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TIME SERIES MODELS FOR EXCHANGE RATE AND
AGRICULTURAL PRICE FORECASTS

Girard W. Bradshaw and David Orden*

Virginia Polytechnic Institute and State University

Introduction

The Time Series Approach to Forecasting

There has been an historical dichotomy in the econometrics of forecasting literature that hasadmitted two approaches to the building of forecasting models. These two approaches are (1)Structural econometric/causal forecasting models, and (2) Time series models (Kennedy 1985;Granger and Newbold 1986). Recently, some authors have highlighted the compatibility andcomplimentarity of these two approaches, but to a large degree the two literatures remain
separate.'

Structural econometric models are specified, as is well known, by appeal to prevailing eco-nomic theory. They consist of a set of dependent variables (the variables to be forecasted) and a setof independent variables which are used to "explain" or account for the variation in the dependentvariables. These models aim to capture the structural relationships, identified from theoretical in-vestigations, among the variables in the economy, often employing numerous overidentifying re-strictions in the process. The popularity of large-scale simultaneous equation models of this typereached a peak in the 1960s and early 1970s. They continue to be widely used in commercialforecasting and, to an extent, in research. However, in the late 1970s, forecasters using these
models, in particular macroeconometric models, were confounded by their failure to accuratelypredict simultaneous high inflation and unemployment levels (Lucas and Sargent 1979). Thisbreak-down in forecast accuracy opened the door for simpler, less costly, and more accurate alter-native forecasting models. Time series models offer one such alternative.

Time series models are built on the premise that a time series has a particular recurring sta-tistical history which can be modelled and then exploited for the purpose of forecasting. Theunique statistical history is used to project forward the likely path of the time series, thus generatingan extrapolative forecast. Behind the idea of time series forecasting is the eclectic view that we maynot know enough about the true structure of the economy to construct a detailed structuraleconometric model that will forecast well (see, for example, Sims 1980).

For illustrative purposes we shall delineate two classes of time series models, those that donot allow for dynamic interactions among variables (univariate) and those that do (multivariate).

* Graduate Research Assistant and Assistant Professor, Department of Agricultural Economics,Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia 24061.The authors wish to thank Rick Ashley, Doug Mc:Taggart, and John Robertson for helpfulcomments, and Ed Allen, Crops Section, ERSJUSDA and David Stallings, Leader, Demand andTrade Section, ERS/USDA for providing all of the price and exchange rate data. Funding forthis research was provided by the Agriculture and Rural Economics Division of the EconomicResearch Service, U.S. Department of Agriculture, under Cooperative Agreement58-319S-5-00402.

The Structural Econometric Modelling Time Series Analysis (SEMTSA) approach of Zellner (1979), andpapers by I larvey (1981), Davidson et al. (1978), and Hendry (1978) are examples of work which em-phasize the need for more synthesis. Blanchard and Watson (1986), Bernanke (1986), Sims(1986) andFackler(1988) have addressed the identification of dynamic simultaneous equation structural models andtheir relationship to multivariate time series models.
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• Univatiate time series models express the variation in a time series as a function of autoregressive
terms (past own values) and moving average terms (contemporaneous and past errors):2

irt = 1)c-4 OpXt—p st 1)1 et-1 — • • • — °qet--q (1.1)

Multivariate time series models reflect the importance of "the influence of other observable variables
known or suspected to be related to the series of interest" (Kling and Bessler 1985). The
multivariate time series models to be used herein will be vector autoregressions (VARs) augmented,
where appropriate, by error correction terms to form vector error-correction models (ECMs), as
discussed below. A VAR model does not impose a priori restrictions such as exogeneity or func-
tional form as used for the identification of structural simultaneous equation models. Instead, a
VAR is a reduced-form model in which interactions that are present in the data emerge on their
own. If .X1 = X„„) is a vector of variables that we wish to model with a VAR, under the
conditions of joint-stationarity and ergodicity (see Granger and Newbold 1986) X,' has a vector
autoregressive representation:

(1)(B)Xt = Et (1.2)

where (D(B) is an m x m infinite matrix function in the backshift operator, and E; is a vector of
well-behaved error terms.' Each element of (KB) follows the structure:

U(B) 'Ed) ,k
k=0

This infinite AR structure is then approximated by a finite autoregression for empirical estimation.
Choosing the lag length in a VAR is an important issue in empirical work, and will also be ad-
dressed in our paper.

In practice, the question of whether a traditional structural econometric model or a time series
model is better for a particular forecasting project turns on the validity of the prior information that
we have.4 If a particular economic theory is "true," it would be unwise not to use that available
information. A univariate ARIMA model incorporates no prior economic information thus would
be a poor choice as a forecasting model in the face of a structural econometric model imposing valid
identification restrictions (Prothero and Wallis 1976). In fact, however, ARIMA models frequently
out-perform structural econometric models in forecasting.'

The multivariate time series approach asserts that. the truth lies somewhere between the tra-
ditional simultaneous equation approach and atheoretical univariate time series models. Through
economic theory, variables can be identified that have a high prior probability of having an im-

2 Hence the name ARIMA models. The "I" in ARIMA designates that the time series is modelled in dif-
ferences of the original series. This is done to induce stationarity, an important topic to be covered in
detail below.

The backshift operator, also called the lag operator, performs the following operation, BkX, = Xt_k, on
either a single random variable or a vector of variables.

One way to test the general credibility of identification restrictions would be to conduct a forecasting ex-
periment where the structural model competes with various specifications of multivariate time series
models. Zellner (1982) argues that structural models that have excellent in-sample fit must still prove their
ability to forecast well in order for them to be useful contributions to economic science.

Rick Ashley points out that if the forecasts of such explanatory variables are poor enough, it may be un-
wise to include these variables in the forecasting model even if the theory supporting their relevence is
valid.

6 An example was presented in Nelson (1972) where it was demonstrated that a univariate ARIMA model
could out-forecast the Federal Reserve-MIT-Penn quarterly model of the U.S. economy. See also
Cooper(1972).
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portant effect on the variables to be forecasted, though we are not quite certain how these interre-lationships are manifest in, say, particular functional forms or exclusion and exogeneity restrictions.VAR models can be viewed as quasi-time series models in that they are specified using some a prioriinformation from economic theory to guide the selection of the variables to be included in a spec-ification in order to produce a model with superior forecasting accuracy.

Multivariate Time Series Analysis in Agricultural Economics

Much of the recent agricultural economics literature that is concerned with use of time seriesmodels reflects an interest in relationships among various economic time series. Bessler (1984a,1984b) discusses the methodological aspects of fitting VARs and examines dynamic economic re-lationships in the hog market and the relationship of relative prices and money in Brazil, respec-tively.

In this study, we focus on the role of the exchange rate in explaining variation in agriculturalcommodity prices. Orden (1986) investigated the dynamic effects of macroeconomic shocks onU.S. agriculture using VAR models. He found evidence that movements in the real exchange ratehave substantial impacts on agricultural exports and real prices received by farmers. Orden's studyused policy analysis techniques developed by Sims (1980, 1986), and employed Sims' lag selectioncriterion. Thornton and Batten (1985) found that, for money-income relationships, different lagstructures can change the outcome of exogeneity tests. Therefore, we might place value on theconsideration of alternative test procedures for lag length selection and such procedures will be usedherein.

From a purely forecasting perspective, Bessler and Babula (1987) found the real exchange rateto have little impact on improving the accuracy of forecasts of wheat exports. The real exchangerate did have a notable effect on increasing accuracy of forecasts of real wheat prices.7 The impactof real exchange rates on forecasts of real wheat, corn, and soybean prices will be a primary focusof this paper.'

As Bessler and Babula's results suggest, multivariate time series models are not always ableto out-perform univariate models in out-of-sample forecasting ability (Litterman 1984, Brandt andBessler 1984). This is puzzling as one might expect that a multivariate model should forecast atleast as well as a univariate model because it theoretically encompasses that univariate model.

The failure of multivariate models to out-forecast univariate models is likely the result of ig-noring very important characteristics of time series data. For example, Litterman has argued thataggregate economic data suffers from a low signal-to-noise ratio meaning that the useful (systematic)variation in the time series is obscured by purely random fluctuations. This random noise over-powers the useful signal, i.e. the variation that can be used to explain variations in another variablein a multivariate model. Litterman(l986) explains that the parameters in a VAR will likely fit boththe useful systematic variation as well as the random variation, resulting in an overparameterizedmodel. The random variation, however, is not useful for forecasting. The task of the forecaster,then, is to devise a way to filter out the random noise to reveal the variation that is systematic. Themultivariate forecasting problem is thus a trade-off between oversimplification andoverparameterization.

7 Bessler and Babula use a decomposition of forecast error variance to isolate the effect of the exchange rateon the wheat price.

More generally, our study is pursuing the investigation of the effects of real exchange rates (and othermacroeconomic variables) on price and export-quantity forecasts. Bessler and Babula's results areanomalous as we would expect that a change in a real commodity price would be associated with a changein exports of that commodity.

•
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Model Specification Issues

Litterman (1976) proposes a way of filtering the noise from the signal through the use of
Bayesian priors, The point of using Bayesian priors is to attack the overparameterization problem
inherent in unrestricted VARs where the modeller can quickly run out of degrees of freedom even
in, a moderately large sample. Litterman suggests that it is reasonable to expect that coefficients
on long lags are more likely to be zero than coefficients on shorter lags. By specifying Normal prior
distributions about zero with smaller standard deviations for the coefficients as lag length increases,
long lags are allowed to enter the equations at the margin only if there is strong evidence for such
relationships in the data (see Litterman 1984, and Doan, Litterman, and Sims 1983 for discussions
of Bayesian VAR models for forecasting).

Bessler (1986) addresses the use in forecasting of a nonsymmetric (i.e., the prior on cross
variable effects is different from the prior on own lags) random walk Bayesian prior on the coeffi-
cients in a VAR model for the U.S. hog market.'° He finds the VAR with this prior out-performs
a univariate autoregression, an unrestricted VAR, and a Bayesian VAR with a symmetric prior.
Kling and Bessler (1985) also found that Litterman's Bayesian VAR forecasted very well for
macroeconomic data.

An alternative to the Bayesian procedure for obtaining a more parsimonious VAR represen-
tation is to use a multivariate statistical decision criterion for the choice of lag length. Lutkepohl
(1985) has investigated the use of 12 such statistical decision rules in a monte carlo simulation. He
found several of them to be quite accurate in choosing the correct lag length. Lutkepohl's results
indicate that the Bayesian Information Criterion of Schwartz (1978) and the criterion of Hannan
and Quinn (1979) are the most accurate given a moderately large sample size. These decision criteria
are applicable in both a univariate and a multivariate lag selection problem, the multivariate being
the general case.

Hsiao (1979) has developed a procedure to help overcome the overparameterization problem,
as well as allow for more realistic differing lag structures in each equation of the system. Hsaio's
procedure uses the Final Prediction Error criterion of Akaike (1971), though any of a number of
available statistical rules could be used as the underlying decision criterion in his procedure (see
Judge et al. 1985 p. 675). Though Hsiao's procedure is not without fault, it is a useful procedure
for modelling restricted VARs." Fewer parameters in a VAR allows the remaining parameters to
be estimated with more degrees of freedom, hence more accurately. Hsiao's method for reducing
the number of parameters to be estimated in a VAR is closer to the time series philosophy of al-
lowing the data to determine the model specification than the Bayesian procedure which forces the
modeller to choose a prior to impose.i2

Another reason given for the poor performance of VAR representations of economic time
series is the lack of attention given to data issues inherent in time series econometrics. For example,
if the time series to be modelled contains a deterministic trend or a unit root, or if the variance of
the series is not constant throughout, the series is said to be non-stationary. Many economic time
series, especially macroeconomic time series, are in fact non-stationary in their levels (Wasserfallen
1986; Nelson and Plosser 1982). Because multiple time series theory relys on stationarity for its
validity, the modelling of nonstationary series as If they were stationary will produce undesireable
results, one of which can be poor forecasting performance. Dickey et al. (1986) show that, for
univariate models, forecasts from a nonstationary model do not decay to the sample mean as the
forecast horizon increases, and the forecast standard errors will diverge to +00 instead of converging

A prior is an informed belief that the modeller brings to the modelling exercise. The priors appear in theform of probability distributions on the coefficients.

10 The random walk prior is justified for many macroeconomic and financial variables (e.g., Nelson andPlosser 1982).

11 Webb (1985) applies the Akaike Information Criterion (AIC) within his own procedure to the choice oflag length in a VAR. He notes a consistent improvement in the forecasting accuracy of his specificationusing the A1C over an unrestricted VAR.

12 Doan, Litterman, and Sims (1983) propose the quasi-Bayesian approach of using the data to select anoptimal prior.
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to the series' Standard deviation. This divergence of the forecast-error variance should be reflected
in the forecast variance component of the RMSE of the forecasts from nonstationary models. At
longer horizons, then, increasingly poorer forecasts from nonstationary models should be observed
relative to stationary models.

Another undesireable result is the appearance of spurious relationships when nonstationary
variables are regressed on each other (Granger and Newbold 1974, 1986). This is a problem that
is now gaining long overdue recognition. Phillips (1986) has demonstrated, using large-sample
theory, that when non-stationary series are regressed upon one another the t-tests of significance
are biased toward rejecting the null hypothesis of no relationship. In related work, Phillips and
Durlauf (1986) demonstrate that the asymptotic theory for non-stationary multiple time series de-
parts significantly from classical theory. In the case of non-stationary series, the asymptotic dis-
tribution of the usual test criteria is nuisance parameter dependent, meaning that classical test
statistic distributions are no longer applicable.

A third consideration is that when sets of random variables are being modelled, as in a VAR,
attention must be paid not only to the stationarity of individual variables but to possible equilib-
rium relationships among the variables. These equilibrium relationships are manifest when two or
more non-stationary variables have a linear combination that is stationary. Such economic vari-
ables are then said to be co-integrated. The consequences of ignoring co-integration include a loss
in forecasting efficiency as important prior information will not be included in the model specifi-
cation. In fact, when co-integration is present, the usual VAR representation is inappropriate
(Engle and Granger 1987).

The importance of these data issues makes it necessary to have a strategy for investigating the
time series properties of the variables to be modelled before a particular model is chosen. On the
basis of these time series properties, appropriate forecasting models, in our case possibly bivariate
commodity price-exchange rate models, can be specified.

Stationarity and Cointegration
The Univariate Case

It is well known in the time series literature that the time series being modelled must be sta-
tionary for there to be a linear model representation (see Wold 1954, Judge et al. 1985). Stationarity
requires that the mean and variance of the series be finite and time invariant and that the covariance
between any two values of the process depend solely on the distance between these values in time
and not on time itself.

Unfortunately, the levels of many economic time series appear to be nonstationary (Nelsonand Plosser 1982, Nelson and Kang 1984). Hence, in order to apply linear models such as ARMAmodels, a time series must be tested for and possibly transformed to stationarity. A useful starting
point is to examine a time plot of the raw data series. If the series exhibits fluctuations that are
more violent for a particular segment of the series than for others, the series very likely is variance
nonstationary, i.e., there is not a constant variance throughout the series. The most common
method for inducing variance stationarity in a series is to take the natural logarithm of each obser-
vation. This transformation will reduce the swings of the levels which constitute the variance
nonstationarity and often yields a series that is a good approximation to one having constant vari-ance.

A more insidious form of nonstationarity, however, is nonstationarity in the mean of a series.In this case, the series shows no propensity to return to, or move around, a particular fixed level.When a series has this lack of affinity for a mean, and the movement seems to be in a particulardirection, the series is often said to exhibit a "trend". In this paper, "trend" will be reserved for adeterministic functional dependence on time. For example, consider a series that has two parts, adeterministic linear trend and a residual representing the stationary component which includes allof the interesting variation that we wish to model:

Xt = a + flt + (2.1)

•

•

•
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Often, (2.1) is estimated as a linear regression model, and the residuals are then treated as a oi,a-tionary series that has well-defmed variance, covariances, and autocorrelations (Nelson 1984). Thiswould mean that et could be modelled as an ARMA process after the trend was removed from X.The function need not be linear, however, which leads to the more general representation:

Xt .fit) 
(2.2)

The relation in (2.2) is called a trend stationary process (TSP); X, is stationary around the trendfunction f( t). It is important to note that this is just one hypothesis concerning the manifestationof nonstationarity, and indeed there are problems with this particular hypothesis. Even if we couldknow a priori that the variable X, is a TSP, there is little chance that the actual functional formcould ever be accurately specified. If the nonstationarity is not correctly modelled, the residuals in(2.2) will not be stationary. In addition, over the course of a time series, we may observe localupward trends followed by local downward trends. Thus, a global OLS trend would not be anaccurate representation of the nonstationarity.

An alternative hypothesis about the way nonstationarity in mean arises was introduced byBox and Jenkins (1970). They view nonstationarity not as a manifestation of deterministic func-tions of time, but as the accumulation of random shocks. In this case, the first differences of theseries are stationary. This kind of process takes the form:

• Xt= Xt_i + D + &t

•

(2.3)

Where E, is a stationary series with zero mean and constant finite variance and D is the fixed meanof the first differences, often called the drift parameter." The level of the series at any given time tis equal to the previous level of the series, plus the drift, plus the random shock. The series is cu-mulative, or additive, in its level. This additivity exhibits itself as an apparent "trend". Equation(2.3) is said to belong to the difference stationary class of processes (DSP).

DSPs are also called "integrated" processes, the word "integrated" reflecting the additive natureof the series. The following three definitions will be useful in following sections (from Granger1986, p.216):

Definition 2.1a.lf a time series Z, needs no differencing to become stationary, it is called integratedof order zero which is denoted 1(0).

Definition 2.1b.lf a time series Z, must be differenced d times to become 40), it is called integratedof order d which is denoted 1(d).

• Definition 2.1c.Let A' represent b applications of the difference operator. If Z, 1(d) then the bt'differenced series is AbZ, 1(d b).

Dickey(1975), Fuller (1976), and Dickey and Fuller(1979, 1981) have developed a series oftests (henceforth DF tests) for discriminating between the hypothisis that a series is a TSP and thehypothesis that it is a DSP. Their tests only entertain a DSP that is integrated of order one. Theprocedure is to perform OLS on the model:

Xt = + + ct (2.4)

The null hypothesis for the first test, T, is that p = 1 , or that x, contains a unit root and is non.stationary, with an alternative model that the series is generated by a stationary autoregression(p < 1) with drift. The null hypothesis for the second test, 1..„ is again that p = 1, with drift in thenull model and an alternative model that the series is generated by stationary autoregression arounda linear time trend (drift plus a time parameter). Fuller (1976 p.373) has tabulated critical values

13 The simplest member of this class of processes is the random walk where r t would be a white noise process(zero mean, finite variance and zero covariance between any two values separated in time), and the driftwould be zero.
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for and;, both of which are 1-ratios", (p — I)/o, that follow nonstandard distributions. The
rejection regions are given by small values of or;.

Dickey and Fuller also describe two likelihood ratio tests for the joint null hypothesis of a
simple random walk. In the first of these tests, (DI, the null hypothesis is (a, p)= (0,1) in a model
that is assumed not to include a time parameter. In the second test, 02, the null hypothesis is
(a, p) = (0, 0, 1) in a model that may have a linear time trend. Finally, Dickey and Fuller de-
scribe a likelihood ratio test for the joint null hypothesis of a random walk with drift
(a, fi, p)= (a, 0, 1) in a model that again includes a time parameter. The rejection regions are for
large values of the test statistics, and critical values are found in Dickey and Fuller (1981, p. 1069).

A question that arises with the DF test is whether it is appropriate to model X; as AR(1) or
a random walk, as the error, E „ in (2.4) may not be empirical white noise. For example, if there
is evidence of moving average behavior, a higher order autoregression may be needed to approxi-
mate the dynamics of the X, process. Consequently, a more general model is often fit. This results
in an augmented Dickey-Fuller test (ADF) based on the model:

Xt= a+ fit+ pXt_i+ZOIAXt_i+&t (2.5)

where lags of AXt are added until gt is white noise. The hypotheses to be tested about the properties
of the series are the same for this specification as for model (2.4). Fuller (1976) and Dickey and
Fuller (1981) show that their tests also apply to these higher order autoregressions.

The Multivariate Case

Linear vector time series models, such as VARs, are only applicable to stationary vector time
series (Judge et al. 1985). A vector time series X,' = (X1„ X21, ..., X t), is stationary when each series
is individually stationary in mean and variance. In addition, all covariances, whether intraseries (an
autocovariance) or interseries (across every pair of the m variables in the vector process) must be
independent of t and depend only on the time displacement between observations.

As discussed above, there is reason to believe that many economic time series are nonsta-
tionary. Hence, the practitioner is faced with the problem of how to apply the theory of vector
linear models to nonstationary time series. Extrapolating from the univariate case, a practical sol-
ution would seem to be to examine the univariate time series properties of each series in the vector
to be modelled and use appropriate transformations to reduce each individual series to stationarity.
Such an approach is advocated in some articles on VAR modelLing (e.g., Hsaio 1979). Hsaio logged
and differenced each series in the bivariate money-income relationship before proceeding with
specifying a VAR. However, differencing of the individual series has been criticized by others (e.g.
Taio and Box 1981; Lutkepohl 1982). The difficulty noted is that while each individual series may
be nonstationary, "for vector time series, linear combinations of the components of [Xi] may often
be stationary, and simultaneous differencing of all series can lead to unnecessary complications in
model fitting" (Taio and Box 1981 p.804). This phenomenon of linear combinations of nonsta-
tionary series being stationary has been termed co-integration (Granger 1980; Granger and Weiss
1983; Engle and Granger 1986; Engle and Yoo 1987). Essentially, if there exist linear combinations
of the individual nonstationary series that are stationary, differencing each series individually will
result in a system that is overdifferenced. If this is the case, the system will no longer have a
multivariate linear time series representation with an invertible moving average. Intuitively, if a
system is co-integrated, estimating a model in differences ignores the equilibrium relationships
among the nonstationary variables that contain important information. Modelling the co
integration restrictions, then, should help a model produce forecasts that are more accurate than a
model in which the restrictions are ignored (Engle and Yoo 1987).

For integrated processes of order greater than zero (i.e. nonstationary series) the use of sta-
tistical techniques which assume stationarity can give incorrect results in the multivariate case as
well as in the univariate case. To illustrate the issues involved, consider the static regression:

Yt= a+ fl'Xt+ et (2.6)

•

•



•

•

111

where /I' is a vector of coefficients and X, is a vector of regressors. Suppose that Y, and the Xt's areeach I(1). Rearranging (2.6):

gt Yt — Yxt (2.7)

In general the linear combination in (2.7) will yield e, 1(1) because et is a linear combination ofI(1) series. Hence the residuals will be nonstationary.'4 Phillips (1986) and Phillips and Durlauf(1986) investigate the effect of using integrated processes in static multivariate regressions such as(2.6), and in multiple time series regressions such as VARs. They conclude, using large sample• asymptotics, that the distributions associated with the usual inferential statistics do not follow thesame distributions that they would under stationarity. For the case of static multiple regression,Phillips proves that the coefficients of the regression do not converge in probability to constantsas the sample size goes to infinity, as is the case when the variables are stationary; that is, the vari-ables have no limiting distribution (Phillips 1986a, Baneriee et al. 1986). Phillips also shows thatthe distributions of the t-ratios diverge as the sample size goes to infinity. This means that noasymptotically correct critical values exist for conventional significance tests. For critical valuesfrom conventional asymptotics, the rejection rate for the null hypothesis will increase with samplesize (Phillips 1986, p.318). These results confirm the monte carlo evidence in Granger and Newbold(1974, 1986). The bias toward wrongly rejecting is their concept of spurious regressions.15 Grangerand Newbold illustrate the problem by regressing independent random walks on one another. Theynote that using the usual t-test (designed under the maintained hypothesis that the variables in-volved are stationary) at five-percent level of significance will, on average, lead to wrongly rejectingthe null hypothesis three-fourths of the time. Where the number of independent variables is greaterthan one, Granger and Newbold (1974) report a bias in F-tests toward wrongly rejecting the jointnull that all coefficients are zero from 76 percent to 96 percent of the time, with the rejection rateincreasing with the number of included variables.'6

Dynamic multivariate time series regressions with integrated processes, as opposed to staticregressions, are investigated by Phillips and Durlauf (1986). They find that OLS does provideconsistent estimates of the regression coefficients in this case. However, these estimates are notasymptotically normally distributed. An important result is that the limiting covariance matricesfor the estimated coefficients have distributions that depend on the number of variables in the sys-tem. These nuisance parameter dependencies invalidate the usual classical significance tests. Newstatistical tests must therefore be devised which are free of nuisance parameter dependencies.

Thus, nonstationarity in a multivariate regression, such as a VAR, can cause serious problemsfor statistical inference. In order to avoid being fooled by spurious relationships, making invalidconclusions based on the application of the wrong asymptotic theory, or generating poor forecasts,one must insure that the series involved are stationary.

Co-integration and its implications

In a static multivariate regression, finding an ARIMA representation for the residuals and/ordifferencing the included variables should eliminate the occurance of invalid conclusions on thebasis of classical inferential techniques. For time series regressions with integrated processes, con-sideration of co-integration plays a vital role in deciding what to do about nonstationarity.

14 For the case where Y, I(1) and X, ,.-1(0) the residual in (2.7) will be 1(1) as well.

15 Yule (1926) was the first to formally investigate this phenomenon, often called "spurious" or "nonsense"correlations. Yule examined the correlations between unrelated series. When the series were stationary,no correlation was observed, as expected. For 1(1) series, the correlation distribution indicated a highdegree of linear association, and for 1(2) series the most often encountered correlations were + 1.

16 To underscore their results, Granger and Newbold work with statistically independent variables. How-ever, the distributional results proved by Phillips(1986) also apply to correlated time series. The crucialresults are that the coefficients do not converge to constants and that the distributions of the test statisticsdiverge as the sample size increases to infinity.
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Consider again a regression relationship such as (2.6) in which each variable is I(1) and we
assume, for illustration, that there is only one regressor. We would expect that the residuals in this
series would be 1(1) as they are a linear combination of 1(1) variables. However, in the special case
where there exists a unique constant, say, y, such that the two 1(1) series have a unique linear
combination:

zt --= Yt — a— yXt (2.8)

that is stationary (more precisely z 1(0)). In this case, Xt and Y, are co-integrated, with co-
integrating constant y." In the two variable case, y will be unique. For vectors of more than two
time series there may be multiple vectors of co-integrating constants and co-integrating relationships
among the variables may not be unique (see Engle and Granger 1987).

The intuition behind co-integration is that some economic variables move together through
time, hence the co-integration relationship can be thought of as an equilibrium relationship. It says
that two (or more) variables which have unbounded variance and no constant mean, have a linear
combination that has finite variance and a constant mean. Consequently, the variable zt in (2.8)
can be said to measure departures from long-run equilibrium between the two series. Granger
(1986) cites prices and wages, the money supply and prices, government income and expenditure
(perhaps only at the state or local level), and the imports and exports of a country as pairs of vari-
ables that may be cointegrated.

It makes sense that we should test economic variables for cointegration relationships and then
make use of the resulting information in model specification. Engle and Granger (1987) have pro-
posed tests of the null hypothesis of no co-integration against the alternative of co-integration. The
tests are based on the residual in (2.8) being 1(0) if the series are co-integrated.2 That we are inter-
ested in whether the errors are 1(0) or 1(1) suggests DF and ADF tests be applied to the residuals
obtained by estimating this "co-integrating regression".

However, the co-integrating regression yields both an estimate of the co-integrating parame-
ter, and the residual series, 'it.° Since "it can be obtained only after first obtaining y, it has a de-
pendency on the estimate of the co-integrating parameter. In the unit root test on the z, series from
the co-integrating regression, the large sample behavior of the 1-statistic" has nuisance parameter
dependencies which stem from this dependency. These are manifest as a dependency of the "t-
statistic" on the number of variables in the co-integrating regression (Engle and Yoo 1987). The
critical values in Fuller (1976) and in Dickey and Fuller (1981) used for the usual DF and ADF
unit root tests do not apply for the co-integration test because they do not account for these nui-
sance parameter dependencies. New critical values, dependent on the number of variables in the
vector time series, are provided in tables in Engle and Yoo (1987).20

If the test for co-integration is unable to reject the null hypothesis of no cointegration the
appropriate model is one in first differences, as each of the variables are I(1) and they have no linear
combination(s) that are 1(0). If co-integration is found, a model is needed that includes this infor-

17 In general, for any pair of series Xi, and X2t both 1(6), if there.exists a linear combination (2.7) such that
zt 1(d b) with b > 0, the pair are co-integrated of order d b, denoted (X1„ X2t) Cl(d,b).

18 Note that each individual series must have an order of integration equal to the other's for co-integrationto make sense. To insure this, one should use tests such as the DF and ADF as well as ACF and partial
autocorrelation function plots of the raw and differenced series to determine the order of integration ofeach individual series. If such a preliminary examination strongly indicates that the series have differing
orders of integration, a formal co-integration test is unnecessary.

19 Stock(1987) has shown that if Y, and Xt are cointegrated, OLS estimates of y are highly efficient and superconsistent; that is, as T--0 00 will converge to its true value twice as rapidly as would be the case for ausual OLS parameter estimate in a similar, stationary, regression.

20 For the cointegration test, we can ignore the trend functions and the hypothesis becomes 1(1) vs. 1(0) withthe relevent statistic being the-t-ratio on the parameter p.
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mation. Granger (1982) and Engle and Granger (1987) prove that a bivariate co-integrated systemhas an error-correction model representation:2i

AXt = + cA(B)AXt + 13(B)AY t + it
t= + y(B)LXt + 4)(B)ilYt + E• -2t

(2.9a)

(2.9b)

with I 1 1 + I 2100. The co-integration is captured in (2.9) uniquely through the term whichis obtained from the cointegrating regression. This representation captures the co-integration interms of the levels of the co-integrated variables (Engle and Granger 1987). The levels enter theequation as last period's departure from long-run equilibrium. Specifying a VAR in differences, ifthe variables are co-integrated, can be thought of as a specification error because the error correctingterms (-- and — 2z,_1) are incorrectly excluded from the equations.

The model selection process, then, is a process that, to a large degree, depends on the infor-mation we can extract from the data concerning its time series properties. In the following section,we consider the data analysis techniques discussed above to help in specifying univariate models forforecasting agricultural commodity prices and bivariate models with prices and exchange rates. Themodels suggested by the data analysis will then be compared to various popular time series spec-ifications to see whether these techniques make a difference by providing better forecasts.

Forecasting Models for Agricultural Prices
Data Description 

The price data used herein are average monthly cash prices of No.1 Hard Red Winter Wheatat Kansas City, No.2 Yellow Corn at Chicago, and No.1 Yellow Soybeans at the Illinois Processor,deflated by the U.S. CPI. The CPI was taken from various issues of the Survey of CurrentBusiness. The price data were obtained from the Crops Section of the USDA, and run from Jan-uary, 1974 through August, 1987. A post-1973 sample period was chosen so that exchange rateeffects would be observed only over the period of flexible market-determined rates.

The exchange rate data includes the crop-specific real trade-weighted exchange rates forwheat, corn and soybean exports calculated by the Demand and Trade Section of the USDA. Theoverall index is calculated as follows: The weights for the indices are average value shares of U.S.commercial exports from 1976-78. The current real exchange rate for each country is computedby taking the ratio of the same period CPI in the U.S. to that of the country in question andmultiplying by the period average spot rate. The percent change from the base value is thenmultiplied by the weight. These weighted changes are then summed into a total which is the realindex.

Analysis of the Data and Tests for Unit Roots 

After an examination of the time plots we conclude that each series should be expressed innatural logarithms to compensate for an apparently nonstationary variance." The time plots of theindividual series also indicated possible nonstationarity in mean. Estimates of the autocorrelationsand partial autocorrelations of each series provide a useful starting point for evaluating thisnonstationarity and are reported in table 1.23 In each case, the autocorrelations are large at low lags

21 Granger(1986) and Engle and Granger(1987) also discuss the error correction models for vectors of morethan two time series.

22 Henceforth when a price variable is referred to as "wheat price" it should be understood that it is thelogarithm of the real wheat price, and similarly for other prices and the exchange rates.

23 The autocorrelations and partial autocorrelations found in tables 1 and 2 are calculated over the entiresample period 1974:1 to 1987:8. The forecasting models will be calculated over a smaller sample period,hence it might be argued that we should inspect these values instead. We use the full sample so that wecan assimilate the most information possible. All the results concerning stationarity should be (and are)robust to this slight change in sample period.
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Table 1. Estimated autocorrelations and partial autocorrelations on logged data, lags 1-24, 1974:1-1987:8
Wheat Corn Soybean Wheat Corn Soybean
Price Price Price Ex. Rate Ex. Rate Ex. Rate

Lag ACF PACF ACF PACF ACF PACF ACF PACF ACF PACF ACF PACF

1 .95 .95 .96 .96 .97 .97 .99 .99 .99 .99 .99 .99
2 .90 -.14 .91 -.13 .92 -.22 .98 -.20 .97 -.24 .97 -.24
3 .85 .10 .87 .04 .87 .00 .96 -.13 .96 -.07 .96 -.06
4 .82 .14 .83 .07 .83 .12 .95 -.02 .94 -.09 .94 -.10
5 .80 .03 .80 -.04 .79 .01 .93 -.02 .92 -.00 .91 -.01
6 .77 -.04 .76 -.05 .76 .01 .92 -.06 .90 -.05 .89 -.07
7 .74 .01 .71 -.07 .73 -.06 .90 .04 .87 -.02 .87 -.03
8 .71 .03 .67 .01 .70 .03 .88 -.01 .85 -.04 .84 -.03
9 .69 -.02 .64 .06 .67 .00 .86 -.06 .82 -.04 .82 -.05
10 .66 -.10 .60 -.03 .63 -.11 .85 .09 .80 .01 .79 .01
11 .62 -.03 .57 -.07 .59 .01 .83 -.01 .77 -.09 .76 -.08
12 .58 -.05 .52 -.07 .56 -.01 .81 .10 .75 -.06 .73 -.02
13 .54 -.04 .48 .00 .53 .02 .80 -.07 .72 -.07 .70 -.05
14 .51 -.03 .45 .03 .50 .10 .78 -.11 .69 -.05 .67 -.04
15 .48 .05 .42 .11 .49 .02 .77 -.07 .66 -.08 .64 -.10
16 .46 .07 .40 .02 .48 .07 .75 .04 .62 -.11 .61 -.11
17 .44 .05 .38 .03 .47 .06 .73 -.06 .58 -.02 .57 -.04
18 .43 .03 .36 .00 .47 .06 .71 .02 .55 .12 .53 .11
19 .41 -.04 .35 -.02 .47 -.02 .69 -.03 .51 -.06 .50 -.05
20 .38 -.08 .33 -.05 .46 -.00 .67 -.13 .48 .15 .47 .15
21 .35 -.02 .31 -.00 .45 -.00 .65 .02 .45 .03 .44 .03
22 .32 -.03 .29 .01 .44 -.05 .63 -.09 .42 -.07 .41 -.09
23 .30 .00 .27 -.05 .43 -.04 .60 -.08 .39 -.02 .37 -.04
24 .28 -.01 .25 -.02 .42 .04 .58 -.10 .37 -.01 .34 -.01
Estimates are based on full sample from 1974:1 to 1987:8. Standard errors are approximately 1.96/SQRT (167)
= + 0.15; where 167 is sample size.
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and decay quite slowly. Autocorrelations at lag 24 are all significant. By comparison, theautocorrelations and partial autocorrelations calculated for the first differences of the series (reportedin table 2), decay quickly to insignificance by at most the fifth lag. We therefore can be reasonablyconfident that none of the series contains more than one unit root.

The autocorrelations are also useful for detecting seasonality. Large, significant,autocorrelations will show up at the seasonal lags (called seasonal spikes) if seasonal patterns areindicated. There is no such behavior indicated in table 1, however, nonstationarity can often maskseasonal spikes in the autocorrelations. An inspection of the autocorrelations of the first differencesof each series indicates very slight evidence for seasonality in the case of the corn price only. Theseasonal spike at lag 12, however, is barely significant. In addition, there is no evidence of a seasonalspike at the second seasonal lag, 24, which leads us to conclude that there is not sufficient evidenceto warrant a seasonal transformation.

As the autocorrelations of the series to be modelled indicate possible nonstationarity, DF andADF tests for unit roots are conducted as outlined above. In every case, the simple DF regression,which contains no lags of the dependent variable, shows signs of serial correlation in the residualsaccording to the Ljung-Box Q-Statistic (see Ljung and Box 1978).24 To remedy this lack of fit,higher order autoregressions were estimated. For the wheat price and the wheat exchange rate atwo-lag model proves sufficient to eliminate serial correlation of the errors. In the other cases, aone-lag model appears sufficient.

The results of unit root tests are summarized in table 3. There is convincing evidence of thepresence of unit roots in the levels of each of the variables we consider. The evidence for thepresence of unit roots is most conclusive for the wheat price and each of the exchange rates. Inthese four cases, none of the test statistics is rejected, and we therefore conclude that each containsa unit root.

For the corn price, the value of the test statistic, Tm, suggests that we do not reject the nullhypothesis of a unit root. The statistic, provides further evidence of a unit root, though at asmaller level of confidence. The statistic 01), for the joint-null hypothesis that (a, p) = (0,1) is notrejected and the statistic ‘1342 for the joint-null (a, j1, p) = (0,0,1) is also not rejected. Lastly, the jointtest for the null (a, IJ, p) = (a,0,1) is rejected at the 10-percent level, though this does not providestrong counter-evidence. We therefore conclude that the corn price is nonstationary as a result ofthe presence of a unit root.

The unit root tests on the soybean price are less conclusive. The first "t-ratio" test for thenull of a unit root, Ta, is rejected at the 10-percent level. The test statistic, ; , is rejected at the1-percent level. The. joint tests, however, are inconclusive. The statistic, OD with a null of(a, p) = (0,1) is not rejected. The test of (a, jI, p) = (0,0,1), (1)2, is rejected at the 5-percent level.Finally, the test of (a, j1, p) = (a, 0,1) , 03, is rejected at the 1-percent level. It is critical to rememberthat a rejection of the joint-null which includes a restriction that p = 1 does not necessarily implythat we are rejecting that particular restriction. To sort out the conflicting evidence concerningsoybean price we consider comparisons of the empirical power of the unit root tests. Dickey andFuller(1981) rank the tests, denoted by their corresponding statistics, on the basis of their poweras follows: 11.01 > (1)3> 02 and 03 > ;. For soybean price, the more powerful test provides an indi-cation that we should not reject the null of a unit root, and consequently that will be our conclu-sion.25

The unit root tests imply that for each of the series we considered the nonstationary behavioris a result of the presence of a unit root. However, there is ambiguity as to the presence of a driftparameters in the specifications. We therefore test the significance of the drift term in anautoregression of each differenced series." For the wheat price there is marginal evidence for inclu-

24 The null hypothesis is no serial correlation, hence model adequacy is rejected for large values of this sta-tistic.

25 Schwert (1987) argues that specifying the correct ARMA structure, and not just an autoregressive ap-proximation, is necessary to avoid possibly wrongly rejecting the null hypothesis of a unit root.

111

26 Stock and Watson (1987) also suggest checking the difference specifications for quadratic trends as well,
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Table 2. Estimated autocorrelations and partial autocorrelations on first differences of logged data, lags 1-24,
1974:1 - 1987:8

Wheat Corn Soybean Wheat Corn Soybean
Price Price Price Ex. Rate Ex. Rate Ex. Rate

Lag ACF PACF ACF PACF ACF PACF ACF PACF ACF PACF ACF PACF
2 -.09 -.27 .07 -.13 .05 -.10 .20 .14 .12 .05 .11 .04
3 -.17 -.04 -.20 -.22 -.18 -.19 .13 .06 .12 .09 .13 .10
4 -.07 .00 -.18 .01 -.18 -.05 .06 -.01 .06 .00 .07 .01
5 -.05 -.08 -.04 .06 -.12 -.04 -.03 -.07 .08 .05 .09 .06
6 -.11 -.11 -.06 -.15 -.11 -.11 -.01 -.01 .04 -.00 .06 .01
7 -.19 -.14 -.11 -.11 -.09 -.06 -.01 . .01 .05 .03 .04 .01
8 -.06 .04 -.21 -.13 -.02 -.01 -.01 .00 .09 .07 .09 .07
9 .05 -.02 -.12 .01 .08 .05 .01 .02 .02 -.04. .03 -.03
10 .15 .10 .07 .09 .06 -.05 -.07 -.08 .07 .06 .07 .06
11 .13 .03 .20 .07 .03 -.02 .07 .10 .09 .04 .06 .01
12 .13 .11 .22 .06 -.01 -.01 .09 .08 .10 .06 .07 .05
13 .04 -.03 .07 -.03 -.11 -.12 .10 .06 .11 .06 .09 .04
14 .01 .04 -.09 -.09 -.14 -.09 .06 .00 .14 .08 .13 .10
15 -.07 -.06 -.16 -.06 -.14 -.07 .04 -.03 .13 .05 .12 .05
16 -.07 .03 -.06 .05 -.09 -.06 .03 .01 .08 .00 .10 .03
17 -.04 .01 -.04 -.08 -.10 -.14 -.06 -.07 -.10 -.17 -.08 -.17
18 .03 .06 -.04 -.02 -.03 -.05 .02 .05 .03 .06 .02 .04
19 .12 .15 -.04 .05 -.01 -.08 -.01 .00 -.12 -.18 -.13 -.19
20 .07 -.04 -.03 .01 .10 .03 -.02 -.03 -.09 -.03 -.10 -.03
21 -.06 -.06 .02 -.02 .13 .01 .13 .17 .04 .06 .05 .08
22 -.12 .-10 .07 -.01 .07 -.05 .08 .03 .00 -.00 .02 .01
23 -.05 .01 .06 -.04 -.04 -.08 .04 -.02 .04 .03 .03 .04
24 .01 -.04 -.03 -.09 -.11 -.09 .09 .04 -.01 -.04 -.00 -.04
Estimates are based on full sample from 1974:1 to 1987:8. Standard errors of the estimates are 1.96/SQRT (166)
= ± 0.15; where 167 is sample size.



Table 3. Values of test statistics in Dickey-Fuller unit root tests, 1974:1-1985:4

Test Wheat Corn Soybean Wheat Corn Soybean
Statistic Price(2) Price(1) Price(1) Ex. Rate(2) Ex. Rate(1) Ex. Rat(1)
T
U

TT

(Di

(1)3

-2.28 -2.30 2.38c- 1.13 -.002 . -.09
-2.81 ...325C ..433a -.57 1.41 -1.45
3.39 3.21 3.15 1.65 .48 .40
3.77 4.08 614b 3.73 2.08 2.08
4.30 5.58 c 9.36 a 4.50 2.62 2.71

Note: The number in parentheses beside each variable name indicates the number of lags of Axt in the
Dickey-Fuller regression. Critical values of the test statistics are from Fuller (1976, p.373), and Dickey
and Fuller (1981, p.1063).

a reject at 1-percent significance level.

b reject at 5-percent significance level.

C reject at 10-percent significance level.
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sion of a drift term. The t-statistic is 1.69, so the null hypothesis that the constant is zero can be
rejected at the 10-percent level. For the other agricultural prices and the exchange rates, the con-
stant is not significant in any of the equations, even at the 10-percent level.

The next step in our data analysis was to test for co-integration between the series in the
bivariate relationships we wish to model. Each of the exchange rates are regressed on their com-modity price counterparts. The residuals from these regressions are then tested for unit rootsagainst the tables in Engle and Yoo (1987).

The results for the co-integration tests are found in table 4. The first row of table 4 displaysthe t-ratios for the simple DF test for co-integration. Rows 2 through 6 display t-ratios for theADF tests for co-integration with the indicated number of lags. According to the Q-statistic serialcorrelation is removed with one additional lag of the residuals. We entertain higher lags because,for the wheat case, the test results change for higher order autoregressions unlike the stationaritytests where higher order autoregressions provided results that were consistent with those in table3. The null hypothesis of no co-integration is rejected for the relationship of wheat price and thewheat exchange rate at the 5-percent level by the DF test and the ADF test at lag I only. (in thiscase adding a second lag to the ADF regression reduces the value of the test statistic by 35-percent).In all other cases, we do not reject the null of no co-integration.

If the wheat price is co-integrated with the wheat exchange rate, a reverse of the co-integratingregression, with the exchange rate as the dependent variable, should also yield residuals that are 1(0)providing a check on the robustness of the initial results. For the wheat price-wheat exchange raterelationship, however, this does not hold true. A co-integration ADF test on the residuals from thereverse regression is unable to reject the null of no co-integration for any lag length. This castsconsiderable doubt on the initial ADF test results.

Based on the DF tests and the cointegration test results, we maintain that the correct timeseries specifications are in differences. Nevertheless, for the sake of comparison, we will estimatean error-correction model for the wheat price-exchange rate system.

Estimation and Evaluation of Forecasting Models

The experiments we conduct are to compare forecasts from univariate and multivariatemodels chosen on the basis of unit root, drift, and cointegration tests to results from other models.In order to abstract from the issue of how lag length selection can determine the accuracy of fore-casts (see Lutkepohl 1985) and concentrate on the issue of how ignoring the time series propertiesof the data can impinge on the forecasting accuracy of the estimated models, we apply two laglength selection criteria to each of the models in the experiment. We have chosen the I3ayesianInformation Criterion of Schwartz(1978), denoted by "BIC," and the criterion of Hannan andQuinn(1979), denoted "HQ." We do not claim that either criteria will select the "best" forecastingmodel. We are only hoping to select univariate and multivariate models in a consistent manner, sothat the resulting specifications can be compared to each other on criteria other than lag length.We compare the relative gain or loss in forecasting accuracy as measured by root mean square error(RMSF,) at different forecast horizons. For each of the commodity prices and each exchange ratewe estimate a univariate model in differences (U1)) with and without a constant, and a univariatemodel in levels with a trend (UL). In addition, for each bivariate commodity price-exchange systemwe estimate a VAR in differences (VARD), and a VAR in levels with a trend in each equation(VARL).27 For the wheat case, we also estimate an error correction model (ECM) and a VAR thatincludes a constant in the price equation but not in the exchange rate equation (SUR); this modelis estimated by seemingly unrelated regressions.

Table 5 shows the lag lengths selected by the criteria we have chosen for each of the modelsindicated. The BIC and I1Q criteria agree on lag length in 10 of the 12 univariate models, and 2of the 3 bivariate systems. Where the two criteria disagree on lag length we report RMSEs for these

however, we follow Nelson and Plosser(1982) who take the position that for a log-differenced series tohave a deterministic trend would imply that rates of change are ever increasing (fl > 0) or ever decreasing(13 < 0), a curious hypothesis for most economic variables, except, perhaps, a controlled variable such asthe money supply.

•

27 The motivation for including linear trends in levels models is found in Sims(1980, p.18).
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Table 4. Test statistics from DF and ADF tests for co-integration, 1974:1-1987:8

What Price/Wheat Corn Price/Corn Soybean Price/Soybean
Test Ex. Rate System Ex. Rate System Ex. Rate System

Dickey-Fuller

tA

Augmented DF

..353a -.209 -1.41

1-lag ..354a -1.16

2-lag -2.61 -.741

3-lag -1.87 -.059

4-lag -1.61 -.317

5-lag -2.16 -.760

-2.16

-1.88

1.03

-1.31

1.19

Note: Critical values are interpolated from Engle and Yoo (1987) for sample size of 167.

a reject null of no cointegration at 5-percent significance level.
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Table 5. Lag lengths chosen by BIC and HQ criterion for various forecasting model
specifications, 1974-1985:4

Model

Unvariate Autoregression

Wheat Corn Soybean Wheat Corn Soybean
Price Price Price Ex. Rate Ex. Rate Ex. Rate

UL 6 2 2 2 2

UD 5 1(3) a 1(6) a 1 1

Model

Vector Autoregressions

Wheat Co! n Soybean
Price/ Price/ Price /

Wheat Ex. Rate Corn Ex. Rate Soybean Ex. Rate

VARL 2(3) a

VARD 2(3) a

ECM 1(2) a

2

1

NA NA

Note: See text for descriptions of the alternative models.

a For cases in which criterion do not select the same specification the lag length
chosen by BIC is given first with that chosen by HQ in parentheses.
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models based on the best out-of-sample forecasts in a competition between the BIC and HQ de-termined models.

The models are estimated based on the sample period 1974-1985:4, the starting month in 1974depending on the lag length for a particular model. A post-sample period of 28 observations from1985:5-1987:8 was held out to calculate RMSEs. All reported RMSEs are calculated based onforecasts of the log-levels.

Table 6 shows RMSEs calculated over the horizons 1, 2, 3, 6, 12, 15, and 18 for each of themodels forecasting the commodity prices. The first set of comparisons is between price forecastsfrom UL models and the UD models consistent with our specification tests (i.e., with drift in thewheat price autoregression, and without drift in the case of corn and soybeans). On the basis ofthe gain/loss in accuracy from using the UD models instead of the UL models, we observe that in. all but 3 of 21 cases, the difference specification dominates. At short horizons, (1,2,3), the gain inaccuracy ranges from 4.2-percent for forecasts of the corn price at the 1-step horizon, to a gain inaccuracy of 46-percent for soybean price at the 3-step horizon. At longer horizons most of the gainsare even larger. For forecasts of the wheat price at horizons 12, 15, and 18, the gains in forecastaccuracy from using the UD specification are 117-percent, 93-percent, and 142-percent respectively.Gains in forecast accuracy of 96-percent, 54-percent, and 29-percent at horizons 12, 15, and 18 arerealized for the soybean price as well. For the corn price the UD model without constant is moreaccurate than the UL model at horizons through 12 months, but less accurate at longer horizons.

Accuracy gains are also realized for forecasts of each exchange rate when the UD modelsconsistent with our specification tests (i.e., without drift) compete with the UL models (see table7). At low, horizons, the percentage gains in forecast accuracy from using the UD model insteadof the UL model range from a low of 6-percent at the 1-step-ahead forecast of the wheat exchangerate, to 61-percent at the 3-step forecast of the corn exchange rate. At longer horizons, the gainsare consistently above 50-percent ranging to a high of 289-percent at the 18-step forecast of thewheat exchange rate.

One curious result from the univariate regressions concerns the impact of including a driftterm in the difference model. Our specification tests provided only marginal evidence for inclusionof a constant in the wheat price equation and rejected inclusion of a constant in the other priceequations and the three exchange rate equations. As expected, forecast accuracy of the UD modelfor wheat price is improved substantially by inclusion of a drift term, especially at long forecasthorizons. Forecast accuracy for corn and soybean prices is also improved by inclusion of a constantin the UD model. Inclusion of a constant worsens forecast accuracy for the exchange rates (whichis again consistent with our specification tests).

Turning to the bivariate models, a comparison of the forecasts of the commodity prices fromthe VARL and the YARD models corroborates the results from the univariate model comparisons.The corn and soybean price YARD models without constant have lower forecast RMSEs than thecorresponding VARL models in all but 1 of 14 cases. Again, inclusion of a constant seems to im-prove the forecasts of the commodity prices from the YARD models. For wheat price, including.a constant in both equations of the VAR substantially improves forecast accuracy, consistent withour specification tests. Very slight additional gains at the longer horizons are obtained by includingthe constant only in the price equation (see SUR in table 6). The error correction model performsvery poorly, confirming our suspicion of a type I error in the co-integration DF and 1-lag ADFtests.

A comparison of forecasts of the exchange rate from the VARL and YARD models alsosuggests a gain in forecast accuracy from appropriately accounting for unit roots. At every horizon,a gain in forecast accuracy is realized by using the difference specified model instead of the modelin levels with trend. The difference model without constant forecasts better than the differencemodel with a constant for all three exchange rates.

The Role of the Exchange Rate

To investigate the role of the exchange rate in forecasting commodity prices, we first comparethe forecasts of the wheat price from the VARL model with those from the UL model.Interestingly, we observe lower RMSEs at all horizons for the VARL model. The exchange rate,when included in the model, improves the accuracy of the forecasts of the wheat price by 6-percent

117
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Table 6. RMSEs of forecasts of wheat price, corn price, and soybean price, alternative forecasting models,
1985:5-1987:8

Horizon obs VARL VARD •ECM UL UD

Wheat Price

SUR w/ Const w/o Const w/ Const w/o Const1 28 .050 .050 .050 .051 .207 .053 .051 .052
2 27 .090 .088 .088 .092 .474 .096 .089 .093
3 26 .118 .114 .114 .122 .251 .127 .113 .1216 23 .146 .141 .141 .155 1.55 .164 .133 .149
12 17 .163 .104 .107 .186 2.77 .233 .107 .182
15 14 .168 .137 .142 .255 3.27 .281 .145 .253
18 11 .125 .102 .107 .235 3.81 .264 .109 .233

Corn Price

w/ Const w/o Const w/ Const w/o Const1 28 .075 .070 .070 .074 .067 .071
2 27 .149 .138 .140 .147 .130 .139
3 26 .203 .185 .190 .200 .177 .188
6 23 .286 .231 .245 .280 .220 •.238
12 17 .421 .307 .365 .407 .306 .35315 14 .484 .355 .480 .462 .400 .46818 11 .493 .401 .458 .467 .403 .484

Soybean Price

w/ Const w/o Const w/ Const w/o Const1 28 .039 .029 .029 .036 .028 .029
2 27 .078 .049 .050 .020 .046 .0503 26 .112 .069 .070 .102 .064 .070
6 23 .160 .084 .086 .149 .073 .086
12 17 .145 .054 .081 .159 .048 .081
15 14 .135 .062 .107 .165 .067 .107
18 11 .119 .087 .122 .159 .088 .123

• • •
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Table 7. RMSEs of forecasts of wheat exchange rate, corn exchange rate, and soybean exchange rate
alternative forecasting models, 1985:5-1987:8

Horizon obs VARL VARD UL UD

Wheat Exchange Rate

w/ Const w/o Const w/ Const w/o Const
1 28 .019 .017 .017 .019 .018 .018
2 27 .029 .025 .025 .031 .026 .025
3 26 .041 .033 .031 .043 .033 .031
6 23 .073 .059 .054 .082 .058 .053
12 17 .117 .082 .071 .135 .083 .072
15 14 .138 .083 .065 , .159 .084 .065
18 11 .150 .077 .045 .179 .078 .046

Corn Exchange Rate

w/ Const w/o Const w/ Const w/o Const
1 28 .022 .020 .019 .025 .020 .019
2 27 .042 .035 .032 .048 .035 .033
3 26 .061 .049 .044 .071 .049 .044
6 23 .126 .097 .085 .144 .098 .086
12 17 .255 .188 .163 .268 .189 .164
15 14 .311 .233 .201 .323 .233 .202
18 11 .358 .280 .241 .376 .280 .242

Soybean Exchange Rate

w/ Const w/o Const w/ Const w/o Const
1 28 .027 .022 .022 .027 .022 .022
2 27 .052 .038 .036 .051 .039 .036
3 26 .076 .053 .048 .075 .054 .049
6 23 .154 .104 .074 .152 .106 .085
12 17 .285 .202 .129 .284 .250 .180
15 14 .342 249 .220 .341 .253 .221
18 11 .395 .298 262 .394 .303 .263
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at the 1-step horizon, 43-percent at the 12-step horizon, and 67-percent and 111-percent, respec-
tively, at the 15 and 18-step horizons. This result is consistent with Bessler and Babula (1987); their
models were estimated in levels as well. However, when we compare the UD model with the
YARD model for wheat price, a contrary result emerges. The YARD model for the wheat price
shows no forecasting superiority to the UD model with a constant. The UD model preferred by
our specification tests (with constant) dominates the VARL model as well, providing further evi-
dence against the position that the exchange rate can help us forecast the wheat price. The ex-
change rate does not help to forecast the wheat price when account is taken of nonstationarity in
the data.

Forecasts of soybean prices from the VARL model appear to corroborate the results for
forecasts of wheat prices from the levels specifications, again giving evidence that the exchange rate
matters in a forecasting context. At short to medium horizons, the UL model dominates VARL,
at longer horizons, however, the VARL forecasts improve relative to forecasts from the UL model,
showing a 27-percent and 34-percent gain in accuracy at horizons 15 and 18. This outcome is again
not observed in the difference-specified models. The YARD models for the soybean price-exchange
rate system do not outperform the UD models for the soybean price. Once again, the UD model
bests the VARL model in all but one case, while the UD model with a constant provides better
forecasts in all cases.

Finally, for the corn price, we get no evidence of the exchange rate improving forecasts. The
VARL provides somewhat less accurate forecasts than the UL, especially at long horizons. The
YARD models with and without constant perform about the same as the corresponding UD
models.

Summary and Conclusions

The objectives of our paper have been to examine the appropriate specification of forecasting
models with respect to possible nonstationarity in time series data, and to investigate the effects of
the exchange rate in forecasting agricultural prices. In particular, we have been interested in the role
of nonstationarity in evaluating whether incorporating exchange rates in bivariate models with ag-
ricultural commodity prices improves price forecasts compared to univariate models.

We find that when careful attention is paid to the unit root properties of the data, better
forecasting models can be constructed than when these properties are ignored. Our specification
tests suggested that each price and exchange rate series be modelled in differences, with a constant
only in the wheat price model. The UD models perform better than the UL models for all three
exchange rates and for the corn and the soybean prices, whether a constant is included in the dif-
ference specification or not. For wheat prices, forecasts from the UD model with a constant are
much better than forecasts from either the UL model or a difference model without a constant.

The results from the comparisons among univariate models are reinforced by comparing the
VARL models to the YARD models. Among forecasts of the exchange rates and the commodity
prices, the YARD models produced lower RMSEs than the VARL models in 41 of 42 cases. Thus,
both the comparisons among univariate and bivariate me dels confirm the theoretical result that
forecasts from nonstationary models are sub-optimal. Our results argue for testing for
nonstationarity and cointegration and specifying models appropriately before estimating their pa-
rameters and making forecasts.

A further consequence of ignoring nonstationarity arises when we examine the role of the.
exchange rate in forecasting agricultural prices. If we had only examined the forecasting proficiency
of the VARL and UL models, without recognizing the possibility of unit roots, we likely would
have concluded that inclusion of the exchange rate in a bivariate model improves price forecasts.
This conclusion, though it has been reported in the literature, is suspect. In our analysis, forecasts
from the VARL models for wheat and soybean prices outperform UL models for these prices. But
these VARL models are beaten in out-of-sample forecasting performance by UD and YARD
models. Further, the YARD models do not improve on forecasts from the UD models. This sug-
gests that when the information in the data is used efficiently, in this case by removing unit roots,
the exchange rate does not help to forecast prices.

•

•

•
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The broad issue raised by our analysis concerns the implications of the result that incorpo-
rating an exchange rate in bivariate models with wheat, corn or soybean prices does not improve
forecasts from univariate models. This result is perhaps not all that surprising since arbitrage in
competitive asset markets may lead prices themselves to reflect all that is known, at a given moment
in time, about their own future. The failure of the exchange rate to improve upon univariate price
forecasts does not necessarily imply that macroeconomic factors are unimportant to agriculture.
We have touched only a small piece of a complex problem. Our results suggest that macroeco-
nomic shocks reflected in exchange rates may affect agricultural prices--other asset prices--
simultaneously. To uncover the macroeconomic impacts may require a more articulate
identification of the macroeconomic shocks than is conveyed simply by associating exchange rate
shocks with macroeconomics, and price shocks with agriculture in a reduced form model. This is
a more subtle result than concluding that macroeconomic phenomena matter to agriculture because
exchange rates improve agricultural price forecasts, when the latter result may arise only from the
failure to address nonstationarity in the data. Capturing macroeconomic impacts on agriculture in
dynamic models with time series data remains a challenging area of research.

•

•

121

•



122

References

Akaike, H. (1971), Autoregressive Model Fitting for Control, Annals of the Institute of Statistical
Mathematics, 23, 163-180.

Ashley, R.A., On the Relative Worth of Recent Macroeconomic Forecasts, forthcoming in the
International Journal of Forecasting. 

Banerjee, A. et al. (1986), Exploring Equilibrium Relationships in Econometrics through Static
Models: Some Monte Carlo Evidence, Oxford Bulletin of Econometrics and Statistics, 48,
253-277.

Bernanke, B.S. (1986), Altematiave Explanations of the Money-Income Correlation, NBER
Working Paper # 1842, 49-100.

Bessler, (1984a), Relative Prices and Money: A Vector Autoregression on Brazilian Data, Ameri-
can Journal of Agricultural Economics, 66, 25-30.

Bessler, D.A. (1984b), Analysis of Dynamic Economic Relationships: An Application to the U.S.
Hog Market, Canadian Journal of Agricultural Economics, 32, 109-24.

Bessler, D.A. (1986), Forecasting Vector Autoregressions with Bayesian Priors, American Journal
of Agricultural Economics, 3, 144-151.

Bessler, D.A. and R. Babula (1987), Forecasting Wheat Exports: Do Exchange Rates Matter?
Journal of Business and Economic Statistics, 5, 397-406.

Blanchard, 0.J. and M.W. Watson (1986), Are Business Cycles all Alike? The American Business 
Cycle, Continuity and Change, Ed. Robert J. Gordon, University of Chicago Press, 123-179.

Box, G.E.P. and G.M. Jenkins (1970), Time Series Analysis, Forecasting and Control, San
Francisco: Holden Day, First Edition.

Box, G.E.P. and G.M. Jenkins (1976), Time Series Analysis, Forecasting and Control, San
Francisco: Holden Day, Second Edition.

Brandt, J.A. and D.A. Bessler (1984), Vector Autoregressions on U.S. Hog Prices, North Central 
Journal of Agricultural Economics, 6, 29-36.

Cooper, R.L. (1972), The Predictive Performance of Quarterly Econometric models of the United
States, In Econometric Models of Cyclical Behavior, Ed. B.G. Hickman, N.Y.: Columbia
University Press.

Davidson, J.E.H. et al. (1978), Econometric Modelling of the Aggregate Time Series Relationship
between Consumers' Expenditure and Income in the United Kingdom, Economic Journal, 88,
661-692.

Dickey, D.A. (1975), Estimation and Hypothesis Testing in Nonstationary Time Series, Ph.D.
dissertation, Iowa State University.

Dickey, D.A. et. al. (1986), Unit Roots in Time Series Models: Tests and Implications, American
Statistician, 40,1, 12-26.

Dickey, D.A. and \V.A. Fuller (1979), Distributions of the Estimators for Autoregressive Time
Series with a Unit Root, Journal of the American Statistical Association, 74. 427-431.

  (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,
Econometrica, 49, 1057-1072.

Doan, T., R. Litterman, and C. Sims (1983), Forecasting and Conditional Projections Using Re-
alistic Prior Distributions, Econometric Reviews, 3, 1-100.

•



123

•

•

•

Engle, R.F. and C.W.J. Granger (1987), Co-Integration and Error Correction: Representation,Estimation, and Testing, Econometrica, 55, 251-276.

Engle, R.F. and B.S. Yoo (1987), Forecasting and Testing in Co-Integrated Systems, Journal ofEconometrics, 35. 143-159.

Fackler, P. (1988), Vector Autoregressive Techniques for Structural Analysis, WP # 113 North
Carolina State University Dept. of Economics and Business.

Puller, W.A. (1976), Introduction to Statistical Time Series, New York: Wiley.

Granger, C.W.J. (1981), Some Properties of Time Series Data and Their Use in Econometric
Model Specification, Journal of Econometrics, 16, 121-130.

Granger, C.W.J. (1983), Co-Integrated Variables and Error Correcting Models, Discussion Paper(UCSD).

Granger, C.W.J. (1986), Developments in the Study of Co-Integrated Variables, Oxford Bulletinof Economics and Statistics, 8, 213-228.

Granger, C.W.J. and A.A. Weiss (1983), Time Series Analysis of Error Correcting Models in S.Karlin et al. eds., Studies in Econometrics, Time Series, and Multivariate Analysis, New York:Academic Press.

Granger, C.W.J. and P. Newbold (1974), Spurious Regressions in Econometrics, Journal ofEconometrics, 2, 111-120.

Granger, C.W.J. and P. Newbold (1986), Forecasting Economic Time Series, New York: AcademicPress, Second Edition.

Han, G. (1986), An Application of the Granger and Engle Two-Step Estimation Procedure toUnited Kingdom Aggregate Wage Data, Oxford Bulletin of Economics and Statistics, 48,229-239.

• Hannan, E.J. and B.G. Quinn (1979), The Determination of the Order of an Autogregression,Journal of the Royal Statistical Sociey, B, 41, 190-195.

•

Harvey, A.C. (1981), The Econometric Analysis of Time Series, Deddington, Great Britain: PhillipAllen.

Hendry, D.F. and G.E. Mizon, (1978), Serial Correlation as a Convenient Simplification, Not aNusiance: A Comment on a Study of the Demand for Money by the Bank of England, Eco-nomic Journal, 88, 549-63.

Hsaio, C. (1979), Autoregressive Modeling of Canadian Money and Income Data, Journal of the American Statistical Association, 74, 553-560.

Judge, G.G. et al. (1985), The Theory and Practice of Econometrics, New York: Wiley.

Kennedy, P. (1985), A Guide to Econometrics, Cambridge, MA: MIT Press.

Kling, J.L. and D.A. Bessler (1985), A Comparison of Multivariate Forecasting Procedures forEconomic Time Series, International Journal of Forecasting, 1, 5-24.

Litterman, R.B. (1976), Techniques of Forecasting Using Vector Autoregressions, UnpublishedPh.D. dissertation, University of Minnesota, Department of Economics.

Litterman, R.B. (1984), Specifying Vector Autogressions for Macroeconomic Forecasting, StaffReport 92, Federal Reserve Bank of Minneapolis, Research Dept.



124

Litterman, R.B. (1986), A Statistical Approach to Economic Forecasting, Journal of Business and
Economic Statistic's, 4, 1-4.

Ljung, G.M. and G.E.P. Box (1978), on a Measure of Lack of Fit in Time Series Models,
Biometrika, 65, 297-303.

Lucas, R.E. and T.J. Sargent (1979), Beyond Keynesian Macroeconomics, in Rational Expecta-
tions and Econometric Practice, Minneapolis: University of Minnesota Press.

Lutkepohl, H. (1982), Differencing Multiple Time Series: Another Look of Canadian Money and
Income Data, Journal of Time Series Analysis, 3, 235-243.

Lutkepohl, H. (1985), Comparison of Criterion for Estimating the Order of a Vector Autoregessive
Process, Journal of Time Series Analysis, 6, 35-52.

Meese, R. A., and K. Singleton (1982), On Unit Roots and the Empirical Modeling of Exchange
Rates, Journal of Finance, 37, 1029-1035.

Nelson, C. R. (1972), The Predictive Performance of the FRB-MIT-PENN Model of the U.S.
Economy, American Economic Review, 62, 902-917.

Nelson, C. R. and H. Kang (1984), Pitfalls in the Use of Time as an Explanatory Variable in a
Regression, Journal of Business and Economic Statistics, 2, 73-82.

Nelson, C. R., and C. I. Plosser (1982), Trends and Random Walks in Macroeconomic Time Se-
ries, Journal of Monetary Economics, 10, 139-162. 

Orden, D. (1986), Agriculture, Trade, and Macroeconomics: The U.S. Case, Journal of Policy
Modeling, 8, 27-51.

Phillips, P.C.B. (1986), Understanding Spurious Regressions in Econometrics, Journal of
Econometrics, 33, 311-340.

Phillips, P.C.B., and R.N. Durlauf (1986), Multiple Time Series Regression with Integrated Proc-
esses, Review of Economic Studies, 23, 473-495.

Prothero, D. L., and K. F. Wallis (1976), Modelling Macroeconomic Time Series (with discussion),
Journal of the Royal Statistical Society, Series A, 139, 468-500.

Schwartz, G. (1978), Estimating the Dimensions of a Model, The Annals of Statistics, 6, 461-464.

Schwert, G.W. (1987), Effects of Model Specification on Tests for Unit Roots in Macroeconomic
Data, Journal of Monetary Economics, 20, 73-103.

Sims, C. A. (1980), Macroeconomics and Reality, Econometrica, 48, 1-48.

Sims, C.A. (1986), Are Forecasting Models Useable for Policy Analysis? Quarterly Review, Federal
Reserve Bank of Minneapolis, Winter, 2-16.

Stock, J.H. (1987), Asymptotic Properties of Least Squares Estimators of Co-Integrating Vectors,
Econometrica, 55, 1035-1056.

Stock, and M.W. Watson (1987), Interpreting the Evidence on Money-Income Causality,
NBER Working Paper # 2228.

Thornton, D., and D. Batten (1985), Lag Length Selection and Tests of Granger Causality Between
Money and Income, Journal of Money Credit and Banking, 17, 164-178.

Taio, G.C., and G.E.P. Box (1981), Modeling Multiple Time Series with Applications, Journal of
the American Statistical Association, 76, 802-816.

U.S. Department of Commerce, Survey of Current Business, various issues 1974-1987.



Wasserfallen, W. W. (1986), Non-stationarities in Macroeconomic Time Series—Further Evidence
and Implications, Canadian Journal of Economics, 19, 498-510.

Webb, R.H. (1985), Toward More Accurate Macroeconomic Forecasts from Vector
Autoregressions, Economic Review, Federal Reserve Bank of Richmond, July/August, 3-17.

Wold, H. (1954), A Study in the Analysis of Stationary Time Seties, Uppsala: Almquist and
Wicksell, 2nd Ed.

Yule, G.U. (1926), Why Do We Sometimes Get Nonsense Correlations Between Time Series? -
A Study in Sampling and the Nature of Time Series, Journal of the Royal Statistical Society, 
9, 1-64.

Zellner A. (1982), Basic Issues in Econometrics, Past and Present, in Basic Issues in Econometrics,Chicago: University of Chicago Press, 26-34.

Zenner A. (1929), Statistical Analysis of Econometric Models, in Basic Issues in Econometrics,Chicago: University of Chicago Press, 83-119.

•

125

•


