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ABSTRACT

This paper considers the trade-off, for cointegration tests,
between dimension and power: that 1is, we compare the power
performance of test-statistics which are dimension-invariant but
impose common-factor restrictions with tests which are not
dimension free but do not impose those restrictions. As a
byproduct of the analysis, we consider cases where the t-ratio
form of the tests have better power properties than the
coefficient form, in spite of the latter diverging at rate O (T)
and the former at Op(ThQ), under the alternative hypothesi; of
cointegration.
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1. INTRODUCTION

This paper compares the performance of a number of
cointegration tests. The tests considered fall into two classes.
The first consists of dimension-invariant tests, as recently
proposed by Hansen (1990), based on the Cochrane-Orcutt estimation
procedure (henceforth denoted as C-O test). The advantage of these
tests is that they converge to the Dickey-Fuller distribution
regardless of the number of variables in the cointegrating
regression. The second class consists of tests based on the
estimated error-correction coefficient in the ECM representation
of the model, as proposed by Banerjee et al. (1986) and Boswi jk
(1991) (henceforth denoted as ECM test). In comparing both types
of tests, we extend the argument made in Kremers et al. (1992),
about imposing potentially invalid common-factor restrictions in
residual based cointegration tests with known cointegrating
vectors, to the case where cointegrating vectors have to be
estimated, and argue that the dimension-invariant class of tests
may suffer from the same problem. Consequently, if these
restrictions are not satisfied the tests may have poor power
properties.

Furthermore, as a byproduct of the analysis under the
alternative hypothesis of cointegration, we show that
cointegration tests based upon the t-ratio form may sometimes have
better power properties than tests based upon the estimated
coefficient itself. This is an interesting result, since as shown
by Phillips and Ouliaris (1990), under the alternative hypothesis,
the former test has non-centrality which grows at rate T2 while
the non-centrality parameter of the latter test diverges at rate

T. However, we show that, for finite samples, as a local result,



the t-form may be superior.

To examine the asymptotic and finite-sample properties of the
various test procedures, we use a very simple, but illustrative,
data generating process (DGP), and later show that the reason for
the lack of power of the dimension-invariant tests may remain in
more general cases.

The basic framework of reference is that of single equation
conditional error correction models where OLS is an asymptotically
efficient estimation procedure. For expository purposes, in most
of the. paper we use the simplifying assumption that the regressors
are strongly exogenous for the parameters of interest. Later on in
the analysis we generalise the results to the more realistic case
where the regressors are only weakly exogenous but the use of OLS
is still asymptotically optimal. We show that the ECM test in that
case 1is not similar, i.e. depends on nuisance parameters. To
overcome that problem, a "modified" ECM test is suggested which
turns out to be asymptotically similar.

The rest of the paper is organised as follows. Section 2
presents the data generation process (DGP) of interest, briefly
describes both the C-O and the ECM test procedures and compares
their asymptotic distributions under the null hypothesis of non-
cointegration. Section 3 gives the corresponding limiting
distributions under the alternative hypothesis of cointegration,
using both a fixed alternative and a near non-cointegrated
alternative. Section 4 provides Monte-Carlo finite-sample evidence
about the illustrative DGP. Section S5 considers generalisations to
more realistic cases. Concluding remarks are given in section 6.

In common with most of the literature in this field, we

follow some notational conventions. The symbol "=" denotes weak



convergence of probability measures; "-" denotes convergence in
probability; "=" denotes equality in distribution; BM(Q) refers to
a Brownian motion with long-run covariance matrix Q. Arguments of
functionals on the space [0,1] are frequently suppressed and
integrals with respect to Lebesgue measure on the space [0,1] such
as JéBz(r)dr are written as IBz to reduce notation. Emboldened

symbols represent vectors or matrices of variables. Proofs of

important results are relegated to the appendix.

2. A SIMPLE DGP AND THE C-0 AND ECM TEST STATISTICS

By using a simple DGP, based upon a multivariate dynamic
process, this section describes the C-O0 and ECM testing
procedures.

This bivariate DGP has been used elsewhere [c.f. Davidson et
al. (1978), Banerjee et al. (1986) and Kremers et al. (1992)] and
has the form:

Ay

t

Ax = u . (2)
t t

a’Axt + B(yt_l-k'xt_l) +e (1)

where Ayt =YYy Axt=xt-xt_1, and
1 |e UZ 0’
tl- ||, | e = N(0,%)
u 0 =

and «, A and x are (k x 1) vectors of parameters and explanatory

variables. With this set-up, the partial sum processes
. [Tr]
ST(r)=T leu%,uév satisfy the multivariate invariance

principles [c.f. Phillips and Durlauf (1986)]:
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s_(r) » =2B(r) = BM(Q)

where B(r)=(Be(r),Bu(r)’)’ is a (k+1) vector standard Brownian
motion, i.e. BM(I).

We further assume that -2<B=0. In this DGP, Y, and x are
cointégrated when -2<B<0, while they are not cointegrated when
B=0. Thus, tests of cointegration must rely upon some estimate of
the parameter . Under the simplifying assumption that x, is
strongly exogenous (c.f. Hendry and Richard (1982)) for the
parameters of the conditional model (1), non-linear least squares
(NLS) can be applied to (1) yielding consistent estimates of «, B
and A. Either the coefficient estimate é or the t-ratio based upon
é can be used to test the null hypothesis that yt and xt are
cointegrated with cointegrating vector (1,-A’). However, it is
well known that the asymptotic distributions of these test-
statistics shift away from the origin as the dimensionality of the
vector x, increases (see, for example, Banerjee and Hendry (1992)
and MacKinnon (1994)). Thus, larger test statistics are needed for
rejection, reflecting the fact that this class of test-statistics
is not dimension-invariant. This has often been called the "curse
of dimensionality".

Hansen’s C-O procedure corrects for this problem by using an
iterative estimation variant of the Engle and Granger (1987)
procedure. According to the C-O procedure [c.f. Cochrane and
Orcutt (1949)], the iterated method is equivalent to estimating

the parameters of the following model by NLS

Ayt—h’Axt . B’[yt_l-h’xt_ll +e, (3)



where substitution of (2) into (1) implies that e = (a-A)’ut+eE
Denoting the NLS estimators of A and B in (3) by Aco and Bc,
o
respectively, Hansen (1990, Theorem 2) proves the following

result.

Proposition 1. For DGP (1)-(2), under the null hypothesis of no-
cointegration (B8=0)
T2(A_-a) » N(0,0°57})
co € u
" 2
TBco > JkBedBe/“rBsz
and

2,172
tco 3 chdBe/(IBe)
where tco is the t-ratio defined as

, oA 1725 Ay _ o4l
Z) 1Zeout)  TB_ c2 =T 1§e§

~-2
t =( T
co e co-1 co-1

with z =y -A" x and z is a (Tx1) vector of observations on
cot t co t co

-

z "

The previous results show that both the C-O coefficient and
t-ratio tests have the limiting Dickey-Fuller distributions. Note
also that these tests are asymptotically similar, i.e invariant to
the nuisance parameters of the DGP (a,cz,zu) under the null
hypothesis.

Although the previous test statistics are dimension-
invariant, 1i.e. their distributions are independent of the
dimension of the vector X . it is important to note that the

equation (3), as compared to equation (1), ignores part of the
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information contained in Axt. Equivalently, (3) imposes the
restriction that o=A, 1i.e. a common-factor restriction. The
transformation of (1) to (3) provides several interesting
insights. First, (1) and (3) are equivalent representations of the
DGP, given the relationship between €, and e, noted above, but the
two errors are not equal unless a=A. Second, the same condition
(x=A) is required for the common-factor restriction to be valid.

This follows from noting that

[1-(1+B)L]yt = [a—(a+7\B)L]’xt te, (4)

where L is the lag operator (A= 1-L).

Interestingly, in this case, even 1if the common-factor
restriction is invalid, e, remains white noise, althougb not an
innovation with respect to lagged x, and Y,

The ECM test statistic for cointegration, as suggested by
Baner jee et al. (1986) and Boswijk (1991), can be based upon
estimating (1) by NLS and testing HO: B=0. Alternatively, Baner jee
et al. (1993), using the results of Kiviet and Phillips (1992),
show that a parameter free distribution for the estimator of B can
be achieved if X _, is added to (1), setting A=0 without loss of
generality. This is so, since, under the alternative hypothesis,
the true cointegrating slope A is implicitly estimated when x,_,
is included as an additional regressor under the assumption of
strong (weak) exogeneity of x, with respect to B and A. Therefore,
according to this procedure, B 1is estimated by OLS from the

unrestricted dynamic model

- ’ + ’ = ’ ’ ’
o Axt + Byt_1 e X, + £, o Axt + T LA + €, (1)



where w’t=(yt,x’t)’ and ©’'=(B,60").

Since B(1,-A’)=n’, then the non-cointegration restriction =0
implies =0 and so the ECM test can be based on the significance
of the OLS estimator of B, denoted by ér: in (1)’. Thus letting y
and Ay to be (Tx1) vectors of observations on yt and Ayt, the ECM

estimator, is defined by

-~ , -1
B, = ly’ My 1y May (5)
where M = I-V(V'V)"lV’ and V is a (Tx2k) matrix of observations on

v¢=(Ax,, %;_,)’ . The following proposition holds.

Proposition 2. For DGP(1)-(2), under the null hypothesis of no

cointegration (B=0)

2 2 , » y=1 -1 _ , , -1
TBEs[J‘Be-(JBuBe) (J'BuBu) (.lBuBe)] [J‘BedBe (J'BuBe) (JBuBu) (J‘BudBe)]
_rprs2y-1 3

=[IB€] ‘lBsdBe

-1

with B€=B€—(IBUB8)’ (IBUB;) Bu

and

2 , y =1 -1/2 _ , y =1
tEé[IBe—(J'BuBe) (JBuBu) fBuBe] [J’BedBe (J‘BuBe) (J'BuBu) J‘BudBe]
L em2,-1/2 =

=[J’B€1 J’BsdBe

where tE is the t-ratio defined as

-~

T
172 - ~
T8 cg = T-'Zet »

_ [o-2.-2,
t, = [cre T y_IMy_ll

Note that §e is the residual from the continuous time
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regression of Be on Bu. Thus the above distributions depend upon
the number of elements (k) in x, as reflected by the presence of

Bu in Be’ implying that the corresponding test-statistics are not
dimension-invariant.

Remark. As a curiosity, it can be noted from the prevous limiting
distributions that there is a transformation of TéE or tE which
has thg Dickey-Fuller distribution and is also dimension-free. We
will denote such estimator as EDF estimator (ECM cum Dicke&-Fuller

distribution). It is immediate to see that BE in (5) is identical

to

é = (z; Mz )-lzé MAZ_ (6)

-~ -~ -~ -

where z_=y -a’x and z_ is a (Txl) vector of observations on z |,
Et "t Et E Et

where &E is the OLS estimator of a« in (1’). Now, since the

projection matrix M anihilates both x_1 and Ax, tests based upon

the following estimator
Az (7)

such as Témm or the t-ratio, have the Dickey-Fuller asymptotic
distributions. Thus, this is the only test which does not impose
common-factor restrictions and is dimension invariant. However, in
a sense, this 1is the free-lunch case, i.e it seems to buy
dimension-invariance at zero cost, and should not be expected to
exist to play a useful role. This is indeed what happens. The EDF
test-statistics test for the stationarity of Ezt which 1is an
inconsistent estimator of the true ECM term, yt-h’xt, because &Eaa

and not to A, under the alternative hypothesis of cointegration.
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Hence, the EDF test has zero power under fixed alternatives of

cointegration and we do not discuss this test further.!l

3. DISTRIBUTION OF THE STATISTICS UNDER THE ALTERNATIVE HYPOTHESIS
OF COINTEGRATION

The alternative hypothesis is that of cointegration which,
for (1)-(2), is given by -2<B<0. Because the error-correction term
in (1) is stationary wunder the alternative hypothesis,
distributional results from conventional central 1limit theorems,
instead of functional central 1limit theorems, apply for fixed
alternatives. In contrast, under a suitable sequence of 1local
alternatives, the non-conventional asymptotic theory developed by
Phillips (1987b, 1988) for near-integrated time series can be
applied to sharpen the results on the relative asymptotic power
functions for the C-O and ECM tests. In order to provide some
intuition for the results obtained under near-no cointegration we
first discuss briefly the fixed alternative case.

The main result here is that the ECM test tends to have
higher power than the C-0O test when var(et) is large relative to
var(et). The intuition behind these results is as follows. The ECM

regression conditions on Axt, x and Yoy whereas the C-0

t-1
regression conditions on the three sets of variables subject to
restrictions. This results in a loss of potentially valuable

information. Consider again the alternative representations of

equation (1):

by, = «'dx + B(yt_l—h xt_l) te =AAx <+ B(yt_l-A xt_I) +e

As an extreme example, let st¢0 but a#A and (a—h)’Zu(a—A) is



“substantial”. In that case, the ECM regression has a near perfect
fit with «, B and A being estimated with near exact precision, and
the t-ratio for BE is (arbitrarily) large. However, since the

variance of et is
o = (=A)’Z (a=A) + ol
e u 4

the estimates of A and B in the C-O procedure will be much more

imprecise, affecting the power of the test based upon Bco.

3.1 Distributions under a Local Alternative Hypothesis

To formalise the intuition for the <case of local
alternatives, we use the distribution theory for local
alternatives discuséed in Phillips (1987b, 1988) inter alia. These
non-central distributions help in the analysis of the local
asymptotic power properties of the various tests and, as a
limiting case, they allow us to obtain the distribution under
fixed alternatives. A similar method was used by Kremers et al.
(1992) for the case where the potential cointegrating vector was
assumed to be known and did not need to be estimated. Consider the

following parameterisation
B = 1-exp(c/T) = -c/T (8)

In (8), c is a fixed scalar. We call time series that are
generated by (1)-(2), with B as in (8), near-no cointegrated,
following the terminology introduced by Phillips (1987b) for
univariate processes. The scalar c represents a non-centrality

parameter which may be used to measure deviations from the null
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hypothesis HO:B=0._When c>0, (8) represents a local alternative to
Ho, so that the rate of approach is controlled and the effect of
the alternative hypothesis on the limiting distribution of the
statistics, based on the DGP (1)-(2)-(8), is directly measurable
in terms of the non-centrality parameter c.

To proceed to the analysis of local power, use is made of the

following diffusion process

r r
K(r) = Iexp[c(r-s))dB(s) = B(r) + cjexp[c(r-s)]Bds (9)
) 0

associated with the standardised disturbances €, u and e, denoted
as Ks’ Ku and Ke, respectively. Note that if c=0 then K=B.

Using (9) it is possible to show the following result:

Proposition 3. For DGP (1)-(2) and (8), under the alternative

hypothesis of near-no cointegration (c>0)
- 20,2 172 172 172 -1
B = { o2IK%-20 (a-2)'=Y2rB K +(a-2)'£22/B B’ =12 (a-2) }
co e e e u u e u uuu
{ —cl02fK3-c (a-1)'SY2fBK 1+ ¢ JK dB -o (a-A)’=2/B dB } =9
e e e u u e e € e €& £ u u € co
- 2, o2 -1 -1
TR » -c+ { 2 [JK3-(JBK,)’ (JB B’ ) ' (JB'K ) }
E e e u uu u e

’ » 31 -
O'ea‘e{ K dB_-(fBX )’ (fBB))™ (/B dB_) } =0

whereas in the case of the t-ratios,

11



-1/2
u

172
u

172
t = {w'z[oamz—m (@=A)'= Y2rB K +(a-2)'=2?/B B’Zl/z(a—h)]} @
co € e e e u e uuu co

172
t s {v'zoz[J‘KZ-(fBK )’ (JBB ) ' (JBK )1} o m
E £ e e u e uu u e E

Since ¢ K, = (a—h)’Zul/zKu+¢€K£’ note that, when c=0, the
non-centrality parameters of the three statistics are zero, K=B
and the distributions under the null in Propositions 1 & 2 are
recovered, i.e. power equals size.

Although the comparison of the asymptotic distributions under
the alternative local hypothesis is cumbersome, given the
complexity of the Wiener functional derived above, we expect that
the power of the C-O test will be higher than the power of the ECM
test under those assumptions wherein the "curse of dimensionality"
is strongest, i.e. when the common factor restrictions are valid
and the number of regressors 1is large. However, when these
restrictions do not hold, the relative ranking in power may be
totally altered. To illustrate this case, let us simplify the
analysis by assuming that there is a single regressor, that is
k=1. Then, given the existing relationship between the

disturbances et, st and ut:

e = (a-A)ut * e,
we will define a "signal-to-noise" ratio gq=(a-A)s with s=cu/¢£,
corresponding to the ratio of the (square root of the)variance of
(a-A)Axt relative to €, This ratio will play a prominent role in
the analysis since, as qtw, it allows for ‘"small-co"

approximations, i.e stTO; cf. Kadane (1970,1971). Making use of
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these results, the following proposition holds.

Proposition 4. For DGP (1)-(2) and (8), when k=1, under the

alternative hypothesis of near-no cointegration (c>0):

TB_ » -clf(K_-B )%™ (K -B) + o,(q"!)

- -1
TBE » —c+o,(q ")

whereas in the case of the t-ratios,

t = -clf(K-B)?172X (K -B ) + o,(q™!)
co e u e e u

2,172

t = -c(1+q2) 213 (Jx B )2/ (UB5) 12 + (Jx3-(k B )2/ (JB%) 172
E e e u u e e u u

- 2 (g1
(5K dB_-(JK B ) (fB dB_)/(JB*)] + o,(q™)

Various interesting properties arise from Proposition 4. In
what follows it will be convenient to divide the discussion
between those properties pertaining to the coefficient-test

statistics and those relating to the t-ratios.

a) Coefficient Test-Statistics

First, asymptotically as qgqtw, i.e. a#A and st®o, the non-
centrality parameter in the C-O test has a stochastic slope given
by zero whereas the ECM test has a slope equal to (minus) unity,
i.e. there 1is a degenerate distribution centred on (-c). The
intuition behind this result 1is that the variance of the
denominator in the distribution of Téco tends to overcome the
variability of the numerator, leading to low power in the C-0

test. Hence, the ECM test will tend to be more powerful than the
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C-0 test when g is sizeable, for a given sample size.

Second, and most importantly, from Proposition 2, since the
limiting distribution of TéE is independent of q under the null
hypothesis, and degenerates around (-c) wunder the local
alternative, for small values of c, the lower 5% tail of the
distribution under the null will tend to be to the left of (-c).
Therefore, we should also observe very low power of the test based
on the ECM coefficient, although higher than that pertaining to
the C-O test as g gets larger. Notice that this problem does not
arise with the t-ratio version of the ECM test, as will be seen
below. For this reason, the tests based upon the t-ratios might be

preferable to those based directly on the scaled coefficients.

b) t-ratio Test-Statistics

In this case the limiting distribution of the ECM test has a
stochastic slope which depends upon g and does not degenerate
around a single value as in the case of the tests based on the
coefficient. In the case of the C-0O test-statistic, using
arguments similar to those employed previously, Proposition 4
shows that the limiting distribution does not depend on q. Thus
when q is sizeable, its power will be lower than that of the ECM
test, tending towards zero even though the limiting distribution
under the local alternative tends to be less skewed to the left

than that under the null hypothesis.

3.2 Distributions under a Fixed Alternative Hypothesis
For the case of the fixed alternative (cto and T?w), the
deviation from equilibrium (y-A’x) is stationary and the limiting

distributions are as follows:

14



Proposition S. For DGP (1)-(2), under a fixed alternative

hypothesis (B<0), with q2=(a-h)’2u(a—A)/cz

8 = TN[0,1-(1+8)%] + T8 = 0 (T)

t =NO0,1) + [T/(1-(1+8)%)1%8 = op(r"z)

18, = T2N(0, (1-(148)%)/1+¢%] + T8 = 0 (T)

t_ = N(0,1) + [T(1+q*)/(1-(1+8)*) 1?8 = OP(TVZ) .

Remark. Note that, for given q, the coefficient tests are Op(T)

1/2), as shown by Phillips and

whilst the t-ratio tests are Op(T
Ouliaris (1990, Theorem 5.1). However, notice that the non-
centrality parameters of the t-ratio test will be larger than that
of the coefficient test if T<1/1-(1+8)® (in the C-0 case) and
T<(1+q2)/[1-(1+3)2] (in the ECM case). In terms of power itself,
it is easy to see that, for both classes of tests, the power of
the t-test will be larger than that of the coefficient test if
(1+B)2<[1-(cvc/cvt)2T-1] where cv_ and cv, are the critical values
at the chosen significance level?. Equally, since q2 is R2/1—R2
where R2 is the population R2 with B=0, then the coefficient test
will have larger non-centrality parameter than the t-ratio test if
Rz>1~[T(1+B)2]‘1 (e.g. if B=-0.01 and T=100, then the cutt-off
point will be such that R2>0.497). Finally, note that for q>0, the

non-centrality parameter of tE is larger than that of tco, while

the variance of the TBco is larger than that of TBE.

5. FINITE SAMPLE EVIDENCE
To examine the size and power of the C-O and ECM statistics
in finite samples, a set of Monte-Carlo experiments were conducted

with (1) and (2) as the DGP, using simulations based on 25,000
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replications generated in GAUSS386. A single exogenous regressor,
k=1, was used for illustrative purposes. Data were generated with
the normalization 0€=1, without loss of generality, leaving three
parameters (s,a,B) and the sample size T as experimental design

variables. In this study we choose

s = (0.05,1,5,20)
a = (0.1,0.9)
B = (0 [no cointegration],-0.05,-0.10 [cointegration in

both cases])

T = (100)

The implied range of the "signal-to-noise" ratio is broad,
including values potentially favourable and unfavourable for the
relative power comparisons among the different tests. In order to
simplify the analysis, under the alternative hypothesis, the value
of the cointegrating slope, A, was fixed equal to 1. Similarly,
the values of the short-run elasticity, «, attempt to capture a
smaller («=0.1) and a similar value (a=0.9) relative to the one
chosen for A. Combining the values of @ and A with those for s, we
obtain a wide range of values for q, ranging from 0.005 to 18.

In order to compute the non-linear estimators in the C-0
procedure, we have followed Hansen’'s advice in using a bias
adjusted estimator of B in the initial iteration. Thus, if ézo is

the estimator in the initial iteration, let us define

vV
[

B + a/T
(]

co

where a>0 is a fixed constant which Hansen suggests selecting

16



equal to 10. Eight iterations were performed with this procedure
and, at the final stage, a/T was subtracted from é;, in order to
use the standard Dickey-Fuller tables.

Finally, in order to enlarge the range of the comparisons, we
have also included the well known Engle and Granger (1987) test
(henceforth denoted as EG test), based of the static regression
model. This test suffers both from the "curse of dimensionality"
and the "common-factor restriction" problem (c.f. Phillips and
Ouliaris (1990) and Kremers et al. (1992)), so that it is useful
to see how it performs relative to the other tests discussed in
this paper.

Under the null of no cointegration (B=0) Table 1 presents a
summary of the critical values at both tails of the distributions.
In order to afford comparisons with the standard Dickey-Fuller
distribution, to which the C-O test should correspond under the
null, the first row in Table 1 offers the cumulative distribution
of the DF test (c.f. Fuller é1976)). The empirical distributions
were computed under the different choices of s, turning out to be
highly invariant to the chosen value of that ratio, in agreement
with analytical results contained in Proposition 1. Given this
degree of invariance, the reported figures correspond to the
averages of the critical values across the chosen range of values
for s. On the one hand, it can be observed that the empirical
distribution of the C-O test is close to the DF unit root
distribution, although there seems to be more divergence in the
case of the coefficient version than in the t-ratio version of the
tests, where the deviations seem to be small. On the other hand,
as expected, the empirical distribution of the ECM differs from

the unit root distribution, reflecting the fact that it is not

17



dimension-free. Similarly, the EG test, being a residual based
test, also differs from the standard DF distribution.

Next, in order to examine the dependence of the test on the
dimeﬁsion of the system, we compare, in Table 2, the evolution of
the critical values as the number of regressor is extended from
one, as before, to five exogenous variables when T=100. The
results here confirm our earlier finding. The t-tests seem to be
more immune to the "curse of dimensionality" than the coefficient
tests and, as expected, the ECM and EG tests shift to the left in
distribution as the dimension of the system increases.

Finally, Table 3 reports size adjusted powers for the
selected range of values for a and s, when B=-0.05 and B=-0.10.
Since only negative values are consistent with the stability of
the system, a one-sided 5% test was used. The results seem to be
consistent with the asymptotic results derived in the previous
section. First, when q is low and c¢ is small, e.g. c=-5 when B=-
0.05 and T=100, the ECM test, both in its t-ratio and coefficient
versions, seems to be slightly less powerful than the C-0 test,
reflecting the "curse of dimensionality". However, as q increases,
either because a becomes different from A or because s rises, the
ECM test becomes the most powerful. Also, in agreement with the
degeneration of the asymptotic distributions of the coefficient
version of the tests, their absolute power decreases as q
increases. This is clearly not the case with the t-ratio versions
where the ECM tests shifts its complete distribution to the left
so as to achieve maximum power. For example, an extreme case is
when c=-5 (B=-0.05), «=0.1 and s=20, where the t-ratio version of
the ECM test rejects 100% of the time, the C-O test almost does

not reject at all.
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As regards the power of the EG test, the results indicate
that its power also decreases as q increases, though at a lower
rate than the power of the C-O test. In agreement with the results
in Banerjee et al. (1986), it turns out to have lower power than

the ECM test, even when q is small.

S. GENERALISATIONS

The common factor problem of the C-O statistic remains when
(1) includes additional lags. Furthermore, the use of the ADF
test-statistic, or the non-parametric corrections suggested by
Phillips (1987a), on the C-O residuals do not resolve the problem.
Since this argument is similar to that given by Kremers et al.
(1992) where the potential cointegration vector is assumed to be
known a priori, we will not discuss it further. However, we note a

few issues. First, if (1) is generalized to

'a'(L)Ayt = a(L)'Axt + B(y-h’x)t_1 + €, (1°)

then e, in the C-O procedure given by

e = (a(L) - 7(L)A')'ut + e,

need not be white noise. Indeed, in general, it will follow a
moving average (MA) process, which are accounted by means of the
Phillips and Perron’s (1988) Z statistics. It is known than when
the roots of such MA processes are close to be on the unit circle,
these tests may suffer from severe size distortions; (c.f. Schwert
(1989)).

Second, the simplifying assumption that u, is white noise in
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(1) can be replaced by being I(0), but long-run independent of €,
that is Bu will still be an independent Brownian motion of Bs’

with long-run variance (for k=1) given by:

where O‘i = E(uf) and ¢u=z E(uluj). In this case, the limiting
j=2

distributions in Proposition remain similar, except that the

"signal-to-noise" ratio q now becomes
q= (a-h)wu/u'e

Third, there is the more realistic case where x, is not
strongly exogenous, as assumed in DGP(1)-(2), but only weakly
exogenous for the parameters of interest y=(8,A’)’, in the Engle
et al. (1983) sense. In this case, the more general DGP will

consist of (1) and the following marginal process for Axt
© ©
Axt =u = ZAjat_j, z ||Aj| [< o 2’)
) 0

where the (k+1) innovation vector at=(£t_1,n’t)’ is assumed to be a
strictly stationary and ergodic with zero mean and finite
covariance matrix Za=diag(o‘z,2n)>0. Thus, in this more general
case, the partial sum process constructed form the (k+1) vector

vt=(et,u;)’ will now converge to BM(Q) where
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wecw’e o2
Q = Cl=S+A+N =pA+N; = | E
w Q 0

u& uu

0'
z

uu

[»] 00
. _2 _ _ ,
with W0 wue—ZE(uoet) and A E(vovt).
-0 1

Let It=o'(at,at_1. ...).Then, since E(ct/It)=0, OLS will vyield
efficient estimates of B in (1’) and the ECM tests can be
implemented in a single equation framework, yielding limiting
distributions as those obtained in Proposition 2.

Notice that this follows because, wunder the previous

assumptions, the correlation between €, and present and lagged
[+ ]

values of Axt is zero, i.e A21=ZE(uoet)=0. Thus, second-order bias
0

effects capturing the "one-sided long-run covariance" will be
absent in the limiting distributions of the ECM test-statistics,
as in Proposition 2. However, note that in this case, Be and Bu
are no longer independent Brownian motions. To illustrate that
feature take the following simple example. For k=1, let
Axt;ut=7Ayt_1+nt=7(aut-1+et_1)nt with E(etns)=0 for all t and s,
then X, will be weakly exogenous for ¢ in (1’), but the long-run

covariance between Be and B‘x will be 7(1-«7)°10'2 under the null
0o

hypothesis of non-cointegration. This is so since ZE((eout)*O,
1

implying that the limiting distributions obtained in Proposition
2, will now depend on nuisance parameters (wue) and the
corresponding tests will not be asymptotically similar. Thus, in
principle, the computation of critical values in this more general

case is problematic. Consequently, the appropriate critical values
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will differ form those tabulated in Table 1 where B€ and Bu were
assumed to be BM(I).

To overcome the problem of lack of similarity, we follow in
part the seminal work of Hansen and Phillips (1990) on the
derivation of "modified" estimators which, under cointegration,
achieve mixed Gaussian asymptotic distribution. Since our work is
under the null of non-cointegration, the idea here is slightly
different, namely to reformulate functionals of Brownian motions
B(r)=BM(Q) into distributionally equivalent functionals of
independent standard Brownian motions BM(I), which will now be
denoted as W(r). The mapping between the unstandardised B(r) and
the standardised W(r) is given by W(r)=K’B(r) where Q'=KK'; c.f.

Phillips and Ouliaris (1990). Then

-1/72 - -1/2 -1
- w h -hd’
N EE€.u €€.u €u uu
K = 172 = o %2
0 Q uu
uu
. -1 2 . -1
with w = -w Q w , w_ = and d’=0 Q . Thus,
£E€E.u €€ £Eu uu ut EE € £€u uu

W=h(B -d’B ) and W.=Q /%B .
1 £ u 2 uu u
Let Ay+=Ay -d’Ax where d=Q_1w . Note that, using residuals

t t t uu ug
from the NLS estimation of (1’) we can estimate Quu, wue and h-1

consistently by

T
= 'T'1Z Ax, Ax)

>

Q
I

uu

1 1

-1 ~

3 =T ZAxe

u€ ii i tt
i=1 i+l

b4

"
b
«
[N,

-i
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~-1 ~1/2 "2~ a1t 172
h =w =lc-w QW
£€€.u € €u uu u€

where the weights w are usually selected so that for each i, 1Tw

174

as T’ so that 1=0(T""); c.f. Newey and West (1987). One simple

choice for the weights is the Barlett window wi=1-lil/(l+1) with

1=int [1+5T " /%]

as suggested by Bierens (1993). Then, the
following result holds:
Proposition 6. For DGP (1)-(2’), under the null hypothesis (B=0),

the ECM modified estimator and its t-ratio (denoted as ME) are

defined as

2 y -1 ’ +

Bm: B [y-1M1y-1] y-IMIAy
_ ~-t , 1727

be = [wee.uy-1"1y-1] BHE

and have the following limiting distributions

~

B, = [J‘Wz ] ’lﬂiedwe

=2.-1/2 o=
tm-: 2 [‘me] “rwedwe
s = g - , y =1

with we-we (.Wuwc) (J"Huwu) Hu.

Thus, form the previous result we can observe that the modified
estimator Bm-: can be interpreted as the OLS estimator of the

e s . N +

coefficient on Yoo, 1P the regression of Ayt on x, and Yeoy:
Note that Axt is excluded from the set of regressors, since in

that case the use of the projection matrix M in the partitioned

regression would imply MAy*=MAy given that MAx=0.
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Finally, though deterministic terms have been ignored 1in the
previous analysis for the sake of simplicity, the data may be
demeaned, or demeaned and detrended, before applying the various
tests for cointegration. The limiting disfributions of the various
tests discussed in the paper in such cases are of the same form,
except that the Brownian motions are replaced by the appropriate
Brownian bridges. The asymptotic critical values for the ECM test
in its t-ratio version, which are only available for k=1 (Baner jee
et al. (1993)) are extended in Table 4. In order to analyse the
finite sample distribution of those tests the critical values for
the 1lower tail of the distribution in Table 4 up to five
regressors for four different sample sizes (T=25,50,100 and S00)
are also presented. Since there are many examples in applied work
of single equation conditional models with weakly exogenous
regressors for the parameters of interest (see, e.g. Hendry,
1987), we think that the above critical values may be widely

applicable.

6. CONCLUSIONS

Testing for cointegration has become an important facet of
empirical analysis of economic time series over the last several
years and various tests are being used. In this paper, we compare
the relative performance of dimension-invariant tests whose
distributional theory does not depend upon the dimensionality of
the system but impose common-factor restrictions and tests which
are not dimension-free but do not impose such restrictions. Using
‘the argument of Kremers et al. (1992), we show that in realistic
cases the former may have poor power properties. Moreover, as a

byproduct of the analysis, we show that, in spite of coefficient
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1/2
)

tests being OP(T) and t-ratio tests being OP(T under the

alternative hypothesis of cointegration, the latter may have
better power properties. The results are obtained for a simple DGP

and then shown to extend to more general cases.

NOTES

1. However, if a=A in the DGP, then the non-centrality parameters
of the EDF and C-0 tests are identical since now o, is a

consistent estimate of A.

2. The following example taken from Gregory and Hansen (1993)
serves as an illustration of the previous result. In their Table
2, they generate simulations of the DGP, yt=1+2xt+et and xt=yt+nt
with et=(1—pL)-1vt and Ant=wt where w, and v, are orthogonal
nid(0,1) processes. The critical values at 5% level of the Za
(coefficient) and Zt (t-ratio) tests (with constant term) are
-40.48 and -4.61 respectively. Using the asymptotic distributions
for TR and t in Proposition 5, for B=-0.5 and T=50, the

rejection probabilities are Pr(¢<0.30) (t-ratio test) and Pr(¢<-
2.53) (coefficient test) where ¢ is a standarised normal variate.
Similarly for B=-1, they are Pr(¢<2.46] and Prl¢<1.35]
respectively. Thus, the results in Proposition 5 provide a simple
explanation of their finding that the Zt test has better power

properties than the Za test in those instances.
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APPENDIX
The analysis contained in this appendix draws on a number of
well known results in Phillips (1987b, 1988) and Phillips and
Ouliaris (1990). Under the null hypothesis of no-cointegration,

the DGP (Ho) is given by

et 0 02 0’
Ayt = a’Axt * e u ~IN €

Ax = u ;
t

The results do not depend on the inialization, so let us

T T
define S =Ze, and S =Zu_ and let S and S be (Txl) and (Txk)
£t i ut i £ u
1 1

matrices of observations on Set and Sut, respectively. Note that

x=Su and y=Sua+Se. Let M1 be the projection matrix

-1
M=I-x (x’ x ) x .
1 -1 T-1"-1 -1

Then, the following set of asymptotic results (R1) are used

in the proofs:

=2 2 52
(a) T Se-l“ise-l > 0eIBs

-1, P
(b) TS, Me s o fB_dB_
(c) T'w’Mu =0 (1)
1 P
(d) T 's’
e-
T

(e) T Weu = op(l)

1“1“ = Op(l)

tt
1

Z _p o . v -1
where Be Be (IBuBe) (IBuBu) Bu.

Under the local alternative hypothesis of near-no

cointegration the DGP (Hla) is given by
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Azt = Bz + e

Ax = u
t

with B=-c/T; z =y -A’x, e=(a-A)’u+e and z and e are (Tx1)
t 7t t t t ot
vectors of observations on zt and et.
In this case the following additional asymptotic results (R2)

are used
(a) T2’z » o2JK°
e e
(b) T2z'M z » o2JK2
1 e e
-2, -
(e) T z-1"1€ > GQUeIKedBe
(d) T'z’' e » o¢2JK dB
-1 e e e
(e) T’z » o =2[BK
e u u e
where K =K -(/BK )’ (/B B’)-iB
e e u e uu u
and

2Tk = (a-A)’ 2K K )2 (a-2) +2(a-2) o T2 0K K_+o2JK>
e e u uu u € u € €

u €

Proof of Proposition 1

See Hansen (1990, Theorem 2)
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Proof of Proposition 2

Let V be a (Tx2k) matrix of observations on vt=(Ax;,x;_1Y

and x . and Ax be (Txk) matrices of observations on Axt and X
respectively. Define the projection matrices M=I-V(V'V)V’ such
that, by partitioned inverses, M=M1—M1Ax(Ax’M1Ax)-1Ax'M1.

Then, éE is computed such that

~

2, -1,.-1_,
TBE = (T y_IMy_l) (T y_IHAy)

= (T%s’ Ms_ )" MT's. Me)
e-1  e-1 €-1
since y=Sua+S€, Ay=ua+e and M is orthogonal to x_, and Ax. Using

parts (a) to (d) of (R1) and the relationship between M and Ml we

have
-2, o m=2es I -1, -1, -1,
T, MS__ =(T7°s; Ms_)-T(T's, Mw (T 'wMw  (T"wNMs__ )
=2 -1 -2 ’
=T MS +T "0 (1)0 (1)0 (1)=T °S’ M S +o (1)
£-1 1 €-1 P P P e-1 1 e-1 p
and
TS’ Me=(T7'S’ M e)-(T'S’ Muw) (T 'wMu (T 'wMe)=
e-1 e-1 1 e-1 1 1 1
-1 ) - = -1 )
T Se-1“1e Op(l)Op(l)op(l) T Se-1M18+°p(1)
since T’lu’Mle=(T'1u’e)—T-l(T°1u’x_1)(T-lelx_l)-I(T'lxlle)=op(1),

given (e) in R(1).
Next, using the limiting distributions in (a) and (b) in

R(1), yields the required results
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5 — ’ -1 ’ 524-1 5
TB=(S,_M;S, )7 (S, M el (1) » (/BB aB, (A.1)

To prove that vz > o, Jjust write

~

- -1 - - - - -
0'2=T ‘e’upe=r e e-T (T e’ P) (T %P P) U (T P e)

=T e’ e-T"20 (1)0 (1)0 (1)=c>+0 (1) ' (A.2)
P P P € p

where P is the (Tx2k+1) matrix of observations on (Ax’,qu,ybd)

and up=1-P(P’P)"P' :
From (A.1) and (A.2) the distribution of the t-ratio follows

along the same lines, leading to the required results.

Proof of Proposition 3

- N

Define z =y -A’x ,z =y -A’ x and z_=y -a’X
e Ve £’ %cot Tt t Et Ve

co E't
Then
zt=2m+ (A1)’ xt=2m+ (a-2)"x,+o0_(1) (A.3)
and
z=z_+(a-A)'x =z_+(a-1)’ x,+0 (1) (A.4)

- ~

. -1/
since Ac&*m and @ S at rate Op(T 2

). Let z =z -(a-A)’x and 2
t t t
is the (Txl1) vector of observations on Et.

Then, from (A.3) and (A.4), the C-O and ECM estimators can be

written as
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TBCO=(T'£' ; )(T; Az )=

co-1 co-1 co-1 co-1

TR+(17°2’ z

-1.-1~,
. _1) T z_l(e+Bx_1(a-A))+op(1) (A.5)

and
TR =(T %y’ My ) (T 'y’ MAy)=(T 22’ Mz ) N(T 'z’ May)
E Y v, y_,my -1 -1 By
=TR+(T %2’ Mz ) (T 'z’ M. e)+o (1) (A.6)
-1 17-1 -11 P :

since M is orthogonal to x_, and Ax and the limiting distribution
of (I’zzliﬁz_l) is equal to the limiting distribution of

(T’zzllnlz_l), as shown in the proof of Propositon 2.

Then using TB=-c and substituting results (a) to (e) in (R2)

into (A.5) and (A.6) yields the required results. Since T30 and

-~

oo, the proofs for the t-ratio statistics follow along similar

lines, leading to the required results.m

Proof of Proposition 4
For k=1, from the limiting distributions in Proposition 3, we

have
Técoa B -cfX B +(o_so )58 aB_]

where B ={K -(a-A)’ (¢ /o )B 1.
e e u e u

-1/2

Since q=(a—l)0u/¢£, it follows that (oe/we)=(1+q2) and

(a-A)vu/ae=q/(1+q2)1/2. Thus, as qTe, (@8/0e)TO and
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(a-A)(ou/ve)Tl, i.e §eEKe’ implying the required result for TBCO,

namely
2 2 2 -1
TB =-cJ(K™-K B )/J(K -B )"+o(q ")
co e e u e u
As regards TBE, we have

A =2,-1, =
TB£=-C+(0e/ae)(IBe) (IBedBe)

where B =K -(JBK )(JB®)™'B. Since (¢ /c )=(1+q>)""%, as q™
e e u e u u >4 e

(¢ /o )TO and
>4 e

Téaa—c+o(q-1)

-~

as required. Since ceeoe and a}ace the proofs for the limiting

distribution t-ratios proceed along similar lines.m

Proof of Proposition 5§

Under a fixed alternative, the DGP(Ha) is given by

Ay a Axt + B(yt_l—h X ) +¢€

t t-1 t

Ax = u
t t

with B<0. Then, zt(=yt-A’xt) is governed by the following AR(1)

process

z, = [1-(1+B)L]-1[(a-?«)’utﬂ:t] = [1-(1+3)I.]‘1et

where L is the lag operator and the variance of z, is V(zt)=0z[1—
(1+8)%17%.
Then,
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Tl/z(é -B) = (T2’ 2 )TV Az + o (1) » N[0,1—(1+B)2]
co -17-1 -1 P

by standard theory (e.g. Anderson, 1971, Chapter 5).

Thus,
TB =T(B -B) + T8 = T/2N[0,1-(1+8)3] + T8 = O (T)
co co P
and
t = (T% %2 z )V31TV2(8 -B)+TY%B] » N(0,1) + [T/1-(1+8)%1Y%8
co e -1 -1 co
=0 (1'%
P
Similarly,

2 -~
T’ (B-8) = N[0,062[1-(1+8)%1/6%)= N[O, (1-(1+8)%)/1+q7]

where q2=(a-A)’Zu(a-A)/cz.

Thus,
TéE = TV2N(0, (1-(1+8)%)/1+q%] + TB = 0 (T)
and
_ -17-2_, -1/2,1/2 5 1/2
tE = (T T z_le_l) (T (BE B) + T "Bl » N[0,1] +
[T(1+q°)/(1-(1+8)2)112 = OP(TUZ)

as required.s=s
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Proof of Proposition 6

Let

] - - ’ ’ -1

w1 - w1 (I"2w1) (Iwzwa) w2
= - - ’ » =1
Be = Be (fBuBe) (fBuBu) Bu

Then, since W =h(B -d’B ) and W =Q /2B, it follows that
1 £ u 2 uu u -

=
"
o
(o9)

Therefore,

and

- _ L 2.= w2,
J‘wldw1 = h J‘Best h°d J"BedBu
Hence,
-2 -1 .= _ rp324-1, 03 _
[J‘wll fwldw1 = [.rle [J’BedBe d J’BedBu] : (A.7)
Therefore, the "modified" ECM estimator defined by
~ _ _2 . -1 , _ -~
TBEH = [T y-1“1y-1][T y_IMI(Ay Axd ]
has the limiting distribution given in (A.7) since
(i)d > d
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. -2, 2,32 -1, 2 =
(ii) T y_lMly_1 > O‘SJ'BC and T y-1M1AY > oe.stdBe

(as shown in Proposition 1)
ceey 1, -1, 1l = .
(iii) T y_IMIAx-T y_lniu T S£:_1}11u=>,I"B€dBu (by (d) in R1)

leading to the required results. The proof for the '"modified"

ratio tHE follows along similar lines.m
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Table 1

Critical Values for the Coefficient (t-ratio) Version of the Tests

Size (k=1)
Test 0.05 0.10 0.90 0.95
DF -7.90 (-1.95) -5.60 (-1.61) 0.95 (0.90) 1.31 (1.29)
C-0 -8.69 (-2.05) -6.16 (-1.69) 0.97 (0.92) 1.37 (1.34)
ECM -12.38 (-2.60) -9.66 (-2.27) 0.66 (0.44) 1.21 (0.88)
EG -15.24 (-2.77) -12.40 (-2.47) -0.54 (-0.27) 0.24 (0.15)

Note: The number of replications (N) is 25,000; the sample size (T) is 100.
The first figure corresponds to the critical value of the coefficient version
of the test; the second figure (in parenthesis) corresponds to the critical
value of the t-ratio version of the test.

The notation associated with the tests is the following: i) DF: Dickey-Fuller
standard unit root test; C-0O: Hansen’'s Cochrane-Orcutt tests (computed after
eight iterations with a correction factor equal to 10/T); ECM: ECM coefficient
test; EG: Engle and Granger test (computed form the OLS residuals of the
static regression of y, on xt).



Table 2

Critical Values for the Coefficient (t-ratio) Version of the Tests

Test

C-0 (k=1)
(k=2)
(k=3)
(k=4)

(k=5)

ECM (k=1)
(k=2)
(k=3)
(k=4)

(k=5)

EG (k=1)
(k=2)
(k=3)
(k=4)

(k=5)

-10.

-12.

-16.

-19.

-22.

-26.

.69

.76

.50

.73

37

38

38

72

99

13

.24

.07

.31

.04

.56

Note: See note to Table

(different number of regressors)

.05)

.15)

.19)

.28)

.38)

.60)
.03)
.36)
.63)

.87)

L77)
.37)
.80)
.19)

.S5)

Size

0.10

.16 (-1
.94 (-1
.17 (-1.
.47 (-1.

.22 (-1.

.66 (-2.
.14 (-2.
.24 (-3.
.28 (-3.

.24 (-3.

.40 (-2.
.74 (-3.
.72 (-3.
.10 (-3.

.68 (-4.

.69)

LT7)

81)
91)

98)

27)
68)
01)
26)

50)

47)

04)

49)
87)

23)

.97

.98

.99

.98

.94

.66

.09

.80

.95

.03

.54

.83

.29

.86

.72

.90

(0.92)
(0.86)
(0.90)
(0.88)

(0.88)

(0.44)
(0.04)
(-0.31)
(-0.59)

(-0.80)

(-0.27)
(-1.03)
(-1.49)
(-1.87)

(-2.24)

1; k denotes the number of I(1) regressors.

.37

.34

.36

.37

.36

.21

.93

.33

.50

.32

.24

.58

.76

.25

.67

.95

(1.34)
(1.28)
(1.31)
(1.32)

(1.34)

(0.88)
(0.51)
(0.14)
(-0.17)

(-0.39)

(0.15)

(-0.68)
(-1.21)
(-1.59)

(-1.96)



Test

a=0.1

a=0.9

a=0.1

a=0.9

Note:

B=-0.05

B=-0.10

Cc-0
ECM
EG

C-0
ECM
EG

parenthesis.

sS=

30
22
14

30
21
14

69
53
36

70
53
37

Size Adjusted Powers of 5% Tests

0.05

(30)
(18)
(15)

(30)
(17)
(14)

(68)
(54)
(36)

(70)
(54)
(37)

(percentages)
s=1.00 s=5.00
8 (7) 0 (0)
14 (23) 0 (88)
11 (11) 5 (5)
28 (28) 16 (16)
21 (17) 18 (19)
13 (14) 12 (12)
8 (8) 0 (0)
44 (67) 8 (100)
30 (30) 18 (18)
67 (67) 27 (26)
53 (55) 51 (53)
37 (38) 34 (35)

Table 3

> OO

0
17

30
22

Rejection rates for the t-ratio version of the

s=20.00

(0)
(100)
(4)

(1)
(48)
(7)

(0)
(199)
(17)

(1)

(94)
(23)

tests are given in



(k=1)

(k=2)

(k=3)

(k=4)

(k=5)

Table 4

Critical values of the (t-ratio) ECM Test

Different number of regressors

Size
T 0.01 0.05

A. (with constant)

25 -4.12 -3.35
50 -3.94 -3.28
100 -3.92 -3.27
500 -3.82 -3.23
o -3.78 -3.19
25 -4.53 -3.64
S0 -4.29 -3.57
100 -4.22 -3.56
S00 -4.11 =3.50
© -4.06 -3.48
25 -4.92 -3.91
S0 -4.59 -3.82
100 -4.49 -3.82
500 -4.47 =3.77
o -4.46 =3.74
25 -5.27 -4.18
S0 -4.85 -4.05
100 -4.71 -4.03
S00 -4.62 -3.99
o -4.57 -3.97
25 -5.53 -4.46
50 -5.04 -4.43
100 -4.92 -4.30
500 -4.81 -4.39
© -4.70 -4.27

.10

.95
.93
.94
.90
.89

.24
.20
.22
.10
.19

.46
.45
.47
.45
.42

.68
.64
.67
.67
.66

.82
.82
.85
.86
.82

.25

.36
.38
.40
.40
.41

.60
.63
.67
.66
.65

.76
.84
.90
.90
.89

.90
.03
.10
.11
.10

.99
.18
.28
.32
.29



(k=1)

(k=2)

(k=3)

(k=4)

(k=5)

Notes:

5,000

25
50
100
S00

25
S0
100
500

25
S0
100
500

25
S0
100
S00

25
S0
100
500

B.

(with constant

77
.48
.35
.30
.27

.12
.76
.60
.54
.51

.42
.04
.86
.76
.72

.79
.21
.07
.93
.89

.18
.37
.24
.15
.11

and trend)
.89 -3
.78 -3
.75 -3
.71 -3
.69 -3
.18 -3
.04 -3
.98 -3
.94 -3
.91 -3
.39 -3
.25 -3
.19 -3
.15 -3
.12 -3
.56 -4
.43 -4
.38 -4
.34 -4
.30 -4
.76 -4
.60 -4
.55 -4
.54 -4
.52 -4

.48
.44
.43
.41
.39

.72
.66
.66
.64
.62

.89
.86
.86
.84
.82

.04
.03
.02
.02
.00

.16
.19
.19
.20
.18

.88
.92
.91
.91
.89

.04
.09
.11
.11
.10

.16
.25
.30
.31
.29

.26
.39
.46
.47
.45

.31
.S3
.66
.69
.67

The asymptotic (w) critical values are based on
simulations;
regressors in the cointegrating regression.

k

denotes

the

number

I(1)



