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1. INTRODUCTION

1.1 Arbitrage Pricing
Since the original work by Ross [34] there has been a number of
papers clarifying the concept of the equilibrium Arbitrage
Pricing Theory (APT). For a summary of this literature see
Connor [9]. In an important contribution, Connor [8] constructed
a two-date model with either finite or infinite assets, and
consumers with risk-averse von Neumann-Morgenstern preferences
to generate an equilibrium APT. Chamberlain [5] using the
Martingale pricing technique generalised the Connor model to a
multiperiod framework. Milne [30] using weak assumptions on
induced preferences over assets proved an equilibrium APT for the
finite asset case.

The aim of this paper is to extend the Milne approach in a

number of directions:

a. Prove the Milne result when:
(i) there are a countable number of assets;
(ii) consumers have Gateaux' differentiable preferences over
assets, rather than the stronger differentiability

assumptions.

b. Use the above general result to explore the robustness of
the APT theorem for two important classes of non-expected

utility preferences.

These extensions are important in exploring the theoretical

robustness of the APT result. The von Neumann-Morgenstern axiom



Abstract The arbitrage pricing theorem of finance shows that in
certain circumstances the price of a financial asset may be
written as a linear combination of the prices of certain market
factors. This result is usually proved with von Neumann-
Morgenstern preferences. In this paper we show that the result
is robust in the sense that it will remain true if certain kinds
of non expected utility preferences are used. We consider
Machina preferences, the rank dependent model and non-additive

subjective probabilities.



system is the most commonly used theory of choice in financial

models. Unfortunately it has been criticized severely for
weaknesses in empirical prediction. (For surveys of the
available evidence see Machina [26] and Schoemaker [38]). A

response to this empirical failing, has been the development of
a number of alternative axiom systems that avoid some of the more
obvious problemns.

1.2 State-Dependent Preferences with Non-additive Subjective

Probabilities
We shall discuss two general classes of non-expected utility
models. The first class of models cover situations in which some
of the relevant probabilities are not known in advance. Savage
[36] produced an axiomatic theory of decision making in such
situations, known as subjective expected utility theory. However
it has been found in experiments, that people tend to deviate
from the predictions of SEU, by preferring situations in which
uncertainty is resolved with known probabilities to those in
which it is resolved with unknown probabilities. (See Ellsberg
[13], Anand [1]). Such behaviour is referred to as "uncertainty
aversion".

This evidence can be explained if individuals have non-
additive subjective probabilities. Choquet [7] has extended the
Lebesgue integral to the case where the measure is not
necessarily additive. It is possible to define an expected value
with respect to a non-additive probability distribution to be a
Choquet integral. Schmeidler [37] has shown that a small change
in the usual axioms implies that a decision-maker will maximise

expected utility with respect to a possibly non-additive



subjective probability distribution. (Other axiomatisations of
non-additive probability can be found in Gilboa [17] and Wakker
[40]) . Individuals with non-additive probabilities can under
certain conditions show a preference for situations in which
uncertainty is resolved with known probabilities over situations
in which it is resolved with unknown probabilities. Hence this
theory is able to explain the evidence of Ellsberg [13], which
contradicts subjective expected utility theory.

our model generalises Connor's [8] model in two other
respects. Firstly we allow different individuals to have
different subjective probabilities (possibly non-additive). A
special case of this is where all individuals are expected
utility maximisers, but have different subjective probability
distributions. Since there is no reason to expect different
individuals to have the same subjective probability distribution
this is, in itself, an important generalisation of the standard
model.

Secondly we allow utility to be state-dependent, i.e.
utility is u,(x) where s denotes the state and x denotes final
wealth in that state. Thus the utility function may depend both
on s and X. In this respect we generalise models in which
utility depends only on wealth. With this class of preferences
we need to impose an assumption which requires that individuals
have common priors over the idiosyncratic portion of asset
returns. This implies that all individuals agree which
portfolios are diversified. Clearly it would not be possible to

prove an APT result without such an assumption.



The usual motivation for considering state-dependent utility
is when the resolution of the state uncertainty directly affects
the decision-maker's utility function e.g. by affecting his state
of health. To take an extreme case, suppose that in some of the
states the decision-maker is dead. Then it is very unlikely that
his value function for bequests in those states in which he is
dead will be the same as his utility of wealth in those states
in which he is alive. As this example suggests the state-
dependent utility model has been principally applied to problems
of health or life insurance.

In financial models, it is well-known (Fama and Miller [14]
Chapter 8, Merton [28]) that the value function (or indirect
utility function) from a multiperiod consumer's problem will be
severely state-dependent. Therefore an APT theorem can be
interpreted as a state-contingent pricing result. If the pricing
theory is to be state-independent, except for the consumer's
wealth, then further restrictions on the structure of the economy
must be imposed. We will not discuss those types of conditions
here.

1.3 Gateaux Differentiable Preferences

The second class of models, assumes that consumers have common
priors on a probability space of future consumption
possibilities. We assume that consumers' preferences are
complete, transitive and continuous over the probability space.
By Debreu [10] there exists a continuous utility function, which
represents the preferences. We assume that preferences are non-
restricted (monotonicity is a sufficient condition), Gateaux

differentiable and "diversification is desirable". Then we are



able to prove the APT result. Machina [25] has shown that
preferences which are Frechet differentiable and satisfy two
plausible hypothesis can explain much of the laboratory evidence
which contradicts expected utility theory, while at the same time
preserving many of the desirable features of thét theory.

Quiggin [31] has proposed an alternative theory of decision
making under uncertainty known as rank-dependent expected utility
(RDEU) . Related theories have been studied in Yaari [42] and
Green and Jullien [21]. In the RDEU theory an individual is
assumed to maximise a weighted sum of utilities. The weights are
not probabilities but a transformation of probabilities based on
the rank of the outcome. An example of this would be a very
cautious person who always put more weight on the worst outcome
than its probability would Jjustify. This theory can explain
laboratory evidence on choices under risk better than expected
utility theory. Recently it has been shown that this theory can
provide better explanations than expected utility theory for
insurance purchase, Segal and Spivak [39] and the demand for
lottery tickets, Quiggin [33].

RDEU preferences are not Frechet differentiable. However
under mild assumptions they can be shown to satisfy the weaker
assumption of Gateaux differentiability. By studying Gateaux
differentiable preferences we can prove results on asset pricing
for RDEU and Machina preferences simultaneously.

Dekel [11] has shown that with Frechet differentiable
preferences it is no longer the case that risk aversion implies
a preference for diversification. Hence, a priori, it is not

clear whether the APT, which relies upon diversification



arguments can be proved with non-expected utility preferences.
Here we show how Dekel's argument can be reconciled with the APT.
1.4 The Dutch Book Argument

A common criticism of non-expected utility preferences is that,
in a sequence of trades, they may lead individuals to purchase
a portfolio which is dominated by their initial wealth. (In
models with objective probabilities, dominated refers to first-
order stochastic dominance and in models without objective
probabilities, it means state by state domination.) This is the
"Dutch Book Argument" of de Finetti [15] and Freedman and Purves
[16]. This question is especially important when considering the
application of non-expected utility theory to financial markets.
If it is possible to induce an individual to accept a Dﬁtch Book
then this would represent an arbitrage opportunity for an
informed outsider. It is usual in financial analysis to assume
that any available arbitrage opportunity will be taken.

It is easy to see that the Dutch Book argument does not
apply to the preferences studied in the present paper. This is
because our model concerns only a single time period. Provided
that preferences are transitive it is not possible to construct
a Dutch Book within a single time period. This is because a non-
expected utility maximiser has a set of transitive preferences
over state-contingent consumption. If a Dutch Book were
possible, then by reinterpreting state-contingent commodities
as separate goods we could construct a Dutch Book against an
individual with non-separable, but transitive preferences in a
situation not involving uncertainty. But this is not possible

since it contradicts basic consumer theory. A similar argument,
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for situations where the probabilities are known is made in
Machina [27].

It would be useful to extend the model of the present paper
to a multi-period context. Therefore we shall proceed to discuss
whether the Dutch Book argument would apply to the preferences
we use in a multi-period context. A problem here is that, at
present, there is no generally agreed extension of these
preferences to more than one time period. (Recently some
progress has been made towards answering this question, see
Gilboa and Schmeidler [19]).

With the second kind class of preferences, those which
satisfy a general Gateaux differentiability assumption in the
space of probability distributions, the question of whether Dutch
Books are possible has been investigated by Green [20]. The
latter paper provides a defence for non-expected utility
preferences against the Dutch Book argument. Green shows that
provided preferences are quasi-convex then it is not possible for
an non-expected utility maximiser to be exploited by an outsider
unless that outsider knows the individual's private information,
such as the distribution of his endowment. Clearly there is no
incentive to reveal such private information.

It is harder to discuss how the Dutch Book argument relates
to the first class of preferences we consider. As far as we are
aware there are no published articles which explicitly consider
whether the Dutch Book Argument can be applied to preferences
which derive from non-additive probabilities. The classic
statements of the Dutch Book argument, de Finetti [15] and

Freedman and Purves [16] make the assumption that an individual



is prepared to bet for and against any given event at the same
odds. The preferences axiomatised in Schmeidler [37] do not
satisfy this hypothesis. A crucial part of Schmeidler's
explanation of the Ellsberg Paradox is violation of this
hypothesis. Therefore these previous statements of the Dutch
Book Argument do not apply to the non-additive probability model.
As noted above, since these preferences are transitive, a
Dutch Book is not possible in the static model of this paper.
However it would be useful to have a multi-period extension of
the present model. Further research is required to establish
whether Dutch Books would be possible in such an extension.
1.5 oOutline of the Paper
The plan of the paper is as follows: section 2 sets out the
basic APT model, section 3 discusses non-additive probabilities
and state-dependent preferences and section 4 discusses
preferences which are Gateaux differentiable over probabilities.

The paper ends with some concluding comments.

2. THE ARBITRAGE PRICING THEOREM

In this section we shall give a proof of the Arbitrage Pricing
Theorem for an asset exchange economy using linear algebra. The
analysis is conducted at an abstract level. Later sections will
consider particular models within this general framework.

At date 0, individuals trade assets, which give them claims

to contingent consumption at date 1. There is a set la,: xeQ}

of asset holdings, where Q 1is some index set which may be
finite or countable. The set A denotes the space of all

portfolios of assets. A portfolio is a finite or infinite linear



combination of the basic assets. We do not make use of any

topological structure on A.

Definition 2.1 A factor structure on A 1is a 1linear
transformation T: A - F where F is a finite dimensional vector

space. We shall use k to denote the dimension of F.

By deleting redundant factors, if necessary, we may assume
that T is surjective. Ker(T) denotes the set of a € A such that

Ta = 0. Elements of Ker(T) will be called idiosyncratic risk.

Definition 2.2 An asset exchange economy is a set i = 1,
2,..., H of individuals each with endowment w; € A and
preferences represented by the function Vi : A - R. The

preferences are assumed to satisfy non-satiation.

Remark The preferences defined on A should be thought of as

the induced preferences constructed from a basic set of
preferences V: X- R defined over the space of contingent

consumption bundles. Details of this construction can be found

in Milne [29],[30].

Definition 2.3 A competitive equilibrium for an asset
exchange economy is a linear functional p : A - R and a portfolio
of assets a* for each individual i such that a%*; is the solution
to

Max Vi(a,) subject to p.a; < p.w; for 1 < i < H
1 1 1



H H
and Y aj =) w;

i=1 i=1

Remark We are using the notation p.a for the value of the
linear functional p on the vector a € A. This notation does not

imply the existence of an inner product on A.

Definition 2.4 A constrained Pareto optimum is an allocation
a;,..., ag Of one portfolio for each individual with there does

not exist an allocation 4&,,...,a; such that

vi(a;) 2 vi(a}) , for 1 < i < H; and

H H
Vj(aﬁ > vi(aj) for some j and 2: a; = 2: W, -

i=1 i=1

Theorem 2.1 In an asset exchange economy every competitive

equilibrium is a constrained Pareto Optimum.
We shall omit the proof of Theorem 2.1 since it is standard.

There is a subspace D of A called the subspace of

diversified portfolios.

Assumption 2.1 We say that individual i is a diversifier if

when Ta’ = Ta" and a’ € D, a" € A - D implies Vi(a’) > Vi(a").
This says that when choosing between two factor-equivalent

portfolios a diversifier will always strictly prefer the one

which is diversified.

10



Assumption 2.2 An asset exchange economy is said to be

insurable if T(D) = F and the aggregate endowment lies in D i.e.,

H
Y w;eD.
=

Together the assumptions, that the economy is insurable and
that all individuals are diversifiers imply, in competitive
equilibrium, everybody holds a diversified portfolio. This is

proved in the following proposition.

Proposition 2.1 In an insurable asset exchange economy in
which all individuals are diversifiers, any competitive

allocation is diversified.

Proof Let a;,...,ay be a competitive allocation. Since the

economy is insurable we can find allocations a{,...,ag such

that a, is diversified and has the same factor structure as

a, , for 1 < h < H. The allocation al,...,a is not
H-1 H-1 /
. . . * *
necessarily feasible. However define a, = (ay + Y, aji) - Y a;i -
= =

The term in brackets is the endowment of the whole economy, which
is diversified by assumption, thus ay is a sum of diversified

portfolios and is itself diversified since D is a (vector)

subspace.

Define ah==a£ for 1 < h <sH-1 . The allocation a;,...,&y
is factor equivalent to aj,...,ag. Since all individuals are
diversifiers a,,...,ay; is a Pareto improvement on a;,...,ag

unless the latter allocation is itself diversified. But since

11



a competitive equilibrium is a constrained Pareto Optimum by

Theorem 2.1 it follows that a;,...,ay; must be diversified.
|
Definition 2.5 A function VvV : A - R 1is said to be Gateaux

differentiable if far each a € A there exists a linear functional L, : A -~ R
such that,

_1lim 1

L, (&' -a) =325 % (Vv(ra' + (1-A)a) - V(a)) .
Assumption 2.3 Differentiability Preferences are Gateaux
differentiable. We shall abbreviate this by saying that

preferences are differentiable.

Proposition 2.2 Suppose that in an asset exchange economy all
individuals are diversifiers and at least one individual has
differentiable preferences, then the competitive equilibrium
price of any portfolio which consists solely of idiosyncratic

risk is zero. (ie. a € Ker(T) = p.a = 0).

Proof By assumption there is an individual i with
differentiable preferences. Let a* denotes i's competitive
equilibrium allocation by Proposition 2.1, a*; € D. Note that
since a € Ker (T), T(a*+ aa) = Ta%. Hence a*; is factor
equivalent to a*+ ea. Since i is a diversifier, a = 0 maximises
Vi(a*+aa) . Hence -2 Vi(a*;+aa) |40 = 0 . We must therefore

do
have p.a = 0. Since if-a had either a positive or negative

12



price, utility could be increased by either short selling or
buying a.

|

Theorem 2.2 (The Arbitrage Pricing Theorem) Let p Dbe the
competitive équilibrium price vector of an insurable asset
exchange economy. Suppose that all individuals are diversifiers
and at least one individual has differentiable preferences, then

there exists a linear functional g on F such that

(Vae A), p.a =q.Ta.

Proof Define q : F - R by g(f) = p.a where Ta = f. First
note that g is well defined. Suppose Ta = Ta’, then a - a’
€ Ker(T). Hence by Proposition 2.6, p.(a-a’) = 0, therefore

p.a = p.a’. Thus q is well defined. It is a simple exercise in
linear algebra to show that q(ef, + Bf;) = aq(f;) + Ba(f,) . Hence
g is a linear functional on F and q(Ta) = p.a.
|

The proof of the APT given above depends on only two
properties of preferences. These are assumption 2.1 that all
individuals are diversifiers and that there is a single
individual who obeys assumption 2.3 (differentiability). Connor
(8] has shown that these assumptions will be true if all
individuals are expected utility maximisers with strictly concave
and differentiable von Neumann-Morgenstern utility functions.
Milne [30] generalised that result to finite asset economics and
a standard differentiability assumption on asset preferences.
Therefore our result generalises both Milne and Connor. In

sections 3 and 4 of this paper we provide two examples of non-

13



expected utility preferences which satisfy these assumptions.

Thus the APT will automatically be satisfied.

3. STATE-DEPENDENT UTILITY AND NON-ADDITIVE PROBABILITIES
The analysis of section 2 was at a very abstract level. In
sections 3 and 4 we shall put more structure on preferences and
on asset returns. First we shall describe the assumptions that
we shall make about preferences. The main innovation of this
section is that we shall represent the decision-maker's beliefs
by a non-additive subjective probability distribution.

In this section we shall use a framework similar to that of
Anscombe and Aumann [2]. There is a set S of states of nature.
We shall use A to denote the set of all probability distributions
over R. The elements of A are interpreted as gambles with

objectively known probabilities whose outcomes are quantities of
the physical commodity. An action is a function y: s+ A. The
space of all actions is denoted by Y. There are two kinds of

uncertainty in this framework. The elements of A are objective
probability distributions, known to all agents in the economy.
The second kind of uncertainty is the state uncertainty. We do
not assume that the probabilities of the states are known to
individuals in advance and allow for the possibility that
different individuals have different beliefs concerning the state
uncertainty. As mentioned in the introduction, non-additive
probabilities allow for the possibility that the decision-maker
displays "uncertainty aversion".

Choquet [7] shows how an integral with respect to a non-
additive measure can be defined. Using the Choquet integral it

is possible to speak of the expected value of a utility function

14



with respect to a non-additive probability distribution.
Schmeidler [37] has derived the existence of a non-additive
subjective probability distribution within an axiomatic decision
theory. Moreover he has shown that the decision-maker will
maximise expected utility (defined as a Choquet integral).
Schmeidler's axioms are similar to those of Anscombe and Aumann
[2], except that he relaxes the independence axiom to the weaker

assumption of comonotonic independence.

Definition 3.1 Non-additive Probability Let I be a non-empty
algebra of subsets of S. A function p: © - R is a non-additive

probability if it satisfies the following three conditions:

i.  up(e) 0,
ii. u(s) =1,

iii. A C B = u(A) < u(B).

Definition 3.2 Choquet Integral Let £f = S - R Dbe a bounded
T-measurable function and let u be a non-additive probability.

Define the Choquet Integral of f with respect to u by

f fdp = fﬂ p(x:£f(x) 2 «a ) da +.[f (p(x:f(x) 2 « ) - 1)de, (3.1)

where the integrals on the right hand side of (3.1) are Lebesgue

integrals.

15



Properties of the Choguet Integral The Choquet integral satisfies

the following properties.

f).fdp. - ).ffdv , (3.2)
f).+fdv = A +ffdv , | (3.3)
Vses, £f(s) 2 g(s) =ffdp zfgdp.. ’ (3.4)

These three properties all follow directly from equation (3.1).

We assume that the decision maker has a state-dependent
utility function u,(x), where x denotes wealth in state s. The
fact that the utility of wealth can depend on the state is an
implicit way of considering risks other than money risks. Thus
we assume that the individual's preferences can bé represented

in the following form, v(x) =./.E[us(x(s))]dp » Where E u,(x(s))

denotes the expected value of u, with respect to the objective
probability distribution, pu is the non-additive subjective

probability and the integral is a Choquet integral.

Assumption 3.1 Each state specific utility function u, is

assumed to be strictly increasing.

Assumption 3.2 Risk Aversion Each state-specific utility

function is assumed to be strictly concave.

Remark In Kelsey and Nordquist [22] it is argued that this is

the correct definition of risk-aversion when utility is state-

dependent.

16






We shall now describe our assumptions on asset returns. Our
basic probability space is [0,1] with the o-algebra of Lebesgue
measurable sets and Lebesgue measure. This assumption can be
made without serious loss of generality. We shall restrict the
obj ectix}e probability distributions to be square integrable hence
the space X is the space of all functions from S to 1%[0,1].

Let f,,..., f, be k linearly independent members of X. We

k

assume that returns on asset a are given by x, = E Biw £1 % €4 ¢
i=

=

where e, satisfies E(e,) = 0 and E(e, | £f;) = 0, 1 £ i <k. In

this interpretation F is the vector subspace of X spanned by
) K

f,,..., £, and T is the function, 7T(x,) = E Biw £ - Since the
i=1

%X, span A, this defines T on the whole of A. Portfolios are

assumed to be absolutely summable i.e. if v, denotes the amount

of asset a held in portfolio a then E exists. Further

«eQ [vel
we assume the existence of a function h € 1?[0,1] such that
h > |e,| for all a € fi. The last two assumptions will always be
satisfied when there is a finite number of assets.

The space D, of diversified portfolios is defined to be the
linear span of f,,...,f. While it is not possible for an
individual to buy the f; directly, there are two ways in which he
may be able to buy the f; as a combination of the available
assets. Firstly if there is a linéar dependency between the e,
than an investor could eliminate the idiosyncratic risk by buying
an appropriate finite linear combination of assets. If the e,
have finite second moments this would imply that the covariance

matrix of a finite set of the e, is singular. Secondly an

investor may be able to eliminate the idiosyncratic risk by

17



holding infinitesimal amounts of each asset. This second
possibility can only occur with there are an infinite number of

assets.

Assumption 3.3 The idiosyncratic risk is assumed to be

state-independent.

Remark This implies that the idiosyncratic risk is described
only by objective probabilities. On the other hand we need no
assumption about the factor risk, which can depend on both known
and unknown probabilities in any combination. A motivation for
assumption 3.3 can be given as follows. The factor risks are
things which affect the economy as a whole, such as the price of
major exports, interest rates, war or earthquakes. The behaviour
of these variables will depend, in part on risks for which
relative frequencies exist but also on some events which are non-
repeatable. The idiosyncratic risk represents firm-specific
factors. A good example of this might be the chance that an
individual firm would have a bad management. This would be a
risk which could be expected to be independent of the state. If
the economy contained a large number of firms it may be possible
to observe the frequency of management failure and hence it could

be viewed as an objective probability?.
Lemma 3.1 Suppose that a and b are factor equivalent

portfolios where b is diversified and a is not, then a - b is

a mean preserving increase in risk on b.

18
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Proof In the case where there are a finite number of assets
a-b-= 55 Y€ It 1is immediate that E(a-b) = 0 and
il
E(a-b|b) = 0 and hence a - b is a mean preserving increase in
risk on b. In the countable case a - b= ii Yi€; - Define
i=0

n o0
£, = z: vy,e; - Let A = §:|yﬂ which exists by assumption.
1=0

i=1
For x € [0,1] |e(x)]|< h(x), hence |v; e(x)| < |y] h(x). It
follows that the series 55 y;e;(x) converges pointwise to a
i=0
limit £. Moreover |f(x)|< Ah(x) = H(x). Clearly H is an
integrable function and |f,(x)|< H(x). We may apply the

Dominated Convergence Theorem (Weir [41]) to deduce that,

ff=1l—1-i»$ffn =0 , hence E(a-b) = 0. For fixed y € R, the
sequence of functions, max {y - b(x) - f,(x), O} converges

pointwise to max{y - b(x) - f£(x), O0}.
Moreover |max {y - b(x) - f£,(x), 0} | < |y| + |b(x)| + H(x),
which is integrable. Since -max {y-t, 0} is a concave function

of t and b + £, is a mean preserving increase on b, we have,
—f max {y - b(x), 0} dx 2 —f max {y - b(x) - f,(x), o} dx .

By the Dominated Convergence Theorenm,

—f max {y - b(x), 0} dx 2 —f max {y - b(x) - f(x), 0} dx.

Let G and H denote respectively the distribution functions of b

and b + £f. Then we have
- [T (r-trde(e) 2 - 7 (y-t)aH(e) .

Integrating by parts we obtain,

19



ye(y) - ta(e) % + [ eierde s yH(y) - tH(E)[Z + [ (o) de

which implies, f:'G(t)dt s'f:.H(t)dt. But this is the
integral form of the Rothschild-Stiglitz conditions for b + £ to
be a mean-preserving increase in risk on bi.

|

Proposition 3.1 Any risk averse individual with a state-
dependent utility function and non-additive subjective
probabilities, strictly prefers a portfolio with zero
idiosyncratic risk to a factor equivalent portfolio with non-zero

idiosyncratic risk.

Proof Let x* denote the returns from a portfolio with zero
idiosyncratic risk and let x’ be the returns from a factor
equivalent portfolio with non-zero idiosyncratic risk. Then

E u,(x’(s)) = E u(x*(s) + (x/(s) - x*(s))) < E u,(x*(s)).

Since u, is strictly concave and since x* and x’ have the same
factor structure the addition of x’ - x* represents a mean
preserving increase in risk on x*, by Lemma 3.1. It follows by
the monotonicity property of the Choquet integral (3.4) that
fE[us(X*(S))]d” > fE[us(x’(s))]dp. ' and hence the investor
prefers the portfolio with zero idiosyncratic risk.

|

Assumption 3.4 Differentiability An individual is said to have
differentiable preferences if for all s € S and all W € R, u, (W)

is a differentiable function of w.
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To show that the proof of the APT is valid for these

preferences we need to show that
-
dA
exists when a’ is a portfolio that consists solely of

via+ia') |, ., (3.5)

idiosyncratic risk. (The existence of the derivative is fequired
to prove proposition 2.2).

By assumption the idiosyncratic risk consists only of
objective probabilities. The preferences which we are
considering are linear and hence differentiable in objective
probabilities. If in addition it is assumed that there is at
least one individual i who satisfies assumption 3.4 then the

derivative (3.5) will exist.

Corollary 3.1 The Arbitrage Pricing Theorem for State-Dependent

Preferences with Non-additive Probabilities In an insurable
asset exchange economy, which satisfies assumption 3.3, where all
individuals have state-dependent preferences with non-additive
subjective probabilities satisfying assumptions 3.1
(monotonicity), 3.2 (risk aversion) and at least one individual's
preferences safisfy assumption 3.4 (differentiability), then if
p. denotes the competitive equilibrium price of asset a there

exists a linear functional q on F such that;

k
by = Z Bia q(fi) :
i=1
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4. GATEAUX DIFFERENTIABLE PREFERENCES OVER PROBABILITIES OF

FUTURE WEALTH
In this section we shall show that the APT holds for risk-averse
individuals with preferences which are Gateaux differentiable in
probabilities over future wealth. As noted in the introduction
this is a general form of preferences which has two special cases
among the more prominent non-expected utility theories. The rank
dependent model is Gateaux differentiable under certain
assumptions and Machina preferences are always Gateaux
differentiable.

In this section we shall use the same assumptions about
assets as in section 3 with the additional restriction that there
is only one state. This implies that all the risks can be
described by objective probability distributions. Hence the
basic objects of choice are elements of A, probability

distributions over R. We shall assume that an investors'

preferences can be represented by a function VvV : A - R. . We

shall assume that V is Gateaux differentiable.

Chew, Karni and Safra [6] show that this implies that there
exists a function U; : R - R such that,
Ls(6-6) = [ Uz d(6'-G).
This means that for small changes in the probability distribution
the investor acts as if he is maximising the expected value of
Ug. For this reason U; is referred to as the local utility

function.
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Proposition 4.1 Let v be a Gateaux differentiable
preference function such that the local utility functions Ug; are
strictly concave for all Ge A then V(G’) > V(G") whenever G"
differs from G’ by a mean preserving increase in risk.

Proof Let G! be a mean-preserving increase in risk from G°.
Define G* = (1-a)G° + aG' and yY(a) = V(G%). Then ¢’ (a) =
f Uge d(G*-G°) . Since G! is a mean-preserving increase in risk

from G° and Ui, is concave,

f Ug dG° > f Ue dG* , which implies ¢(1) < ¢(0). Hence G° is
preferred to G!. ’
|

Remark This result is essentially a Corollary of Theorem 1 of

Chew, Karni and Safra [6]. The latter result was stated within
the framework of the rank dependent model, however the proof only
uses Gateaux differentiability and does not depend on any
specific features of the rank dependent model. If instead it was
assumed that the local utility functions were weakly concave we
could prove that the decision-maker will never strictly prefer
a mean preserving increase in risk. Proposition 4.1 motivates

the following definition.

Definition 4.1 We shall say that an individual with Gateaux

differentiable preferences over future wealth is risk averse if

all his local utility functions are strictly concave.

Proposition 4.2 If an investor has Gateaux differentiable
preferences and is risk averse then he is a diversifier in the

sense of assumption 2.1.
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Proof Let a € D be a diversified portfolio and let a’ be an
undiversified portfolio which is factor equivalent (ie Ta = Ta’).
Then by lemma 3.1 a’ - a is a mean preserving increase in risk
on a and hence by Proposition 4.1, V(a) > V(a’).

|

Remark Proposition 4.2 has shown that risk-averse Gateaux

differentiable preferences satisfy one of the assumptions used

in section 2 to prove the APT. The other assumption was

differentiability. Specifically that: if a € D and
d / .

a’ € Ker(T), = via + Aa’) |, ., exists. (4.1)

Gateaux differentiability of V is not in itself sufficient to
ensure that this derivative exists. The problem is that we have
required V to be Gateaux differentiable with respect to
probabilities. As A\ varies both the probabilities and the
outcomes associated with the portfolio a + Aa’ change. To ensure
that the derivative (4.1) exists it is necessary that the local
utility function itself be differentiable with respect to its
argument. This is analogous to assuming that an expected utility
maximiser has a differentiable von Neumann-Morgenstern utility
function. With the additional assumption that there is at least
one individual whose local utility functions are differentiable,
it follows by the analysis of section 2 that the arbitrage

pricing theorem will hold. This is stated below.

Corollary 4.1 The Arbitrage Pricing Theorem for Gateaux

Differentiable Preferences In an insurable asset exchange
economy suppose that all individuals have risk-averse Gateaux

differentiable preferences and at least one individual has
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continuously differentiable local utility functions, if p denotes
the competitive equilibrium price functional, then there exists
a linear functional g on the space of factors such that p.a =

qg.Ta.

5. CONCLUSION

In this paper we have shown that the APT is true for risk-
averters with Gateaux differentiable preferences, individuals
with state-dependent preferences and non-additive subjective
probabilities as well as for individuals with state-independent
von Neumann-Morgenstern preferences. Since the proof of the APT
in section 2 only relies upon a preference for diversification
and the existence of a single individual with differentiable
preferences, the APT will remain true if the economy consists of
a mixture of these three kinds of individuals.

One of the most widely discussed non-expected utility
theories which we have not considered so far is regret theory,
Bell [3], Loomes and Sugden [23]. Most existing versions of
regret theory only consider choices between two alternatives.
This makes them unsuitable for application to financial markets.

Recently Quiggin [32] has proposed a theory of choices over
larger sets which agrees with the wusual regret theory when
applied to choices over pairs. In Quiggin's extension of regret
theory the decision maker maximises the expected utility function
U(a(s),B'), where f* denotes the largest pay off in state s of
any available action. Thus preferences may be represented in the
following form, c PdeEU(c(s),B) > E U((A(s),B), where P

denotes strict preference.

25



Assume now that the set of available actions is fixed. Then
we may define u,(x) = U(x,8,). The decision maker will maximise
E u,(x). Hence this extension of regret theory may be seen as a
special case of the state-dependent utility model considered in
section 3 of the present paper. Therefore the APT result also
applies to this extension of regret theory.

If an expected utility maximiser is risk averse and is
indifferent between two assets he will (weakly) prefer a
portfolio consisting of a mixture of the two assets to a
portfolio containing only one of the assets. Dekel [11] has
shown that this result does not generalise to Machina
preferences. The reason that he obtained this result is that in
his example the diversified portfolio does not second order
stochastically dominate either asset. The proof of the APT in
the present paper only relies on individuals diversifying in
order to achieve second order stochastically dominating

distributions. Thus Dekel's result is compatible with our own.
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Notes on the text
1. The Gateaux derivative is a generalisation of the directional
derivative on R* to general vector spaces over R. Frechet
differentiability is a generalisation of the total derivative in
R* to a normed vector space. If a function f is Frechet
differentiable at a point, then the Gateaux derivative exists at
that point and is equal. The converse is false in general. For

a discussion, see Chapter 7 Luenberger ([24].

2. There are two implications of assumption 3.3. Firstly, all
individuals have the same subjective probabilities for the
idiosyncratic risk. Secondly, that subjective probabilities for
the idiosyncratic risk are additive. The first part of this
assumption is crucial for our result. If individuals did not
agree on the probability distribution of the idiosyncratic risk
then they would not agree which portfolios were diversified. It
would not necessarily be the case that the price of a portfolio
which contains only idiosyncratic risk would be zero. Hence the
APT result would not hold, in general.

We conjecture that if the first part of assumption 3.3 held
but the second did not, then the APT result would continue to be
valid. We have not investigated this case in detail since the
resulting preferences would be very similar to the rank dependent

model which is investigated in section 4 of the present paper.

3. The latter part of this proof is based the analysis of

Rothschild-Stiglitz [35].
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