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SIMULTANEOUS PRODUCTION AND MARKETING
DECISIONS OVER TIME1

David K. Lambert
Department of Agricultural Economics

University of Nevada-Reno

A. Nature of the Agricultural Decision

Time is an important element in agricultural decisions. The
results of decisions may not be observed until months after the
decisions are made. Production, marketing, and investment decisions
require explicit consideration of activities separated temporally. In
addition, decisions are linked over time. Planting decisions necessarily
follow land preparation activities. Harvesting decisions are based on
production levels resulting from a series of decisions made over the
production year.

This paper describes an application of a modeling approach that
incorporates decisions over time, allows decisions to be made that are
conditional on past actions, and determines optimal decisions depending
upon observed outcomes of uncertain parameters important to the decision
under consideration.

The problem addressed in this paper is the situation faced by a
cow/calf producer in the fall of the year. Weaned calves may either be
marketed at that time or fed over the winter and either marketed the
following spring or placed on grass for summer grazing. The second
section of this paper outlines the rancher's decision in greater detail.

The rancher's problem is modeled using the discrete stochastic
programming model discussed by Cocks and by Rae (1971a, 1971b). The
third section of the paper describes the characteristics of this model.
Reference is made to previous development and applications of the
formulation, and a cursory examination of the characteristics of the
approach is given.

The fourth section of the paper provides greater detail on the
components of the production/marketing decision problem. Results of the
sequential formulation of the model are next presented and are
contrasted with the single period formulation of the problem. Final
observations on the advantages and use of the discrete stochastic
programming model conclude the paper.

1. Paper presented at the S-180 annual meeting, Savannah,
Georgia, March 20-23, 1988. The author acknowledges the
background work provided by Daniel G. Fleming and Theodore
K. Wood in conducting the study.
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Cow/calf producers face several decisions in the fall of the year
when weaner calves are traditionally marketed. The rancher may decide to
market the 350-450 pound calves in the fall, or he may hold them over
the winter for either sale the following spring or for placement on
rangeland for summer grazing. If the decision is to hold the animals,
optimal rates of gain over the winter must be determined. This
production decision relies upon marketing and production options
available in the spring.

Important considerations in the rancher's decision are current and
expected future input and output prices, the relationship between price
and Weight, and animal performance on winter feed and subsequent summer
range.

C. The Discrete Stochastic Programming Model

Models that determine optimal activity levels in light of the
sequential resolution of parameter uncertainty are a class of the
stochastic linear programming problem developed by Tintner and called
the "wait and see approach" by Madansky.

First model development is generally attributed to Cocks in 1968.
Cocks described a multistage model in which the values of some or all
coefficients within each stage acquire modified probabilities as a
result of past events, or actions, within the model. The multistage
model discussed by Cocks allocates resources to activities within a time
period, and then, whatever event is observed over the period, optimizes
allocation over the next period. Allocation over succeeding stages
continues based on past decisions and observed outcomes of the initially
uncertain events.

Rae (1971a,1971b) expanded the discussion of Cocks' model and
described in detail the construction, solution and interpretation of
results of a discrete stochastic programming model applied to a
vegetable farm.

A limited bibliography of stochastic programming with recourse, a
subset of which includes discrete stochastic programming, is provided in
Hansotia.

The decision tree in figure 1 illustrates the discrete stochastic
programming model. The decision maker is initially faced with several
possible future events in time period A. He makes a decision, XA, in
light of his expectations of these future events. Event E1 or EB2 then
occurs. Assume EB1 occurs. The decision maker must now reach an optimal
decision, X131, conditioned on ICA, the occurrence of EB1, and future
uncertain events, E11 and E12.

The decision maker observes one of four possible events in period
C (Ecii, EC12, EC21, or Ec22). The optimal decision given Ecli is
observed, for example, would be a function of all past decisions (XA and
)611) and events (EB2 and Ecii). The discrete stochastic programming
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model is formulated such that optimal decisions are reported at each
time period based on prior decisions and events and on the expected
distribution of future events.

Assume that the objective in figure 1 is the maximization of the
expected utility of income over the three time periods. This can be
represented:

max EU(Y) = Eq:(031.) U(yi)

subject to:

and

Xnx Xcxx)
Q2 (x,, X133. XC2.2
Q3 (X, XES2 XC2 3.)
Q4(KA X1132 Xa22

cr-(X.2%, Xnx, Xcxx) 0
g2 (X, X133_, Xc3_2) 0

g3 X]32, Xc23.) 0
g4(X,, X132, Xc22) 0

All X z, 0

The Kuhn-Tucker conditions derived in the appendix illustrate both
the sequential nature of the model and the divergence of events over
time. Changes made in any decision in period A, XA, impact incomes in
all states of nature since XA is common to all income rows, QI - Q4, and
constraint rows, gl - g4, of the model. Decisions made in period 13, )62
or )621 depend on the occurrence of either Eni or EB2. Changes in X131
have no influence on the outcome of decisions given E 2 occurred.
Finally, decisions made in period C, such as Xcll, only influence income
along that branch of the event tree.

These characteristics of the discrete stochastic programming model
confirm that the model meets Antle's three criteria that separate the
static one period model from the dynamic multiperiod sequential problem.
Antle's criteria pertain to the extent to which information is available
and used by the dynamic decision maker:

a. Sequential dependence of decisions - optimal decision in period
t is based on how the decision affects the optimal decision in
period t+1

Xt+1,ga = )4+1,0° (Xtril)

where s refers to the state of nature and the right hand side of
the function states that the optimal decision in period t+1 is a
function of the previous period's decision.

b. Information feedback - If information feedback exists, the
decision in period t+1 is made after the results of the decision
in period t are observed
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c. Anticipated revision - I altered Antle's description to reflect
the current model, but decisions made earlier, Xt,., may be
revised later, 34.1,, as new parameter information becomes
available.

D. The Ranch Decision Model

A model of the rancher's problem is described in this section.
Production decisions are based on animal performance, costs and
availabilities of different feeds, and expectations of future prices.
Marketing decisions are based on current and expected future prices,
past marketing decisions, and animal performance. The rancher is faced
with marketing and production decisions throughout the one year period
considered in the model, so long as some cattle remain. Past decisions
continue to influence current decisions over the period.

The different components of the model are discussed individually
below. The section concludes with a description of the complete model.

1. Animal performance:

Production activities over time for retained animals are a
sequence of linked decisions. Input decisions are made on a periodic
(daily, weekly) basis, and may rely on prior input decisions and
subsequent animal weight gain, as well as on expectations or
realizations of input and output prices.

The periodic production process employed in the feeding model is
based on Fox and Black's (1977, 1984) net energy model for medium frame
steer calf performance:

[1] VFIft = (.1493[Nem]ft — .0460[Nem] — .0196) ge.°-75

Nem.e. = .077 Wft0-75

Nes7 = (VFLe, - Nemft / (Nem]ft) [Nea]e.

ADGft = 13.91 Nege°-9"e Wft-°""37

We. + ADGe.

VFI is voluntary feed intake, determined by both the beginning
live weight of the animal and the net energy concentration (Meal/Kg) o
the ration available for maintenance, [Nem]. The maintenance energy
requirement (Nem) of the animal is a function of animal weight. The
total amount of energy available for animal gain, New, is composed of
excess energy after maintenance requirements have been met and the gain
energy concentration of the ration, [New]. Actual daily gain, ADG, is a
function of animal weight and the total amount of energy available in
the ration for gain. Decisions made during period t with respect to
ration and, consequently, animal gain, are then embodied in Wt...1.

Weight gains on summer range has been found to be influenced by
production decisions made over the previous winter. Rogers and Malone
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gathered data from 72 steers over two Nevada growing seasons in the
early 1960's and estimated the following rate of gain during the summer:

[2] ADGmm. = 2.3300 — 0.0014Wwirit —
(.0006) (.0755)

R2 = 0.50
Standard errors in parentheses (error on constant not

reported)

Average daily gain over the entire summer period, AM...., was found
to be negatively related to Ws,int.r, the weight of the steers at the
beginning of the winter feeding season, and ABGi.t.r, the average daily
gain of the animals over the winter period.

Although the R2 value is relatively low, suggesting production
uncertainty might be appropriate in the model for at least summer
performance, production is considered deterministic in all periods in
the current model.

2. Simulation of Steer Calf Prices for the Model

Two characteristics of steer prices had to be accounted for in
simulating future price expectations for the model. First, prices vary
over time (figure 2). Time series and ad hoc procedures were used to
simulate these price movements. Second, steer prices are negatively
related to animal weight. A simple regression was used to simulate this
price-weight relationship.

Time series procedures were used on monthly Kansas City discounted
steer prices (4-500 lbs.) from 1972 through the end of 1986. The
following ARIMA model was deemed preferable to others estimated based on
residual mean square and standard errors (in parentheses) of estimated
coefficients:

(1-0.574B) P = (1+0.683B-0.30882) (1+0.17683-2) aft.
(.990) (.069) (.117) (.075)

Residual Mean Square = 23.290

Standard ARIMA notation (Pindyck and Rubenfeld) is used. Pt is
steer price in period t, at is the error term of the estimation in
period t, and B is the backspace operator applied to P and to a.

A five one-month ahead forecasts were made from the December, 1986
price. The final forecast represented one price outcome for May. The
error characteristics of the ARIMA model were exploited to generate
alternative price outcomes around the initial forecast. Estimation
errors were assumed normally distributed with mean zero and standard
deviation equal to s.. The empirical distribution of observed errors was
trisected, such that one-third of the errors were in the first segment,
one-third in the middle, and one-third in the higher third of the
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distribution. Mean values from the top and bottom segments were then
added to the initial five-month ahead forecasted value to represent the
most and least favorable states of nature at the spring decision node,.

Output prices at the end of the summer grazing season were then
derived from the ARIMA model, using the top, middle, and low spring
prices as the last "observed" price for forecasting an additional five
months ahead. Higher and lower prices from each of these three
forecasted prices were then calculated the same as was done for the
spring prices. In all, nine different price states of nature were
included in the model.

Price discounts resulting from higher calf weights were calculated
using average prices over the 14 years of monthly price data for 4-500
pound animals, 5-600, 6-700, and 7-800. The following price-weight
relationship was found:

[3] = P450 -I' (0.3160 — 0.0016 W)
(.0150) (.0001)

R2 = 0.983

where Ps„ is steer price at weight w and P450 is price for the 4-500
pound animal. The regression equation was added as a constraint to the
programing model to adjust simulated prices by animal weights resulting
from the production decisions.

3. The Marketing Decision

Alternative selling points are available to the producer: A
(winter, year 1), B (spring, year 2), and C (fall, year 2). Profits at
any one of these points under output price state of nature i may be
represented as:

nii = * wii reac * xi-ex))

Animal weight, Wij, has been determined by a succession of past
production decisions. The number of animals sold in the period under
this state of nature, 141j, depends upon the number of animals sold in
earlier periods, the total number of animals initially available, and
future marketing expectations, which in turn depend on animal
performance and expectations of future prices.

4. Objective function

The objective of the model in its current form is the maximization
of expected net returns over all price outcomes. Formally,
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[ 5 ] Max ER = pr o NA. Pik 3. Q.& N

111

E (PCi_QC.3_

P133. QE.1.

111

The subscript i refers to the marketing and production decisions made
under the price conditions existing in state of nature i. Expected
returns ER are obtained by summing returns under each state, weighted by
the probability pr(øi) of that state's occurrence. Each state is
mutually exclusive and the set of states is collectively exhaustive.

5. Complete model

Production decisions were made on a monthly basis over the five
month winter period for any calves not sold in period A (fall, year 1).
Rations and subsequent rates of gain were solved simultaneously for each
monthly period. Animals not sold in period B (spring, year 2) were
placed on rangeland. Any animals not previously sold were sold in period
C, the end of the summer grazing period.

Activities were chosen over all states of nature to maximize
expected net returns, equation [5]. Constraints in the model included
the winter feed relationships of equation [1] for the five month feeding
period, animal performance on summer range (equation [2]), and the
marketing activities of equation [4]. Output prices in the objective
function were adjusted within the constraints by the price-weight
relationships of equation [3].

E. Results

The Discrete Stochastic Programming Model

Characteristics of the expected return maximizing solution are
shown in Tables I and II. Given the conditions assumed in the model, all
animals are retained and fed over the winter. A ration of oat hay, rice
bran and, for the last three months, corn is fed to achieve an average
daily gain of roughly one kilogram. The production decision is altered
each month due to increases in animal weights resulting from the
previous month's ration.

The period B (spring, year 2) decision is dependent upon the
realized price at that time. If the price observed in spring is $1.49
(adjusted downwards by the 350 Kg animal weight at the time), the
optimal strategy is to sell all 100 animals at period B. If, however,
the observed period B price is either $1.65 or $1.58 (again adjusted by
weight), the optimal strategy is to retain all animals and put them on
range for the summer grazing season. Given the initial weight of the

•
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animals at the beginning of the winter feeding season (period A) and the
rates of gain achieved over the winter, the grazing animals will gain
0.66 Kg/day on range, and be sold in period C (fall year 2) at 449
kilograms.

The maximum expected return that can be achieved given the prices
and decisions points in the model is $43,328. Net returns under each
state of nature are reported in Table II.

Single Period Formulation of the Model

It has been shown (Magnasarian) that problems in which decisions
are allowed to be made over time as parameter uncertainty is
sequentially resolved yield objective function values that are no worse,
and are often better, than single period formulations of the problem.
The rancher's problem was thus framed as a single period model to
compare results with those obtained using the discrete stochastic
programming approach.

Conversion to a single period model was easy, especially since a
risk neutral objective function was used at this stage of the model
development. Calculation of income under all price states of nature was
replaced with a single objective in which the optimal strategy using
expected values of prices at the three marketing nodes A, B, and C. The
sequential objective function was replaced by:

in
max ER = /42kPA.W2 + ND (1)13W13 rEncx,33.

N PcWa - rcxxcic, ErEocXgx)
3. 3c..■• 1.

where Pt refers to the average of the prices at each time period in the
sequential model. As before, output prices were adjusted by weight
within the model.

Results of the single period model are presented in Table III.
Ration, rates of gain, and animal weights are similar to those obtained
in the sequential model. However, all sales occur in period C (fall,
year 2) in the single period model. Net revenue for the single period
model was $43,012, a very small drop from the expected returns of
$43,328 in the sequential model.

Comparison of the Sequential and Single Period Formulations

Consistent with theory, the objective function value was higher
under the sequential formulation of the model than it was under the
single period model. But not by much. The question naturally arises of
the need to undertake the extra trouble of the sequential model, which
results in a much larger and more expensive to solve programming model?
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The optimal strategy resulting from the single period model was only $16
less than the expected returns of the sequential. Certainly the
additional value of the information generated would not cover the
additional costs of the more complicated model.

The fallacy of this argument can be found in the realization of
how uncertain information actually does become known over time. Average
price expectations are seldom realized: a price is observed that
represents a draw from the distribution of expected prices. And, based
on the different marketing strategies observed between the single period
and the sequential models, the observed future prices at the sequential
model's decision nodes may .trigger altogether different strategies.

To illustrate the importance of allowing decisions to be made
sequentially, net returns were calculated for the optimal production and
marketing strategy resulting from the single period model under each of
the nine price states of nature of the sequential model. This comparison
is reported in Table IV. Little difference in net returns is seen for
the first six states. This is to be expected since production levels
were similar under the two models and all cattle were sold in period C
under the first six states of the sequential model.

Large discrepancies occur in the last three states, however. These
states represent the lowest period B and C prices. Under the sequential
model, when the low period B price is observed, cattle are sold. This
option is not available in the single period formulation when only
average prices are used. Net returns are maximized in the single period
model by holding cattle to the third and last marketing period. Even
were the low period B prices observed, the decision maker relying on the
results of the single period model would be constrained to hold cattle
until the third period. Consequently, he would incur net losses in two
of the three last states of nature. The overall loss over all nine
states of nature from conforming to the results of the single period
model would be $3,239.

F. Two Unsettling Characteristics of the Discrete Stochastic Programming
Model

1. Solutions relatively insensitive to decision maker's risk attitudes

The sequential model was reformulated using a CARA expected utility
function. No values tested of the negative-exponential utility function
coefficient resulted in changes in the marketing and production
activities of the model.

It would have been expected that the risk averse decision maker
would have chosen a more diverse marketing plan. In the present case,
the cow/calf model's insensitivity results from the output and input
prices used and the potential for animal performance in the gain
equations. Specifically, incomes in all states of nature at the optimum
solution were higher than the income from selling the calves in period A
(winter, year 1).

•
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However, the discrete stochastic programming model's insensitivity
to risk is well known (Anderson, Dillon and Hardaker; Lambert). Some of
the problem arises from the all or nothing sales patterns discussed
below. Relatively large changes in the value of the objective function
may be required before significant basis changes occur.

Another contributing factor to the model's insensitivity to risk
May be the small risk premia found in the marketing type discrete
stochastic programming models. Lambert found the risk premium in his
wheat marketing problem to be about 0.2 percent of the expected monetary
value of income. Citing Tsiang's observation that if risk were small -
relative to total wealth, the influence of higher order moments of the
uncertain outcome distributions are relatively unimportant to the
problem's solution. These results are consistent with Anderson et al.'s
observation (page 229) that it may not be important to account for
nonlinear risk preferences in discrete stochastic programming models.

2. All or nothing sales

There was no diversification of sales over time in the sequential
model. Either no animals were sold at a marketing node or all animals
were sold. This may be expected in the risk neutral case. Consider
figure 1. Assume decision XA is to sell all animals in the first period
and XA is to sell no animals in the period. Assume further that A is the
monetary outcome of XA and EA is the outcome of XA. The marketing
decision in period A is then to choose the action yielding the highest
reward (or expected reward). Assuming no lumpiness or economies in sales
of different lot sizes, there will be no value c such that cA +
c)A) is greater than the maximum of A or EA. The optimal action will
thus be either XA or Xx.

As discussed in the preceding section, discrete stochastic
programming model solutions are relatively insensitive to risk
considerations. Due to the price and production assumptions in the
current model, no change occurred in the model solutions as the
hypothesized decision maker became more risk averse. The all or nothing
nature of the risk neutral model did not change.

However, some diversification has been observed (Lambert) in other
discrete stochastic programming models. Specifically, all or nothing
sales patterns were observed in a wheat marketing model for neutral to
moderate degrees of risk aversion. At a certain point, sales are shifted
to the first period for a small range of increasing risk aversion, until
all sales are made in the first period.

Arguments similar to those regarding the risk neutral decision
rule seem to fit the nonlinear utility model as well. Assume the
outcomes of XA and Xx are U(A) and EU(A). Comparisons are made at each
decision node comparing U(A) and EU(A). Since von Neumann-Morgenstern
utility functions are cardinal in the sense that they are defined up to
an increasing linear transformation, one of the actions XA or Xx will
dominate. Yet to be proven are the circumstances under which U(cA) +
EU((1-c)i) k max (U(A),
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G. Concluding statements

The value of the discrete stochastic programming model model as on
approximation to the real world decision environment is hard to refute.
Discrete events represent the decision maker's expectations of the
future. Alternative optimal strategies are derived in the model
contingent upon an event's occurrence. The structure of the model allows
a large number of alternative future states limited only by
computational capabilities and the analyst's ability to interpret the
results for the decision maker. Even the computational difficulties can
be overcome by decomposition techniques (Birge).

A decision problem common to many cow/calf producers was modeled
in this paper: given prevailing input costs and expected output prices,
should some or all weaned calves be retained in the fall? If so, to what
rate of gain should they be fed over the winter and should they then be
sold or placed on rangeland for additional gains over the coming summer?

In the optimal solution, all calves were retained and fed to about
one kilogram over the winter. Dependent upon the observed price in the
spring, calves were either placed on range or sold.

The sequential model was compared to a single period formulation
of the same problem using expected prices rather than several possible
prices. Although input decisions and incomes under six of the nine
states of nature were similar between the two models, the use of
parameter information as it became available substantially improved
income under two of the three worse price scenarios.

•

4)

•



References
Anderson, Jock R., John L. Dillon, and Brian Hardaker. Agricultural

Decision Analysis. Iowa State Press, Ames, Iowa, 1977.
Antle, John M. 1983. "Sequential Decision Making in Production Models."

Amer. J. Agr. Econ. 65:282-90.
Birge, John R. "Decomposition and Partitioning Methods for Multistage

Linear Programs." OperAtions ItBeardi. 33(1985): 989-1007.
Cocks, K. D. "Discrete Stochastic Programming." Mgmt. Sci. 15(1968): 72-

79.
Fox, D.G. and J.R. Balck. 1977. "A System for Predicting Performance of

Growing and Finishing Cattle. 1. Development of a Model to
Describe Energy and Protein Requirements and Feed Values."
Feedstuff4 48:21.
 . 1984. "A System for Predicting Body Composition and

Performance of Growing Cattle." J. Animal Science. 58:725.
Hansotia, Behram J. "Stochastic Linear Programming with Recourse: A

Tutorial." Decision Sciences. 11(1980): 151168.
Lambert, David K. "Risk Modeling Using Direct Solution of Expected

Utility Maximization Problems." unpublished Ph.D. thesis, Oregon
State University, 1985.

Magnasarian, 0.L. "Nonlinear Programming Problem with Stochastic
Objective Function." Ygmt. Sci. 10(1964): 353-359.

Rae Allan N. "Stochastic Programming, Utility, and Sequential Decision
Problems in FArm MAnagement." Amer. J. Agr. Econ. 53(1971a): 448-
460.

Rae, Allan N. "An Empirical Applicaiton and Evaluation of Discrete
Stochastic Programming in Farm Management." Amer. J. Agr. Econ. 
53(1971b.): 625-638.

Rogers, LeRoy F. and John W. Malone, Jr. Economics of Feeding Rates for
Wintering Calves in Northern Nevada. Max C. Fleischmann College of
Agriculture, University of Nevada-Reno, Publication R-27, Reno,
Nevada, September 1966.

Tintner, G. "Stochastic Linear Programming with Application to
Agricultural Economics." in Second Symp. on Linear Programming.
National Bureau of Standards, Washington, D.C., 1955, 197-228.

Tsiang, S. "The Rationale of the Mean-Standard Deviation Analysis,
Skewness Preference and the Demand for Money." Amer. Fenn. Rev.
62(1972): 354-371.

•

141



•

142

Appendix I

Derivation of the Kuhn-Tucker Conditions for the following
problem:

4
[1] max EU(Y) = E Pr(8) U(Yi)

i=1

subject to:

Q1 (XA,

Q2 (XA,
[2]

Q3 (XA,

Q4 (XA,

[3]

gl (XA,

g2 (XA,

g3 (XA,

g4 (XA,

XB1, XC11) Yl =

X131, XC12) - Y2 =

XB2, XC21) =

XB2, XC22) - Y4 =

X131, XC11)

X131, XC12) 5 0

XB2, XC21)

XB2, XC22)

forming the Lagrangian,

0

0

0

L = EU(Y) + - Q) + T(-G)

where, for simplicity, Y-Q represents [2], G represents [3] and
EU(Y) represents [1].

Differentiating with respect to:

Yi:
3U(Yi)

= Pr(ei   + 4i = 0
3Yi @Yi

•
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an

aL 4 au ayi
=—.-.= E Pr(8i)

aXA i=1 ayi axA

4 aYi aQi
+ E (

1=1 DXA aXA

4 agi

E ti < 0
i-1 aXA

aL

aXA

•

4 3U 3Yi 4
E Pr(8i) - E 1

1=1 3YiaXA i=1 9X

XA = 0

XB.:

and

3L 1 DU DYi

axBi i=k 9Y1 XEij

1 3Yi aQi 1 agi
+ E Iii ( - ) - E i

i=k DXB. . .MC i=k DX
3 

B3 B3
•

1 917 DY.i. 1 3gi
= E   - E

i=k .ayi @XB i=k axi B3

DT,
) X = 0

DXBi B3

If j= 1, [k,1] = [1,2]

else if. = 2, [k 1] = [3,4]
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3X ,
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Figure 1. Discrete formulation of the sequential decision problem. X refers

to decisions made in time period i given state of nature j.
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Table I. Results of the discrete stochastic programming
problem.

Dec. Jan. Feb. Mar. Apr. Summer

Average Daily Gain
0.871 0.909 0.973 1.056 1.114 0.658

Daily Ration (As fed basis)
Oat Hay
0.593 0.651 0.710
Corn

IM11.11.110111 IM11.11,11111M

Rice-Bran
5.337 5.860
Total
5.930 6.511

0.319

6.086

7.115

0-772

0.961

6.014

7.747

0.835

1.549

6.016

8.400

MID OMNI MO

Mal IMO MINI

011111 OMNI MINI

IMO IMO OM.

Feed Conversion Ratio (Dry matter basis)
6.195 6.518 6.644 6.649 6.821 OM IMMO OM

Ending Weights
226.6 254.3 284.0 316.2 350.1 448.9

•



•

•

•

Table 2. Net income by period under all states of nature.

State of
Nature Period A Period B Period C

1 0 0 $53,703

2 0 0 $50,561

3 0 0 $46,790

4 0 0 $46,610

5 0 0 $43,423

§ 0 0 $39,698

7 0 $36,390 0

8 0 $36,390 0

9 0 $36,390 0
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Table III. Results of the single period programming problem.

Dec. Jan. Feb. Mar. Apr. Summer

Average Daily Gain
0.839 0.875 0.903 0.924 0.937 0.683

Daily Ration (As fed basis)
Fescue Hay
0.586 0.641 0.698
Rice-Bran
5.331 5.834 6.345
Total
5.390 5.899 6.415

0.753

6.858

6.934

0.810

7.370

7.452

IMO IMP MOM

010 OM IMP

IOW

Feed Conversion Ratio (Dry matter basis)
6.424 6.742 7.104 7.504 7.953 IMP IEEE ONO

Ending Weights
225.6 252.3 279.8 308.0 336.6 439.1

•

•



Table IV. Income under the sequential states of nature for
the DSPM and the single period model.

State of
Nature

Sequential
Model

• Single Difference
Model

O 1 $53,703

2 $50,561

3 $46,790

41 4 $46,610

5 $43,423

6 $39,698

40 7 $36,390

8 $36,390

9 $36,390

•

•

•

$53,637 $66

$50,565 ($4)

$46,877 ($87)

$46,701 ($91)

$43,583 ($160)

$39,939 ($241)

$38;402 ($2012)

$35,284 $1,106

$31,728 $4,662
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