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TWO MOMENT DECISION MODELS AND EXPECTED UTILITY MAXIMIZATION:

SOME IMPLICATIONS FOR APPLIED RESEARCH

Jack Meyer*

I. Introduction

The sometimes confusing and usually controversial discussion of
the relationship between an expected utility (EU) and a mean standard-
deviation (MS) ranking of a set of random variables was recently
revived. Another condition was presented which is sufficient to ensure
that any EU ranking of a set of random variables could instead be
represented by one which is based upon only their means and standard
deviations. (Sinn [1983], Meyer [1987]). That this linear class or
location and scale (LS) condition had remained largely unrecognized,
even though it was pointed out and used much earlier, is evidence that
the condition, and the relationship it implies for these two approaches,
is not very well understood. The discussion here focuses on the LS
condition and its implications for applied research involving risk,
especially that being conducted in agricultural economics. The impact
for theoretical analysis and empirical analysis is discussed. To
accomplish this the outline below is followed.

In the next section, the literature concerning the relationship
between the EU and MS ranking procedures is reviewed very briefly. Most
of the review focuses on the linear class or location and scale
condition. Next, in section III, the implications of this condition for
the construction and analysis of theoretical models involving risk is
discussed. Section IV goes on to examine the implications for empirical
work. A description is given of how one can statistically examine
models where the LS condition is not able to be verified or rejected on
theoretical grounds, to see if the data suggests that it is likely to
hold. Within this context, the impact on stochastic dominance based
empirical work is discussed, and the subject of estimation error is
addressed.

II. Literature Review

The work of Tobin [1958] and Markowitz [1959] some thirty years
ago made it clear that an expected utility ranking of a set of random
variables can instead be represented by one based on only their means
and standard deviations if: i) the utility function is quadratic, or
ii) all the random variables are normally distributed. Either of these
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two conditions, by itself, is sufficient for this consistency.1 Since
the work of Tobin and Markowitz, much research effort has been devoted
to examining the extent to which either of these two conditions can
reasonably be assumed to hold. The conclusion reached is familiar; for
most problems neither quadratic utility nor normality has theoretical orempirical support. Thus, neither assumption provides an adequate basis
for using MS ranking methods when consistency with the axioms of
expected utility is desired.

In the search for other conditions which are sufficient for
representing an EU decision function with an equivalent MS function,
Baron [1977] has shown that when the random variables are not restrictedin any way, then quadratic utility is not only a sufficient condition
for this representation to exist, but is necessary as well. Thus, if
one wishes to restrict only the preference side of the decision model, anecessary and sufficient condition is known to be the quadratic utilityassumption.

Concerning the choice set side of the decision problem, the
situation is less clearly or completely resolved. The assumption of
normality has long been recognized as one which can be generalized, andthus, it is not a necessary condition even in the absence of
restrictions on preferences. Uniformly or lognormally distributed
random variables, for instance, can also be ranked using a MS functionwhich is consistent with the axioms of expected utility. Chipman [1973]and others have referred to this type of generalization of the normalityassumption, as the "two parameter family" condition. This is becausefor these examples, each member of the family of random variables can beuniquely identified by specifying the family name and exactly twoparameters.

Rothschild and Stiglitz [1970] attempt,to formalize this "twoparameter family" condition and extend its meaning so that it applies tounnamed as well as to named families of distribution functions. Indoing so, they find that the two parameter family condition, whensufficiently generally defined, does imply a relationship between MS andEU, but allows that relationship to exhibit properties which areunacceptable. As an example of this, Rothschild and Stiglitz define atwo parameter family of distribution functions such that risk averseagents prefer those with increased variance, even when the mean value isheld fixed. A similar but less distressing example is given byFeldstein [1969], who shows that if the random variables in the choiceset are lognormally distributed, then the resulting V(a,A) need not bequasiconcave even when the agent is risk averse. This violation of theconvexity of preferences assumption is often presented as a case where
1 It appears that many researchers act as if one of these twoassumptions is necessary. For instance, Hawawani [1978] states "Thisassumption implies that profits are normally distributed. We excludequadratic utility curves since they display increasing absolute riskaversion."
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"plunging" behavior can arise; that is, corner solutions can be optimal
in the portfolio problem.

In the process of concluding that the "two parameter family"
condition is too loosely or imprecisely specified to yield a
relationship between EU and MS which maintains certain desired
properties, Rothschild and Stiglitz mention in passing that if the
random variables in the choice set are all equal in distribution2 to one
another except for location and scale,- then those random variables
satisfy the two parameter family condition. Rothschild and Stiglitz do
not go on to develop results concerning this particular restriction.

It appears that the location and scale condition lay dormant for
many years following its discussion by Rothschild and Stiglitz.
Recently, Sinn [1983] and Meyer [1987] each present research in which
the location and scale, or as Sinn calls it, the linear family
condition, plays a large role. Before discussing this research and
interpreting this condition, the following formal statement of it is in
order.

The Location and Scale Condition: Random variables Y are equal
in distribution to one another except for location and scale if
there exists a random variable X such that each Y is equal in
distribution to Ai + aiX.

In the above definition it is assumed that the random variables Y
have finite means and variances. The random variable X has been
normalized to have mean of zero and a variance of one. Thus, the
location and scale parameters, pi and ai, are the mean and standard
deviation of *ci'1, respectively. The same definition can be stated in

\--terms of cumulative distribution functions (Feller [1966]). F(') and
C(S) are equal to one another except for location and scale if
F(x) G(a+bx) for some a, some b > 0 and at all points x.

This LS condition is satisfied by many, but not all, two parameterfamilies of distribution functions which have been named and described
in statistics textbooks. The normal and uniform families, for instance,
do satisfy the condition, while the lognormal family does not. This
further emphasizes the fact that the LS condition is a generalization of
the normality assumption, but is not as general as the two parameter
family condition.

While extending the normality restriction to include other named
families of two parameter distribution functions may be of some value,
it is the generalization to an infinite number of unnamed families that
is most significant. One can generate a two parameter family of random
variables which satisfies the LS condition by beginning with any

Random variables ae equal in distribution to one another if they arerepresented by the same cumulative distribution function. This is aweaker condition than being equal to one another.
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distribution function, and transforming its argument in a positive
linear fashion. Each possible choice for the parameters a and b leads
to a new element of the family. The LS condition requires that the
random variables comprising the choice set be represented by
distribution functions which are obtainable from one another by a
shifting and/or rescaling process. It does not require that the
starting distribution function take on any particular form. This is a
considerable generalization over the normality assumption. Symmetry,
infinite tails, a single mode, and many other characteristics of the
normal, which the data may not satisfy, are no longer required. It is
this aspect of the LS condition that allows it to be met in instances
where normality is rejected.

That the LS condition implies a relationship between an EU and MS
ranking of the random variables is obvious. A formal statement of this
relationship is given below.

The Location and Scale Implication: If the random variables in
the choice set satisfy the LS condition, then any expected utility
ranking of them can instead be represented by one based only on he
means and standard deviations of those random variables. That is,
Eu(;) = Eu(pi + ai•X) = V(ai,pi) for some function V.

Sinn and Meyer each show that the LS condition puts some interesting
structure on the V(a,p) preference function, and allows one to associate
properties of the vonNeumann-Morgenstern utility function, such as
decreasing absolute risk aversion, with properties of V. These
properties are not of concern here and are not reviewed.

Sinn and Meyer also note that many important economic models,
because of the structure of the model, represent the economic agent as
facing a choice set which automatically satisfies the LS condition.
Sandmo's [1971] model of the competitive firm facing a random output
price, and Tobin's [1958] riskless and single risky asset portfolio
model are two very important examples. Feder, Just and Schmitz' [1980]
and Holthausen's [1979] extensions of Sandmo's model, which add forward
markets, also possess the appropriate structure. What it is about thesemodels that implies that the LS condition is satisfied is discussed in
the next section.

III. Implications For Building Theoretical Models 

Given the LS condition and its implication concerning the
relationship between MS and EU, this section addresses three questions.First, what is the gain, in terms of ability to do and present
theoretical analysis, from having models where the choice set satisfiesthe LS condition? Then, how can one construct models so that the agentfaces such a choice set? Finally, what improvements or generalizationsof the LS assumption are likely?
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When analyzing a decision model in which the choice set satisfies
the LS condition, one has the option of using either an EU os a MS
ranking function. That is, the agent can be assumed to maximize
expected utility from alternatives which are described by cumulative
distribution functions, or to maximize V(a,p) subject to a choice set
which lies in (a,p) space. An important aspect of this statement to
recognize is that the "or" which is used is an inclusive "or". Thus,
one need not choose between the EU and MS approaches, but can and often
should use them in combination.

The advantages of EU over MS and vice versa are well known enough
to be mentioned only briefly. MS has advantages which stem primarily
from its two dimensional nature. This allows one to graph opportunity
sets and preferences, and to present arguments and proofs using more
elementary mathematics. EU on the other hand, has been much more
intensively studied over the last twenty five years, resulting in a rich
set of definitions and propositions concerning various measures of risk
and risk aversion. Many of these terms, and such concepts as general
stochastic dominance, have not been translated into MS terminology, and
thus are not easily used in the MS context. Thus, if one must choose
between the two approaches, the selection, as often is the case, depends
on the need for simplicity versus richness. When the LS condition is
satisfied one can take advantage of each approach's particular
strengths. This is one gain from working with a model in which the
choice sets satisfy the LS condition.

(
In a very practical sense, another reason for wanting to be able

to use both approaches arises because of our limited abilities. It
sometimes is "easier" to demonstrate a particular proposition in one
framework than the other. As an example of this consider the model of
the competitive firm facing a random output price and able to forward
contract the sale of output. This is a model which yields choice sets
satisfying the LS condition. Feder, Just and Schmitz, and Holthausen,
each present and analyze this model assuming the firm maximizes expected
utility. They derive a variety of interesting propositions concerning
this model. Recently, Meyer and Robison [1988] reexamine the same model
using MS techniques. Certain propositions of Feder, Just and Schmitz or
Holthausen are presented graphically, and presumably in a manner which
yields additional insight into the workings of that model. As Meyer and
Robison note however, other propositions can be rederived in the MS
context only with considerable effort. For some questions the answers
seem to be more easily derived using one approach, while for others the
reverse is true.

A similar point can be made by examining the analysis of the
riskless and single risky asset portfolio model that Arrow [1971], Cass
and Stiglitz [1972] and Fishburn and Porter [1976] have carried out in
an EU model, and which Adler [1969] presents in MS terms. The Sandmo
model of the competitive firm facing a random output price, and
Hawawani's [1978] 'analysis of it in MS terms can also be used to make
this point.

•
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In summary, the gain from having a model where the choice set
satisfies the LS condition is that two modeling techniques rather than
one are made available. Since neither dominates the other in all
dimensions, being able to use both of them improves our ability to
present and carry out an analysis of the model.

In order to make use of the gain described above, one must be able
to recognize and/or construct models in which the choice set satisfies
the LS condition. For the most part, the published models With choice
sets which satisfy this condition, are models in which there is only one
random parameter, and the outcome variable is a linear function of this
parameter. That is, the model specifies that the objective of the agent
is to maximize expected utility from some outcome variable z, where z
may depend on many parameters and choice variables, but exactly one of
those parameters, x, is modeled as a random variable. Furthermore, z is
a linear function of this parameter.

For instance, in Sandmo's model of the competitive firm, the firm
maximizes expected utility of profits w. Profits depend on the output
level selected by the firm, and the parameters describing costs and
demand. Among these parameters only that representing output price, p,
is assumed to be random, and a- is a linear function of this parameter.
Checking for linearity is as simple as noting that eir/3p2 p. This
same characteristic is present in the extension of this model presented
by Feder, Just and Schmitz or Holthausen, in Tobin's portfolio model, in
Feder's [1977] "general economic decision model", and in many other
models in the literature.

To see why this model structure implies that the choice set
satisfies the LS condition, note that when the outcome variable z is a
linear function of x, and x is the only source of outcome randomness,
then the choice set contains random variables of the form a + b*x.
Thus, each is distributed in the same fashion as x, except for location
and scale. In most such models; the values for the location and scale
parameters, a and b, depend on choices made by the agent and on other
nonrandom parameters in the model. This implies that each of the random
variables z, which the agent can choose among, are equal to random
variable x, and one another, except for location and scale. Since equal
implies equal in distribution, the LS condition is satisfied.

This single source of randomness feature appears to be present in
virtually all models which have been presented and analyzed in an EU
context. Some of these models however, do not represent the outcome
variable as being a linear function of that parameter. How to deal withthis, and how one can impose the LS condition on the agent's choice set
when there is more than one random variable, are discussed next.

If the randomness of the outcome variable
a single random parameter, but the relationship
variable and the random parameter is nonlinear,
need not hold. It may be however, that one can

arises from one source,
between the outcome
then the LS condition
either transform the
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outcome variable so that the resulting variable is linear in the random
parameter, or can write the outcome variable as a two parameter
nonlinear function of the random parameter. For either of these cases,
the approach used in Meyer can likely be modified to establish a
relationship between the EU and MS ranking criteria.

For instance, if each outcome variable in the choice set can be
irfbwritten as z = e x , then in z a+bx, and in z satisfies the LS

condition. Thus, when calculating expected utility, one need only
recognize that u(z) v(ln z) is the appropriate transformation to apply
to the preference function. This implies, for instance, that even if
u(z) is concave, v(*) need not be concave in z. It is precisely this
lack of concavity, even under risk aversion, that allows Feldstein to
present the violation of convexity of preferences when the choice set is
composed of lognormally distributed random variables. (Recall that if x
is normally distributed, then ea+bx is lognormally distributed).

When the choice sets contains outcome variables of the form
z — a + b'ln x, where x is random, then z is linear in in x. Since
in x is itself random, the LS hypothesis holds, and one can establish a
relationship between an expected utility ranking of such a choice set
and the MS ranking.

It appears that for most models with .a single source of
randomness, one of the two types of transformations just described allow
a link between EU and MS to be established. This relationship is not
necessarily one with the nice properties demonstrated by Sinn and Meyer,
however.

For the case of multiple sources of randomness the story is far
less encouraging. Even if the outcome variable is linear in only two
random parameters, it does not appear that a relationship between EU and
MS can be established, except under the strictest of conditions. The
portfolio problem with two risky assets is an example with such outcome
variables. Chamberlain [1983], Cass and Stiglitz [1970], and others
have rigorously addressed this issue in the context of finding a
separation theorem, and have shown that such separation theorems exist
only under very strong assumptions concerning the random variables
involved. Since separation theorems exist in "reasonable" MS models, it
does not appear that one will be able to establish the LS condition in
models with multiple sources of randomness.

One exception to the above negative statement is the case where
the multiple sources of randomness combine in a fixed fashion. That is,
the outcome variable z can be written as a + b•h(x

1' 
x
2
) where x

1 
and X

2are each random, but enter only through the function h(*). An example
of this is the Capital Asset Pricing Model (CAPM) used in finance. In
that model the rate of return on any asset or portfolio has a mean value
which depends only on market parameters, and the asset's correlation
with the market portfolio.

S
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The single index model version of this specifies that the random
rate of return for asset or portfolio i is given by ri + (r - Ofli+ e where r is the random rate of return on the market portfofio, 0 is
the risk free rate of return, and fli is the ratio of the assets
covariance with the market portfolio to the market portfolio's variance.
The e term represents variation in the asset or portfolio's rate of
return not explained by variation in the market's rate of return. It is
a random variable which is assumed to have a zero mean and to be
independent of the market's rate of return. The ei's are also assumed
to be independent across assets.

Within this model, if one is willing to assume that the ei terms
are identically distributed when scaled by 1/fl1, then ri can be written
as r — (k + (rm - O. + 6i)fli' where the 45 terms are independent andi iidentically distributed. The two sources of randomness, r and 6i, are
now combined into a single factor, For all assets or portfolios, the
only random term is (r - 0 + 6i), and these random variables, although
not equal to one another, are equal to one another in distribution.
Thus, for this model, the rate of return on assets or portfolios are
equal in distribution to one another except for location and scale.
Although models with multiple sources of randomness, where all of the
random parameters are combined into a single term, can satisfy the LS
condition; this model is the only example of this which I have at this(\'' time. Thus, the news concerning satisfaction of the LS condition in
theoretical models with multiple sources of randomness and is not very
encouraging. Only under very restrictive conditions is the LS condition
satisfied. For empirical analysis, many sources of randomness seem to
present less of a difficulty. This discussion is the subject of the
next section.

IV. Implications For Empirical Studies Involving Risk

When ranking a set of random variables on the basis of
observations concerning them, the nature of the gains from working with
alternatives which satisfy the LS condition are not much different than
those just described for theoretical analysis. If the LS condition is
satisfied by the random alternatives to be ranked, then both the MS and
EU methods are available, and each has the advantages mentioned earlier.
In addition however, the problem of estimation is better understood and
more adequately resolved for means and standard deviations than for
expected utility. This seems especially true in examining the ability
to test hypotheses and/or establish confidence intervals about estimated
values.

While the above indicates that the gain from meeting the LS
condition in empirical work is similar to that for theoretical analysis,
this does not imply that its impact must be of the same magnitude. In
fact, I conjecture that the LS condition will have a much larger impact
on empirical work. This is because the LS condition is more likely to
be "satisfied" when doing empirical analysis. That is, while the gainfor empirical work may be similar in nature and magnitude to that for
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theoretical analysis, the impact will be far larger due to the frequency
with which the LS condition is satisfied. The reasoning behind this
conjecture is given below.

In many models it is not possible to verify or reject the LS
condition on purely theoretical grounds. Instead, one must obtain data
concerning the random alternatives and test the hypothesis that the LS
condition holds. There is a difference between verifying that the LS
condition is true in a theoretical model, and testing the LS hypothesis
in empirical work. This difference arises because the random
alternatives are estimated with some degree of imprecision. This allows
the LS hypothesis to not be rejected for reasons other than it being
true; this includes not rejecting because of estimation error. Since
all empirical work involves some estimation error, it is more likely
that the LS hypothesis will not be rejected, than it is for the LS
condition to be verified in the corresponding theoretical model.

Suppose one examines samples from a set of random alternatives and
concludes that with the given data, the LS hypothesis cannot be
rejected. What does this mean? This implies that it is not unlikely
that those samples could have been obtained from random alternatives
which satisfy the LS condition. What does this imply concerning the
true random alternatives? Certainly, they could satisfy the LS
condition. It is also possible however, that the true alternatives do
not satisfy the LS condition, but are not sufficiently different from
alternatives which do to be distinguished from one another on the basis
of the samples and the statistical test employed.

While the latter conclusion does not verify that the true
alternatives satisfy the LS condition, it does indicate that acting as
if they do does not lead to statistically significantly different
conclusions than otherwise. Thus, if one tests the LS hypothesis and
does not reject it, then differences in the ranking of the random
alternatives which arise from using MS rather than EU ranking criteria
are not significant differences in a statistical sense.

This suggests that as a first step in examining data concerning
random alternatives one should check to see if the EU and MS ranking
criteria can possibly give statistically significantly different
results. I suspect that for many data sets the answer will be no, and
this will provide a justification for using MS ranking methods.
Certainly, this is one implication of this work which those wishing to
use MS methods in their empirical analysis will emphasize.

Before briefly describing the statistical tests which can be
employed to examine the LS hypothesis, two further comments are in
order. The first concerns estimation error, and the second involves the
continued use of stochastic dominance procedures with small samples.

The work of Pope and Ziemer [1984], Stein, Pfaffenberger and Kumar
[1983] and others, tells us that with too few observations there appear

•

•

•
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•
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to be rather severe amounts of estimation error in the various
stochastic dominance procedures which have been employed. It isconjectured that this same estimation error is likely to cause one tonot reject the LS hypothesis in those instances. If this is true, thenwhen estimation error is severe one can use MS methods, confident thatthe results obtained are not significantly different in a statisticalsense from those obtainable using EU. Furthermore, it then appears tobe easier to specify the size of this estimation error is terms ofstandard errors on the estimated means and standard deviations than forexpected utility. Quite simply, large estimation error is likely toallow one to use MS ranking methods, which in turn allows estimationerror to be more easily quantified.

r
___ 

Concerning stochastic dominance, recall that the LS conditionimplies that the EU and MS ranking techniques are each available toaugment the other. Thus, stochastic dominance is not ruled out or madeinvalid if the LS hypothesis is not rejected. For certain problems,especially those involving ranking alternatives for individuals whoserisk aversion measures are known or assumed to fall in specific rangesand/or have certain slopes, there is no MS technique to carry out theranking. Thus, while MS ranking methods may be appropriate, it may bethat EU methods are better suited to the task at hand. It should beclear though that if the LS hypothesis is not rejected, the comparisonof EU and MS efficient sets cannot lead to statistically significantdifferences. I suspect that many such differences pointed out in past

7mpirical work fall into this category.
To carry out tests of the LS hypothesis, the k-sample Kolmogorov-Smirnov (KS) statistic, denoted D, can be used. D is the maximumdifference between any pair of the k empirical distribution functions(EDF) formed from the k samples. Formally, D is given by D — supIF (x) - F(x)1, where the supremum is taken across x, i, and j. F (x)and F(x) are the EDFs from samples i and j. The statistic D alwaystakes on rational values between zero and one.

Under the assumption that the random variables from which thesamples are drawn are independent and identically distributed, theprobability distribution function for D has been derived or can beestimated using Monte Carlo procedures. D is distribution free underthis set of conditions. Published work has dealt primarily with the twoand three sample cases. Meyer and Rasche [1988] have extended this toan arbitrary number of samples and an arbitrary number of observations.

Given samples from k independent random variables, one can usethis multisample KS statistic to test the hypothesis that the randomvariables are equal in distribution to one another. A high value for Dindicates a large difference in the EDFs formed from the data, and isunlikely under the null hypothesis. Thus, observing a high value leadsone to reject the hypothesis that the samples are from random variableswhich are equal to one another in distribution. In order to use thistest to examine the LS hypothesis with specified location and scale
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parameters, one must first normalize the data using the given location
and scale parameters, and then apply the test.

The KS test compares quite favorably with other nonparametric
tests of the same hypothesis, and parametric versions as well. Conover
[1971] indicates this for the two sample case, and the Cramer-von-Mises,
Lillifors and Chi-square tests. When compared with these tests, KS is
similar in power, and sensitive to all forms of deviation from the null
hypothesis. The test appears to be quite powerful if the rejection
level is set in the 10-20% range. Since the KS statistic is
distribution free under the null hypothesis, information obtained
concerning its probability function using Monte Carlo procedures is of a
general nature. This, plus the ease in computing D make finding its
probability function well suited to Monte Carlo methods. Gardner,
Pinder and Wood [1980] use Monte Carlo methods to tabulate the
probability distribution for D for a few selected cases. As mentioned
earlier, Meyer and Rasche have dealt with the general case of an
arbitrary number of samples and observations.

In attempting to carry out the test of the LS hypothesis, one must
deal with two difficult issues. First, the location and scale
parameters are often not known and must be estimated. Second, the
samples may not be independent of one another. Each of these problems
arises for the portfolios of common stock model to be described next.

The single index version of the CAPM model described earlier
specifies that the rate of return on any asset or portfolio of assets
can be written as r + (r - + i)fi. These rate of return
variables are not independent of one another because of the market
factor which is random and common to all ri. Also, each of the ri
differ from one another by unknown location and scale parameters 0 and

As indicated earlier, the Si terms are assumed to be independent of
one another, and identically distributed. This is sufficient for the ri
to satisfy the LS hypothesis. To make a long story very short, Meyer
and Rasche use independent data to estimate the unknown location and
scale parameters, 0 and fli. The cause of dependence, the rate of return
•on the market, is represented by the rate of return on the CRSP market
index. With these parameters one can then transform samples from ri
into samples from Si. The LS hypothesis can then be tested for these
samples. A very loose statement of the results of this test is that the
LS hypothesis cannot be rejected with 50 or fewer observations
(monthly), but is rejected with 100 or more observations. This is with
a rejection level of 20%.

The above result indicates that the use of MS methods to form
portfolios of common stock is likely to lead to no statistically
significant differences if the number of observations is less than 50.
On the other hand if more than 100 observations are used, it might make
a difference.

•

•
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Meyer and Rasche go to formulate another version of the single
index CAPM model. In this version, the LS condition is no longer
satisfied. Another parameter, rather than 1/fli, is introduced as a
coefficient or With this added parameter the total number is two,
since the original single index model has the same location parameter,
the risk free rate of return, for each rt. Hence, that model is
actually a one parameter model. Tests oi this new model never reject
the null hypothesis at the 20% level. The LS hypothesis is not being
tested, but one sufficiently similar to establish the fact that for
portfolios of common stock, even 150 monthly observations are not
sufficient to allow EU and MS to generate statistically significantly
different efficient sets. Details of this result are available from
Meyer and Rasche.

In summary, for empirical work the role of estimation error in
testing the LS hypothesis is clearly significant. It appears that for
many of the problems which have been examined by agricultural economists
and others, the estimation error is large enough to suspect that EU and
MS ranking procedures cannot give statistically significantly different
results. I suspect that for those wanting to use MS ranking procedures,
but fearing inconsistency with EU, this a desired finding.
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