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1. Introduction

To obtain evidence on the finite-sample properties of hypothesis test-
ing procedures, econometricians generally resort to simulation methods. As
a result, many, if not most, of the papers that deal with specification test-
ing and other forms of hypothesis tests include some Monte Carlo results.
Even so, little effort seems to have been devoted to devising good ways of
presenting such results. This paper discusses some simple graphical meth-
ods that appear to be very useful for characterizing both the size and the
power of test statistics. The graphs convey much more information, in a
more easily assimilated form, than tables can do.

Consider a Monte Carlo experiment in which N realizations of some
test statistic 7 are generated using a data generating process, or DGP, that
is a special case of the null hypothesis. We may denote these simulated
values by 7j,j = 1,..., N. Unless 7 is extraordinarily expensive to compute
(as it may be if bootstrapping is involved; see Section 2), N will generally
be a large number, probably 5000 or more. In practice, of course, several
different test statistics may be generated on each replication, and variance
reduction techniques may be used to improve the efficiency with which the
quantities of interest are estimated; see Davidson and MacKinnon (1992b).
For simplicity of notation, we will ignore these possibilities here.

The conventional way to report the results of such an experiment is
to tabulate the proportion of the time that 7; exceeds one or more critical
values, such as the 1%, 5%, and 10% values for the asymptotic distribution
of 7. This approach has at least two serious disadvantages. First of all,
the tables provide information about only a few points on the finite-sample
distribution of 7. Secondly, the tables require some effort to interpret,
and they generally do not make it easy to see how changes in the sample
size, the number of degrees of freedom, and other factors affect test size.
There are many ways to present graphically the sort of information that is
usually presented in tabular form. The ones we advocate here are easy to
implement and yield graphs that are easy to interpret.

All of the graphs we discuss are based on the empirical distribution
function, or EDF, of the P values of the 7;’s. The P value of 7; is the
probability of observing a value of 7 as or more extreme than 7;, accord-
ing to some distribution F(7). This distribution could be the asymptotic
distribution of 7, or it could be a distribution derived by bootstrapping,
or it could be an approximation to the (generally unknown) finite-sample
distribution of 7. For notational simplicity, we shall assume that there is
only one P value associated with 7;, namely, p; = p(7j). Precisely how
p; is defined will vary. For example, if 7 is asymptotically distributed as
x2(r) and Fy2(z,r) denotes the c.d.f. of the x?(r) distribution evaluated at
z, then p; = 1 — F2(7j,7).



The EDF of the p;’s is simply an estimate of the c.d.f. of p(7). At any
point z; in the (0,1) interval, it is defined by

N
o) = 5 32 1(ps < 22), 1)

where I(p; < z;) is an indicator function that takes the value 1 if its
argument is true and 0 otherwise. In order to conserve storage space (since
N will often be very large), we choose to evaluate the EDF (1) only at m
points z;,t = 1,...,m, which should be chosen in advance. The z;’s must
be chosen so as to provide a reasonable snapshot of the (0,1) interval, or
of that part of it which is of interest.

It is difficult to state categorically how large m should be and how the
z;’s should be chosen. A quite parsimonious set of z;’s is

z; = .002,.004,...,.01,.02,...,.99,.992,...,.998 (m =107). (2)
Another choice which should give slightly better results is
z; = .001,.002,...,.010, .015, ...,.990,.991,...,.999 (m = 215). (3)

For both (2) and (3), there are extra points near 0 and 1 in order to ensure
that we do not miss any unusual behavior in the tails. As we shall see in
Section 5, it may be necessary to add additional points in certain cases.

The simplest graph that we will discuss is simply a plot of " (z:) against
z;. We shall refer to such plots as P value plots. If the distribution of 7
used to compute the p;’s is correct, each of the p;’s should be distributed
as uniform (0,1). Therefore, when F(:z:,) is plotted against z;, the result-
ing graph should be close to the 45° line. As we shall see in Section 3, P
value plots allow us to distinguish at a glance among test statistics that
systematically over-reject, test statistics that systematically under-reject,
and test statistics that reject about the right proportion of the time. How-
ever, because all test statistics that behave approximately the way they
should will look roughly like 45° lines, P value plots are not very useful for
distinguishing among such test statistics.

For dealing with test statistics that are well-behaved, it is much more
revealing to graph F‘(w,) — z; against z;. We shall refer to these graphs as
P value discrepancy plots. These plots have advantages and disadvantages.
They convey a lot more information than P value plots for test statistics
that are well behaved. However, some of this information is spurious, simply
reflecting experimental randomness. In Section 4, we therefore discuss semi-
parametric methods for smoothing them. Moreover, because there is no
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natural scale for the vertical axis, P value discrepancy plots can be harder
to interpret than P value plots.

P value plots and P value discrepancy plots are very useful for dealing
with test size, but not very useful for dealing with test power. In Section 5,
we will discuss graphical methods for comparing the power of competing
tests using size-power curves. These curves can be constructed using two
EDFs, one for an experiment in which the null hypothesis is true, and one
for an experiment in which it is false.

It would be more conventional to graph the EDF of the 7;’s instead of
the EDF of their P values. However, plotting P values makes it much easier
to interpret the plots, since what they should look like will not depend on
the null distribution of the test statistic. This fact also makes it easy to
compare test statistics which have different distributions under the null,
and to compare different procedures for making inferences from the same
test statistics.

Another fairly standard graphical approach, at least in the statistics
literature, is to use what are called quantile-quantile plots or QQ plots; see,
for example, Chesher and Spady (1991). In such a plot, the empirical quan-
tiles of the 7;’s are plotted against the actual quantiles of their hypothesized
distribution. If the empirical distribution is close to the hypothesized one,
the plot will be close to the 45° line. Qur approach has several advantages
over using QQ plots. For a QQ plot, there is no natural scale for the axes:
If the hypothesized distribution changes, so will that scale. This makes
it impossible to plot on the same axes test statistics which have different
distributions under the null. It is also much more difficult to interpret a
QQ plot than it is to interpret a P value plot when the plot does not lie on
the 45° line, since there is no way to see how actual test size is related to
nominal test size.

Of course, graphical methods by themselves are not always enough.
When test performance depends on a number of factors, the two-dimen-
sional nature of both graphs and tables can be limiting. In such cases, it
may be desirable to supplement the graphs with estimated response surfaces
which relate size or power to sample size, parameter values, and so on; see,
for example, Hendry (1984).

In order to illustrate and motivate these procedures, we use them to
present the results of a study of the properties of alternative forms of the
information matrix (IM) test proposed by White (1982). We compare tests
based on the OPG regression, which was proposed as a way to compute IM
tests by Chesher (1983) and Lancaster (1984), with other forms of the IM
test. We find that the OPG variant performs relatively poorly in terms of
both size and power. The result that the OPG form of the IM test frequently
tends to over-reject in finite samples is not new: See, among others, Taylor
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(1987), Chesher and Spady (1991), and Davidson and MacKinnon (1992a).
However, the result that, for a given size, OPG IM tests have lower power
than other forms of the IM test does not appear to be well-known.

The plan of the paper is as follows. In the next section, we briefly
discuss several forms of the IM test statistic. In Section 3, we present a
number of Monte Carlo results to illustrate the use of P value plots and P
value discrepancy plots. In Section 4, we discuss and illustrate methods for
smoothing P value discrepancy plots. Finally, in Section 5, we discuss and
illustrate the use of size-power curves.

2. Alternative Forms of the Information Matrix Test

In Davidson and MacKinnon (1992a), we derived a new variant of the
IM test and presented a number of Monte Carlo results comparing it with
two other variants. Table 1 of that paper, which occupies a page and half, is
a particularly striking example of the disadvantages of presenting simulation
results for test statistics in a non-graphical way. In this paper, we extend
the experiments of the earlier paper and present the results graphically.

We shall deal with three variants of the IM test: the OPG variant,
the DLR variant, and the efficient score variant. These are derived for the
linear regression model:

k
ye=P1+ Y BiXei+u,  ur~NID(0,0?). (4)

1=2

The regressors X;; are normal random variables, independent across obser-
vations, and equicorrelated with correlation coefficient one-half. All ver-
sions of the IM test are independent of the specific values of the 8; and o2,
and so those values are chosen arbitrarily.

The OPG variant of the IM test statistic is obtained by regressing an
n—vector of 1s on #; X, fori =1,...,k, and on 1(k% + 3k) test regressors.
These test regressors are functions of é; = #:/é and the X’s. There
are k(k + 1)/2 — 1 test regressors of the form (&2 — 1)X;; X;;, which test
for heteroskedasticity, k regressors of the form (&} — 3é;)Xy;, which test
for skewness interacting with the regressors, and one regressor of the form
€7 —5é2 +2, which tests for kurtosis. The test statistic is n minus the sum of
squared residuals from the regression, and it is asymptotically distributed
as x2(%(k? + 3k)).

The DLR form of the IM test is a bit more complicated. It involves
a double-length artificial regression with 2n “observations,” and the test
statistic is 2n minus the sum of squared residuals from this regression.
The number of regressors is the same as for the OPG test, and so is the
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asymptotic distribution of the test statistic. See Davidson and MacKinnon
(1984, 1992a).

A third test, which is not as widely available as the other two but is
available for linear regression models, is the efficient score, or ES, form of
the IM test. The ES form of the Lagrange Multiplier test is often consid-
ered to have optimal or nearly optimal properties, because the only random
quantities in the estimate of the information matrix are the restricted max-
imum likelihood parameter estimates. In this case, the ES form of the IM
test is actually the sum of three test statistics:

-1 -1 1 = . 2
2hi'Z(Z272)" ZThy + h X (XTX) 7 X Ths + oy ;(e;‘ -3)%, (5)

where Z is a matrix with typical element X¢;X;;, hy has typical element

€2 — 1, and hg3 has typical element &. These three statistics test for het-
eroskedasticity, skewness, and kurtosis, respectively; see Hall (1987).

It is well-known that the OPG form of the LM statistic has very poor
finite-sample properties under the null. One obvious way to improve these is
to obtain P values by bootstrapping instead of by using the test’s asymp-
totic distribution. This idea was investigated by Horowitz (1994), who
found that it worked very well. The methodology is as follows. After the
OPG test statistic, say 7, has been obtained, B sets of simulated data are
generated and B bootstrap test statistics are computed. Suppose that B*
of these test statistics are greater than 7. Then the estimate of p(7) is
B*/B. In our experiments, we used B = 1000. Note that the error terms
for the bootstrap samples must be obtained from a normal distribution
rather than by resampling from the residuals, as is commonly done, since
the residuals will not be normally distributed, and the IM test is sensitive
to non-normality.

In the case of the linear regression model (4), the finite-sample distri-
butions of all forms of the IM test statistic do not depend on the unknown
parameters of the regression function. Such test statistics are said to be
pivotal. This implies that, as B — oo, the EDF of the bootstrapped P val-
ues must tend to the 45° line. Therefore, in this case, we do not really need
to do a Monte Carlo experiment to see how the bootstrap works. Most test
statistics, including most variants of the IM test, do not share this special
property, however; see Horowitz (1994).

In the remainder of the paper, we present results for four variants of
the IM test for the model (4): the OPG form, the DLR form, the ES form,
and what we call the bootstrap OPG form, which is the OPG form with P
values computed by the bootstrapping technique just described. Of course,
bootstrap P values could also be computed for the DLR and ES forms of
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the IM test, but we did not do this. As with the OPG form, bootstrapping
these variants of the IM test must yield tests with exactly the right size,
except for sampling error in the bootstrap procedure.

3. P Value Plots and P Value Discrepancy Plots

Figure 1 shows P value plots for the OPG, DLR, and ES variants of
the IM test for the case n = 100,k = 2. These are based on an experiment
with 5000 replications. The z;’s were chosen as in (3), so that m = 215.
The figure makes it dramatically clear that the OPG form works very badly
under the null. In this case, it rejects almost half the time at the nominal
5% level. In contrast, the DLR form seems to work quite well, and the
ES form works reasonably well in the left tail but tends to under-reject
elsewhere. Results for the bootstrap OPG form are not shown, because
they would have been almost indistinguishable from the 45° line.

Figure 1 illustrates some of the advantages and disadvantages of P
value plots. On the one hand, these plots make it very easy to distinguish
tests that work well, such as DLR, from tests that work badly, such as
OPG. On the other hand, they do not make it easy to see patterns in the
behavior of tests that work well. For example, one has to look quite closely
at the figure to see that DLR systematically under-rejects for small test
sizes and over-rejects for larger test sizes.

Another disadvantage of P value plots is that they can take up a lot
of space. Since we are primarily interested in reasonably small test sizes,
it makes sense to truncate the plot at some value of z less than unity.
Figure 2 shows two sets of P value plots, both truncated at £ = 0.4. These
plots provide a great deal of information about how the sample size n and
the number of regressors k affect the performance of the OPG form of the
IM test. From Figure 2a, we see that size improves as n increases but is
still quite unsatisfactory for n = 1000. From Figure 2b, we see that the
performance of these tests deteriorates dramatically as £ (and hence the
number of degrees of freedom) increases. These figures tell us all we really
need to know about the performance of the OPG IM test under the null.

For the DLR and bootstrap OPG forms of the IM test, P value plots
are not very informative because the tests perform so well. Therefore,
Figure 3 shows P value discrepancy plots for these two tests for the same
case as Figure 1 (namely, n = 100 and k¥ = 2). From this figure, it is clear
that the bootstrap OPG test performs just about the way it should: The
discrepancies between F'(z;) and z; are small, change sign often, and can
easily be explained by experimental randomness. On the other hand, the
DLR test, although it performs quite well, seems systematically to under-
reject in the left-hand part of the figure and over-reject elsewhere.
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It is natural to ask whether the discrepancies in Figure 3 can be ex-
plained by experimental randomness. The Kolmogorov-Smirnov (KS) test
is often used to test whether an EDF is compatible with some specified
distribution function. For EDF's of P values, the KS test statistic is simply

jmax_|F(p;) - pj|- (6)

This is almost equal to the largest absolute value of the P value discrepancy
plot, X
_max_|F(z;) — . (7)
i=1,...,m
However, expression (6) will almost always be slightly bigger than expres-
sion (7) because the maximum is being taken over a larger number of points.

As an example, in the case of Figure 3, the correctly computed KS
tests, based on (6), are .0046 for bootstrap OPG and .0187 for DLR, while
the approximate ones, based on (7), are .0044 and .0184. These tests are
highly insignificant in the case of bootstrap OPG (p > .99) and marginally
significant in the case of DLR (p = .06). The fact that (7) is available can
be convenient if one decides to compute a KS test after an experiment has
been completed. Because both formulae yield essentially the same answers,
there is generally no great harm in using (7) rather than (6).

Figure 4 looks at several other cases. Figure 4a makes it clear that the
tendency for DLR systematically to under-reject for small test sizes when
k = 2 is not an artifact of experimental error. However, as we see from
Figure 4b, things change as k increases. For n = 200, DLR over-rejects for
all test sizes whenever k > 5. For large values of k£ and small values of n,
the DLR test is sufficiently badly behaved that a P value plot might be
more appropriate than a P value discrepancy plot.

Figures 3 and 4 illustrate one serious problem with P value discrepancy
plots: They tend to be quite jagged, reflecting experimental error. This
is true even when N is much larger than the value of 5000 used for these
experiments. Therefore, it is natural to think about how to obtain smoother
plots that may be easier to interpret. This is the topic of the next section.



4. Smoothing P Value Discrepancy Plots

One natural way to smooth a P value discrepancy plot is to regress
the discrepancies on smooth functions of z;, such as polynomials or trigono-
metric functions. If we let v; denote ﬁ‘(w,) — z; and fi(z;) denote the It
function of z;, the first of which may be a constant term, such a regression
can be written as

L

v,-=Z'yzf1(:v,-)+u,-, i=1,...,m. (8)

=1

There are two difficulties with this approach. One is that the u;’s are
neither homoskedastic nor serially uncorrelated. However, it turns out to
be relatively easy to derive a feasible GLS procedure. Another problem is
how to choose L and the functions fj(z;). There are several ways to do
this, and our experience suggests that there is no single best way.

If the regression function in (8) were chosen correctly, the error term

u; would be equal to F'(z;) — F(z;). It can be shown that, for any two
points z and z' in the (0,1) interval,

Var(F(z)) = N"'F(1 — F), and

9
Cov(E(z), F(z")) = N~ (min(F, F') — FF"). ®)
Here F' = F(z) and F' = F(z'). Notice that the first line of (9) is just a
restatement of the well-known result about the variance of the mean of N
Bernoulli trials.

Expression (9) makes it clear that the m X m covariance matrix of
the u;’s in (8), which we shall call §2, exhibits a moderate amount of het-
eroskedasticity and a great deal of serial correlation. The standard devia-
tion of u; is greatest when F; = 0.5 and declines as F; approaches 0 or 1.
For example, suppose that N = 5000. In this case, the standard deviation
of uf is 0.0071 for F; = 0.5 and 0.0031 for F; = 0.05. The correlation be-
tween u; and u;—; is also greatest when F; = 0.5. For example, if F; = 0.5
and F;_; = 0.49, the correlation between u; and u;—; is 0.9802; if F; = 0.05
and F;—; = 0.04, that correlation is 0.8898.

Equation (8) can be rewritten using matrix notation as
v=2Zy+u, E(uu’)=2, (10)

where Z is an n x L matrix, the columns of which are the regressors in (8).
The GLS estimator of « is

5=(2"07'2)"' 270 . (11)
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The smoothed discrepancies are the fitted values Z4 from (10), and the
covariance matrix of these fitted values is

z(Z'0'z)" 7" (12)

Confidence bands can be constructed by using the square roots of the di-
agonal elements of (12).

It is easily verified that the inverse of §2 has non-zero entries only on
the principal diagonal and the two adjacent diagonals. Specifically,

2 = N(Fjy1 — F;)"' + N(F; — F;_,)7},
24, =-NFia - F)™, (13)
ni_,il—l =—N(F; — Fi-1)™,

fori=1,...,m, and 2] 1 = 0 for |t — j| > 1. In these formulae, Fy = 0
and Fm+1 =1.In contra.st to many familiar examples of GLS estimation,
it is neither easy nor necessary to triangularize §2~! in this case. Because
£2-! has non-zero elements only along three diagonals, it is not difficult to
compute Z'271Z and ZT2 v directly. For example, the Ij*! element of
Z'R71Z is

m-—1
Z Zlez]n_l + Z Zi IZt] i ,.._1 + Z Zi+1,lZijni_,i]:+-1, (14)
=2 =1

where the needed elements of 2! were defined in (13). Thus, by using
(14), it is straightforward to compute the GLS estimates (11).

As is generally the case, true GLS estimation is not feasible here. If
the test statistic being studied is well-behaved, however, F\(z;) will be close
to z; for all z;, and it will be reasonable to use z; instead of the unknown
F; in (13). This will yield approximate GLS estimates. If the test statistic
is not so well-behaved, it is natural to use a two-stage procedure. In the
first stage, the approximate GLS estimates are obtained. In the second
stage, the unknown F;’s in (13) are replaced by F; = z; + #, where 7
denotes the fitted values from the approximate GLS procedure. Note that
whatever values are used to estimate the F;’s must be positive, as must
be the estimates of F; — F;_;. Since these conditions may not always be
satisfied by the F’,-’s, it may be necessary to modify them slightly before
computing the feasible GLS estimates and the final estimates F}.

For completeness, we note that the determinant of 27! is

N"‘(ﬁaiil/aj), (15)

i=0 j=0

-9 -



where a; = (Fj4+1 — F;)™!, for ¢ = 0,...,m, and, as before, F; = 0 and
Fr+1 = 1. Expression (15) is needed if we wish to compute the value of
the loglikelihood function associated with GLS estimation of (10).

We have not yet said anything about how to specify the regression
function in (8), that is, the matrix Z. One obvious approach is to use
powers of z; as regressors. Another is to use the functions sin(l7z;) for
[=1,2,3..., and no constant term. The advantage of the latter approach
is that sin(0) = sin(Ir) = 0, so that the approximation, like z; itself, is
constrained to equal zero at z; = 0 and z; = 1. However, this may not
always be an advantage. If a test over-rejects severely, F; — z; may be large
even for z; near zero, and it may be hard for a function that equals zero at
z; = 0 to fit well with a reasonable number of terms.

For a given set of regressors, the choice of L can be made in various
ways. We have chosen it to maximize the Akaike Information Criterion (i.e.,
the value of the loglikelihood function minus L). It is important to make
sure that (8) fits satisfactorily, as it may not if Z has been chosen poorly.
One simple approach is to calculate the GLS equivalent of the regression

standard error:
1 ory. 1/2
s = (n A 9] u) ,

where 4 is the vector of (feasible) GLS estimates from (10). If Z has been
specified correctly, s should be approximately equal to unity.

Figure 5 illustrates the smoothing procedure we have just described
for the case of the DLR test with n = 200 and ¥ = 5. In this case, only
four regressors —sin(lrz;) for [ = 1,...,4— were needed to fit as well as
we would expect (s = 0.98). A polynomial approximation with two more
regressors worked equally well. The confidence bands were obtained by
adding to and subtracting from the F}’s twice the square roots of the diag-
onal elements of (12). Because of the scale of the vertical axis, these bands
appear to be quite wide. What is more interesting is that they are distinctly
wider in the far left-hand part of the figure than in the far right-hand part.
This is because the DLR test is tending to over-reject everywhere. For ex-
ample, F(.05) = 0.0797 and F(.95) = 0.9622. This means that F;(1 — F}),
to which the variance of F} is assumed to be proportional, is equal to 0.0733
in the former case and 0.0364 in the latter. The fitted values F} naturally
tend to be more precisely estimated where the variance of F} is smaller.

Figure 6 shows two sets of truncated, smoothed P value discrepancy
plots for the ES form of the IM test. Because F'(.001) was always substan-
tially greater than zero, the trigonometric approximations did not work at
all well, and the smoothing was done using polynomial approximations. It
is clear that the ES form over-rejects for tests at the conventional .05 level
but under-rejects when the nominal size is large enough. These tendencies

-10 -



become more pronounced as n falls and k rises, although the effects of re-
ducing n and increasing k are by no means the same. In order to keep the
figure readable, confidence bands are not shown. Since the standard error
of F'(.05) was between .0032 and .0039, the basic shape of these smoothed
curves is certainly reliable, but one should not take every wiggle seriously.
The main advantage of smoothing here is that it makes the figures much
easier to read.

5. Size-Power Curves

It is often desirable to compare the power of alternative test statis-
tics, but this can be difficult to do if all the tests do not have the correct
size. Suppose we perform a Monte Carlo experiment in which the data are
generated by a process belonging to the alternative hypothesis. The test
statistics of interest are calculated for each replication, and corresponding
P values are obtained. If the EDF's of these P values are plotted, the result
will not be very useful, since we will be plotting power against nominal test
size. Unfortunately, this is what is often done, except that, in most cases,
only a few points on the EDF are reported in a table.

In order to plot power against true size, we need to perform two ex-
periments, preferably using the same sequence of random numbers. In the
first experiment, the null hypothesis holds, and in the second it does not.
Let the points on the two approximate EDFs be denoted F'(z) and F™*(z),
respectively. As before, these are to be evaluated at a prechosen set of
points z;,¢ = 1,...,m. As we have seen, F(z) is the probability of get-
ting a nominal P value less than z under the null. Similarly, F*(z) is the
probability of getting a nominal P value less than z under the alternative.
Tracing the locus of points (F(z), F*(z)) inside the unit square as = varies
from 0 to 1 thus generates a size-power curve on a correct size-adjusted
basis. Plotting the points (ﬁ’(mi),ﬁ’*(zi)), including the points (0,0) and
(1,1), does exactly the same thing, except of course for experimental error.
By using the same set of random numbers in both experiments, we can
reduce experimental error, since the correlation between F(z;) — F(z;) and
F*(z;) — F*(z;) will normally be quite high.

The idea of plotting power against true size to obtain a size-power curve
is not at all new; see, for example, Davidson and MacKinnon (1993, Chap-
ter 12), who call them size-power tradeoff curves. However, the method of
doing so using EDF's of P values that we have just proposed does appear
to be new. It is also remarkably simple.

Figure 7 shows size-power curves for the OPG, bootstrap OPG, DLR,
and ES forms of the IM test, for n = 100 and k£ = 2. The error terms in the
non-null data generating process were generated as a mixture of normals
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with different variances, and therefore displayed kurtosis. Several results
are immediate from this figure. The ES form has the greatest power for
a given size of test, followed by the DLR form. The OPG form has far
less power than the other two, and it actually has power less than its size
for true sizes that are small enough to be interesting. As a consequence
of the fact that IM tests for linear models are pivotal, bootstrapping the
OPG form has no effect on its size-power curve. This theoretical result is
illustrated in the figure.

There is one potentially serious problem with drawing size-power
curves by plotting F*(z;) against F(z;). For tests that under- or over-
reject severely under the null, there may be a region of the size-power
curve that is left out by a choice of values of z; such as those given in (2) or
(3). For instance, suppose that a test over-rejects severely for small sizes,
as the OPG IM test does. Then, even if z; is very small, there may be many
replications under the null for which the realized P value is still smaller.
As an example, for the OPG test with n = 100 and k = 5, F'(.001) = .576
and 1:"*(.001) = .405. Therefore, if the size-power curve were plotted with
z1 = .001, there would be a long straight segment extending from (0,0) to
(.576,.405). Such a straight segment would bear clear witness to the gross
over-rejection of which the OPG IM test is guilty, but it would also bear
witness to a severe lack of detail in the depiction of how the test behaves.

It could well be argued that tests which behave very badly under the
null are not of much interest, so that this is not a serious problem. In any
case, the problem is not difficult to solve. We simply have to make sure
that the z;’s include enough very small numbers. Experience suggests that
adding the following 15 points to (3) will produce reasonably good results
even in extreme cases:

z; =.1%x1077,.2%x1077,.5x1077,...,.1 x1073,.2 x 1073, .5 x 1073,

Of course, N (the number of replications) also matters. Figure 7 is based
on just 5000 replications, while Figures 8 and 9 are based on 100,000. The
curves in the latter figures are a good deal smoother than those in the
former.

Figure 8 shows truncated size-power curves for the OPG IM test. The
data under the alternative were generated by the same process as for Fig-
ure 7. From Figure 8a, we see that as n becomes larger, the performance
of the OPG IM test improves. From Figure 8b, we see that the perfor-
mance of the test deteriorates dramatically as k increases. Figure 9 shows
truncated size-power curves for the ES and DLR forms of the IM test, for
the same cases as Figure 8b. It is clear that ES has substantially more
power than DLR, and that both of them have dramatically more power
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than OPG. Several other experiments were run in which the null hypothe-
sis was false in other ways. The results were always qualitatively similar to
those portrayed in Figures 7 through 9.

These experimental results make it clear that, if one is going to use an
IM test for a linear regression model, the best one to use is the bootstrapped
ES form. It would have essentially the correct size (because the test is
pivotal), and it would have better power than any of the other tests. Of
course, if the objective were not simply to see whether inferences based
on the usual information matrix are reliable, which is what the IM test
is designed to do, it might well be better to test for heteroskedasticity,
skewness, and kurtosis separately. The component pieces of the ES form
(5), with P values determined by bootstrapping, could be used for this
purpose.

6. Conclusion

Monte Carlo experiments are a valuable tool for obtaining information
about the properties of specification testing procedures in finite samples.
However, the rich detail in the results they provide can be difficult to ap-
prehend if presented in the usual tabular form. In this paper, we have
proposed several graphical techniques that can make the principal results
of an experiment immediately obvious. All of these techniques rely on the
construction of an estimated c.d.f. (EDF) of the nominal P values associ-
ated with some test statistic. From these, we can easily obtain a variety
of diagrams, namely, P value plots, P value discrepancy plots (which may
optionally be smoothed), and size-power curves.

We have illustrated these techniques by presenting the results of a num-
ber of experiments concerning alternative forms of the information matrix
test. These results, which are entirely presented in graphical form, provide
far more information about these tests than the tabular results which are
typically presented; it may be instructive to compare them with those in
Davidson and MacKinnon (1992a).
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Figure 1. P value plots for IM tests, n = 100, k = 2
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Figure 2. P value plots for OPG IM tests
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Figure 5. P value discrepancy plots for DLR IM test, n = 200, k = 5
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- 920 -



1.0

0.9 - '
0.8
0.7 ;
0.6 -
0.5:
0.4

| OPG ——
0.3 = . DLR
0.2 S

Bootstrap OPG -++eveeeee
0.1+ 45° line ------
0-0 | | 1 | T T I T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7. Size-power curves, kurtosis, k = 2, n =100
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