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ABSTRACT
An endowment economy with heterogeneous agents and incomplete asset markets

is specified, parameterized and solved using a numerical solution algorithm.
The model features two types of infinitely lived agents who are endowed with
different sources of non-tradable income. Despite not being able to insure
against endowment risk, individuals are able to partially diversify away
idiosyncratic risk by trading in a limited set of competitive asset markets.
Numerical results indicate that the model can account for substantially more
of the variability in intertemporal marginal rates of substitution documented
by Hansen and Jagannathan (1990) than can models based on a representative
agent. In addition, the model can generate a mean risk-free rate of interest
smaller than the rate of time preference and potentially account for the so

called ‘risk-free rate puzzle’.




A large literature in financial economics has documented the inability of
the representative agent, complete markets theory of portfolio choice (Breeden
(1979), Lucas (1978), Merton (1973)) to account for various simple properties
of the joint behaviour of aggregate consumption and asset returns. Mehra and
Prescott (1985) show that, given the stochastic properties of U.S.
consumption, the theory drastically underpredicts the average excess rate of
return on stocks — the so-called ‘equity premium puzzle’. Weil (1989) points
out, as did Mehra and Prescott, that the magnitude of the average risk-free
rate is far below that predicted by the theory: this has been dubbed the
‘risk-free rate puzzle’. Numerous authors, including Grossman, Melino and
Shiller (1987) and Backus, Gregory and Zin (1989), have shown that the theory
cannot account for term premia inherent in the yield curve. Finally, there
exists a vast literature that documents the theory’s shortcomings in
accounting for deviations from ‘unbiasedness’ in foreign exchange markets.
Hodrick (1987) provides a comprehensive survey of theoretical and empirical

applications of asset pricing theory to foreign exchange markets.

All of these empirical anomalies are associated with the same class of
consumption-based asset pricing models. However, they also involve asset
markets that may be very dissimilar. Hansen and Jagannathan (1990) and
Shiller (1982) provide a method of summarizing information on asset returns
from various different markets, thereby generating an ‘asset pricing puzzle’
that in a certain sense encompasses those mentioned above. These authors
develop tools which one can use to infer statistical properties of an
investor’s intertemporal marginal rate of substitution (IMRS) using data on
returns alone. They show, for example, that should two assets exhibit large
differences in expected return, the implication for a broad class of asset
pricing models is that the IMRS must be highly variable. Consequently, an

alternative view of the equity premium puzzle is that of a ‘variability



puzzle’. The parametric family of models examined by Mehra and Prescott
implies an IMRS for the representative agent that is much less variable than
that implied by the large excess return on stocks observed in their data-set.
Papers by Breen, Glosten and Jagannathan (1989), Hansen and Jagannathan (1990)
and Heaton (1990) document evidence in this regard. Backus, Gregory and
Telmer (1990) and Bekaert and Hodrick (1990) reach similar conclusions using
foreign exchange market data. This line of research shows that a useful way
to characterize the shortcomings of the representative agent model is in terms

of its inability to generate sufficient variability in the IMRS.

One branch of subsequent research has explored the possibility that
relaxing auxiliary assumptions, within the representative agent framework, can
help bridge the gap between theory and data. Papers by Cecchetti, Lam and
Mark (1990), Kandel and Stambaugh (1989, 1990) and Rietz (1988) examine
alternative assumptions about the driving processes for aggregate consumption.
Labadie (1989) investigates the effects of stochastic inflation on asset
prices. Rouwenhorst (1989) takes into account production decisions and
examines asset prices in a version of the neo-classical growth model.
Benninga and Protopapadakis (1990) and Kocherlakota (1990) allow for firm
leverage and unconventional values of the rate of time preference. Finally,
the effects of alternative preference structures are examined by a number of
authors, including Abel (1990), Burnside (1990), Constantinides (1990), Dunn
and Singleton (1986), Epstein and Zin (1989), Heaton (1990), Nason (1988), and
Weil (1989). While this line of research has offered valuable insights, such
as the role played by habit formation in generating variability in the IMRS,
many issues remain unresolved. From the point of view of a theory based on a
representative agent, the stochastic properties of aggregate U.S. consumption

appear to be inconsistent with those of asset returns.



This paper abandons the representative agent, complete markets paradigm
and investigates the extent to which deviations from frictionless Arrow-Debreu
markets can help to account for the above asset pricing anomalies. The Lucas
(1978) model is generalized in that agents are endowed with idiosyncratic
risk, in the form of different stochastic endowment processes, that cannot be
perfectly hedged due to incomplete asset markets. Aggregation, or the
construction of a representative agent, is invalid (Brennan and Kraus (1976),
Milne (1979), Wilson (1968)), and the IMRS relevant for intertemporal asset
pricing is based on disaggregate consumption data. The underlying idea is
that, in equilibrium, individual risk and consumption variability may be
larger than measures based on the per-capita aggregate if agents are not able
to perfectly share their idiosyncratic income risk. This leads to one
potential interpretation of the asset pricing anomalies. Asset prices in the
model with imperfect risk sharing arrangements will reflect the fact that a
certain amount of idiosyncratic risk is priced in equilibrium, while
quantities based on aggregate data, such as the IMRS of a (misspecified)
representative agent, will indicate that only systematic risk is priced. One
might therefo}e expect moments such as the equity premium and the variability
of the IMRS to be understated by a model based on aggregate data and perfect
risk sharing. This paper investigates the magnitude of these effects in the

context of a general equilibrium model with incomplete asset markets.

There are some other empirical observations which suggest that
generalizing the perfect risk sharing model of Wilson (1968) may be useful
from the point of view of intertemporal asset pricing theory. Eun and Resnick
(1988) and Solnik (1974), for example, have shown that the potential gains

from international portfolio diversification can be substantial. One



interpretation of their result is that risk sharing across countries is
non-optimal. Brennan and Solnik (1989) demonstrate that, in the context of a
consumption-based asset pricing model, the economic significance of imperfect
international risk sharing can be considerable. In the macro-economic
literature on consumption dynamics a number of papers, including Flavin
(1981), Hall and Mishkin (1982) and Zeldes (1989a,b), document evidence
suggesting that consumers face binding 1liquidity constraints, thereby
rendering them unable to pool risk associated with future income streams.
Finally, in a recent study using panel data from the PSID, Mankiw and Zeldes
(1990) find that a large proportion (75 percent) of households hold very
little of their wealth in the form of stocks, and that the consumption of
stockholders is substantially more volatile and more highly correlated with
stock returns than the consumption of non-stockholders. A theory of asset
prices based on optimal risk sharing is unlikely to be able to account for
such evidence. Furthermore, given the important theoretical role of
co-movements between consumption and returhs, Mankiw and Zeldes’s results
suggest that aggregate data may be highly inappropriate for tests of

intertemporal asset pricing theory.

Specific features of the model are as follows. There are two types of
infinitely 1lived agents who are distinguished by different, exogenously
determined endowment processes. Direct trading in claims to future endowment
income, or labour income, 1is prohibited. One interpretation of this
restriction is that, due to informational asymmetries, incentive compatible
contracts written on individual specific outcomes do not exist. This aspect
of the economy is not explicitly modeled. Individuals are able to trade in
competitive asset markets in an attempt to partially diversify away

idiosyncratic risk. The asset market structure consists solely of a riskless



discount bond. A competitive equilibrium is characterized by stochastic
processes for the distribution of wealth and the risk-free rate of interest.
As closed form solutions are not available, a computational algorithm based on
dynamic programming methods is developed. A series of quantitative
experiments are conducted by calibrating the model to monthly U.S. per-capita
consumption data and varying the amount of heterogeneity inherent in

individual income processes.

Related literature on idiosyncratic risk and asset prices includes the
following papers. Mankiw (1986), which helped to motivate this paper, uses a
static model and finds that incomplete markets can potentially account for the
equity premium puzzle. Alyagari and Gertler (1990) and Hugget (1990) use
dynamic models with a continuum of agents and no aggregate uncertainty. Kahn
(1990) and Weil (1990) study overlapping generations economies. Finally,
Lucas (1990) and Marcet and Singleton (1990), in independent work, use a
two-agent economy similar to that in this paper to examine the equity premium

puzzle and several other issues.

The remainder of the paper is organized as follows. Section 2 contains a
derivation of a simple version of the Hansen-Jagannathan variance bounds
technique. Empirical evidence on the implied statistical properties of the
IMRS is documented in order to provide a metric with which to evaluate the
model. The incomplete markets asset pricing model is outlined in Section 3.
Since closed form solutions are not available, the model is solved by using a
numerical solution technique. The algorithm, which is closely related to
several other well known approaches, is briefly described in Section 4 and
then in more detail in an Appendix. Section 5 presents numerical results from

a sequence of heterogeneous agent economies and Section 6 conducts a brief



sensitivity analysis. A summary of the results, some conclusions regarding
the general approach and suggestions for future research are offered in

Section 7.
2. Hansen-Jagannathan Bounds

This section makes use of tools developed by Hansen and Jagannathan (1990)
and Shiller (1982) in order to develop a simple diagnostic that can be used to
evaluate a broad class of asset pricing models. The procedure has the added
advantage of being able to summarize the implications of data on returns from
many different asset markets in a parsimonious manner. Empirical evidence
from a number of different sources is reviewed in order to provide a metric

with which the model of Section 3 can be evaluated.

The Hansen-Jagannathan procedure begins by making use of a tenet of
financial economics: that securities markets do not admit any riskless
arbitrage opportunities. The consequence (Harrison and Kreps (1979), Huang
and Litzenberger (1988)) is that there exists a positive random variable, say

m, that satisfies the following conditional moment restriction:

P, = Et(mt+1xt+1)' [1]

. In equation [1] Py represents a vector of asset prices, pi, and X, represents

t

a vector of payoffs, Xy, on a set of securities indexed by i. The conditional

t,
expectations operator, Et’ is defined in terms of an information set, ?t, that
represents the intersection of all individual information sets. Random

variables subscripted with a t are assumed to be adapted to the information

structure, F = {?t;t=0,1,2,...}. The variable mt will be referred to as the



intertemporal marginal rate of substitution (IMRS).

The Hansen-Jagannathan technique consists of using the moment condition
[1] and data on asset returns to infer an unconditional mean-variance frontier
for m, . What follows is a simplified version of their procedure. Writing [1]

in terms of returns, it is easily shown that, for any two assets, the

following relation must hold:

i _nd -
E (m [R;,, - R}, 1) =0 [2]
where Ri+15 xt/pt is the gross rate of return on asset i between time t and
t+1. Define r as the return differential, r = R1 - RJ Since [2]

t+1 t+1 t+1 t+1°

holds in conditional mean, it holds unconditionally as well. The definition

of covariance implies the following:

E(m) E(r) + Cov(r,m) =0 , [3]

where the absence of subscripts denotes an unconditional moment. Since mt is
a positive random variable, and correlations are less than unity in absolute

value, [3] implies the inequality:

o /E(m) = |E(r)|/o‘r , (4]
where ¢ denotes standard deviation. The expression [4] implies that the
absolute value of the ‘Sharpe ratio’, |E(r)]/0r, provides a lower bound on the

ratio of 0m to its mean.

The inequality restriction [4] applies to any random variable that



satisfies the no-arbitrage condition [1]. The essential link between [1] and
the consumption based asset pricing model is that, in general, the latter
identifies the random variable m, with the ratio of an investors’ marginal
utilities of consumption at two points in time: her IMRS. The one exception
to this statement involves constraints on asset holdings, or corner solutions.
The theoretical random variable corresponding to m, in this case is a
non-standard quantity involving more than one individual. This is made clear
in Section 5. The important point for now is that equation [1] and the
resulting inequality [4] are applicable in a wide class of economies including
those with heterogeneous agents and/or incomplete markets. There will always
exist at least one random variable that satisfies the moment restriction [1].
Following the existing literature, this variable will be referred to as an
IMRS. Should it fail to satisfy [4], given the Sharpe ratio from some

portfolio, the model can be deemed inconsistent with the data in these

dimensions.

This framework suggests a reinterpretation of Mehra and Prescott’s equity
premium puzzle. Equilibrium in their model is always associated with an
interior solution to the representative agent’s maximization problem. The
random variable m, from [1] is therefore unambiguously identified with the
representative agent’s IMRS. In addition, note that the mean IMRS is roughly
equal to unity (since it is approximately equal to the inverse of 1 plus the
mean risk-free rate of interest). The Sharpe ratio in [4] therefore provides
a lower bound on the standard deviation of the IMRS alone. Suppose that the

rate of return differential, r is interpreted as the excess return on

t’
equity. Equation [4] indicates that 1large equity premiums imply large
standard deviations for the IMRS. Herein 1lies the reinterpretation of the

equity premium puzzle. The parametric family of models examined by Mehra and



Prescott imply an IMRS that is not nearly variable enough to be compatible
with the data. This observation is documented by Hansen and Jagannathan

(1990) and Heaton (1990).

The existence of predictable components in asset returns also presents a
challenge to theories of asset pricing. To see this, consider the return,
Tigpr ©O0 2 managed portfolio that is generated by a zero net investment
trading strategy. Such a portfolio is constructed by going short in one asset

in order to finance a long position in another. Since the price of this asset

is zero, the asset pricing model implies that:

E(rm) =0 [5]

The same steps as shown above imply that the absolute value of the Sharpe
ratio for the balanced portfolio, |E(r)|/¢r, constitutes a lower bound on 0m.
Now suppose that returns are predictable to a certain extent, and that the
trading strategy alluded to above uses this information. Examples of simple
trading strategies based on linear projections are documented below. Loosely
speaking, one would expect the return generated by the trading strategy, and
therefore the portfolio’s Sharpe ratio, to be increasing in the amount of
predictability. Highly variable IMRS’s are therefore implied by predictable
components in asset returns. Lower bounds obtained in this manner make use of
more information than those based on simple return differentials, and are in

general more restrictive (see Bekaert and Hodrick (1990) in particular).

A number of lower bounds on the variability of the IMRS, based on data
from a number of different asset markets, are now reported. Breen, Glosten

and Jagannathan (1989) use a trading strategy based on a continually updated



projection of excess stock index returns onto t-bill returns. Their managed
portfolio consists solely of the stock index fund whenever the fitted value
from the projection is positive, and t-bills whenever the fitted value is
negative. Sharpe ratios of 0.140 and 0.130 are reported for the NYSE value
and equally weighted stock indexes, respectively (based on Table II, monthly
data, 70:8-86:12). Backus, Gregory and Telmer (1990) use a similar trading
strategy to construct a portfolio based on forward and spot market data for
various currencies vis-a-vis the U.S. dollar (monthly data, 74:7-86:10). They
report Sharpe ratios that range from 0.094 for the deutsche mark, to 0.358 for

the yen.

Bekaert and Hodrick (1990), Hansen and Jagannathan (1990) and Heaton
(1990) use a generalization of the above procedure to derive bounds based on
large numbers of assets. Hansen and Jagannathan (1990) use monthly data on
U.S. t-bills and the value-weighted NYSE index to construct a number of payoff

series that correspond to X, in [1] (see their Figure 5). They infer a lower

t
bound of approximately 0.150. Heaton (1990) documents similar results using
somewhat different techniques and the same data set. These authors
characterize the entire admissible region for the IMRS in mean-standard
deviation space. The value of 0.150 is conditional on a mean IMRS of slightly
less than unity. Finally, Bekaert and Hodrick (1990) characterize the lower
bound using two approaches. The first is based on a linear projection and
uses a wide array of monthly data from international equity, bond and currency
markets. They find lower bounds that vary from 0.100 to 0.300. Their second
approach makes use of more conditioning information by scaling asset returns
with elements of the assumed information set. They obtain substantially more

restrictive lower bounds, the largest being 0.635. Bekaert and Hodrick’s work

illustrates the extent to which predictable components in asset prices can be

10



made use of to infer strong restrictions on the IMRS.

These lower bounds are all estimates and are therefore subject to sampling
variability. Hansen and Jagannathan (1990) and Bekaert and Hodrick (1990)
report standard errors computed using the Newey-West (1987) estimator. Bounds
that are calculated using a minimal amount of information on predictable
components appear to be estimated imprecisely. This is not generally the case

for tighter bounds that are obtained by using more conditioning information.

To summarize, using data on monthly asset returns, the Hansen-Jagannathan
procedure allows one to infer that a reasonable model of monthly consumption
and asset returns should feature an IMRS with a standard deviation of at least
0.150 and a mean between 0.995 and unity. The range for the mean implies an
average risk-free return between 0 and 6 percent, at annual rates. This
metric can now be used to highlight the shortcomings of the representative
agent model. Figure 1 plots population mean-standard deviation pairs for the
IMRS from a monthly calibration of the Mehra and Prescott (1985)
representative agent economy. The discount factor is set to 0.9983, while the
value of the risk aversion parameter, «, is varied from 1 to 10. The graph
highlights two ‘puzzles’ associated with additively time separable
preferences. The ‘variability puzzle’ refers to the fact that the largest
standard deviation of the theoretical IMRS is a factor of 3 less than the
lower bound of 0.150 (the a=10 case). The ‘risk-free rate puzzle’ refers to
the fact that increased amounts of variability in the IMRS can only be
achieved at the expense of unrealistically high mean risk-free rates. 1In the
most extreme case, «=10, the expected risk-free rate is roughly 16 percent
(annualized). The corresponding sample moment from the Mehra-Prescott

data-set is 0.80 percent. For more reasonable attitudes towards risk, such as

11



a=2 (which is used in this paper), the expected risk-free rate is more
realistic, at roughly 5 percent, but the standard deviation of the IMRS is a
factor of 10 less than the lower bound. A challenge for the incomplete
markets model is to account for IMRS variability while at the same time

generating a reasonable mean risk-free rate.
3. Asset Pricing Model

Consider an economy in which many rational investors trade in competitive
securities markets and solve optimal portfolio allocation problems in order to
determine their asset holdings and consumption sequences. It is assumed that
individuals, indexed by k, derive utility from the consumption of a single
good, in terms of which asset prices and payoffs are denominated. Denote ﬁk,t

as investor k’s IMRS: the ratio of her time t marginal utility of consumption

to that obtained at time t-1. As noted in Section 2, the following
conditional moment restriction relates ﬁk t41 to asset prices and payoffs:
Py = ExIme 411%eeq) - (5]

This relation is only valid insofar as individuals are at interior solutions
to their portfolio allocation problems. In this case the variable Ek t+1 is

unambiguously identified with m g in [1]. Equilibria featuring corner
solutions, in which the wusual Kuhn-Tucker conditions replace [5], are

discussed in Section 5.
The asset pricing relation [S5] is consistent with a wide class of models,

the two of particular interest being the Mehra-Prescott representative agent

model and the incomplete markets model derived below. In order to see the

12



relationship between the two, consider the following additional structure to
the model economy. Suppose there are two types of agents, k=1,2, and that
agents of each type are identical in all respects. It is valid to construct
two different representative agents, again indexed by k=1,2, and deal strictly
in terms of this two agent economy. Next, assume that these two agents are
each endowed with a claim to an exogenously determined income stream,
hereafter called labour income, and that incomes are not perfectly correlated
across individuals. For reasons outlined further below, claims to individual
labour income are assumed to be non-tradable. Finally, assume that preference
orderings over the single good are the same across agents 1 and 2: the
determinant of agent type is solely related to endowments. At any point in
time the following resource constraint must hold:

(6]

Cc + C

Yi,t Y Y2, TC,t Y G2t

where ck,t and yk,t are, respectively, individual k’s period t consumption and
labour income. Assuming, for now, that agents are not at corner solutions,
equations [S5] and [6], along with the requirements that all assets are held
and that both agents obey their intertemporal budget constraints, define a

competitive equilibrium.

If we further assume that agents are able to trade in a complete set of
Arrow-Debreu markets for contingent claims, then the Mehra-Prescott model
results. As noted, the only characteristic that distinguishes agents 1 and 2
is their non-tradable labour income endowments. However, since markets are
complete, individual IMRS’s will be equated across states of the world, and no
idiosyncratic risk will be priced in equilibrium. A unique equilibrium

consumption sequence is easily identified in which each agent gets half of the
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aggregate endowment in every state. Supporting asset prices are then
obtainable using [5]. The Mehra-Prescott exercise consists of placing further
structure on preferences and the endowment process such that the pricing
functional implicitly defined by [S5] can be solved and exact numerical

solutions can be obtained.

The remainder of this paper will be concerned with an environment in which
a complete set of contingent claims is not available. The resulting problem
becomes somewhat more complex. Since agent 1 and agent 2’s IMRS need not be
equated in equilibrium, standard welfare theorems from micro-economics cannot
be relied upon to provide a tractable two-stage solution strategy. That is,
equilibrium consumption sequences and asset prices must be solved for
simultaneously: the invalidity of the welfare theorems renders centralized
methods for finding equilibrium consumption allocations inapplicable. Many
other properties of the Arrow-Debreu model, such as efficiency, also fail to
hold in the incomplete markets environment. See Duffie (1990) and Geanakoplos
(1990) for a survey of these and other important aspects of general

equilibrium with incomplete markets.

Additional structure on preferences, technology and asset markets is now
required in order to make [5] operational. For both expository and
tractability reasons, an attempt is made to keep the model economy similar in
spirit to that of Mehra and Prescott. The process that is observable at the
aggregate level is outlined first, followed by a description of how the

idiosyncratic component of individual labour income evolves.
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3A. Aggregate and Individual Labour Income

The specification of the endowment processes for agents 1 and 2 follows in
the spirit of Mankiw (1986). Aggregate labour income evolves according to
some exogenous stochastic process while individual income is generated by a
stochastic sharing rule. The idea is to build a model that accounts for both
aggregate and disaggregate data. In doing so, links are maintained with the
more easily measured aggregate time series while at the same time explaining
why per-capita consumption is inappropriate for asset pricing.

Aggregate labour income, Yo is assumed to grow at rate A where the

t’
stochastic process {At} is governed by a first order Markov chain with

The random variable A

transition probabilities nij' Therefore, yt+1=At+1yt' t

is restricted to take on one of two values, Al or AZ’ which define two states

of the world for aggregate labour income, high and low growth, respectively.

The characteristic that defines agents 1 and 2 is that in the low growth
state of the world they are endowed with different proportions of the total
amount of available labour income. Conditional on the growth rate of
aggregate income being Az, agent 1 receives a fraction %, O<y=1/2, of Yi with
probability 8. With probability (1-8) she receives (1-7)yt. Agent 2 receives
the remainder in both of these idiosyncratic states of the world. When
aggregate income growth is high (Al) both agents receive 1/2(yt). It will be

convenient to define a random variable, Q1 t’ as follows:

15



Ql,t = 1/2 with probability "11

s with probability niza

(1-y) with probability niz(l-S)

Q the

Defining Q2,t as (1—Q1’t), it is valid to write yk,t =Q K, t’

K, tVt’
stochastic fraction of aggregate income that individual k receives, is

referred to as the idiosyncratic shock process.

One interpretation of the individual endowment process is that in the low
growth state agents receive an iid productivity shock. This shock renders
them either more or less productive, relative to agents of the opposite type.
The idea, due to Mankiw (1986), is that aggregate shocks to the economy may be

distributed unevenly across the population.

The parameters y and 8 play an important role in the subsequent analysis.
¥ determines the degree of heterogeneity in the model. Should ¥y = 1/2 the
model collapses to that of Mehra and Prescott (1985). As the absolute value
of (1/2-y) grows, individuals become more heterogeneous in that the amount of
idiosyncratic labour income risk grows. The parameter 8 determines the amount
of ‘ex-ante heterogeneity’ present in the economy. Should &=1/2 individuals
have the same expected labour incomes in the future. Note that only in the
special case of a uniform distribution of wealth are agents truly the same in
an ex-ante sense. This will be the case at t=0, by assumption, but generally
not for t>0. 8 also represents the extent to which one agent is wealthy
relative to the other. For instance should 8 be greater than 1/2, agent 2

would have a greater expected future labour income than agent 1.
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3B. Asset Markets

A crucial assumption 1is that agents cannot trade claims to their
individual specific labour income. This requirement, alongside a suitably
restricted asset market structure, is sufficient to imply that markets are
dynamically incomplete (see Huang and Litzenberger (1988) or Duffie and Huang
(1985)). An obvious interpretation of such a restriction is that moral hazard
type problems result in an inability to write incentive compatible contracts

based upon idiosyncratic outcomes.

Imperfect insﬁrance is available through trade in asset markets, even
though perfect insurance for all states of the world is not. The only way in
which agents are allowed to trade intertemporally is with a riskless bond that
pays one unit of the consumption good with certainty one period hence. A more
complex asset market structure is easily incorporated, including equity for
instance, but the riskless bond should be sufficient for the question at hand:
to what extent are agents able to diversify idiosyncratic risk in the presence
of incomplete markets? Denote bk,t as the number of bonds held by individual

k between time t and (t+1), and pt as the time t price of one discount bond.

Because of the simplicity of the model, the formulation has been made
intentionally non-technical. However a heuristic word on the underlying
mathematics will be useful at this point. The economy can be thought of as
being endowed with two information structures, an increasing set of

}, that correspond to the evolution of both the

c-algebras, F = {F t1?

¢ ?ts F
idiosyncratic and aggregate shocks, and another set, G = {?t: gts §t+1}, that
corresponds only to the evolution of the aggregate process. Note that ?tc?t.

Note also that Qk t is ?t measurable but is not ?t measurable. It is

17



understood that the probability measure associated with the operator Et(-) is
associated with the set ?t. The assumption that drives the results is that
while asset prices are 9t measurable, asset payouts are restricted to be ?t
measurable. The requirement that contracts contingent upon the idiosyncratic
processes cannot be written seems natural, given some sort of moral hazard
motive. As long as this restriction is maintained, asset markets will be

dynamically incomplete, regardless of the number of securities traded.
3C. Competitive Equilibrium
Individual k’s intertemporal budget constraint can be written as follows:

+b [7]

Yot Y P t-1 %kt Y PPkt

In order to formulate the model in terms of stationary processes, [7] is

normalized by aggregate income, Vi

Q + b* /A, = c¥

»*
kot TPk, t-1"2 T Okt * PiPk,t (8]

Variables with an asterisk are expressed in terms of aggregate income. For
example, b; t is individual k’s period t purchases of discount bonds,
expressed as a fraction of Yy For notational simplicity, the asterisks will

be omitted hereafter.

Individual optimization problems are standard. Agent k chooses a
consumption sequence {ck t} supported by an admissible trading strategy,
{bk t}, to maximize the following additively time separable expected utility

function:
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Ule,) = E, tZ'OB uley o) -

It is assumed that both agents begin their lives with no bond holdings.

Finally, u(e¢) is assumed to take the form: wu(c) = cl—“/l-a for both agents.

The IMRS inherent in [5] is therefore equal ﬁk te1 = (ck t+1/ck tj“

A competitive equilibrium with incomplete markets is defined as a sequence

of prices {p,} and feasible trading strategies {b, .}, k=1,2, that result in
t

k,t
the following conditions holding. Both agents agree on all aspects of the
stochastic process describing prices. Each agent attains a maximum in terms
of lifetime expected utiiity, taking prices as given. This implies that [5]
holds for each time, t. In addition, markets for goods and assets must clear
at all times. This condition is equivalent (by Walras Law) to requiring that

the bond market clears, or that b 0. All remaining quantities,

1,t" P2t =
such as equilibrium consumption sequences, can be calculated using budget

identities.
4. Solving the Model

The equilibrium pricing functional and trading strategies are time
invariant mappings from the state space, represented by Q say, to the real
line. The following random vector constitutes a set of state variables
sufficient to describe the system at time t and predict its subsequent
evolution:

t - U1t P1,t-1
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The tractability obtained by using a two agent model should now be apparent.
Unlike standard asset pricing theory, asset prices in the current framework
depend on the distribution of wealth. The two agent assumption allows the
cross-sectional distribution of wealth to be fully characterized by the single
variable, bl,t-l'

Evaluating the relation [5] involves computing the conditional mean of a
non-linear function of an endogenous state variable (the wealth variable).
This is easily seen by substituting the budget constraint [7] into [5].
Closed-form solutions to such expressions do not exist in general. This paper
follows much of the recent 1literature on dynamic stochastic general
equilibrium theory by wusing a numerical solution technique to obtain
approximate solutions for the endogenous policy functionals. Taylor and Uhlig
(1990) present a summary of related methods that have been used to solve

various specifications of the neo-classical growth model.

The algorithm developed here obtains approximations to the true pricing
and trading functionals by iterating on a suitably defined contraction mapping
to which the functionals represent a fixed point. An intuitive way of
thinking about the solution method is that a dynamic programming problem is
solved for an increasing (in time horizon) sequence of finite period
economies. If the control rules to such a problem converge as the sequence
grows, they represent a solution to the infinitely lived problem. The reason
that the solution is an approximation to the true one is that the state space
is discretized to a certain extent. The variable bl,t-l is restricted to take
onvonly a finite number of values. Equilibrium trading rules will therefore

take the form of a mapping from points on a two-dimensional state grid to
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points on a one dimensional grid. Asset prices however, are allowed to take
on a continuum of different values, the important reason being that prices are
not required to describe the state of the system. Consequently, the pricing
functional will take the form of a mapping from the state grid onto the real
line. A more detailed description of the algorithm is provided in the

Appendix.

An important issue is the existence of borrowing constraints, which are a
fundamental component of the solution algorithm. Since the state space for
the variable bl,t is discretized, its distribution must have finite support.
Furthermore, since the function bl(st) must be characterized at the boundary
points, the solution will feature states of the world in which agents are
constrained from taking a more extreme position than the boundaries allow for.
These boundaries are symmetric around zero and are referred to as a borrowing
constraint. Prices for states in which the constraint is binding are uniquely
defined by the non-constrained agent’s (the lender’s) first order condition.
The constrained agent’s Euler equation [5] will not hold with equality in
these states, but will satisfy the usual Kuhn-Tucker conditions. 1In addition,

the random variable, m that satisfies [1] and therefore the inequality [4],

t’
is not identified with the individual specific IMRS, Ek t41’ but is instead a
variable defined in the same way as the bond price. This is made clear in the

next Section.

Constraints on asset holdings have played an important role in much of the
related literature. Many authors have suggested that it may not be possible
to study dynamic incomplete markets models without imposing short-selling
constraints of one form or another. Duffie, Geanakoplos, Mas-Colell and

McLennen (1989), for instance, establish that lower bounds on asset holdings
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are an element of a set of sufficient conditions required to prove the
existence of a stationary Markovian equilibrium. The question of necessity
remains an open one. In addition, Marcet and Ketterer (1989) and Marcet and
Singleton (1990) argue that when agents are infinitely lived, constraints on
asset holdings are necessary to rule out Ponzi schemes. This is an important
issue for these authors, since their numerical solution method obtains
approximate control rules for the infinitely lived problem directly. The
method employed here obtains the infinitely lived solutions as the limit of a
sequence of finite solutions in which agents are required to be solvent in the

last period. Ponzi schemes are therefore directly ruled out by the algorithm.

The next section focuses on the effects of missing asset markets by
specifying the borrowing constraint to be as unrestrictive as possible. The
effects of more restrictive borrowing constraints, which constitute an

interesting economic question in and of themselves, are examined subsequently.

5. Numerical Results

This section asks whether or not incomplete markets can provide an
explanation for the observed variability in the IMRS. In addition, the extent
to which the model can resolve the risk-free rate puzzle is examined. Since
agents in the theoretical economy can have incomes that are highly variable
(in growth rates) relative to the per-capita aggregate, one might imagine that
the model would do quite well in terms of the second moment of the IMRS.
However, as will become clear, this conclusion depends on the extent to which

individuals are able to pool idiosyncratic risk by trading in the bond market.

The numerical exercise consists of choosing suitable values for the
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parameters describing tastes and the endowment processes, and then
characterizing the effects of incomplete markets by varying the parameter %
from 0.50 (no heterogeneity) to 0.35 (extreme heterogeneity). Recall that the
case without heterogeneity 1is equivalent to a complete markets model.
Theoretical population moments are computed and compared to the sample moments

reported in Section 2.

As in Mehra and Prescott (1985) the process for aggregate income (which
equals aggregate consumption in this environment) is chosen to match the mean,
standard deviation and coefficient of first-order autocorrelation from U.S.
data. The difference is that in the current model the consumption data are
monthly rather than annual. The source is CITIBASE, from which U.S.
per-capita consumption of non-durables and services net of clothing and
medical care was obtained. The mean, standard deviation and autocorrelation
of the growth rate, for the period 1974-1986, are 1.0012, 0.0047, and -0.212,
respectively. The transition matrix, 1, is restricted to be symmetric, which
implies that it is completely described by one parameter defined by ¢=n11=n22.

Trivially, =(1-¢). The parameter values that satisfy the above

1221

criteria are Al = 1.0062, A, = 0.9962, ¢ = 0.39.

2

The preference parameters that are unrelated to heterogeneity are chosen
in accordance to acceptable norms in the literature. The objective is to
focus on incomplete markets and not rely on extreme risk aversion and/or
unconventional values for the discount factor. Section 6A examines the
sensitivity of the results to alternative values for these parameters. The
curvature parameter, «, and discount factor, B, are set equal to 2.0 and
0.9983 respectively. The discount factor is simply chosen to be consistent

with an annualized discount rate of approximately 2 percent. Note that the
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Hansen-Jagannathan statistic is independent of B. The value for a is chosen
to capture the generally accepted view that agent’s preferences exhibit low to

moderate degrees of aversion toward risk.

The parameter 8 is set equal to 1/2, implying that agents 1 and 2 have the
same expected income streams at any point in time. Recall that this does not
imply ex-ante homogeneity except in special cases, since the distribution of

wealth evolves stochastically and need not be uniform.

In regard to the numerical algorithm, the number of points defining the

partition for b was set to 150 per interval of length 0.10. Experiments

1,t
which used a finer partition were conducted and the resulting unconditioqal
moments were not affected to the degree of reporting accuracy used. The lower
bound on bond holdings, bl,t was chosen to be as unrestrictive as possible:
(0.01 - ) for each reported value of y. Lower values result in the existence
of states in which an agent is insolvent. The computer program was written in
FORTRAN and is available upon request. Computations were done on an 25 Mhz
IBM compatible personal computer with an 80486 processor. The longest time

required to compute an equilibrium for a single economy was roughly 30

minutes.

The only parameter as yet unspecified is ¥, the measure of heterogeneity
in the theoretical economy. Recall that the absolute value of (0.50-y) can be
interpreted as a measure of the incompleteness of asset markets. The
magnitude of ¥ also determines the variability of individual income growth
rates. Figure 2 reports the population standard deviation of income growth
for the range ¥=0.50 to ¥=0.35, in increments of 0.01. Note that the range is

normalized to (0.50-y) so that higher values imply greater heterogeneity.
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Mean income growth is 0.12 percent per month for all values. Due to the
symmetric nature of the economy, all moments associated with agent 1 and 2 are
identical. Only one set of numbers are therefore reported. One way in which
to choose an appropriate value for 7 is to match the variability of the
theoretical income process from Figure 2 to that observed in sbme panel data
set. The strategy here, however, is to take an agnostic position and report
results for the wide range of y given in the graph.

The exact definition of the IMRS that corresponds to m, in equation [1] is

t
now given. Recall that, in states in which an agent faces a borrowing
constraint, her IMRS, Ek,t+1’ will not satisfy [5] with equality, and
therefore will not be bounded by the Hansen-Jagannathan statistic. The
solution is to construct two random variables that are always equal to the
unconstrained agent’s IMRS. Define the indicator variable, Il,t to be unity

whenever agent 1 is unconstrained in the bond market, and zero whenever she is

at a corner solution. Then:

m = I m + (1-I, ) m [9]

where m )—a’ k=1, 2. A second random variable denoted m

it = BlC 4417kt 2, t

is defined analogously. Since bond prices are defined to satisfy the
unconstrained agent’s first order condition, the random variables ml,t and
my 4 will satisfy [5] at all times. Their standard deviation is therefore
bounded by [4], under the null hypothesis that the model is correct. For
economies in which the borrowing constraint is irrelevant, al,t = m1,t.
Consequently, a measure of the net effect of the borrowing constraint is

provided by the difference between the IMRS defined as m t and that defined

as Ek t - Finally, the symmetric nature of the economy results in the
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statistical properties of m being virtually identical to those of m

2, t 1, t°
This turns out to be the case with all individual specific quantities in the
model. Subscripts referring to an individual will therefore be omitted and

Just one set of results will be reported for the remainder of the paper.

Population moments from the theoretical economy are now reported in
Figures 3 through 5. Figure 3 graphs mean-standard deviation pairs for the

theoretical IMRS, m each point on the graph representing a different value

t’
of ¥. Figures 4 and 5 graph the mean risk-free rate and standard deviation of
consumption growth, respectively, against the value of (0.5-7). Mean
consumption growth is equal to 0.12 percent for all values of y. Although it
is not difficult to construct the Markovian transition matrix for the economy,
calculation of the corresponding unconditional distribution involves iterating
on a rather large matrix. Since unconditional moments are obtainable by
simulation with an arbitrary amount of precision, all reported moments

represent sample averages from an extremely large simulation of the artificial

data generating process.

The results in Figure 3 show that the model is successful to a certain
extent in accounting for the variability of the IMRS. For the extreme case,
7=0.35, the standard deviation is approximately 7 times larger than that
associated with the representative agent model, which is represented by the
point ¥=0.50. The standard deviation of income growth for ¥=0.35 is roughly
31 percent per month. For more moderate income variability, say a standard
deviation of 20 percent (7=0.40), the incomplete markets model still generates

an IMRS that is roughly 4 times more variable than the complete markets model.

Just as important in Figure 3 is the behaviour of the mean IMRS, which,
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with a minor correction for Jensen’s inequality, is equal to the inverse of 1
plus the mean risk-free rate of interest. Recall that in the representative
agent model (Figure 1), higher values for the standard deviation of the IMRS
could only be achieved (by increasing risk aversion) at the expense of a
drastically lower mean IMRS. Consequently, moderate variation in the IMRS was
associated with unrealistically high risk-free rates. The incomplete markets
model resolves this puzzle. Figure 3 shows that the mean IMRS is increasing
in its standard deviation, implying that high variability in the IMRS is

consistent with low values for the mean risk-free rate.

The results on interest rates are clarified further in Figure 4 where the
annualized mean risk-free rate is plotted against the value of (0.50-y). The
point ¥=0.50 emphasizes the ‘risk-free rate puzzle’ associated with the
representative agent model (with time separable preferences). The puzzle is
that the theoretical mean is roughly 400 basis points greater than that
observed in the data (0.80 percent in the Mehra-Prescott data-set on U.S.
treasury bills). The impact of heterogeneity is to drastically reduce the
mean risk-free rate. Figure 4 shows that the mean actually becomes negative
for low values of y. The case ¥=0.35 results in a mean of -4.61 percent. A
value for ¥ of 0.38 results in a mean risk-free rate of 0.80 percent, which
matches the sample moment. The standard deviation of the IMRS for ¥=0.38 is

0.045, a factor of 5 larger that the representative agent model.

While the results are encouraging relative to the representative agent
model, the model cannot account for all of the variability in the IMRS implied
by the Hansen-Jagannathan statistic. The largest standard deviation observed
in the sequence of theoretical economies is roughly half that of the (liberal)

lower bound reported in Section 2. Furthermore, taking into account sampling
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variability is not 1likely to resolve the puzzle. The Hansen-Jagannathan
statistics are lower bounds, not point estimates, and are estimated with a

fair amount of precision, the more restrictive estimates in particular.

The lack of success in terms of IMRS variability is interesting in and of
itself. Agents are apparently able to pool a great deal of idiosyncratic risk
in equilibrium, in spite of the very limited set of assets at their disposal.
The standard deviation of equilibrium consumption growth, shown in Figure 5,
is surprisingly small given the variability of income growth shown in
Figure 2. The ratio of the standard deviation of consumption growth to that
of income growth is shown in Figure 6. When ¥=0.35 this ratio is 0.11. For
less extreme values of ¥ the ratio falls to 0.08 and 0.06 for %=0.40 and
7=0.45, respectively. Evidently, the asset market structure is not as
‘incomplete’ as one might have thought ex ante. Equilibrium trading
strategies are such that agents who receive bad income realizations are able
to cushion most of the blow through riskless borrowing.

As noted above, the difference between the IMRS, m, (defined in [9]), and

t

the individual specific IMRS, m provides a measure of the net effect on the

t?
economy of the borrowing constraint. This effect turns out to be substantial
as the amount of heterogeneity is increased. For the case of ¥=0.35, the mean
of ﬁt is 0.9980, compared to a mean of 1.0043 for m, . As a loose indicator of
the magnitude of this difference, suppose that one mistakenly computed the
mean risk-free rate based ﬁt' The implied interest rate is 2.40 percent:
7.01 percent higher than the mean of the true market clearing rate (-4.61
percent). In economies with less heterogeneity this effect is not as

pronounced. For ¥=0.40 the difference is roughly 2 percent and for values of

7 between 0.45 and 0.50 the effect is virtually zero.
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These results are indicative of two further points. First, it appears
that the formulation of the model does not allow for the independent
examination of the effects of market incompleteness and constraints on bond
holdings, at least for economies with a substantial amount of heterogeneity.
Secondly, the substantial reduction in the average risk-free rate appears to
be driven to a large extent by the borrowing constraints. Figure 4 shows that
the mean decreases only marginally for economies in which the borrowing
constraint has no effect (0.45=y<0.50). As the constraint becomes more
important, at roughly 9=0.44, the interest rate begins to drop at an
increasing rate. The economic reasoning behind this result |is
straightforward. When one agent is constrained in equilibrium, the agent on
the long side of the market must be persuaded to keep from accumulating larger
credit balances. The reduction in the rate of return, relative to an

equilibrium with no constraint, accomplishes this.
6. Other Properties of the Economy

This section briefly reports two further sets of numerical results: the
sensitivity of the results to changes in the preference parameters and the
effects of more restrictive borrowing constraints. Recall that in Section 5
the constraints were chosen to be as unrestrictive as possible in order to
focus on the incomplete markets issue.

6A. Sensitivity to Changes in Preference Parameters

There are two preference parameters of interest for the sensitivity

analysis: «a, the curvature parameter and B the discount factor. The effects
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of changing B are straightforward. The standard deviation of the IMRS is
independent of B, implying that the analysis based on Hansen-Jagannathan
bounds is unaffected. However, the mean risk-free rate 1is monotonically
decreasing in B. Herein lies the reason that several authors have had success
in accounting for the risk-free rate puzzle using values for B in excess of
unity. The important difference in this study is that for values of ¥y below
0.38, the mean risk-free rate is actually too small. Therefore, the
flexibility to choose values for B less than the value used above (B=0.9983),
implies that an arbitrarily low (positive) mean risk-free rate can be achieved
for these economies. This goal can be achieved without resorting to negative

rates of time preference (implied by B > 1.0).

Two sets of experiments were conducted using higher values for the
curvature parameter: o=4 and a=6. Higher risk aversion increases the model’s
ability to generate more variable IMRS’s. For =0.35 the standard deviation
of the IMRS was 0.187 and 0.251 for «a=4 and a=6, respectively. As was the
case for a=2, the standard deviation is monotonically increasing as the amount
of heterogeneity increases. Moderate amounts of risk aversion are apparently
sufficient to reconcile the model with the (liberal) Hansen-Jagannathan bounds
from Section 2. Whether or not these values for a imply unreasonable
attitudes towards risk 1is debatable. Mankiw and Zeldes (1990) report
anecdotal evidence, in terms of the certainty equivalent value of a lottery,

that suggests that a=6 is probably unrealistic.

In terms of the mean risk-free rate of interest, the effects of increased
risk aversion are to increase the mean for values of ¥ near 0.50, and to
decrease the mean for values near 0.35, relative to the «a=2 case. For

moderate values of ¥ (near 0.50), this effect reflects the well known fact
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that the mean risk-free rate is increasing in the coefficient of relative risk
aversion for economies with a representative agent. As the value of y falls
however, the effect of the borrowing constraint becomes more dominant, to the
point where the risk-free rate actually falls, relative to lower risk aversion
cases. The increased consumption smoothing motive generated by the higher
value of a results in a relatively low market clearing interest rate in states
in which an agent is constrained (or close to it). In other words, the
reduction in the risk-free rate required to induce the agent on the long side
of the market to hold the maximum number of bonds is increasing in the risk

aversion parameter.

6B. Incomplete Markets and Borrowing Constraints

In Section 5 the borrowing constraint was set as wunrestrictively as
possible at (0.01 - y). In this section, two further sets of experiments are
conducted in which the borrowing constraint is tightened, first to -0.250 and
then to -0.12S5. These values imply that an individual is prohibited from
borrowing any more than 50 percent and 25 percent, respectively, of his
average monthly income. All other parameter values are as in Section 5. The
effects are consistent with what was observed previously. As the borrowing
constraint become more restrictive, the mean risk-free rate goes down sharply.
For example, in the case in which the constraint is -0.25, the mean, in
percent, is 0.97 and -13.03 for ¥=0.40 and ¥=0.35, respectively. These values
can be compared to those from Section 5 which were 2.76 percent and -4.61
percent, respectively. In the more extreme case, where the constraint is set
to -0.125, the mean interest rate becomes substantially counterfactual. It

is, for ¥=0.40 and ¥=0.35, -15.73 percent and -67.41 percent.
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One might expect the effects of tighter borrowing constraints on the
standard deviation of the IMRS to be quite noticeable. In the 1limit, as the
constraint approaches zero and the economy becomes autarkic, the amount of
idiosyncratic risk inherent in the IMRS (which, recall, is mt as defined in
[9]) should increase substantially. However, for the cases considered here
the effect is surprisingly small. For the less restrictive constraint, -0.25,
the standard deviation is 0.040 and 0.079 for ¥=0.40 and =0.35, respectively.
When the constraint is -0.125 the corresponding values are 0.072 and O.145.
These numbers are all smaller than the Sharpe ratio reported in Section 2.
Evidently, agents are still able to pool a substantial amount of idiosyncratic
risk, despite being faced with what appear to be (judging by the effects on
prices) fairly restrictive constraints on asset holdings. The most extreme

case, with a constraint of -0.125 and ¥=0.35, implies a ratio of the standard

deviation of consumption growth to income growth of less than 0.20.

The implications of this section are that tighter borrowing constraints
increase the standard deviation of the IMRS only marginally. Moreover, this
is achieved at the expense of counterfactual properties for expected real
interest rates. Consequently, the formulation of the borrowing constraint
used here cannot account for the variability of the IMRS implied by securities

markets.
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7. Conclusions

This paper was motivated by the thought that departures from frictionless
Arrow-Debreu markets may be helpful in accounting for the properties of
consumption and asset returns that are anomalous within the representative
agent framework. A generalization of the representative agent model was
formulated which featured two types of frictions: incomplete asset markets
and constraints on asset holdings. These frictions were shown to be helpful
in accounting for several important properties of securities markets data.
Specifically, the model was able to account for up to 7 times more of the
implied variability in the IMRS than was the representative agent model with
additively time separable preferences. This is important since, as was shown
using Hansen-Jagannathan bounds, many anomalies that arise in the context of
dynamic asset pricing theory are indicative of inadequate variability in the
theoretical IMRS. Another encouraging result was that increases in the
standard deviation of the IMRS were not associated with unrealistically high
risk-free rates of interest: a pervasive property of many representative
agent models. The combination of incomplete asset markets and borrowing
constraints resulted in a mean risk-free rate that was monotonically
decreasing in the standard deviation of the IMRS. In this sense the model

offers an explanation for the ‘risk-free rate puzzle’.

Progress has also been made in understanding the limitations of the type
of approach used here. Conditional on low values for the risk aversion
parameter, the model can account for at most half of the standard deviation in
the IMRS implied by the Hansen-Jagannathan lower bound.‘ This result was
unexpected at the outset. It was thought that, given variable enough

individual income processes along with incomplete markets, the
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Hansen-Jagannathan puzzle could be resolved, and that research efforts would
focus on the predictive properties of IMRS’s in economies with several assets.
The results indicate otherwise. In spite of a very limited asset market
structure, a substantial amount of idiosyncratic risk turns out to be
diversifiable and is therefore not priced in equilibrium. Agents are able to
pool a large portion of their individual endowment risk. In this sense, the
single asset assumption sharpens the results: additional assets would lead to
increased consumption smoothing opportunities and therefore a lower standard

deviation of the IMRS.

The results are also suggestive of possible limitations of models based on
short-sales, or borrowing constraints. For example, Deaton (1989) examines
(in a partial equilibrium context) the consumption-savings decision of an
investor facing a constant interest rate and a lower bound on the net value of
her assets. He finds that if individual endowment processes are
non-stationary in levels, which they are here, very little consumption
smoothing occurs. The ratio of consumption variability to income variability
in Deaton’s model is much higher.than in any case documented above, including
those with restrictive borrowing constraints. This study points out that when
interest rates are allowed to vary in response to changing IMRS’s, the
conclusions in terms of the dynamic properties of consumption can be
drastically different. Furthermore, should constraints on asset holdings have
a substantial impact on consumption allocations, as above in Section 6B, the
model suggests that the stochastic properties of market clearing prices may be
strongly counterfactual. The general equilibrium approach emphasizes that
merely endowing individuals with highly variable incomes and not allowing them
to trade intertemporally may be insufficient for explaining the behaviour of

consumption and asset returns simultaneously.
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There are a number of possibilities for future research. Most obvious is
the issue of a more complex asset market structure including, for instance,
claims to a dividend process (equity). On-going research, developed
independently, is being conducted in this area by Lucas (1990), Marcet and
Singleton (1990) and Telmer (1990). As noted, allowing agents to trade
additional assets in the above framework is not likely to be helpful in terms
of the Hansen-Jagannathan puzzle. However, the effect of incomplete markets
on the joint behaviour of returns and consumption is another question. Lucas
(1990) reports that the excess return on equity in her model is far below the
sample average reported by Mehra and Prescott (1985). Insofar as small excess
returns on equity are indicative of 1low variability in the IMRS, and

visa-versa, the numerical results in this paper are consistent with Lucas’s.

Other possibilities include altering the present model in a number of
different ways. Asymmetries in terms of the distribution of wealth, attitudes
towards risk, and time preference are easily incorporated. In addition, a
whole host of 1issues that are degenerate in the representative agent
framework, such as the behaviour of trade flows and the possibility of
default, are important issues in an incomplete markets model. While the model
in this paper is probably too simplistic to address these types of problems,
the basic approach opens up a number of research areas that could not be
addressed by the frictionless model. Duffie (1990), Geanakoplos (1990),
Magill and Shafer (1990) and references therein provide a discussion of the
many questions that can be asked using the general equilibrium model with

incomplete markets.
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Appendix - Computational Algorithm

The algorithm developed to solve the model is a modified version of that
suggested by Bertsekas (1976) and used recently by Baxter, Crucini and
Rouwenhorst (1990) to solve a version of the neo-classical growth model. The
major difference is that the endogenous variables that are not state variables
are allowed to take on a continuum of different values. A method based on
linear interpolation is used to solve for market clearing values for these

variables (prices).

The first thing to note is that the model must be completely
parameterized. That is, numerical values must be chosen for all parameters
associated with tastes and technology. The "solution" to the model referred

to below is always contingent on a specific set of parameter values.

Consider substituting budget constraints and market clearing conditions
into the equations [5]. The result is a system of two equations in two
unknowns, bl,t and Py» conditional on the state vector St' The objective is
to characterize the control rules, bl(st) ,p(St). Note that the asset payoff
vector, Xt+1, is simply a vector of ones, since the only asset is a discount

bond. The system of two equations can be written implicitly as follows.

Pt = Et[A(St’Pt’St+1’Pt+1)] ) [A1]

where A is some bounded non-linear function and the vector Pt is defined as
[pt pt]. The vector Pt represents the fact that there are two moment
conditions, one for each agent, that are defined in terms of the single price.
The main difficulty, ignoring the non-linearity, is that of computing the
conditional mean of the endogenous variables contained in S and Pt+1'

t+1

1,t+1’pt+1] = Ct+1' However, note that if the control

), were known, this would not be a problem since

These variables are [b

rules, Ct+1(st+1
=[b

St 1, M1
defined conditional density function (the joint Markovian transition matrix).

1, all of which are either known at time t or have a well
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The algorithm proceeds as follows. First consider the final period of a T
period economy. CT(ST) is clearly well defined, since bonds have no value.
Next, consider period T-1. Again, ignoring the non-linearity in A1, the
T-1(ST-1
known. Finally, consider period T-2. Again, conditional on some arbitrary

(s ) are known: the expression

S1-22 T-1°7-1
ET—Z[B(CT—I(ST-l))] can be computed (conceptually) for some function B. This

system can be solved for C ) since the conditional mean of CT(ST) is

[A1] can be solved since the rules C

is just a standard backward recursion that is fundamental to the theory of
dynamic programming. The only difference is that we are iterating on the
first-order conditions instead of the the more common approach of iterating on
the value function. When the control rules converge according to some
suitable metric (defined below), the equilibrium rules for the infinite

problem have been found.

What remains to be explained is how the non-linearity is handled and how
the functionals Ct(st) are characterized. The first step is discretize the
values that the vector St is allowed to take on. The method used in this
paper is simply to choose a sufficiently general upper and lower bound for the
wealth variables and then define a uniform partition based on an arbitfarily
chosen number of points (as large as is computationally feasible). Tauchen
(1990) describes more sophisticated techniques for choosing the points in such
a grid. The discrete approximation is the major source of approximation error
associated with this approach. Note however, that control rules calculated in
this way converge pointwise to the true rules as the partition becomes

arbitrarily fine.

Now consider the recursive algorithm described above for the T-1 period in
the iteration. Take some point in the state grid as given. For instance, if
A represents the set of values that At is allowed to take on (there are 2),

and B represents the set for b this is a point in AxB. The objective is

1,t-1°
to find a value for Py and a point in B that most closely satisfies [Al].
This is where the linear interpolation comes in'. A function is defined that

can loosely be interpreted as the excess demand for bonds. Given some

1Thanks to Dan Bernhardt for suggesting the linear interpolation component of
this algorithm.
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arbitrary price, pl, it is easy to solve for some excess demand: a point in
B. This can actually be done in a rather efficient way since, as can be shown

analytically, the equations in [Al] are monotonic in bk ¢

Given some excess demand point in B, the fact that the excess demand
function appears to be (based on computational results) monotonic in P, is
very useful. The implication is that if excess demand is positive, there
exists a price, P,>P,» such that the function will take on a negative value.
The opposite holds if the given point in B is negative. A third price, p, is
then calculated as that which would set excess demand to zero, should the
function be linear: hence the term "linear interpolation". Since the
function will not in general be linear, this procedure starts over by equating
P, to p and proceeding as above. The ‘pseudo-equilibrium’ price is defined as
that which results in excess demand being =zero. This also defines a

pseudo-equilibrium value for b (a point in B).

1,t

This procedure is repeated for every point in the state space in order to

completely characterize C (ST—I) as a vector mapping from AxB to either R,

T-1

or B. Finally, given CT_l(S ), the backward recursion algorithm proceeds in

1-3S1_y) = by

T-1

exactly the same manner until b j j—l(ST—j—l)'
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