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Model invariance when estimating random parameters with categorical variables 

Michael Burton 

 

Abstract  

This paper shows that econometric models that include categorical variables are 

not invariant to choice of ‘base’ category when random parameters are estimated, 

unless they are allowed to be correlated.  We show that the invariance can lead to 

significant increases in Type I errors, and distortions in the implied behaviour of 

respondents. We hypothesise that these biases may influence the economic policy 

implications of published models that contain this error, but it’s impossible to be 

sure without re-estimating the model correctly.  

 

Key words: Random parameter, mixed logit, categorical variables  

JEL classifications: Q51 Valuation of Environmental effects. C25 Discrete Regression and 

Qualitative Choice Models  
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Model invariance when estimating random parameters with categorical variables 

 

 

Introduction  

 

Typically econometric models that include dummy variables to represent levels of categorical variables 

are invariant to which level is used as the base.  Overall measures of model performance (i.e. LL values) 

do not change, and the results for any choice of base can be retrieved from any other model that uses a 

different base.  Daley et al (2016) show that there is also invariance across a dummy and effects coding. 

 

What does not seem to be recognised is that this does not always hold when estimating random 

parameter models: or more precisely, that there are specific requirements for invariance to be achieved. 

One has to estimate a full covariance model.  If one does not have a full covariance representation then 

different choices about the base category mean one is effectively estimating different models. 

 

To motivate this, consider a simple discrete choice framework, where respondents make choices across 

2 alternatives.  Each alternative consists of two attributes, a continuous variable, x, and a categorical 

variable F with 3 levels.  The data generating process (DGP) consists of respondents evaluating the 

deterministic component of utility as  

 
2 2 3

1 1 1 1 2 2 2 2 3 3 3 3[ , ] [ , ] [ , ]i x i i iV X b F b F b F               (1) 

 

Subscripts for alternative and choice set number are suppressed.  In this general model, there is 

heterogeneity in preferences surrounding each level of the categorical variable, with the individual value 

β being drawn from a normal distribution with mean of b and variance of σ2.  For illustration purposes, 

we assume that in the true data generating process the random parameters are uncorrelated across levels 

of the categorical variable.  Estimation of a model involving this utility function faces the standard 

problem of linear dependency across the levels of F, and the need to drop one, so that estimates of 

marginal utility for the remaining levels are relative to a base.  If the analyst ignores the heterogeneity 

and assumes fixed coefficients, the standard invariance results holds: importantly, the invariance result 

we show in the next section is not due simply to misspecification error (because the fixed parameter 

model is also misspecified, and yet does not exhibit invariance), but specifically to the incomplete 

specification of the random parameter representation. 

 

If we take 1F  as the baseline category then 1 2 31F F F    and hence the estimation specification is: 

 
2 2 2 2 2

1 1 1 2 2 2 1 1 1 2 3 3 3 1 1 1 3[ , ] ( [ , ] [ , ]) ( [ , ] [ , ])i x i i i i iV X b b b F b b F                  (2) 

 

Because a discrete choice model works in utility differences, the individual specific level of β1i has no 

effect on choices and hence can be dropped: 

 
2 2 2 2

2 2 2 1 1 1 2 3 3 3 1 1 1 3( [ , ] [ , ]) ( [ , ] [ , ])i x i i i iV X b b F b b F                 (3) 

 

i.e. what one estimates for the categorical variables are estimates of marginal utility relative to the base. 

What is clear from 3 is that, despite there being no correlation in the underlying marginal utilities, in 

the normalised estimating model, there will be a correlation between the random parameter distributions 

for 2F  and 3F because they both contain the term for β1.  Alternatively, if one estimates a model 
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assuming independence between the random parameters in (3), then that can only be true if the variance 
2

1  =0 i.e. the base category has no variation in marginal utilities.  

 

This immediately reveals why there is model variance as one changes the baseline category, if one 

estimates independent random parameters for the remaining category levels: one is implying a different 

stochastic structure for the marginal utilities in the data generating process each time, which cannot be 

internally consistent.  

 

Simulations 

 

To illustrate the consequences of this we conduct a simple numerical example.  We assume that we 

have an experiment with a 1000 respondents, each answering 10 choice sets, each with two alternatives.   

The level of X is drawn randomly from the unit interval, and the level of F is also selected at random 

from 1,2,3.  We employ a large sample and a random design to ensure that our results cannot be the 

result of any particular design artefact, and a simulated gumbel error term so that a conditional logit 

model is appropriate for the DGP. 

 

  



5 
 

Table 1 gives the parameters for the distributions employed 

 

Table 1  Distributions for marginal utilities used in simulation 

 b σ 

x   1 0 

1  1 0 

2  2 2 

3  3 3 

 

Note that we assume that the marginal utility for level 1 of F is in fact constant, and has no heterogeneity 

within it. 

 

Table 2 shows results from estimating a standard fixed coefficient conditional logit model1, changing 

the base category for F in each.   Obviously results are stable to choice of base category, and one can 

retrieve any value in a model from any other model. 

 

Table 2 Fixed coefficient conditional logit models 

 

 Model 1 Model 2 Model 3 

X 0.602 

(0.501 0.703) 

0.602 

(0.501 0.703) 

 

0.602 

(0.501 0.703) 

F1  -0.603 

(-0.674   -0.531) 

-0.896 

(-0.969 -0.822) 

 

F2 0.603 

(0.531   0.674) 

 -0.293 

(-0.363   -0.222) 

 

F3 0.896 

(0.822    0.969) 

0.293 

(0.222   0.363) 

 

    

ll -6549.2861 -6549.2861 -6549.2861 

95% CI in parenthesis  

 

Table 3 repeats the process, but now assumes that the factors included in the model have independent 

random parameters.  Note that the LL values now differ across models (i.e. the model is not invariant 

to the choice of base level) and estimates from one model cannot be retrieved from the others (i.e. the 

coefficient for F3 in Model 2 is not the negative of the coefficient for F2 in Model 3).  

 

  

                                                           
1 All estimation was undertaken in Stata 14, using the clogit command for models with fixed coefficients, and 
the  xtmelogit command where random parameters are specified.  In the case of choice sets with two 
alternatives, by defining attributes as differences across alternatives, one can frame a DCE as a standard logit 
model.  This enables one to use xtmelogit, which we find gives identical results to alternative programs (i.e. 
mixlogit) but is considerably faster, computationally, given the large number of simulations used. 
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Table 3 Independent, random parameter models 

 

 Model 1 Model 2 Model 3 

X 0.866 

(0.733 0.999) 

0.859 

(0.727  0.991) 

0.844 

(0.712  0.976) 

F1  -1.056   

(-1.221  -0.892) 

-1.632 

(-1.830  -1.434) 

F2 1.055 

(0.875  1.236) 

 -0.484 

(-0.702  -0.267) 

F3 1.827 

(1.580  2.073) 

 

0.852 

(0.596  1.108) 

 

Estimates of σ   

σ(F1)  1.795 

(1.602  2.011) 

2.165 

(1.946  2.408) 

σ(F2) 2.110 

(1.899  2.345) 

 2.870 

(2.608  3.160) 

σ(F3) 2.919 

(2.637  3.231) 

3.318 

(3.011  3.656) 

 

    

ll -5707.0781 -5781.2897 -5894.4946 

95% CI in parenthesis  

 

Table 4 repeats the process but now allows for correlation in the random parameters.  One now has 

invariance in overall model fit (the LL values are very close) and there is a correspondence between 

preference parameters across models (e.g. F1 in Model 2 is the negative of F2 in Model 1) 

 

Table 4  Correlated, random parameter models 

 

 Model 1 Model 2 Model 3 

X 0.866 

(0.733  0.999) 

 

0.866 

(0.733  0.999) 

 

0.866 

(0.733  0.999) 

 

F1  -1.048 

(-1.228  -0.867) 

-1.822 

(-2.068  -1.576) 

 

F2 1.048 

(0.867   1.228) 

 -0.775 

(-1.049  -0.500) 

 

F3 1.822 

(1.576  2.068) 

 

0.775 

(0.500  1.049) 

 

Estimates of σ and covariance’s   

σ(F1)  2.095 

(1.880  2.333) 

2.905 

(2.621  3.220) 

 

σ(F2) 2.094 

(1.880  2.332) 

 3.658 

(3.337  4.008) 

σ(F3) 2.905 

(2.621   3.220) 

 

3.658 

(3.338  4.008) 

 

covariance -0.045 

(-0.160 0.071) 

 

0.609 

(0.529  0.678) 

0.820 

(  0.774  0.858) 

ll -5706.7813 -5706.7792 -5706.7792 

95% CI in parenthesis  
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What this example illustrates is that one can achieve model invariance when including categorical 

variables with random parameters, but one has to allow for correlations in random parameters, and not 

assume independence.  The majority of papers do not do this, and one can find examples of this practice 

in a number of journals (e.g. Zhang et al 2018; Zhu et al 2015; Oehlmann et al, 2017; Thiene et al 2017, 

Ozdemir et al 2016) 

 

A different question is the consequence of the invariance.  Does this cause any meaningful bias in 

inferences about preferences?   

 

To test this a second set of simulations were undertaken where the standard deviation of the distribution 

of F3 was changed (from 2 to 6), and Model 3 alone estimated (i.e. F3 used as the base category).  500 

simulated data sets were drawn for each value of the standard deviation of F3.  The results in Table 5 

show the mean value for the estimated parameter, divided by the true parameter.  The values in 

parenthesis show the proportion of times the null hypothesis of no difference between the estimated 

value and the true value is rejected (i.e. the rate at which one commits a Type 1 error).  As check on 

estimation precision, the first column reports the results when σ(F3)=2, and the correct, correlated 

model is estimated. In that case, normalised parameter estimates are all close to unity, and the error rate 

is close to 5% in all cases.     

 

When the uncorrelated random parameter model is estimated, the estimates for the variable with a fixed 

parameter (X) are relatively stable: close to the true value and with a Type I error rate close to 0.05, 

although it is notable that in all cases the mean effect is less than 1 (implying some attenuation) and the 

Type I error rate grows substantially as the standard deviation gets higher.  However, for all other 

variables there is evidence of considerable attenuation in estimates of both the mean and standard 

deviation of the marginal utilities, and these effects get larger the larger standard deviation of F3. For a 

value of the standard deviation of F3=3 (i.e. the standard deviation equals the mean of the variable) one 

is seeing estimates of the mean of the distribution of F1 and F2 at 89 and 66% of their true values, while 

the estimated heterogeneity in those preferences is only 75/77% of the true value.  

 

Table 5  Estimates of average normalized coefficient (relative to true value) and proportion of 

times null hypothesis of equality with true parameter rejected (500 simulations).  F3 as base, 

estimation assumes independent random distributions for parameters on F1 and F2. 

 

  σ(F3) 

 2$ 2 3 4 5 6 

X 0.99  (0.046) 0.98  (0.044) 0.98  (0.058) 0.98  (0.070) 0.98  (0.064) 0.98  (0.078) 

 

F1 1.00  (0.052) 0.92  (0.436) 0.89  (0.520) 0.86  (0.606) 0.83  (0.660) 0.81  (0.714) 

 

F2 1.00  (0.036) 0.78  (0.602) 0.66  (0.846) 0.54  (0.944) 0.42  (0.976) 0.32  (0.984) 

 

σ(F1) 1.00  (0.044) 0.79  (0.970) 0.75  (1.000) 0.71  (1.000) 0.66  (1.000) 0.62  (1.000) 

 

σ(F2) 1.00  (0.052) 0.82  (0.982) 0.77  (1.000) 0.73  (1.000) 0.68  (1.000) 0.64  (1.000) 

$ model estimated with correlated random effects as a comparison  

 

Evaluation using real data 

 

As a final test, we investigate the implications of misspecification using a real data set.  In a forthcoming 

paper (Iftekhar et al 2018) we report results from a discrete choice model evaluating public preferences 

for land allocation in water treatment plant buffer zones.  4 land uses are possible (nature conservation, 

industry, commercial and agriculture) and as % measures they have to add to 100, and hence one has to 
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be dropped from estimation for identification. This is analogous to the model outlined above. In that 

paper we estimated a model in WTP space, with correlation of the random effects of the three included 

land types and the status quo.  In Table 6 we report a similar model estimated on that data, but in 

preference space, and without a random status quo effect (so the model matches that above, with random 

effects only on the variables of interest, and changes in model outcomes only due to the use of 

uncorrelated random effects and changing baselines).  We re-estimate the model 4 times, with correlated 

(models A1-A4) and uncorrelated (B1-B4) random parameters, and changing the base in each case.  

Note that the interest here is in the implications of changing the base group when not allowing for 

correlated random parameters, not wider specification issues. 

 

The LL values for A1-A4 are all close, implying invariance, but those for B1-B4 are not, confirming 

that base category choice is changing the fundamentals of the model. 

 

Comparing the pairs of models, there is a tendency for the estimates of standard deviations of the 

distributions to be reduced in the models without correlated errors, as seen in Table 5 above, but this is 

not universal, although there are no large increases in estimates, but some substantial reductions (i.e. 

σ(Ag) halves from 0.046 to 0.023 in models A1 and B1).  The estimates of the mean of the distribution 

also change, and of most importance are not symmetric i.e. the value of recreational land use relative to 

commercial in model B2 is 0.005, and not significant, while that of commercial land use relative to 

recreational in B3 is -0.026, and is significant.  The estimate of population average relative values of 

these land uses is significantly changed, simply by changing the base category.    
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Table 6  Mixlogit results for alternative choices of base category: A1-A4 using correlated random parameters, B1-B4 uncorrelated random parameters   

 

 Base=Nat Base =Com Base=Rec Base=Ag 

 A1 B1 A2 B2 A3 B3 A4 B4 

Cost -0.021 

[-0.026  -0.016] 

-0.020 

[-0.025  -0.016] 

-0.021 

[-0.026  -0.016] 

-0.021 

[-0.026  -0.017] 

-0.021 

[-0.056 -0.016] 

-0.022 

[-0.027 -0.017] 

-0.021 

[-0.026 -0.016] 

-0.021 

[-0.026 -0.017] 

Sq 0.798 

[0.487 1.108] 

0.846 

[0.546 1.145] 

0.794 

[0.484 1.103] 

0.714 

[0.430  0.999] 

0.789 

[0.481 1.097] 

1.156 

[0.836 1.476] 

0.790 

[0.481 1.099] 

0.811 

[0.516 1.106] 

Nat   0.051 

[0.038 0.064] 

0.052 

[0.042 0.063] 

0.040 

[0.025 0.055] 

0.029 

[0.016 0.043] 

0.042 

[0.030 0.054] 

0.052 

[0.041 0.062] 

Com -0.052 

[-0.065 -0.039] 

-0.054 

[-0.065 -0.043] 

  -0.011 

[-0.027 0.005] 

-0.026 

[-0.040 -0.013] 

-0.009 

[-0.019 0.001] 

-0.003 

[-0.013 0.007] 

Rec -0.040 

[-0.055 -0.025] 

-0.043 

[-0.058  -0.028] 

0.011 

[-0.004 0.027] 

0.005 

[-0.009 0.020] 

  0.002 

[-0.014 0.019] 

0.006 

[-0.009 0.021] 

Ag -0.043 

[-0.054  -0.031] 

-0.050 

[-0.060 -0.040] 

0.009 

[-0.001  0.019] 

0.002 

[-0.007  0.011] 

-0.002 

[-0.019 0.014] 

-0.021 

[-0.035 -0.007] 

  

         

σ(Nat)   0.070 

[0.055 0.086] 

0.046 

[0.032 0.060] 

0.078 

[0.063 0.093] 

0.067 

[ 0.054  0.078] 

0.046 

[0.027 0.064] 

0.033 

[0.017 0.049] 

σ(Com) 0.070 

[0.055 0.086] 

0.050 

[0.038  0.062] 

  0.090 

[0.074 0.105] 

0.065 

[0.052  0.077] 

0.047 

[0.033 0.062] 

0.048 

[0.036 0.060] 

σ(Rec) 0.079 

[0.064 0.094] 

0.081 

[0.068 0.094] 

0.089 

[0.074 0.105] 

0.080 

[0.067 0.093] 

  0.099 

[0.082 0.116] 

0.083 

[0.069 0.096] 

σ(Ag) 0.046 

[0.028 0.063] 

0.023 

[0.005  0.041] 

0.047 

[0.033 0.061] 

0.033 

[0.021  0.046] 

0.098 

[0.081 0.115] 

0.067 

[0.055 0.080] 

  

LL 1360.2251 -1375.36 1360.4543 -1385.157 1360.3235 1458.3070 1360.4086 -1373.0679 

Nat=nature and conservation, Com=commercial use, Rec=recreational use, Ag=Agricultural use 

95% CI in parenthesis  
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Table 7  Estimates of mean WTP for uncorrelated models, for different baselines 

 

 Baseline category 

 Nat Com Rec Ag 

Nat  2.48   [1.81 3.14] 1.33   [0.78 1.89] 2.41   [1.72 3.10] 

Com -2.66   [-3.39 -1.93  -1.21   [-1.94 -0.47] -0.15   [-0.60 0.31] 

Rec -2.10   [-2.79 -1.41] 0.26   [-0.43 0.94]  0.29   [-0.43 1.01] 

Ag -2.47   [-3.18 -1.75] 0.09   [-0.33 0.50] -0.95   [-1.69 -0.21]  

95% CI in parenthesis 

 

This effect is highlighted in Table 7, which reports the estimate of mean WTP for the uncorrelated 

models (-1 times ratio of mean parameter estimate to cost parameter estimate).  The lack of symmetry 

is clear, and there are 3 cases where one has large changes in inference about relative land use values: 

recreational land use relative to nature land use (-$2.10 v $1.33) recreational land use relative to 

commercial land use ($0.26 v -$1.21) and agriculture v recreational use (-$0.95 v $0.29).  The fact that 

all three cases involve recreational use suggest that possibly preferences towards recreational use have 

the greatest heterogeneity, and hence the greatest impact when induced correlation is ignored.  That is 

confirmed by inspection of the estimates of standard deviations is Table 6, for models A1-A4, where 

the highest 6 of 12 estimates involve the recreational attribute.  These changes in estimates of relative 

WTP for land use types could be sufficient to change policy inferences: from the model with recreation 

as the base, agriculture is clearly inferior to recreation (at the mean), while when agriculture is the base, 

one infers that respondents are indifferent between recreation and agriculture as a land use.  The 

correlated models suggest that the latter result is correct. 

 

Conclusions 

 

Bottom line: mis-specifying the random parameter distribution influences both the estimated mean and 

variance of the marginal utilities.  Whether this matters or not depends on any particular application: 

does it change the policy conclusion?  One could argue that this is a general issue: choices about how 

to model marginal utilities are likely to influence outcomes.  But normally an author will have made a 

justification of why the choice was made, and possibly reflect on the consequences of that.  No-one 

expects to have to justify why a particular level of a categorical variable is used as the base, as typically 

that choice is innocuous.  However, this note shows that this is not the case if independence in random 

effects is assumed.  A minimum requirement for any model (mis-specified or not) is that it should be 

invariant to an arbitrary choice about how categorical variables are included in the model, and for many 

published papers, that’s not true.  
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