4) x {s;}. In this case, a

sufficient condition for 3 of posterior reversal to hold is that
ds; € Si, wi(z,8) > ui(y, s), Vs € p(a, 8,4) x {si}.
If ¢ # j, then the appropriate condition becomes:
3ty € aj ' (55),u;(2, 525, 5) > wily,s_j.t5), Vs—j € pla,5,{i,j}) x Si.

This completes the proof of theorem 2, since condition 4 of posterior reversal is unchanged.
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Implementing game forms with “One Round of Signaling”

in incomplete information environments.
James Bergin and Arunava Sen
January 1997

We consider games with one round of signaling, briefly described in the text. Let C; be the set of actions
player ¢ can take in stage 1, and ' = X}, C};. In the first stage a strategy for ¢ is a function oy : 5; = Cj.
Thus, ¢ = (1,...,0n) : S — C. Although discussing pure strategies, write o¢(¢;;s;) to the denote the
probability that type s; chooses action ¢;. One action will have probability 1. We can use the notation
0i(s;) to denote a pure strategy of agent i type s;, with o;(s;) € C;. Partition C' = C' U C?, where the
game terminates if ¢ € C'! is chosen, and goes to stage 2 if ¢ € C? is chosen. Let g : C' — A, where A is
the set of outcomes. For the discussion to follow, we focus on a two stage game, so the second stage is the
final stage. However, the argument here extends almost without modification to the case of multiple stages
following period 1. We explain why in a remark below. The discussion depends critically on the beliefs at
the beginning of period 2, and not on the number of stages remaining in the game.

If the game goes to stage 2, then a strategy for 7 is a function from type and history to actions. Let B!
be the set of available actions for player 7 in stage 2, if action ¢ is chosen in period 1. Let B, = x™_; B! be the
set of actions in the second stage. Thus, a strategy for ¢ is a function 7;(b;, ¢, s;) which gives the probability
that type s; chooses action b;, given history c. Let (b, ¢, s) = {r;(bi, ¢, s;) }]=;. Again, with pure strategies,
one action will have probability 1. We can write 7;(c, s;) to denote a pure strategy, at history ¢, type s;, so
7i(c,s:) € Bi. Let f(c,b) € A be the outcome determined by the game at the end of stage 2 when ¢ was
chosen in the first period (¢ € C?) and b € B, was chosen in period 2. To simplify notation, we will assume
that when the game goes to stage 2, only the choice made in stage 2 affects the outcome. This simplifying
assumption does not affect the result (see the remark below), and the notation is less bothersome. Thus,

given a choice b € B, let f(b) € A denote the outcome determined in the game in stage 2.

Proposition 2  Let [' be a game with one round of signaling which implements x, with implementing

strategy (&, 7). Suppose that for some system of (stage two) beliefs consistent with ¢ o « there is some 7
yielding an equilibrium on every subform of the game (in stage 2). Then:

a. If, under a belief system determined by & o «, T remains an equilibrium across subforms (reachable by
a deviation of just one player from & o ), then z satisfies GBM at «.

b. If, under any belief system determined by o o o, T does not define an equilibrium on each subform

(reachable by a deviation of just one player from & o «), then x satisfies CR.

1. The Equilibrium Strategy Yielding z(s).

Let (&, 7) be an equilibrium strategy which implements the social choice rule (so that the second period
is not reached.) Conditional on the second period being reached (a zero probability event), 7 must determine
an equilibrium on each subform of the game, relative to a conditional belief system determined by &.

Because ¢ is optimal in period 1 (given 7 is used if period 2 is reached), the following condition must

hold. For each ¢ and for each s; € S;, we require that for all &;:
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Do > wilg(e) s)a—ilemiss—i)ai(er, si)p(s—i | si)+
YD D wilf ), 8)7(bs e, 8)}ai(ei, s—i)ailei, si)u(si | s:)

> . )
Do > wilg(e) s)a—ilemiss_i)ai(ei, si)p(s—i | si)+

s_i ceC?

YD AD D wilf ), 8)7(bs e, 8)}oi(ei, s—i)ailei, si)u(si | s:)

s—; ceC? beB.

Working with pure strategies, at each s, o(c, s) puts probability one on some ¢, so we may write o(s) = ¢ € C.
Write 7(c, s) to denote the choice at period 2, conditional on s and choice ¢ in period 1. Let x¢ be the
characteristic function of the event Q. Thus, x{(s_, s,)|o(s_,,s,)ect} 1s equal to 1 on the set of s’s mapped to

C! under &. The no gain from deviation condition becomes: Vi, Vs;, V&;:

ZX{(s_,,s,)|6(s_,,s,)ecl}ui(g(&(s))a 8)/1(8_2' | Si) +

5_4

ZX{(s_,,s,)|6(s_,,s,)602}ui(f(T[&(S)a5])a s)pu(s—i | si)

> (2)
ZX{(s_,,s,)|(6_,(5_,),6,(5,))601}ui(g(&—i(s—i)a&i(si))a s)pu(s—i | si)+

ZX{(s_,,s,)|(a_,(s_,),&,(s,))ew}Uz’(f(T[(&—i(S—i),Uz’(sz’)),s]), s)pu(s—i | si)

Thus, the outcome under & is:

X{(s—is0)la(s—1,5)ec119(T(8)) + X{(s—ss0)o(s—i,s)ec2} F(T[T(s), 5]) (3)

In equilibrium, with the second stage not reached &(-) has range C'', &(S) C C*. Thus, X{(s_is:)|o(s—i,s:)€C2) =
0,Vs €5, s0, 2(s) = g(a(s)), Vs € S. The deviation &; gives ¢((d_;,5;)(s)) if the game terminates at stage

1 and f(r[(6-:,5i)(s), s]), if the game goes to stage 2. So, the outcome resulting from the deviation is:

X{(s_ i) (6i(s_),0:(si)ecy9(0—i(s-i), oi(si))+
X{(s—isi)l@—i(s—)os(snec2y F(TI(@=i(s=i), ailsi), 1) (4)

2. Eliminating Deceptions as Equilibria.

Next, we consider an alternative strategy in the game of the form &(s) = («(s)), where a is a deception.
Because ¢(S5) C C1, a(a(S)) C C!. Thus, the outcome determined by & at s is g(a(a(s))), and since
g(a(s)) = x(s), g(a(a(s))) = x(a(s)). Thus, unless z(s) = x(a(s)),Vs € S, & cannot be the first period

component of any equilibrium strategy (&, 7). There are two possibilities.

A. The first is that there is some consistent belief system determined from & such that 37 where on each

subform, 7 defines an equilibrium on that subform relative to the consistent beliefs.
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B. The second is that no such 7 exists: for any collection of beliefs across subforms (determined by &),
there is some subform with no equilibrium relative to the associated beliefs. If the second possibility holds,

then for every 7/, (&, 7') is not an equilibrium and the deception is “knocked out” as an equilibrium.
We begin with a discussion of case A, and consider B at the end.

A. Suppose that (&,7) is an equilibrium. This implies that there is an improving deviation for some type
of some player that must occur in the first stage. For, if no deviation occurs in stage 1, then the outcome
is g o & (and the second stage is unreached by &.) Thus, given (&, 7), where 7 is an equilibrium strategy
determining behavior from stage two on, some ¢ type, s;, wishes to deviate. Concerning 7 there are two

cases to consider:

Al. 7 agrees with 7 at each subform (or at each subform reached under the relevant challenge — we
clarify below), and

A2. 7 differs from 7 on some subform (or at some subform reached under the relevant challenge —

again the discussion below will clarify). We start with case A1.

Case A1l. Suppose 7= 7. So, i, s; € 5}, 7;
S uilgle), )6 i(ems, s_i)Gi(er, si)u(s—i | si)+
DDA wls 7(b,¢,5)}o—i(c—i, s—i)ai(ci, si)uls—i | si)

s_; ceC? beB.
(5)
Do > wilg(e), s)a—ilemiss_i)ai(er, si)p(s—i | si)+
s—i ceC?t
Z Z { Z uwi(f T(b,e,8)}o_i(cs,5-i)Fi(ci, si)p(s—s | i)
s_; ceC? beB.

Rearranging slightly,

ZX{(s_,,s,)|(&_,(s_,),&,(s,))ecl}ui(g(&—i(s—i)a Gi(si)), s)p(s—i | si)+

5_4

(6)
ZX{(s_,,s,)|(&_,(s_,),6,(s,))601}ui(g(&—i(s—i)a oi(si)), s)p(s—i | si)+

ZX{(s_,,s,)|(&_,(s_,),&,(s,))ec2}ui(f(T[(‘}—i(S—i),&i(si)),s]),s)ﬂ(s—i | si)
The outcome with the deception, (and ¢ playing &;) is

X{(s_ i) (Goi(s_),5:(s:))ecy9(0—i(s-i), Ti(si))+
X{(s—is )l Goi(s—),os (s nec2y F(T[(0-i(s=4), Gilsi), s])  (7)

Since ¢(5) = a(a(S)) C 7(S) C C*, the second stage is not reached. Thus, the outcomeis g(6_;(s_;), &:(si)) =
g(a(s)) = g(a(a(s))). Now, since there is some player who wishes to deviate, suppose that type s; of player

i deviates to upset the deception and plays é = ;(s;).
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Refer to expression 4, and note that if player 4, type s; plays ¢; = &;(s;), then expression 4 may be

written:

X{(s—irs)l(o—i(s—i),eyecy9(o—i(s—i), i)+
X{(s_i,s)l(oi(s_i),enec2y F(TI(0_i(s-i), ¢i), 8]) (8)

With the deception, the “challenge” ¢; produces the outcome:

X{(s—is i)l (ai(afs—i)) e} 9 (0 —ia(s—i)), &)+

Define the function:

Y(5,8) = X{(s_i,s)(5-i(s—1),e)ec119(T—i(5-4), ¢i)+
X{(s_is)l(ei(s—i),eyec2y F(Tl(0—i(s-i), ¢i), s]) (10)

Or, to clearly identify the role of each coordinate:

Y(t,8) = Xq(tot0)l(oi(t—),eyectyg(o—i(t—i), ¢i)+
X{(toi i)l (oot enec2y F(TI(o—i(t=i), &), s]) (11)

Note that y(s,s) is the outcome at state s produced by a challenge of player ¢ type s; in the equilibrium
achieving x (see equations 4, 8 and 9). Note also that y(s,s) is independent of s; in the first coordinate
position (or ¢; in the clarifying notation). Also, observe that y(a(s), s) is the outcome produced by a challenge
from player 7 type s; in the deception (see equation 9.) Write y, to denote the function y(«(s),s), s € S.
Similarly, write y, to denote the function y((i(si),s—i),s). In view of the definition of y, y = ya,(s,) (again
because y(s, s) is independent of s; in the first coordinate position).

Since, in the equilibrium, x is preferable to player i type s; than what is achieved through deviation, y

OT Yo, O Ya,(s;) (SINCE Y = Yo, = Ya,(s;)), We have that for any type of player i:

2R (55, 1) Yo, (5:) (12)
However, in the deception, player ¢ type s; wishes to deviate:
yocpi(sia ﬂ)$a (13)

Call this condition generalized Bayesian monotonicity. Formally:
Definition 13 A social choice rule, x, satisfies generalized Bayesian monotonicity (GBM) if given
a€D zoFx, i€l s; €S andy: S xS — A such that:
a. J:Ri(ti,u)ym(sl), Yt € 5;
b. Yo P (si, 1) 20

We now turn to the second case, A2.

Case A2. Suppose 7 # 7. The previous calculations were based on 7 being an equilibrium relative to beliefs
determined by &. However, the strategy &(a(-)) will generate different posterior distributions in the second
stage compared to those determined by &(-), and these may not admit the strategies induced by r on all
subforms as equilibria on those subforms. Suppose that an equilibrium on each subform exists (relative to

beliefs determined by &) and is given by some function 7 # 7. Again, a deviation must occur in stage 1 (if no
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one in stage 1 wishes to deviate from & and 7 gives an equilibrium on each subform for beliefs determined by
&, then (&, 7) is an equilibrium with outcome goa.) So, for some type, s;, of some player 4, there is a profitable
deviation, ¢; = 6;(s;), from &;(s;) in stage 1. If 7 and 7 agree on each ¢ € C? N {e | It _;, (-i(t=i), ) = ¢},
(so that 7 is an equilibrium on each subform reached with positive probability under the deviation), then
the calculations are exactly as before and we obtain conditions (12) and (13). So, suppose that for the
profitable deviation ¢ (by player ¢ type s;), there is some s_; € S_; such that at the subform reached
by ¢* = (6_4(s—4),&), 7 and T are necessarily different: the beliefs on this subform do not admit 7 as an
equilibrium. This means that, at this subform, given consistent beliefs determined by & some type s; of
some player j has a profitable deviation on that subform, relative to the strategy determined there by 7 (and
no profitable deviation from 7 at any subform under the beliefs determined by & that support 7). Let 7} be

such a second stage strategy for j and put 7™ = (7_;, T;). Define

2(t,8) = X{(t_it)l(o—i(t_i),enecty9(T—i(t_i), ¢ )+
X{(t_st)lo_i(t_enec FU(T[(0=i(t=s), &), 8])  (14)

Thus, z(s, s) is the outcome at type profile s with truthful reporting in stage 1, a challenge é; by player ¢
type s; and a deviation by player j from 7; to 77 in stage 2. Note that z differs from y only in that j chooses
7; rather than 7; in stage 2. By assumption, ya,(s,)Rj(Sj,ﬂ)Za,(s,)i under ¢ on each stage 2 subform, 7
defines an equilibrium — no type of any player (including j) has an incentive to deviate. But, since the
subform associated with ¢* (where j, type ¢;’s preference flip occurs) has positive probability under (6_;, ¢),

zaP? (t;, 1t) Y. Thus, in this case, the following condition holds:

Definition 14 A social choice rule, x, satisfies chain reversal (CR) if given o € D, xo # x, 3i,j € I,
s;i €5;,8; €55 and functionsy and z, y : S x S = A, z: S x5 = A,
xRi(tia/'L)yoc,(s,); Vtz S Si;

b. Yai(s) ¥ (B, 1) 20055y, VEj € S

C. ZocP](Sja/'L)yoc

Finally, note that since there is an equilibrium on each subform under some system of beliefs determined by

7o a. Let 7 be the stage two equilibrium strategy. Define (noting the presence of 7):

W(t,8) = X{(t_i tol(os(t_i),cnecryg(@—i(t—i), &)+

X{(t—it)l(ooit_)enecey F(FI(@—i(t=i), ¢:),8])  (15)
Given that 7T is the strategy used on the subforms, a deception in conjunction with the challenge ¢; produces
the outcome w(a(s), s) or w. Assuming Bayesian monotonicity fails, the deception is upset with a challenge
that causes play to reach stage 2 with positive probability. For player ¢ (type s;) to challenge in this way

requires:
wo P (si, )T (16)
This completes the proof. ]
Remark 10 Here, it is easy to see that the specification of the subforms to be independent of the first stage

choice is irrelevant. If the function f depended on the first stage choice, then for example, in equation 8 we

would write

f(rl(e-i(s=i), ¢), 8], (0-i(5-4), ¢i))
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so dependence on the history is both direct and indirect (through 7). With this modification, define y as

before, and the calculations are unchanged.
Remark 11 Note that the number of stages in the game is irrelevant. The issues revolve around the payoffs

a deviator receives conditional on reaching a second stage — regardless of the number of subsequent stages

there might be in the game.
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