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Abstract

Using data from the championship series in three professional sports 
basketball� baseball�

and hockey�� we estimate the parameters of a sequential game model for the best	of	n	games

championship series� The unique subgame perfect equilibrium determines performance levels

based on exogenous home �eld advantage and abilities of the two players 
teams�� The model

provides a robust computational framework for studying strategic incentives in any sports

based on identical stages 
for example� single	elimination tournaments and individual tennis

matches�� We control for measured and unobserved di
erences in team strength� and we

improve the small sample properties of our estimates using a bootstrap on the maximum

likelihood estimates� We �nd negligible strategic e
ects in all three sports� teams in each

sport play as well as possible in each game regardless of the game�s importance in the series�

We also estimate negligible unobserved heterogeneity after controlling for regular season

records and past appearance in the championship series� teams are estimated to be exactly

as strong as they appear on paper�



I� Introduction

A sports championship series is a sequential game� two teams play a sequence of games

and the winner is the team than wins more games� The sequential nature of a championship

series creates a strategic element to its ultimate outcome� In this paper we solve the subgame

perfect equilibrium of a sequential game model for a best	of	n	games championship series�

In the subgame perfect equilibrium� the outcome of a series is a panel of binary responses

indicating which team won which games� We estimate the parameters of the game	theoretic

model using data from the championship series in professional baseball� basketball� and

hockey�

The game	theoretic model nests� in a statistical sense� a model in which teams do not

respond to the state of the series� In this special case� the subgame perfect equilibrium is

simply a sequence of one	shot Nash equilibria� and the probability that one team wins any

game depends only on home advantage and relative team ability� We formally test whether

this hypothesis is supported by the data� Because each series is a short panel 
at most seven

games long�� we apply a bootstrap procedure to the maximum likelihood estimator in an

e
ort to reduce its small sample bias�

Our data consists of World Series since ����� Stanley Cup �nals since ����� and NBA

Championship series since ����� We control for home �eld advantage and two observable

measures of the teams� relative strength� the di
erence in the teams� regular season winning

percentages and the teams� relative experience in championship series� Patterns in the data

suggest that the outcomes of individual games may depend on the state of the series� In

baseball� for example� ��� of World Series reaching the score three games to zero end in

four games� The corresponding percentages in hockey and basketball are� respectively� ���

and ����� These large percentages may indicate that teams that fall behind ��� tend to

give up in the fourth game� Reaching the state ��� is an endogenous outcome that depends

on the relative ability of the teams� Uncontrolled di
erences in the strengths of the teams

�



induce positive serial correlation across the outcomes of games within a series� This serial

correlation could be mistaken for dependence of outcomes on the state of the series�

However� estimates of the structural model do not support the notion that strategic

incentives matter in the championship series of any of the three sports� Nor are the estimates

of unobserved heterogeneity in relative team ability signi�cant in any of the sports� The

estimated strategic e
ect is largest in hockey� but both it and unobserved heterogeneity are

still small in magnitude compared to home �eld advantage� In short� cliches such as a team

�played with its back against the wall� or �is better than it appears on paper� are not

evident in the data�

The model adapts and extends the tournament models of Lazear and Rosen 
����� and

Rosen 
����� to a sequential environment� Ehrenberg and Bognanno 
����� and Craig and

Hall 
����� analyze sports data in the spirit of the tournament model� Ehrenberg and Bog	

nanno study whether performance of professional golfers is related to the prize structure of

the tournament� and Craig and Hall interpret outcomes of pre	season NFL football games as

a tournament among teammates for positions on their respective teams� This paper is the

�rst application of the tournament model to sports data which imposes all of its theoretical

restrictions and implications� Our theoretical results for sequential tournaments with het	

erogeneous competitors extend those of Rosen 
����� and Lazear 
������ In particular� by

deriving the unique mixed strategy equilibrium� we can estimate a much richer model than

previous theoretical work would have allowed�

II� The Model

Let the two players 
teams� in a series be called a and b� Some aspects of the theory and

empirical analysis are expressed from the perspective of the reference team� team a� In most

elements of the model� however� team identity is arbitrary� In these cases we use the indices

t and t� to indicate the two teams generically� t � fa� bg and t� � fa� bg � ftg� Let j index the
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game number in the series� Our data consists of seven games series 
j � ���� � � � ���� but the

model applies to any series length n� where n is odd� Figure � illustrates the tree for a n � �

playo
 series� A stage of the sequential game is a game in the playo
 series� An upward

branch from one state indicates that team a won the game and a downward branch indicates

team b won the game� Which branch is taken from each state is endogenous and stochastic�

with the probability assigned to each branch depending on the relative performance of the

teams and on pure luck 
i�e� the �bounce of the ball���

The sequential game ends when one team has accumulated 
n����� victories 
in Figure

�� 
������ � ��� The actual length of the series is therefore endogenous and stochastic� and

we denote it n�� 
n � ���� � n� � n� Our assumptions will imply that the state of the series�

denoted �� is composed of two numbers� 
na� nb�� where nt is the number of games already

won by team t� Therefore�

� �

�

na� nb� � � � maxfna� nbg � 
n � ���� � � � na � nb � ng� 
��

The game number can be recovered from the state since since j � na � nb � ��

At state � the strategic choice variable for team t is xt�� interpreted as the team�s

performance or e
ort� Since each game is a one	shot simultaneous stage	game� the strategic

decisions made by teams as a game progresses are not modeled� Therefore� xt� captures

pre	game strategic decisions� such as which pitcher to start in baseball and any di�culties

related to �psyching up� for a game that depend on its state ��

The equilibrium choice of xt� is determined by four structural elements of the model�

cost of e�ort� ctj
xt��

score di�erential� y�� � xa� � xb� � �j

�nal payo� vector�
�

Va�na� nb �
n�X
j��

caj
xa�� � Vb�nb� na �
n�X
j��

cbj
xb��
�


��

The cost of e
ort function ctj depends implicitly on the rules of the sport and the inter	

action of players� coaches� and referees� For sports as complicated as baseball� basketball� or
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hockey it is not possible to model the equilibrium cost of good performance as a function of

the nature of the sport� For instance� if one wished to derive ctj
xt�� from the �structure� of

baseball� it would be necessary to model the sequential decisions made by the manager and

players conditional on the score� the inning� the number of outs� the count on the hitter� the

quality of the hitter relative to the pitcher and the other hitters in the batting order� etc�

Instead� we exploit the common strategic elements between games of any best	of	n series�

taking as given the �reduced	form� of the strategic elements within games� The cost of e
ort

depends upon the state only through the game number j� For instance� ctj may depend upon

whether t is playing at home or away�� The �nal payo
 for team t has two components� the

value the team places on the ultimate outcome� denoted Vt�nt� nt� � and the total cost of e
ort

expended during the series�

The winner of a game scores more points 
or runs or goals�� To determine the outcome

of a series� the sign of the score di
erence fully determines the outcome of the game� A single

game is therefore a Lazear and Rosen 
����� tournament�� We require only that the score

index y�� in 
�� be a monotonic function of the actual score di
erence� Linearity of y�� with

respect to the e
ort levels is therefore less restrictive than it may appear�

The random term �j captures elements of luck in the relative performance of the two

teams� The luck term is independently and identically distributed across games with distri	

bution and density functions F 
�j� and f
�j�� respectively� The probabilities that team a and

b win game �� conditional upon their chosen e
ort levels� can be written

Pa�
xa� � xb�� �Prob
y�� � �� � �� F 
�
xa� � xb��� � �� Pb�
xb� � xa��� 
��

The equilibrium level of e
ort also depends upon the marginal probability

�Pa�
xa� � xb��
�xa�

� f
�
xb� � xa��� �
�Pb�
xa�� xb��

�xb�
� 
��

� This assumption could be relaxed to allow c to depend on other elements of the state
of the series� For instance� the idea of �momentum� could be captured by letting c depend
upon the winner of the last game�

� In round	robin tournaments� such as the World Cup of soccer� scores within games do
have a direct bearing on the ultimate champion� This means such tournaments are not
tournaments in the sense introduced by Lazear and Rosen�

�



If the sport were a foot race with several heats� then the model has a simple interpre	

tation 
Rosen ������ E
ort xt� is the average speed of racer t in heat �� Racer t wins the

heat if his average speed is greater than the speed of his best competitor� t�� The random

term � captures any unforeseeable events� such as cramps� that might occur during the race�

A better	conditioned athlete could run any speed x with less e
ort 
lower value of ct�
x��

than a worse athlete� However� the role of conditioning could not be disentangled from

psychological factors having to do with competition� Hence� ct� includes the propensity for

racer t to �choke� or� alternatively� to �rise to the occasion�� In team sports� of course� e
ort

is multi	dimensional� But in determining the ultimate outcome� e
ort also aggregates into

a single number� the team�s score�

Assumption ��

�� Cost of e
ort is exponential and multiplicatively separable in ability and e
ort�

ctj
xt�� � e��tj�rext��r� 
��

for constants 	tj and r � �� The ability indices 	tj are common knowledge�

�� F 
�j� is twice continuously di
erentiable and weakly quasi	concave�

�� F 
�� � ��� and Pt�
������ � ����

�� �
r � �f
���

The negative sign in front of 	tj in 
�� implies that larger values of 	tj are related to

higher ability 
lower e
ort costs�� In the empirical speci�cation 	tj can depend upon observed

and unobserved characteristics of team t� The sport	speci�c parameter r determines the

convexity of the cost function� As r tends to zero the marginal cost of e
ort goes to zero�

This is important special case of the model� because the winning probability 
�� in the Nash

equilibrium depends on just the invariant ability factors 	tj and 	t�j� Below it is shown that

the value of f
�� determines e
ort levels in evenly matched games and that condition A���� 

is a su�cient to rule out equilibrium in which both teams play a mixed strategy��

� The team labels a and b are assigned arbitrarily� so it would be reasonable to assume

�



II�� Nash Equilibrium E�ort in a Single Game

Nash Equilibrium e
ort of team t in state � maximizes the expected net payo
 given

the e
ort of the other team�

max
xt�

�ctj
xt�� �E

�
Pt�
xt�� xt���!Vt�

�
� 
��

The expectation in 
�� is taken over the distribution of beliefs held by team t concerning

e
ort levels chosen by the other team� xt��� !Vt� is the value team t places on winning the

game and is determined by the Nash equilibrium in subsequent games� Three key indices

associated with the state � are

incentive advantage� v� � ln
!Va�
!Vb�

ability advantage� 	j � 	aj � 	bj 
��

strategic advantage� !� � rv� � 	j �

We say that team a has the strategic advantage over team b in state � if the index of strategic

advantage is positive� !� � �� Otherwise� team b has the advantage� Strategic advantage

embodies the net e
ect of ability advantage 	j and incentive advantage v�� which in turn

incorporates the e
ect of ability advantages in future games� Proposition � demonstrates

that !� is indeed a proper measure of strategic advantage�

Proposition ��

��� Under A�����	A���
�� a Nash equilibrium in mixed strategies at any stage in the series

is a pair of e�ort levels 
x�a� � x�b�� and mixing probabilities 

a�� 
a�� such that

x�t� �

��
� r ln

�
f
!� � r ln �t��

�t�
�!Vt�e

�t�r
t��

�
with prob� 
t�

�� with prob� �� 
t�


��

for t � fa� bg� Team t plays a pure strategy �
t� � �
 if

� � 
t�� 
�rf
!� � r ln 
t��� � F 
!� � r ln 
t����� 
�� 
t������ 
��

that f
�� is symmetric around zero� but none of the results depend upon symmetry of the
luck distribution�

�



Otherwise� 
t� solves

� � 
t��

�
rf
	
!� � r ln


t��

t�



� F 
!� � r ln


t��

t�

�
�

� 
�� 
t���
�
�
� 
���

��� In equilibrium

Pa� � Prob
team a wins� � 
a�
b�F

�
!� � r ln


b�

a�

�
�


� � 
a��
�� 
b��
�

� 
���

�
� The Nash equilibrium e�ort levels ��
 and winning probability ���
 are unique�

��� Let t be the team with a strategic advantage in game j� Under A������ team t chooses

greater e�ort than team t� and follows a pure strategy �
t� � �
� If j!�j is large enough

then team t� gives up with positive probability �
t�� � �
�

Proof� All proofs are provided in Appendix ��

Nash equilibrium strategies may not be pure because assumption A���� assumes only

quasi	concavity in the distribution of the luck factor �� The objective 
�� may not be strictly

concave� a team may prefer the boundary solution xt� � �� over the interior solution� If so�

the other team would not prefer an interior solution either� Mixed strategies may appear to

be an unnecessary complication that could be eliminated by assuming concavity in the luck

distribution� However� two standard choices for the luck distribution F"in particular� the

logistic and the normal distributions"are quasi	concave� Since the pure strategy winning

probabilities are not continuous in the model�s parameters when F is not concave� it is

important to allow for the possibility of mixed strategies�

Propositions ���� also shows that exponential costs imply that !Vt�� team t�s reward

for winning a game� does not determine whether the equilibrium strategy is pure or mixed�

The index of strategic advantage� !�� determines whether either or both teams will follow a

pure strategy at state �� A cost function not exponential in e
ort or not separable in ability

would generally not lead to such an index� which would make computation of the equilibrium

less reliable� Instead� Proposition ���� leads to a straightforward algorithm to compute the

Nash equilibrium e
ort levels�

�



Algorithm for Computing Nash Equilibrium

�N� Compute !�� If !� � � then team a will not mix� but team b may� If !� � � then team

b will not mix� but team a may�

�N� Let t be the team that may mix� so 
t� � �� Check condition 
��� If 
�� is satis�ed� then

both teams follow pure strategies� i�e� they choose the interior e
ort levels given in 
���


Done�

�N� If 
�� is not satis�ed then solve the implicit equation 
��� for 
t�� Once solved� the

interior e
ort levels of both teams can also be computed with 
t� � �� Since the solution

to 
��� must lie in the range ���� � a simple bisection method is su�cient to solve for


t�� 
Done�

From Proposition ���� we can see that whether mixed strategies are ever played in

equilibrium depends on the parameter r and the absolute value of ability di
erences 	j� We

might expect that teams playing in the championship series are relatively evenly matched�

since they usually are the two best teams in the league� Both incentive e
ects and the

probability of giving up are small in a championship series compared to� say� a series between

the best and worst teams� Rosen
����� explores how the optimal structure of rewards in a

promotion ladder are a
ected by the possibility of players giving up early on�

II�� Subgame Perfect Equilibrium and its Empirical Implications

To derive how strategic incentives evolve during the course of a series we must specify

the value of the �nal outcomes� We assume that teams behave as if they only care about the

ultimate winner of the series and the net costs of e
ort expended during the series� That is�

the �nal payo
 Vt
nt� n��nt� depends only on maxfnt� n��ntg� 
Recall that n� is the number

of games actually played�� Without loss of generality we set the two �nal payo
s equal to

����

� Teams might very well place di
erent values on winning the series� The e
ect of this
di
erence would� however� not depend upon the state of the series and would act exactly like
an unobserved constant in relative ability 	j� The empirical analysis controls for unobserved
di
erences in 	j� so setting payo
s equal is simply a normalization�

�



Assumption �� For 
n� ���� � n� � n�

Va� 
n� ���� � n� � 
n� ����  � Vb� 
n� ���� � n� � 
n� ����  � �

Va� n� � 
n � ���� � 
n� ����  � Vb� 
n� ���� � n� � 
n� ����  � ���

Proposition ��

��� The unique subgame perfect equilibrium is de�ned as the e�ort functions x�t� in ��
 and

mixing probabilities 
t� in ��
	���
� t � fa� bg� and

Vt�nt� nt� �
t�!Vt�

�
�rf
!� � r ln


t�

t��

� � 
t��F 
!� � r ln

t�

t��

�
�

�

�� 
t��

�

�

t��Vt�nt� nt� � � � 
�� 
t���Vt�nt � �� nt� 

�

���

!Vt� �Vt�nt � �� nt�  � Vt�nt� nt� � � �

��� As r � � the dynamics within the series disappear and the outcome of each game only

depends on the ability index 	j�

Proof� Backwards induction�

Proposition ���� implies that the sequential game model de�ned by Assumptions � and �

nests an intuitively appealing competing model� Namely� as r goes to �� the two teams do not

respond to strategic incentives� We call this special case of the subgame perfect equilibrium

the static model� In the static model the outcome of any game depends only upon their

relative abilities 
including the e
ect of home advantage�� Teams are �professional�# they

each perform as well as they can and only factors independent of the state of the series

a
ect their relative performance� Under the static model� many common sports cliches do

not apply� For instance� teams do not �play with their backs up against the wall� nor

do they �taste victory�� For large values of r 
relative to the ability values�� these cliches

would apply� They may or may not apply in a given game depending upon how abilities

and incentives interact to determine equilibrium e
ort� With Proposition �� the notion that

strategic incentives matter can be tested by simply testing whether r is signi�cantly greater

than �� The �rst step is to posit a speci�cation for the cost of e
ort parameter 	t��

�



Assumption ��

	tj � �t �Xtj
 
���

where� Xtj is a vector of observed characteristics of team t in game j� pre	determined

at the start of game �� 
 is a vector of unknown parameters that determine how

strongly a team�s ability is predicted by the measurable characteristics Xtj� and �t

is the residual ability of team t not already captured by Xtj�

In our analysis� Xtj contains the regular season record� past appearances in the champi	

onship series 
as a measure of experience�� and home or away status in game j� Assumption

� leads to the empirical structure for ability di
erences and winning probabilities�

observed ability advantage� Xj � Xaj �Xbj 
���

residual ability advantage� � � �a � �b 
���

net ability advantage� 	j � 	aj � 	bj � � �Xj


winning probability� Pa� � 
a�
b�F

�
� � 
Xj � rv�

�
� 
� � 
a��
�� 
b����� 
���

To apply 
��� to data from an observed series we must introduce notation to track the

sequence of realized states� Let the variable Wj take on the value � if team a wins game j

of the series� and otherwise Wj equals �� Let W � 
W��W�� � � � �Wn�� and X � 
X�� X�� � � � � Xn��

denote the sequences of outcomes and observable characteristics within a series� Then the

realized state in game j is

�
j� �

�
� j��X

m��

Wm � j � ��
j��X
m��

Wm



A � 
���

The probability of the observed sequence of outcomes in a single series is

P �
W�X��#
� r� �
n�Y
j��

�
Pa��j�

�Wj
�
�� Pa��j�

���Wj

� 
���

��



Proposition ��

��� P �
W�X��#
� r� is a continuous function of the estimated parameters 
 and r�

��� If the subgame perfect equilibrium consists of pure strategy equilibria at all states of the

series� then the equilibrium generates a reduced form that is a panel data binary choice

model�

Pa� � Prob
y�� � �� � F

�
� � 
Xj � rv��j�

�
� 
���

If �j is normally distributed� then the reduced form is a probit model with latent regressor

rv��j�� If �j follows the logistic distribution� then the reduced form is a logit� If �j is

uniform then the reduced form is the linear probability model�

�
� In the reduced form� the parameter r is not separately identi�ed�

Proof� Immediate�

Continuity of P � in the estimated parameters 
���� � is critical for empirical reasons�

and� if attention were paid solely to pure strategies� continuity would not hold� In pure

strategies� a small change in the ability index 	j induced by a change in r or an element of 


could lead to no equilibrium at all� which causes a �jump� in the likelihood function for the

data� Maximizing the likelihood function iteratively from arbitrary starting values� even if

pure strategies ultimately apply� would be greatly complicated by the discontinuity�

Proposition ���� makes an explicit link between the game	theoretic model and a simpler

analysis of game winners using ordinary probit or logit models� That is� de�ne the reduced

form of the sequential game model as an analysis based on 
��� in which the subgame perfect

equilibrium is not solved� The reduced form is therefore a binary response model of game

winners explained by the vector Xj and unobserved ability di
erence �� The third term of


���� rv�� is a latent regressor in the reduced form� The incentive advantage v� depends

implicitly on r� as well as 
� � and the values of Xk� for k � j� Therefore� it is not possible

to treat rv� as a typical error term 
say� mean zero and heteroscedastic across the state

��� because it is correlated with included variables and depends directly on other estimated

��



parameters� Only for a special case of the sequential game model� namely the static r � �

model� is the reduced form a simple probit	type model with no latent regressor� In this case

the latent term disappears because both of its components go to zero� Hence� neither r nor

the value of v� can be recovered from a reduced form analysis�

In a structural analysis� the subgame perfect equilibrium is solved while estimating the

parameters of the model� The incentive advantage v� is no longer free nor unknown� but is

instead a computed value associated with each game of all series in the data� Identi�cation of

the structural model can be thought of in two steps� although it is more e�cient to estimate

the model in one step as our bootstrap maximum likelihood estimator does� First� calculate

v� for all games in the data based on initial guesses for r� 
� and the distribution of �� Then�

estimate 
� r� and the distribution of � using 
��� as a random e
ects probit� One could

then iterate on these two steps until the values of the parameter estimates in the two stages

agree� The parameter r is identi�ed by the model�s structure if it enters 
��� other than as

a a multiple of 
 and �� For example� if equilibrium v� turned out to be proportional to ��r

and 
�r then r would not be identi�ed� even if the subgame perfect equilibrium were solved

numerically� However� r does enter the indirect value of each state separately from � and


� 
See equation 
A�� in Appendix ��� Therefore� r is potentially identi�ed by outcomes

through the structure of the model�

Proposition �� Let the outcomes of playo� series be generated by the sequential equilibrium�

Then estimates of 
 are inconsistent if the sequential equilibrium is not solved� The amount

of bias increases with the cost of e�ort parameter r� holding all else constant�

One might try to avoid Proposition � by approximating the incentive e
ect with dummy

variables for the current state of the series�

rv��j� �
$
I�
wj�� 
���

where I� is a vector with elements contained in f������g that depend on the state of the

��



series�� The vector $
 would be estimated state	of	the	series e
ects� The problem with

approximation 
��� is that the strength of the incentive index v��j� depends on the relative

strength of the teams in the current and all subsequent games� 
Xk� k � j� j � �� � � � � n� The

error in using 
��� to approximate v��j� is therefore correlated with the other regressors�

Estimates of 
 are still biased even with a large sample of series�	

III� Analysis of Professional Sports Championship Series

III�� Data

The data consist of championship series in professional baseball 
Major League Base	

ball�� professional ice hockey 
National Hockey League�� and professional basketball 
Na	

tional Basketball Association�� Major rule changes over the course of the last century created

the modern versions of each of the sports� In each sport� we selected our sample period to

include all best	of	seven series since the introduction of these rule changes� Baseball intro	

duced the �live ball� in ����� but the ���� and ���� World Series were nine	games series�

so the baseball sample covers ����������
 Professional basketball introduced the ��	second

clock in the ����	�� season� so the basketball sample covers ���������� Finally� hockey

introduced icing in the ����	�� series� but the ���� Stanley Cup was a �ve	game series� so

the hockey sample covers ����������

The team that played at home in game � is coded as the reference team 
team a in the

model section�� For example� the endogenous variable Wjis takes on the value � if the team

that played at home in game � wins game j of the series i in sport s� and otherwise Wjis

� We estimate exactly this approximation in the next section�
	 Interacting the indicator vector with the observable ability vector Xj reduces the bias

but does not guarantee that approximation error is eliminated� For example� the incentive
component in one game not only depends on which team has the home advantage in this
game� but also the sequence of future home advantages� Given the �xed maximum panel
length of �� including interaction terms may make the bias in estimating 
 worse by including
extra parameters�


 The ���� World Series and ���� Stanley Cup were not played due to strikes by the
players�

��



equals �� Three measures of relative team ability were also collected� an indicator for home

advantage in game j� HOMEijs� di
erence in regular season records� RECis� and an indicator

for di
erences in appearance in last year�s championship series� EXPERis� The latter two

variables do not vary with game number j� 
These and other variables derived from the data

are de�ned in Appendix ���

Table � reports summary statistics for each sport� The baseball sample includes ���

games over �� series� the basketball sample includes ��� games over �� series� and the hockey

sample includes ��� games over �� series� Baseball series are on average the longest� ���

of the series go to seven games� whereas ��� of the basketball series and only ��� of the

hockey series go to seven games� Four	game series occur infrequently in both basketball


��� of the series� and baseball 
��� of the series�� By contrast� ��� of the series end in

four games in hockey� the most frequent series length�

We assume the residual ability index � follows the normal distribution across series�

� 	 N
�� ���� for �� � �� Under Assumption A���� the value of � is common knowledge

of the two teams� Given their information� the probability of a series of outcomes W is

P �
W�X��#
� r�� de�ned in 
���� To the econometrician� however� the probability is

Q
W�X#�� 
� r� �
Z
�

��

P �
W�X��#
� r��
������d� 
���

Assuming falsely that �� � � 
no unobserved heterogeneity� induces correlation between

winning probabilities of di
erent games conditional upon the observed ability factors�

In a panel data model� correlation caused by unobserved heterogeneity leads to incon	

sistent estimates of 
� For example� we observe in the sports data that when teams are down

�	� they usually lose the fourth game and consequently the series� This may be because

teams down �	� give up in the situation 
i�e� v� is large in absolute value�� or because out	

matched teams are more likely to reach the situation 
i�e� � is large in absolute value�� or

both� The �rst reason is true state dependence while the second is spurious and due simply

to ability di
erences making it likely that a series that reaches the state �	� has unevenly

matched teams�
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Our random e
ects estimation procedure controls for both true state dependence� cre	

ated by incentive advantages� and serial correlation� created by unobserved heterogeneity�

The complete speci�cation of the structural parameters of the game	theoretic model is

	ij � �i � 
Xij

� �i � 
s�HOMEijs � 
s�RECai � 
s�EXPERai 
���

rs � er
�
s

�s � e�
�
s

F 
�� �
e�

� � e�
�

Superscripts have been added to 
k and subscripts have been added to r and � to indicate

that these values are estimated separately for each sport s� We estimate r�s and ��s to avoid

having a closed lower bound on the parameter space� Large negative values of r�s and ��s

therefore correspond to values of rs and �s near �� The luck factor follows the standard

logistic distribution� All estimated values are therefore relative to the variance of random

luck inherent in the sport� Based on 
��� and 
���� let Qis
W is� X is#�s� 
s� rs� denote the

predicted probability of the ith series in sport s� where superscripts have been added to

the data vectors W and X� Denote the vector of estimated parameters as �� that is the

concatenation of 
s� r�s � and ��s for all three sports� The log likelihood function for the

combined sample is

L
�� �
X
s

X
i

lnQis
W is� X is#��s � 
s� r
�
s�� 
���

Each championship series is� in e
ect� a short panel of observations� While maximum likeli	

hood estimates are consistent in this context� they may not perform well in samples of the

size available here�� One way to correct for this type of small sample problem is to perform

bootstrap estimation� The sample data is randomly sampled with replacement to form ar	

� We conducted Monte Carlo experiments on the ML estimates of the sequential equi	
librium model� Not surprisingly� we found signi�cant bias in the ML estimates with small
samples and short series� There was a strong tendency for estimates of rs to be pushed close
to zero when the true values was greater than zero�
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ti�cial data sets of the same size�� Let the ML estimate from the actual sample be %�ML�

ML estimates of � are also obtained for each arti�cial data set� With the average estimated

vector across re	samples denoted $�� the parametric bootstrap estimate is de�ned as

�BS � �%�ML � $� 
���

III�� Estimates of the Sequential Game Model

Table � reports logit estimates of the winner of games in each sport��
 The speci�cations

correspond to the static r � � model 
 equivalent to r� � ���� The �rst speci�cation includes

only the variables that enter 	j 
setting �s � rs � � and implying no unobserved heterogeneity

and no incentive e
ect�� for each sport s and maximizing L
�� over 
 alone� In all three sports�

the estimated coe�cient on HOME is positive and signi�cant at the �� level� Home �eld

advantage is largest in basketball and smallest in baseball� The estimated coe�cient on

the di
erence in regular season winning percentages 
REC� is also positive in all sports� so

that� other things equal� the team with the better regular season record is more likely to

win than to lose any given game of a series� In baseball� however� the coe�cient on REC

is not signi�cant� The estimated coe�cient on relative experience in championship series


EXPER� is also positive in all three sports� but is signi�cant only in baseball and hockey�

The second speci�cation in Table � adds the normally distributed random e
ect � and

frees up its standard deviation �� The estimate of � implied by �� is nearly zero in baseball

and hockey and is estimated very imprecisely� This suggests little evidence for unobserved

heterogeneity in these sports after controlling for the observed characteristics in the teams�

Only in hockey is the estimate of � signi�cantly di
erent from zero 
based on a likelihood

ratio test imposing � � ��� The main e
ect on the other estimates is to raise slightly the

estimate of home �eld advantage in hockey�

� Each series represents an observation to be sampled� not individual games within series�
�
 We also estimated the model assuming a normal distribution 
with the same variance

as the standard logistic�� The results were nearly identical�
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The third speci�cation in Table � adds a set of indicator variables for the score 
state�

of the series� corresponding to the attempt to control for the incentive e
ect proposed in

section II� Based on the state vector �j de�ned in 
���� the variable TeamDown�	� is de�ned

for each game j in each series as an indicator for whether the state has reached 
���� or


����� TeamDown�	� and TeamDown�	� are de�ned similarly 
see Appendix ��� All of

the estimated coe�cients on the state indicators are negative except for TeamDown�	� in

baseball� A negative coe�cient indicates that teams on the brink of losing the series are more

likely to lose� all else constant� Since unobserved heterogeneity is also controlled for� these

coe�cients could perhaps be picking up incentive e
ects� However� only in baseball are the

e
ects signi�cantly di
erent from zero on their own� The coe�cient estimates and t	ratios

for the variables HOME� REC� and EXPER� however� are� for the most part� insensitive to

the inclusion of score dummies� Coe�cients on previous experience that were signi�cant no

longer are�

Table � presents various estimates of the model with the game	theoretic parameter rs

estimated as well as the other parameters for each sport� These estimates require calculation

of the equilibrium e
ort levels presented in Proposition � for each possible state of a series for

each series in the data� The �rst two speci�cations are maximum likelihood estimates��� The

estimate of r is signi�cantly di
erent from zero only in hockey� In baseball and basketball

the coe�cient is near zero and poorly estimated� Comparing the likelihood value to that

reported in Table � for the static model� the di
erence in the likelihood value when adding

rs is not signi�cant� In other words� the static model without strategic incentives is not

rejected by the data� The second ML speci�cation �xes �s and rs in baseball and basketball

to their values in speci�cation � to determine whether their large standard errors a
ect the

estimated standard errors of the other parameters� Precision of the other estimates within

baseball and basketball are not a
ected by inclusion or exclusion of � and r� but standard

errors in hockey are changed�

�� Reported standard errors on the parameters are based on the outer product of the
gradient matrix�
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The very small maximum likelihood estimates of r in each sport� implied by the large

negative estimates r� in Table �� indicate that the incentive e
ects vj are not large in profes	

sional sports championship series� To explore whether this is an artifact of the series being

short panels� the last column of Table � presents bootstrap estimates of the most general

speci�cation of the model� There are some signi�cant di
erences between the ML estimates

and the ML	bootstrap estimates� For instance� the value of home advantage in each sport

is estimated to be greater in the bootstrap than in the ML estimates� Di
erences in regular

season records� however� are found to be similar predictors of relative team ability� The

value of past experience is slightly larger in baseball and smaller in hockey and basketball�

where the e
ect becomes negative� The importance of unobserved heterogeneity 
size of �� is

estimated to be even smaller with the bootstrap estimate� After controlling for the observed

characteristics of teams� the data suggest no signi�cant variance remaining in team abilities�

The static model with little unobserved heterogeneity provides little theoretical pos	

sibility of teams following mixed rather than pure strategies� Only if teams were greatly

outmatched on paper 
that is� in the observed characteristics Xj� would a team give up with

some probability� Furthermore� they would give up in all games played away from home

since the strategic advantage does not vary with the state of the series� except through

home advantage� It is not surprising then that there are no instances in the data of mixed

strategies at the bootstrap estimates� But mixed strategy equilibria are encountered while

maximizing the likelihood function� Since we are using only the championship series in each

sport� it is not unexpected that estimated di
erences in ability are not great enough to lead

to mixed strategies in the static model� The sequential game model is easy to extend to

the case of elimination tournaments " each round would be one instance of our model and

di
erent rounds would be handled as in the single elimination model of Rosen 
������ In

early rounds of professional sports playo
s� mismatches are created by the design of the

tournaments where the best teams start out playing the worst�
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III�� Size of the ability and strategic e�ects

The bootstrap estimates of the incentive parameter r are extremely small in baseball and

basketball� Since the data is choosing the static model without unobserved heterogeneity

for these sports� it is straightforward to measure the relative importance of the observed

characteristics of the game on the probability of either team winning� For example� HOME

and EXPER are both �� indicator variables� Since 
� and 
� are of similar magnitudes in

these sports� past championship experience roughly cancels out the disadvantage of playing

a game away from home� Furthermore� for teams with equal experience� a home advantage

is equivalent to having a better regular season record of 
��
� � ���� percentage points

in baseball and ���� percentage points in baseball� One can compute the unconditional

probability 
at the start of game �� of one team or the other winning the series by computing

the probability of each of the branches in Figure ��

In hockey� the bootstrap estimate of r is greater than the ML estimate� Both the

estimated standard error of the ML estimate and the inter	quartile range of the estimates

across re	samples 
reported in Table �� indicate that the value of r is not precisely estimated�

To determine the relative size of vj this implies requires solving for the subgame perfect

equilibrium� All aspects of the two teams and the evolution of the series determine the

winning probabilities� Using the bootstrap estimates for hockey� the sequential game model

was solved for each series in the hockey data� The estimated probability that team a wins

the �rst game 
played at home� was computed by backwards induction� The series were then

ranked in order of this initial probability� The series at the ��th� ��th� and ��th percentiles

were found� For these three series the probability of team a winning in each state of the

series is shown in Figure �� The ��th percentile is still above ���� which indicates that home

ice advantage gives team a an edge in game � even when its observable characteristics put it

in the bottom quarter of the game � winning probabilities�

The horizontal axis in Figure � is the game number� yet it is almost impossible to see the

di
erence in probabilities in games with di
erent states� For example� game � can have either

��



the state 
���� or 
���� so above � on each solid line are two points that are indistinguishable�

In the series at the ��th percentile in initial advantage� the ratio of the two probabilities of

team a winning is ������� The ratio between either probabilities and that of game � 
when

team a regains home ice� is ����� The upshot is that the bootstrap estimate of r in hockey�

while much larger than in the other sports� is still too small to generate any signi�cant

incentive e
ects in the series� The e
ect of home advantage 
as indicated by movements

of the curve� and other characteristics 
as indicated by the distances between the curves�

swamp any strategic e
ects generated by the sequential nature of the playo
 series�

V� Conclusion

This paper has analyzed outcomes in professional sports championship series to explore

some empirical implications of game theory� We have developed a sequential game model

of best	of	n	games series and have estimated the model�s parameters using data from three

professional sports� We estimate the e
ect of home �eld advantage and di
erences in relative

team ability revealed by di
erences in regular season records and previous appearances in the

championship series� We use a bootstrap procedure to improve the small sample properties

of the maximum likelihood estimator� We control for both unobserved di
erences in relative

team abilities and the strategic e
ects on performance arising from the subgame perfect

equilibrium of the sequential game� The strength of the strategic e
ect is determined by a

single estimated parameter� We �nd no evidence of strategic e
ects in the data for any of

the three sports� Only in hockey do the magnitude and imprecision of the estimate leave

open the possibility of a measurable strategic e
ect� but the e
ect on winning probability

is negligible when compared to� say� the e
ect of home �eld advantage� We conclude that

there is no evidence that teams �give up� or get �over con�dent� based on the outcome

of previous games in the series� We also �nd no evidence of unobserved heterogeneity in

ability di
erences after controlling for regular season records and previous championship
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experiences� That is� teams are estimated to be just as good as they appear on paper�

Why are there no incentive e
ects& One possibility is that strategic interactions within

games cancel out any incentive e
ects between games of a series� For example� team behavior

may act to focus individual players on winning the current game and to ignore the larger

sequential nature of the playo
 series� even when winning or losing the game is nearly

meaningless� Perhaps a cooperative model of teammates might explain what elements of

the sport would enable this outcome to occur� Such a theoretical exercise would attempt

to make our primitive parameter r an endogenous function of the sport� Also� it may be

that players in these series are in some sense immune to these incentives� Perhaps players

who reach the highest championship in the sport do indeed play to the best of their ability

regardless of the circumstances�

Two other sports applications of the model are possible� First� the model can be esti	

mated on several rounds of single	elimination tournaments that lead to championship series�

either in these sports or other sports� In earlier rounds the di
erences in abilities in the

teams tend to be much greater� Larger di
erence in ability also lead to a greater likelihood

of teams giving up� This suggests that any teammate interaction that mitigates strategic

incentives would become less e
ective in earlier rounds�

Another application is to perform the same estimation procedure on tennis matches�

Each game of a tennis match is similar to a championship series� except the game does not

end when one player scores 
n����� points� because a tennis game has no maximum number

of points n� Instead� the game winner is the player that scores four or more points and

leads by at least two points� Each set is� in turn� similar to a championship series� but one

which relies on a cost function speci�ed for each point rather than each game� Furthermore�

strategic advantage rises and falls within a tennis match since the �rst point of a new game is

less decisive to the ultimate outcome than the game point in the previous game� Compared

to a simple championship series between teams� a tennis match between individuals may

provide more leverage to identify strategic incentives�
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While sports is a natural arena for testing the tournament model� the model was devel	

oped by Lazear and Rosen 
����� to study wages within �rms that have workers compete for

�xed	valued prizes� such as promotions or bonuses� However� there have been few direct tests

of the tournament model as an explanation for wages and promotion polices within �rms�

The speci�c tournament model developed here provides a robust computational framework

for studying empirically any contest between heterogeneous players composed of a sequence

of identical stage games� It may therefore serve as a basis for further empirical work outside

of sports�
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Appendix �� Proof of Propositions

Proposition �

Proposition ���� and ���� �

Step �� Given that team t� � b is choosing a mixed strategy of the form 
���

the objective of team t � a in choosing e
ort takes the form�

�e��aje
�
r
xa� � 
b�F 
xa� � xb��!Va� � 
�� 
b��Va
na � �� nb�� 
A��

Under assumption A� the objective function is strictly quasi	concave� Necessary

conditions for an interior solution for teams a and b are therefore the �rst order

conditions
exa��r � r
b�f
xa� � xb��!Va�e

�aj�r

exb��r � r
a�f
xa� � xb��!Vb�e
�bj�r�

After some manipulation their ratio leads to

xa� � xb� � !� � r ln

b�

a�

� 
A��

Replacing 
A�� in the �rst order conditions leads to the interior e
ort levels in 
���

Step �� Substituting the interior e
ort level 
�� into 
�� leads to the indirect

value of the interior solution for team a�


b�!Va�

�
�rf
!� � r ln 
b�� � F 
!� � r ln 
b��

�
� 
�� 
b��Va
na � �� nb�� 
A��

If team a gives up and sets xa� � �� and team b puts in any e
ort at all� then a

loses the game with certainty� Team b puts in e
ort with probability 
b�� A���� 

handles the case in which they both give up� so the indirect value to team a of

giving up in game j is


b�Va
na� nb � �� � 
�� 
b��
Va
na � �� nb� � Va
na� nb � ��

�
� 
A��

Comparing 
A�� and 
A��� the interior solution is weakly preferred to giving up if

!Va�

�

b�

	
�rf
!� � r ln 
b�� � F 
!� � r ln 
b��



� 
�� 
b��

�
�

�

 ��

�




Dividing by !Va� leads to the condition 
��� If the inequality in 
�� holds strictly�

then team a prefers the pure strategy and sets 
a� � � in equilibrium�

Step 
� If 
�� does not hold then team a prefers the boundary solution and

team b would not follow the �rst order condition� A value of 
a� below � induces

team b to lower its e
ort level in the interior solution� At the Nash equilibrium in

mixed strategies� team a is indi
erent between giving up and the interior solution�

so 
��� holds with equality�

Step �� Parallel arguments can be made concerning team b and the equilibrium

value of 
b�� Substituting the interior e
ort levels into 
�� and taking into account

the probabilities of giving up lead directly to 
����QED

Proposition ���� 

In a potentially more general mixed	strategy equilibrium each team chooses

a distribution over all values of e
ort� Let h
xt��� denote the distribution chosen

by team t�� Quasi	concavity implies that the best response for team t is to put

positive probability only on �� and the unique solution to the generalized �rst

order condition

e
�
r
xt� � r

Z
xt��

f
xt� � xt���!Vt�e
�t�h
xt�j�dxt���

Given this response� unique values of 
a� and 
b� exist that satisfy 
���� Therefore�

the equilibrium de�ned in Proposition � is unique� QED

Proposition ���� 

Suppose the teams are equally matched 
!� � ��� Then under A���� F 
!�� �

��� and e
ort will be symmetric� Looking at 
��� equally matched teams choose

pure strategies if A���� holds� In an even match the sign of the luck factor �

determines the winner and f
�� determines e
ort levels on the margin� As long

as costs are not too convex relative to f
��� evenly matched teams strictly prefer

the interior solution and will not play mix strategies� Rosen 
����� recognized

��



condition A���� within a model of promotion ladders but focussed the analysis on

pure strategy equilibria� If !� � �� then �rf
!�� � F 
!�� � �rf
�� � �
� � and team

a puts no probability on giving up� If !� � � then team b plays a pure strategy�

If j!�j is near zero then the other team is close enough not to give up completely

but simply put in less e
ort� Only when j!�j gets large enough will the team at

a strategic disadvantage give up with positive probability� Since the team with

strategic advantage sets higher interior e
ort and never gives up� the �rst part of

Proposition ���� follows as well�QED

Proposition �

The issue is whether the value of the latent incentive advantage rv��j� can

be known without going through the backwards induction in 
���� which in turn

requires solution of the Nash equilibria in Proposition � for all possible states of the

series� Recall that n is the �nal game of the series� Under Assumption A�� vn � ��

since both teams place a value of � on winning the last possible game played� The

incentive advantage can be ignored a priori in game n� which might suggest using

only outcomes from game n�s to control implicitly for the incentive advantage while

estimating 
� But game n is played only if necessary� because the length of the series

n� is endogenous to outcomes� This creates a standard sample selection problem in

restricting estimation to only game n�s� Correcting for the sample selection problem

requires a solution to the sequential game model to compute Prob
n� � n�� Since

n� 
 
n������ the sample selection problem does not occur in games � to 
n������

However� the incentive advantage is only zero in these games if the cost parameter

r � �� Therefore� there is no game k available in the data for which vk � � a priori

and reaching game k is exogenous to the value of the unknown parameter r� QED
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Appendix �� De�nitions of Variables

HOMEjis �

�
� if team a is playing at home
�� if team a is playing away�

	 RECsi � the di
erence between the reference team�s regular season winning percent	

age and its opponent�s regular season winning percentage� In baseball and basketball�

regular season winning percentage is de�ned as the number of regular season victories

divided by the number of regular season games 
multiplied by ����� Regular season

games in hockey can end in a tie� so here winning percentage is de�ned as the number

of regular season victories plus one	half of the number of regular season ties divided by

the number of regular season games 
multiplied by �����

	 EXPERis � � if the reference team played in the previous year�s championship series

but its opponent did not� �� if the reference team did not play in the previous year�s

championship series but its opponent did� and � if both teams or neither team played

in the previous year�s championship series�

TeamDown�	� �

�
� if �j � 
����
�� if �j � 
����
� otherwise�

TeamDown�	� �

�
� if �j � 
����
�� if �j � 
����
� otherwise�

TeamDown�	� �

�
� if �j � 
����
�� if �j � 
����
� otherwise�

In basketball� all �ve of the series reaching the score ��� subsequently ended in four

games� If a separate dummy variable for the score ��� were included in the speci�cation of

the model� the maximum likelihood estimate of the coe�cient on this dummy variable would

be in�nity� To avoid this result� the dummy variables for ��� and ��� are combined into one

variable in basketball�
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Table 1.  Summary of Championship Series and Games
HockeyBasketballBaseball

Stanley CupNBA FinalsWorld Series

Series
193919551922First Year
199419941993Last Year
564072Total
16513End in 4 Games
15915End in 5 Games
151414End in 6 Games
101230End in 7 Games

HHAAHAHHHAAHAH** HHAAAHH*Home Sequence
HHAAAHH***

Games
299233421Total Played

0.6090.5880.553Mean W
(0.49)(0.49)(0.50)

8.1219.9531.004Mean REC
(8.46)(8.17)(4.52)

0.1510.1720.216Mean EXPER
(0.67)(0.60)(0.60)

Sources:  The Baseball Encyclopedia, Macmillan;  
The Sports Encyclopedia:  Pro Basketball, St. Martin's.
The National Hockey League Official Guide and Record Book, Triumph.
* other sequences were used in 1923, 1943-44, and 1961.
** = sequence until 1985, *** = sequence from 1985 
Standard Deviations in ()



Table 2.  Maximum Likelihood Estimates of Static Model 
IIIIII

Std ErrCoeffStd ErrCoeffStd ErrCoeffSportParameter
0.17*0.410.17*0.430.17*0.43BaseballHome Field Adv.
0.26*0.690.27*0.660.26*0.66Basketball
0.24*0.730.22*0.720.24*0.66Hockey

0.04 0.040.04 0.050.04 0.05BaseballRecord Diff.
0.02*0.060.03*0.070.02*0.07Basketball
0.03*0.110.03*0.130.02*0.12Hockey

0.31 0.520.28 0.540.28*0.54BaseballExperience Diff.
0.42 0.210.62 0.190.41 0.19Basketball
0.40 0.740.41*0.860.35*0.74Hockey

-058.46 0.00Baseballσ
-0-0.00Basketball

0.93 0.620.47*1.19Hockey

1.39*-3.24BaseballTeam Down 0-3
--Basketball

1.16 -1.36Hockey

0.69 -0.30BaseballTeam Down 1-3
0.89 -0.90Basketball
0.98 -0.14Hockey

0.65*1.51BaseballTeam Down 2-3
0.77 -0.30Basketball
0.81 -1.01Hockey

595.79605.03606.03-ln likelihood



Table 3.  ML and ML-Bootstrap Estimates of Sequential Game Parameters 
Bootstrap MLML Estimates

ResampleSpecification 2Specification 1
EstimateIQ RangeMeanStd ErrCoeffStd ErrCoeffSportParameter

0.200.340.660.17*0.430.18*0.43BaseballHome Field Adv.
0.270.441.060.27*0.660.24*0.66Basketball
0.550.510.900.22*0.720.24*0.72Hockey

0.050.070.040.04 0.050.04 0.05BaseballRecord Diff.
0.100.020.030.03*0.070.02*0.07Basketball
0.130.040.130.29 0.130.03*0.13Hockey

0.580.510.510.28*0.540.29 0.54BaseballExperience Diff.
-0.260.360.640.62 0.190.40 0.19Basketball
0.710.611.011.93 0.860.36*0.86Hockey

-106.219.97-4.37---11.29---11.29Baseballσ∗
-99.642.78-12.35---19.99---19.99Basketball

-107.742.38-2.613.760.170.410.17Hockey

-37.134.62-17.85---27.48759561.0 -27.487Baseballr*
-70.175.27-16.54---43.35595831.8-43.355Basketball
-2.775.59-18.118.8E+08 -10.44022778.0 -10.440Hockey

605.03605.03-ln likelihood
* indicates significance at the 5% level.  Bootstrap estimates based on 878 re-samples of the data.
IQ Range = interquartile range of ML estimates across bootstrap resamples
Bootstrap ML Estimate = 2*ML Estimate in Spec. 1 - Resample Mean.


