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Abstract

A standard presumption of market microstructure models is that competition
between risk neutral market makers inevitably leads to prices schedules that leave
market makers zero expected profits conditional on the order flow. This paper
shows that this result does not hold when traders can split orders between market
makers. When traders can split orders, market makers set less competitive price
schedules that earn them strictly positive profits and hence raise trading costs.
Indeed, if noise traders have completely inelastic demands (as in Kyle 1985), market
makers want to set arbitrarily uncompetitive price schedules: no equilibrium exists.
Our results imply that if feasible, regulation banning order splitting on an exchange
is optimal. Analogous results obtain when price schedules are set by any finite
number of agents who compete using limit orders. Further, since limit orders, by
their very nature, are split against incoming market orders, the analysis suggests
that regulated market maker competition will provide better prices.

*The first author is grateful to the SSHRC for financial support. We wish to thank Peter Bossaerts,
Rob Heinkel, Burton Hollifield, and seminar participants at Queen’s University and the University of
British Columbia for their insights. The usual disclaimer applies.



1 Introduction

A standard presumption in market microstructure is that competition between risk
neutral market makers inevitably leads to prices schedules that leave market makers zero
expected profits conditional on the order flow. This paper shows that this result does not
hold when traders can split orders between market makers. That is, when traders can
split orders, market makers set price schedules that earn them strictly positive profits
and hence lead to greater total trading costs. The analysis also extends to a limit order
book, which by its nature is split against incoming market orders: equilibrium limit
order schedules set by a finite number of agents necessarily yield those agents positive

expected profits.

The intuition is simple. Consider an environment where both informed and unin-
formed agents trade a risky asset so that the equilibrium price is necessarily increasing
in order size. When traders cannot split orders among market makers, then to receive
an order, a market maker must offer a better price than that offered by any other market
maker. Since market makers who do not receive the order earn zero profits, it must be
that the market maker who wins the trade also earns zero expected profits (provided
that market makers face no constraints on the prices they set). Were a market maker to
take an order on which he expects profits, then it would behoove other market makers
to offer slightly more favorable prices and take the order themselves. Demand is per-
fectly price elastic, with all trade going to the market maker who offers the best price.
Consequently, this Bertrand competition among the market makers inevitably leads to

zero expected profit pricing.

In contrast, when traders can split orders among market makers, demand is not

perfectly price elastic because when one market maker offers a slightly better price



schedule, the other market makers still receive a portion: traders equate marginal trad-
ing costs across market makers. If one market maker sets a schedule that would earn
zero expected profits when matched by another market maker, then the other market
maker can ensure positive profits by setting a less competitive schedule (both market
makers would then earn positive profits). This is because trade of informed agents,
who only have profit motivations for trading, is more price elastic than the trade of
agents who care about portfolio balance. Hence, informed traders reduce their orders
by more than liquidity traders in response to a price increase. As a result, in equilib-
rium, when traders can split orders, market makers must set price schedules that earn

strictly positive expected profits.

There is a direct analogy to duopolistic competition between firms. If firms compete
in prices, then demand is perfectly price elastic. If one firm slightly undercuts the other’s
price, then it receives not only the incremental market order, but also any orders that
would go to the other firm. The incentives to undercut the other firm’s price in the
Bertrand competition drive profits down to zero. If, instead, firms compete in quantities,
then demand is not perfectly price elastic so that firms produce quantities that earn
them strictly positive profits. Price competition among duopolists corresponds to the
case where orders cannot be split among market makers and order flow is completely
price elastic; quantity competition corresponds to the case where orders can be split so

that order flow is less price elastic.

We consider two illustrative examples. The first features inelastic noise trader de-
mand (as in Kyle 1985). We show that each market maker wants to set a steeper price
schedule than the other, so that no equilibrium can exist. The contrast between this
result and the standard zero—profit result that obtains when traders cannot split orders

could not be more stark! We then consider an example with elastic liquidity trade,



and show that in equilibrium, market makers set schedules that earn them strictly pos-
itive expected profits. These results extend to an environment with an arbitrary finite

number of market makers.

The next section of the paper demonstrates that the results extend to almost any
market where there is informed trade. Since traders can clearly split orders across
exchanges if not between market makers within an exchange, our results call into ques-
tion the robustness of the standard market microstructure formulation with competitive
market makers. Simply put, when traders can split orders, competition does not lead to
zero—expected profit pricing. An immediate implication of this finding is that if feasible,
traders would value exchange rules that would eliminate splitting. These could take the

form of fixed transactions costs for submitting orders.

Throughout the analysis we assume that market makers only observe those orders
that they process. They can, of course, invert back to determine the equilibrium order
flow with each market maker. Thus, even were market makers to observe total order
flow, the positive-profit equilibrium would be unaffected. However, we also show that
if market makers can observe total order flow, the standard zero—profit market maker
schedule can obtain as an equilibrium outcome: each market maker sets a price schedule
that depends not only on his own order flow, but also the order flow of all other market
makers. One way to interpret this is that when order splitting is allowed, the standard
model has multiple equilibria, one with positive market maker profits and one with
zero profits. However, standard equilibrium refinements (e.g. cheap talk) select the

equilibrium with positive profits.

In the last section of the paper we consider an environment in which a finite number
of agents compete by setting limit order schedules. It is natural to consider order

splitting in this context because the nature of limit orders is such that incoming market



orders are split up against the limit book. The results are analogous to those obtained
when market makers set average price schedules. When liquidity demand is inelastic,
no equilibrium exists. For elastic liquidity demand, limit order schedules earn strictly
positive expected profits. For a zero—expected profit limit book to emerge in equilibrium,
an arbitrarily large number of agents must compete to submit limit orders. This is in
sharp contrast to the equilibrium obtained when market makers submit average price
schedules and order splitting is prohibited. There, market makers expect zero profits

for any number of market makers greater than one.

The results in this paper are closely related to Glosten’s [1993] concept of immunity.
We consider a price schedule to be immune from competition if and only if no competing
schedule can enter, take trade with positive probability, and earn non-negative profits.
In a related paper (Bernhardt and Hughson 1993), we show that the class of immune
price schedules is quite large when traders can split orders, and includes market maker
schedules that earn substantial expected profits in excess of those earned by informed
traders. However, an immune schedule can not be an equilibrium outcome. Given that
a competing schedule would not be set, a market maker would wish to set an even less
competitive schedule than the immune schedule .... but that would then draw entry

from a competing schedule.

2 Example 1: Inelastic Demand

Let the current value of a claim to an asset be one. There is an innovation § to the claim’s
value that is uniformly distributed on the interval [-1,1], that is private information to
a risk neutral insider. The insider therefore knows the asset’s true value, V = 14 6.

There are also noise traders whose inelastic trading demands, @, are exogenously given,



and are drawn from a uniform [-1,1] distribution.

Traders can submit their orders to either of two risk neutral, uninformed market
makers, A and B. Orders are handled individually. The probability that a trader who
comes to the market is informed is one-half. The model is thus the standard inelastic
noise trader environment (e.g. Kyle 1985). The only differences are that orders are not

aggregated across agents, and we consider uniform rather than normal distributions.

The timing is as follows:

1. The identity of the trader (informed or noise) is determined.
9. The insider perfectly observes the innovation to the asset value, 4.

3. Market makers simultaneously set price schedules, detailing for each trade quantity

a price.
4. The trader chooses how much to trade with each market maker.

5. Payoffs are realized.

2.1 No Splits

When traders cannot split orders between market makers, in equilibrium, an informed
trader chooses an order quantity, gr(6, Pa(-), ps(-)), that maximizes expected profits given
his information, and both types of traders choose the market maker who will execute
their orders most cheaply. Given correct beliefs about the schedule set by the other
market maker and the trading strategies of the two trader types, each market maker’s

price schedule maximizes his expected profits.

In the equilibrium, as is standard when agents cannot split their trade, Bertrand

competition demands that the two market makers set identical price schedules, price



schedules that break even in expectation conditional on the order flow.

It is easy to show that the price schedule that leaves a market maker zero expected
profits conditional on the order size ¢ is given by p(¢) = 1+ %. Facing this schedule, an
insider observing é trades to maximize q(V —p(q)) = q(6— %) which has solution, ¢* = 4.
Hence, expected market maker profits from order g are q[.5(-0)—-.5(¢—- )] =0, and

the expected value of the asset given order ¢ is 1+ 5(0)+ .5(g) =1+ £ = p(q)-

2.2 Splits

To facilitate the analysis when agents can split orders we make the simplifying restriction
that market makers set linear schedules that satisfy P(0) = 1. The restriction to linear
schedules when splitting is possible permits the solution for equilibrium schedules: since
pricing is no longer pinned down by a zero expected profit condition, the solution to
the more general equilibrium problem would be extremely difficult to obtain. Since
the schedules that earn zero expected profits conditional on the order flow are still
linear (with a slope twice as great as when agents cannot split orders), it follows that
if the zero—profit price schedules do not survive as equilibrium schedules when pricing
strategies are restricted to be linear, then they cannot survive extensions to more general
classes of pricing strategies. We will show here that when traders can split orders that

no equilibrium exists when we restrict schedules to be linear.

Given this strategy space, in the (Perfect—Bayesian) equilibrium when traders can
split orders between market makers, the informed trader maximizes expected prof-
its with his choice of order quantities, ¢f\(8,pa(+), Ps())» aF(6,Pa("),Pe(+)) in markets
A and B respectively; the noise trader maximizes expected profits with his choice

of order quantities, ¢f(Q,pa(*),Pe(-)), F(Q,Pa(-),Pe()), Where af(@Q,Pa(-), Po(+)) +

¢2(Q,pa(), pe()) = @; and the two market makers set linear price schedules, pa(q) =



1+agq, ps(q) = 1+bg, that maximize each market maker’s expected profits given correct
beliefs about the schedule set by the other market maker and correct inferences about

how each type of trader responds to the market maker schedules.

The zero profit schedule when traders can split orders is twice as steep as the zero

profit schedule when they cannot:

pa(g) =mo(0)=1+¢

If market makers set these schedules, then traders split orders in half so that the effective
price schedule for the total order is the zero—profit schedule set when traders cannot
split. However, we will show that this cannot be an equilibrium schedule. Indeed, for
any given schedule set by market maker B, py(q) = 1+ bq, market maker A will want to
set a schedule with steeper slope, a > b. Since market maker B has similar incentives,

an equilibrium with linear pricing cannot exist.

Suppose that market maker A has beliefs that market maker B will set schedule
pp(q) = 1+ bg. Given these beliefs we solve for market maker A’s optimal schedule,

pa(q) =1+ aq.

The insider observing 6 trades ¢f with market maker A, where qft solves
mazqy a6 - aaf).

Solving, the informed agent buys claims

A _
7=

)
1 2a
to the risky asset. Henceforth, we focus on buy orders. The problem is symmetric for sel

orders. Conditional on trading, the insider’s expected profits from trading with market

maker A (and hence market maker A’s losses) are

1§ ) 1 g2 1



A noise trader with demand @, minimizes his trading costs by buying gf of claims
to the risky asset from market maker A and @ — ¢f from B. His optimization problem
is

mings qfagf +(Q — af)b(Q — at);

which has solution

bQ qB = aQ
a+b T atd

af =

Market maker A’s optimization problem is then given by

-1 frev]?
maz, 12a+/0 [a+b] ad@.

The first term is market maker A’s expected loss to the informed traders; the second

term is his expected profit from noise traders. Differentiating with respect to a yields

first order conditions

1 +b_2_ 1 2 ]_0
1242 * 3 [(a+0)? (a+Dd)3 e

Simplifying, and re-arranging yields
4a2b%(a — b) = (a + b)°.

Since both a and b are positive, this implies that a > b. Since each market maker always
wants to set a steeper price schedule than its competition, no equilibrium exists. When
traders can split orders, market makers want to soak noise traders for an infinite amount
of money. Section 4 shows that this result extends to any microstructure model with
inelastic liquidity trade (e.g. Kyle 1985). Note also that the result immediately extends

to any finite number N > 2 of competing market makers.



3 Example 2: Elastic Demand

We now change the environment of example 1 to allow for price—elastic liquidity demand.
Agents trade consumption at date 1 for claims to an asset with random consumption

payoff at date 2. Liquidity traders have preferences

a+ ﬂCg,

where ¢; is consumption on date i,7 = 1,2. § can take on one of two values, g>2>
1 > 3, where the probability that a liquidity trader has discount § is one-half. Traders
with discount 3 want to buy claims to the risky asset; traders with discount § want to
sell. The current value of the asset is equal to one. Suppose that the innovation § to

the claim’s value is again uniformly distributed on [—1,1].

The informed trader now has preferences
¢ +c2,

and has a sufficiently large endowment that he can trade any desired equilibrium quan-
tity.

Agents can trade with either or both of two risk neutral market makers. Market
makers also have preferences

c1 + cp.

Market makers have sufficiently large endowments that, in equilibrium, they are not
endowment constrained. The role of a market maker is to set a price at which he will

fill any order that he receives.

A single trader comes to the market each period. The trader is equally likely to be

an informed or liquidity trader.



Because a single trader’s order determines the total order flow, without loss of gener-
ality we can focus on positive purchases of claims to date-two consumption: the possible
traders are liquidity traders with discount factor B and informed traders who observe a

positive innovation.

We assume that a liquidity trader’s endowment of date-one consumption, @ is drawn

from a distribution with density,

1
0= JeaTD

on the support [0, %] This density ‘serendipitously’ implies that the equilibrium price
schedule when traders cannot split orders is linear. Liquidity traders must consume non-
negative quantities in each period: short-sales are prohibited. All random variables are

independently distributed.

3.1 No Splits

When traders cannot split orders between market makers, in equilibrium, the informed
trader chooses an order quantity, q7(6, pa(+), Ps(-)), that maximizes expected profits given
his information; the liquidity trader chooses an order quantity, gz(8, @, Pa(+), Ps()), that
maximizes expected discounted profits given his discount factor and endowment; and
both trader types choose the market maker who will execute their orders most cheaply.
Given correct beliefs about the schedule set by the other market maker and the trading
strategies of the two trader types, each market maker’s price schedule maximizes his

expected profits.

Proposition 1 When traders cannot split orders, the equilibrium market maker sched-

ule 1s:

-1+ 1
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Associated insider profits are % and the market makers earn zero ezpected profits con-

ditional on the order flow.

Proof: See appendix. B

In the proof, we first conjecture that the equilibrium ask schedules set by the market
makers are linear, and solve for the resulting orders of the informed and liquidity traders.
We then verify that, conditional on the order flow, the market maker who takes the order
expects zero profits, thus validating our initial conjecture that the equilibrium features

linear ask schedules.

3.2 Splits

To facilitate the analysis when agents can split orders we again make the simpifying
restriction that market makers set linear ask schedules that satisfy P(0) = 1. Again,
since pricing is no longer pinned down by a zero expected profit condition, this makes
possible the solution for equilibrium schedules (albeit with restricted strategies). We will
show that when traders can split orders, market makers always set price schedules from
which they expect strictly positive profits. Since the restricted equilibrium schedule
generates positive expected market—maker profits, we thus prove that the zero—profit

schedule is not an equilibrium schedule when strategies are unrestricted.

Given this strategy space, in the (Perfect-Bayesian) equilibrium when traders can
split orders between the market makers, the informed trader maximizes expected prof-
its with his choice of order quantities, ¢f1(6,pa(*), Ps(*)), 4P(6,Pa(-),ps(:)); given his

discount factor and his endowment, the liquidity trader maximizes expected discounted

profits with his choice of order quantities, g£(8,@,pa(), P6(-)); aE(8,@,Pa(*); Ps(-))

11



given his endowment @; and the two market makers set linear price schedules, pa(q) =
14 ag, po(g) = 1+ bg, that maximize each market maker’s expected profits given correct
beliefs about the schedule set by the other market maker and correct inferences about

how each type of trader responds to the market maker schedules.

In equilibrium, market makers must set identical price schedules, else the one who
sets a strictly more competitive schedule for some order flow does better to set a less
competitive schedule, thereby increasing profits. The zero—profit schedules are now twice

as steep as that obtained when agents cannot split orders:

Pa(q) =po(g)=1+gq.

To see this, note that traders split their orders in half so that the effective price schedule
is the zero—profit schedule set when traders cannot split. However, this cannot be an

equilibrium schedule.

The construction of the equilibrium schedule is as follows. First market maker A
conjectures a schedule py(g) = 1+4bg. Given that conjecture he then chooses his schedule

Pa(q) = 1 + ag to maximize expected profits. In the appendix we show that

Proposition 2 The slope, a, of market maker A’s linear price schedule is given by the

solution to:
A 2 2
1 9 -l4a/H+ A $(p-1
maz, =+ [ ( - f(@aq+ [ 557 ) er@e,

o 32-1)(a
where @ = E=1NatY) 4nd £(Q) = ﬁ-

Proof: See appendix. B

The first term represents the expected losses to informed trade; the second term is

12



expected profit from constrained liquidity trade; and the third term represents expected
profit from unconstrained liquidity traders. Differentiating with respect to a and setting
a = b in the first order conditions yields the symmetric equilibrium price schedule. The

results are graphed in figure 1.

Observe that the schedules all have slopes greater than one and hence are strictly
steeper than the zero—expected profit schedule. Indeed, it is necessarily the case that
market makers set sufficiently steep schedules that some liquidity traders do not face
binding endowment constraints. That is, the price schedules are sufficiently steep that
liquidity traders respond to steeper price schedules by reducing their purchases. An
immediate consequence is that as 3 goes to infinity, i.e. as liquidity trade becomes
perfectly inelastic, the price schedules set by the market makers become arbitrarily

steep, and their profits at the expense of liquidity traders become arbitrarily great.

4 The General Argument

Consider the properties of a canonical insider trading model. Agents trade consumption
today for claims to an asset with random consumption payoff tomorrow. Some agents
have private information about the value of the claim to the risky asset; other liquidity
agents want to trade to rebalance their portfolios. All trade is through one of two risk
neutral, uninformed market makers who set continuous, twice differentiable, monotone
increasing, price schedules detailing the prices at which they are willing to handle any
given order flow. Trade by informed and uninformed agents can be characterized by
their associated first order conditions. The trades of informed agents are more price
elastic than those who also trade to rebalance their portfolios, because informed traders

have no reasons to trade other than profit.

13



First suppose that an agent cannot split his order between the two market makers.
Then equilibrium price schedules must provide market makers zero expected profits
conditional on the order flow. This zero—profit price schedule is continuous and mono-
tonically increasing in order flow, and not ‘too’ concave for ¢ > 0 and not ‘too’ convex
for ¢ < 0 (the meaning of ‘too’ is detailed below). Clearly, it is an equilibrium for both
market makers to set a schedule that breaks even conditional on the order flow: given

that one sets that schedule, the other is indifferent between matching and not.

Were one market maker to set a less competitive schedule for a range of order flows
(continuity demands that the market maker set a less competitive schedule for a range),
i.e. were one market maker to set a schedule on which he expects strictly positive
profits for a range of order flows, then the other would have an incentive to offer slightly
better prices on that range and take those profitable orders himself. Since the effect on
informed and liquidity trade of offering a slightly better schedule can be made arbitrarily
small, it is strictly profitable for the other market maker to offer those slightly better
prices. This competition inevitably demands that the two market makers set identical
price schedules, price schedules that break even in expectation conditional on the order

flow.

Let P(q) be the equilibrium price schedule set when agents cannot split orders. When
agents can split trades between two market makers, then the zero-profit schedule that
each market maker sets satisfies Ps() = P(g). Traders split orders evenly since the
price schedules are monotonically increasing, so that the price for the total order flow of
q remains P(q). Since the effective price schedule is unchanged, then so must the total
order choices of the traders. But schedule Pg(-) is not an equilibrium price schedule
when agents can split orders: in equilibrium, market makers must set price schedules

that earn them strictly positive expected profits.

14



Since orders are handled independently, it is without loss of generality to focus on

buy orders, ¢ > 0. Let market maker B set price schedule

Pg(q) = Ps(q)

and let A set schedule

Pa(q) = Ps(q) + kg, k> 0.

An insider with information that a claim to the asset has value V trades to maximize

maza o5 qf(V = Palaf)) + a7 (V = Pa(daf)),

where g# is the insider’s trade with market maker ¢,7 = A, B. The first order condition

determining the insider’s trade with market maker B,

dPs(qB
V - Ps(af) - of —;I(Ig’ )y,

is not a function of the price schedule set by market maker A, P4(gf). The first order

condition for the insider’s trade with market maker A is given by

dPs(qf')

= 2¢8k.
dgf I

V - Ps(qf) - qf

The second order conditions for a maximum are given by

dP. d?P,
24Ps(a) | #Ps()

dq i 0.

Note that the second order conditions place a limit on the concavity of the ask price

schedule.

Suppose that the liquidity trader’s reduced—form objective can be written as!:

Maz 4 .» W(qi1 + qf | ¢) - QfPA(‘II/}) - QII?PB(QE)a

1Note that liquidity traders are not endowment constrained so that the model of the previous section

is not captured within this formulation.

15



where W(-) is a strictly concave monotonic function for ¢ff + g < ¢. Thatis, ¢
represents the optimal portfolio mix; the further away the liquidity trader’s holdings are
from ¢, the more he values trading a marginal unit to get closer to ¢. The associated

first order conditions are given by

dW(af +qf | 4)
dgP

dPs(qf) _

0
dgP ’

— Ps(qB) - df

and

dW (ef + qf | ¢)

dPs(qf
i - Ps(qf) - q'L‘—S(L—) = 2¢7'k.
L

dgf

Consider now liquidity and informed traders who would submit the same order were
the two market makers to set the same schedules. The effects of an increase in the slope

of market maker A’s price schedule on their orders are given by:

def  —2qf
dk ~ 2PL+qfPY

<0,

dqf

ik =0
def +2g7:(-W" + 2P§ + P"qf;) <0
dk ~ 4W"PL — 4(PL)2 + 2PIWqf — 4PLPUgE — (Pigi)z ~
dqP 2P W"
_ 0,

= >
dk ~ 4W"PL — 4(PL)? + 2PUW"qB — 4PLPYqB — (P"¢B)?
where we drop the arguments of the functions and the primes refer to the associated

derivatives.

A A
Since W(-) is strictly concave, at ¢ff = ¢f, dTQkL < d—qu. Intuitively, a liquidity

trader has a reason other than profit maximization to trade, so that when A sets a less
competitive price schedule, a liquidity trader who would trade what an insider would
trade were k = 0, reduces his order with A by less than the insider. To see this,

differentiate %q,g- with respect to W"(gf + gP) (i.e. make the liquidity trader’s valuation

16



function locally less concave). Solving, we see that

. dzqf o 2P, + p! 2] 0
szgn[dde"]—szgn[—-( S+ Sq) <.

The more concave is W(-), the less price elastic is liquidity trade with market maker A4,

and hence the less by which liquidity trade with A falls when A increases price.

We now show that the profits that A expects from informed and liquidity traders
who would trade the same arbitrary quantity ¢ > 0 were A to set ask price schedule
Ps(-) are increased by a marginal price increase. Since informed trade is monotone in
V and liquidity trade in ¢, one can invert from g and determine the associated V' and
¢. Were A to set schedule Ps(-) then his expected profits conditional on order flow ¢

would be 0:
Ps(q) = E{V | ¢} = Pr(informed | q)V~(q) + Pr(liquidity | q)Eo{V'},

where V~1(q) is the asset value associated with an inside trade of ¢, and Eo{V'} is the ex
ante expected value of a claim to the risky asset. When market maker A sets a steeper
price schedule than the zero-profit schedule, the effect on the price at which informed

agent V~1(q) trades is given by

dqf —2q
Ps e T 0= Ps3pr 4 g

+4q,

which is zero if Ps(-) is linear and positive if Pg(-) is strictly convex. Since liquidity
traders reduce their trades with market maker A by less than informed traders, it must
be that a marginal increase in the price schedule set by A leads liquidity trader ¢ 1(q)
to trade at a higher price than before. Consequently, a marginal increase in the price
schedule leads to a reduction in trade quantities from informed trader V—1(q) relative

to liquidity trader ¢~1(g) and the price at which each trades is greater. Therefore,

conditional on trading with one of these two trader types, market maker A must expect

17



strictly positive profits. Since g was arbitrary, it must be that market maker A expects
strictly positive profits when he sets a schedule that is steeper than the zero—expected
profit schedule. Hence, the zero—profit schedule cannot be an equilibrium schedule.
Finally, it is immediate that the above arguments follow when Pg(:) is concave for

g > 0, provided that Pg(-) is not ‘too’ concave.

Note that market maker B too must earn positive unconditional expected profits
when A sets a steeper price schedule because informed trade with B is unaffected by
the price schedule set by A, but B receives more liquidity trade when k rises (the
liquidity trader equates marginal trading costs across market makers, substituting some

order share toward market maker B). O

The fact that the zero—profit schedule cannot be an equilibrium schedule when
traders can split orders is easiest to discern in any model where liquidity trade is com-
pletely price inelastic (e.g. Kyle 1985). If one market maker offers schedule Pg(-),
then losses to informed traders are reduced, and total profits from liquidity trade is
increased since their total order quantities are unaffected. Indeed, when liquidity trade
is completely inelastic, one can show that market makers want to set arbitrarily steep
price schedules in this environment — no equilibrium exists. This is because setting
a slightly steeper schedule than the other market maker reduces losses to informed
traders by more than profits from liquidity traders fall. Intuitively, aggregate market
maker losses to insiders are reduced, and aggregate market maker profits from liquidity
trade rise. The cost to setting a slightly less competitive schedule is that liquidity trade
is shifted slightly to the other market maker, but this cost is less than the gain from the
reduction in losses in informed trade which accrue only to the market maker that sets

the steeper price schedule.

More formally, a liquidity trader with inelastic demand ¢ minimizes his trading costs

18



by buying ¢f of claims to the risky asset from market maker A and @ — ¢f from B. His

optimization problem is

mings af(P(az) +kag) +(Q — ¢£)P(Q — af)-
The associated first order condition is

P(qf) + 2kt + af P'(af) = P(af) + 4 P'(aD)-

Differenting with respect to k at k = 0 (so ¢f = %), yields

def, _ —af:
dk — 2P'(qf) + qf P"(qf)

Consider the effect on market maker A’s profits from some liquidity trader of an increase
in k:

JPlet) + kat)ap
dk

A
AN2 Apl( A A —4q7
() + @GP L)+ POE)s ety + fPriad)

If P(-) is linear, market maker A’s profits from liquidity trade remain unchanged, and if
P(-) is convex, then they increase. Since losses to informed trade fall when the market
maker sets a less competitive schedule, and profits from liquidity trade remain at worst
unchanged, it must be that each market maker always wants to set a less competitive

schedule than the other, so that no equilibrium exists.

One should note that the results follow under weaker restrictions. Further, the differ-
entiability and continuity assumptions are unimportant because a monotone increasing
discontinuous or non—differentiable schedule can be approximated arbitrarily well by a
twice continuously differentiable one, with arbitrarily small effect on order selection.
Also, the perturbations that we use in the proofs are global perturbations — the price
increase for an order of size ¢ is kg. We need only have considered local price increases
on any open interval. Thus, the argument extends immediately unless price schedules

are everywhere too concave.
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5 Robustness

Here we briefly consider the robustness of our results to the informational assumptions.
Throughout this analysis we have assumed that the only order flow that schedule setters
observe is that which they process, although in equilibrium, they can correctly infer
the total order flow. This assumption is easy to motivate if the schedule setters are

exchanges.

But suppose, instead, that market makers do observe the total order flow. Clearly
the equilibrium that we describe continues to exist: in our formulation market makers
correctly infer the total order flow from that in their market, so that observing the total
order flow directly leaves the equilibrium unaffected. However, another ‘equilibrium’ also
exists, one in which each market maker sets the zero—expected profit price conditional
on the total order flow in both markets: p(q1,¢2) = p(q1 + ¢2). Given that one market
maker sets this schedule, the other market maker cannot possibly earn positive profits,
and hence is indifferent between setting that schedule and submitting any other schedule
that earns him non-negative expected profits. One way to interpret this observation
is that when order splitting is feasible, the standard model has multiple equilibria, one
with positive market maker profits, and one with zero profits. Alternatively, observe
that standard equilibrium refinements eliminate the zero—expected profit schedule as
an equilibrium schedule. For instance, cheap talk between market makers ensures that
they select the most profitable equilibrium outcome. Trivially, the zero—expected profit

outcome is the least profitable outcome for market makers!

Next consider adding additional market makers or exchanges to the economy with
elastic liquidity trade. As with oligopolistic competition between firms, the effect is to

make any given market maker’s liquidity demand more price elastic, so that the payoff
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to offering schedules with ‘better’ prices is increased.

Were some of those additional exchanges to have regulation that prohibits splitting
of orders within the exchange, then multiple equilibria arise. It follows immediately
that on the regulated exchange where orders cannot be split that competition drives
prices down so that the schedule setters expect zero expected profits. It also follows
that one equilibrium outcome is for the regulated market to set the zero—profit sched-
ule which takes all transactions, leaving no trade on the unregulated market. Further,
this equilibrium is robust to cheap talk because the market makers on the regulated
exchange cannot do better than zero expected profits in any equilibrium. Other equi-
libria, however, can also exist, in which regulated exchanges offer more competitive
schedules (i.e. with ‘better’ prices) than the unregulated exchanges, schedules that earn
zero profits given that there will be trade on the unregulated exchanges, and where the
aggregate price schedule is more competitive than it would be were there no regulation.

Consequently, the regulation is socially beneficial.

Putting the potential costs and benefits of competition from additional exchanges
into perspective, without regulation, the addition of more exchanges always leads to
more competitive prices. However, if one market is regulated so that splits within
that market are prohibited and market makers earn zero expected profits, then the
introduction of an additional exchange between which traders can split only be counter

productive.

6 Limit Orders

We now return to the general environment of section 4, except that we now assume that

price schedules are set by agents who compete using limit orders. While we assume
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that there are only two such competing agents, the argument generalizes to any finite

number.

All trade is through one of two risk neutral, uninformed agents who set continuous,
twice differentiable, monotone increasing, limit order schedules detailing the prices at
which they are willing to handle any given order flow. Trade by informed and uninformed
agents can be characterized by their associated first order conditions. The trades of
informed agents are more price elastic than those who also trade to rebalance their

portfolios, because informed traders have no reasons to trade other than profit.

We first consider the case where liquidity demand is inelastic. There, we show that
not only is the zero—profit limit order schedule not an equilibrium, but also that no
equilibrium exists. As when market makers set average price schedules and liquidity
demand is inelastic, non—existence follows because given that one agent submits a set
of limit orders, the optimal response of the other is to submit limit orders that offer less

competitive prices.

Next, we show that when liquidity demand is elastic, the zero profit limit order
schedule cannot be an equilibrium outcome. Again, an agent submitting limit orders
can (strictly) increase his expected profits by offering less competitive prices. The zero
profit limit order schedule can be improved upon because liquidity trade is less price

elastic than informed trade.

Perhaps more important, this analysis shows that the zero-profit condition is not
appropriate for pinning down the limit order schedule unless the number of agents
who submit limit orders is arbitrarily large. When the number of agents who submit
limit orders is small, limit orders can expect significant positive profits in equilibrium.

Further, it is unclear what regulation prohibiting order splitting would mean when price
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schedules are determined by limit orders. By their nature, limit order schedules induce
order splitting. In contrast, while it is ambiguous whether the unregulated market
maker schedule is more competitive than the limit order schedule (when there are a
finite number of agents who submit limit orders), what 4s clear is that the market
maker schedule when order splitting is prohibited dominates the limit order schedule,

since the regulated market maker schedule earns zero expected profits.

6.1 Inelastic demand

Risk neutral agents trade claims to an asset with ez ante per—share expected value given
by Eo{V}. The current value of the asset, V, is private information to an informed
trader. Liquidity traders have inelastic demand. A single trader comes to the market

and with probability 7, 0 < 7 < 1, he is an informed trader.

Since orders are handled independently, it is without loss of generality to focus on
buy orders, ¢ > 0. In the analysis it is easier to focus on the limit order schedule set by
each schedule setter rather than work with the aggregate schedule. Consider any limit
order schedule set by agent B, PL(-). That is, P§(g) is the price of a limit order set by

B when there are measure q lower—priced limit orders posted by B.

We now show that limit order schedule setter A earns greater profits from setting
a steeper schedule than that set by B so that no equilibrium can exist: each schedule
setter wants to set a steeper schedule than the other. The proof mimics that when

market makers set average price schedules.

In particular, we show that A earns greater profits from setting limit order schedule
P%(q) = P§(q) + kg, k> 0.
An insider who with information V trades with the limit books A and B until the
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price of the marginal unit exceeds the value of his information:

PE(gf(V)) =V, j=A,B.

Conditional on trading ¢f with an informed trader, the setter of schedule A receives
losses:
A af (V) L
V- [ (Ph@+ kada.
The effect of increasing k on informed trade is given by

deft _ —af (V)
dk ~ PL+k’

so that the effect on market maker A’s losses to informed trade from an increase in k is

given by:
d(losses) —qf(V) L/ A A -¢f (V) , et (V) g (V)?
= - (P -k .
dk V_pg +k ( B(QI (V)) + qu (V)) P_'g +k + ) 2(P113'l + k)
Since

Ps(af (V) + ket (V) =V,
at k = 0, the change in losses to insiders simplifies to:

—qf(V)?

5
Hence setting a steeper limit order schedule reduces market maker A’s losses to informed

trade.

We next calculate the effect on A’s profits from trade with a liquidity trader. A
liquidity trader who must trade g7, equates marginal costs across the two limit order

schedules in equilibrium.

PE(aft) + kaf = PE(qL — af}).
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The effect of an increase in k on a liquidity agent’s trade at k = 0 is given by:

daf _ —4f
dk ~ 2PL”

The change in A’s profits from liquidity trade is therefore given by

d—i—( /Oq”(Pé(q)Jrkq)dq) =W (),

2P§ (af)
which is zero if the limit order schedule is linear, and strictly positive if it is convex.
Since losses to informed trade are reduced by setting a steeper limit order schedule,
provided that P§(-) is not ‘too’ concave, A’s profits are increased by setting a steeper
schedule than B, so that no equilibrium can exist: each market maker always wants to

set a less competitive schedule than the other, so that no equilibrium exists.

6.2 Elastic demand

In this section we show that when there are two agents setting limit order schedules,
that the zero—expected profit limit order schedule cannot be an equilibrium outcome.
Define Pr(-) to be the aggregate zero-profit limit order schedule: Pp(-) must generate
zero expected profits for any given limit order quantity g, conditional on the fact that
it is crossed against all market orders of at least size g. When there are two agents
submitting limit orders, the zero—expected profit limit pricing schedule that each agent
sets satisfies Ps(2) = Pr(g). As a result, traders who submit market orders split their
trades evenly between the agents who submit limit orders, so that the price for an order

of size g remains [! Pr(q)dg.

We now show that Ps(g) is not an equilibrium schedule: that is, agents submitting
limit orders can do better by submitting less competitive limit order schedules. Since

orders are handled independently, it is without loss of generality to focus on buy orders,
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g > 0. Let agent B set a limit order schedule

Pg(q) = Ps(q)

and and let A set schedule

P4(q) = Ps(q) + kg, k > 0.

The insider’s orders q}'(V), j = A, B are again given by the solution to

Pi(gj(V)) =V.

As before, suppose that the liquidity trader’s reduced-form objective can be written

as
A B ai a
mazgggp Wt +a819)- [ (Ps(@)+ ka)dg— [ Ps(a)da,
The associated first order conditions are given by

dW(qf +qf | ¢)

_ B
dq? = Ps(qr)-

and

dW(qf +qf | 4)

= Pg(q —kqA.
de (L) L

Consider now liquidity and informed traders who would submit the same order were
the two market makers to set the same schedules. The effects of marginal increase in

market maker A’s price schedule on their orders are given by:

d A . |
S
dg?
dk

dgf _ gf(W" - Ps)
dk (W” _ Pg)z — (Wu)z

=0,

<0,
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dgf _ ggw" >0
dk ~ (W”)2 _ (WII _ P§)2 ’

where we drop the arguments of the functions and the primes refer to the associated

derivatives.

A A
Since W () is strictly concave, at gfi = ¢ff, 9L < 9L To see this, observe that

2 ,A
sign|AL_) = signl(W"'— P ) —(W" )2 ~2(W"~ P5)(W"~Py=W")] = sign|~(P£)?] < 0.

The more concave is W(-), the less price elastic is liquidity trade with market maker
A, and hence the less by which liquidity trade with A falls when A increases price.
The argument now follows directly from that when market makers set average price

schedules, liquidity trade is elastic, and traders can split orders.

7 Conclusion

This paper demonstrates that when traders can split orders among risk-neutral market
makers then competition does not lead to set schedules that earn them zero expected
profits conditional on the order flow. Indeed, market makers set far less competitive
schedules that earn significant profits and increase trading costs. If some (noise) traders
have completely inelastic demands, then market makers want to set arbitrarily steep
price schedules that earn them arbitrarily large profits at the expense of the noise
traders, so that no equilibrium exists. This paper therefore documents an important
lack of robustness of standard market microstructure models: competition among risk—
neutral market makers only leads to zero-expected profit pricing if agents cannot split

orders.

The paper also suggests that if there is a dominant exchange, then rules that prohibit

traders from splitting orders, if enforceable, actually help the traders. In this instance,
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the introduction of an additional exchange between which traders can split can only be
counterproductive. However, if there are multiple exchanges so that traders can split
orders across exchanges, then additional exchanges lead to more competitive prices, as

the exchanges compete for additional order share.

Lastly, the paper finds that limit order schedules set by a finite number of agents
are necessarily uncompetitive and generate positive expected profits for the schedule

setters.
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8 Appendix

Proof to proposition 1:

Let market maker A’s ask price schedule (also set by B) be given by

pa(q) =1+aq.

Given this schedule, the insider observing V trades to maximize
mazq, qr(V — aqr).

Solving, the informed agent buys

-V
ar = 5

of claims to the asset. Integrating over the possible innovations that the insider can

observe, he earns expected profits

1 1
vV 14 V? 1
[J EE(V - a2—a)dV = A EdV = E&

A liquidity trader who is not constrained by his endowment, trades to maximize
mazgs @ — (1 + agf)ef + Bat,
which has solution

-1
2¢

af, =
When 8 > 2, we will show that liquidity traders are always endowment constrained
given zero—expected profit pricing.
We claim that the ask schedule that earns zero expected profits is given by

g

ple) =1+
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Given this price schedule, the informed trader trades
|4
==V
2(3)

We must now verify that market makers earn zero expected profits conditional on
the order flow. That is, we verify that the expected value of the asset given an order of
g is exactly p(q) = 14 2. To see this, observe that the market maker’s loss per share to

an informed trader who buys claims to the risky asset gr =V > 0 are

Vv Vv
V—E—E.

Similarly, the market maker earns % from a liquidity trader who also buys V.

For market makers to earn zero profits conditional on any order flow g, it must
therefore be that conditional on that order flow the trader is equally likely to be informed
as uninformed. Since informed purchases of the risky asset are given by V, which has
a uniform [0,1] distribution, this means that the distribution of purchases of the risky
asset by the liquidity trader must also be uniformly distributed on [0,1]. A liquidity
trader with a first—date consumption endowment of @ purchases ¢ claims to date-two
consumption, where

2

Q=p(g)g=9q+ q?

Solving, for the number of claims that a liquidity trader buys,

g=-1++/(1+2Q).
For ¢ to be distributed uniformly on [0,1], it must be that
Pr(-1++/(1+2Q)<2)=2 2€[0,1]

or that

Pr(Q < (iilz_)ﬂ)z 2
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Using a change of variables, y = iiﬂzzu, yields
Pr(@<y)=+v(2y+1)-1,

which has the density
1

@)= _(2\/_—5?5,

that we assumed governs the endowments of liquidity traders.
Proof to proposition 2

If a liquidity trader is constrained by his endowment @, then he maximizes his
purchases of claims to the risky asset by buying ¢f from market maker A and @ — qf

from B. His optimization problem is
MaTqa o8 9 + 4t

st. qf(1+ agf) + ¢F (1 + bef) = Q,

which has solution

4Qb
-1+ a’v al_2 + a(a+b)

2a ’

-1+ b\/ 'b1_2 + b(4a+ab)

qf = 5

af =
If the liquidity trader is unconstrained by his endowment, then he trades to maximize
mazgs o Q — (1+agf)aft — (1+baf)af + B(at +af);

which has solution

™I

a_B-1 p_f-1
qL_ 2a7qL_ 2b

Hence, a liquidity trader trades the quantity

. —l+a .alf+ a€a+bb) IH_-].
min ,
2a 2a
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with market maker A, and

. {-1+”\/b%+u%q+% 5—1}
min

2b »2b

with market maker B. For first-period endowment Q > %“—‘H’)—, the liquidity
trader’s optimal purchases of claims to second—period consumption are not limited by

his endowment.

Market maker A’s objective is then to maximize profits given correct conjectures

about B’s ask price schedule:

_ & (-1+ay/ %+ 795\° $(5-1\
maz, ﬁJr 0 ( - (+b)) af(Q)dQ+/é (%) af(Q)dQ,

” 32-1)(a
where @ = w—:{%—*’—"l, and f(Q) = \/T:_—zz

Differentiating with respect to a and setting a = b in the first order conditions in
order to solve for the symmetric equilibrium price schedule yields an expression that
cannot be solved analytically for a. However, we can solve for a numerically for different

values of 3. The results are graphed in figure 1.
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beta

Figure 1: This figure graphs the slope of the equilibrium pricing function for different
values of £3.
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