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INCORPORATING RISK INTO A DYNAMIC PROGRAMMING
APPLICATION: FLEXCROPPING

Douglas L. Young and G.C. Van Kooten*

'Use of stochastic dynamic programming (DP) by agricultural
economists has become increasingly common in recent years following the
pioneering applications by Burt in the 1960s and early 1970s (e.g., Burt.
and Allison, Burt and Johnson, Burt). Recent applications include
identification of optimal strategies for pest control (Zacharias,
Liebman and Noel; Zacharias and Grube), rangeland management (Karp and
Pope), and irrigation scheduling (McGuckin et al.).

Despite the fact that risk is pervasive in most agricultural
applications of DP due to the stochasticity of biological response and
market uncertainty, most applications have not explicitly considered the
potential role of risk aversion. Two exceptions are an early study by
Burt and Johnson and a recent study by Karp and Pope. These two studies
incorporated risk aversion at two distinctly different levels. Karp and
Pope substitute expected utility as the payoff for different annual
decision-state combinations in order to illustrate the influence of risk
aversion on a single optimal DP strategy. The decision rule relating
state levels to prescribed decisions is responsive to risk aversion in
this approach. Burt and Johnson, on the other hand, use the Markowitz
E-V criterion to identify a combination of DP strategies which is E-V
efficient with respect to long-run annual income variation. The former
approach is appropriate for identifying a single optimal strategy for
managing short-run or intraseasonal risk. The latter provides a
risk-efficient diversified set of strategies for managing variation in
annual returns over the long-run.

The current study addresses the problem of incorporating risk
aversion into the algorithm for identifying an undiversified optimal DP
strategy as in Karp and Pope. The primary methodological innovation of
this study is the substitution of Katoaka's safety-first maximand into
the DP objective function to incorporate risk considerations. Katoaka's
criterion helps overcome risk preference elicitation difficulties which

could limit the use of Karp and Pope's EU alternative in practical farm
management applications.

We apply DP in this study to identify an optimal, risk-sensitive
flexible cropping strategy, in much the same way as was done earlier by
Burt and Allison for the risk neutral case. Studies by Burt and
colleagues (1963, 1967, 1977) show that flexible cropping, using soil
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moisture available at planting time as the decision rule to fallow or
crop, results in higher net returns to the operator. Reducing fallow
also provides an important environmental dividend as fallow is a major
contributor to soil erosion and saline seep in many western states
(Brown et al.; Burt and Stauber).

In this paper, stochastic dynamic programming is used to determine
flexcrop strategies which maximize long-run, risk-and-time-discounted
net returns. The profitability and riskiness of flexible cropping are
compared to those for fixed rotations. 1In the analysis, yield as a
function of soil moisture is determined using data obtained from the
Erosion Productivity Impact Calculator (EPIC)--a large biophysical
process simulation model (Williams; Williams, Renard and Dyke). Risk is
present in a flexcrop decision based only on soil moisture at planting
time because a multitude of uncontrolled variables, including
precipitation during the crop year, will influence the grower's final
yield at harvest time. Hence, producer risk preferences are
incorporated directly into the selection of the optimal strategy.

In the section which follows we initially present the DP
optimization methodology for the flexcrop analysis. Second, we describe
the data and procedures for obtaining crop yield and soil moisture
relationships. Third, the procedure for incorporating risk preferences
is described. Fourth, we present results of an application of the model
to a southeastern Washington state farming region. The impact of both
risk aversion and output price expectations on flexcrop strategies is
presented. The paper closes with a brief summary and conclusions.

The Dynamic Programming (DP) Methodology

The decision to crop or summerfallow is an example of a multlstage
decision process. An optimal decision path for this problem can be
obtained using dynamic programming (Dreyfus). The time at which a
decision is to be made (i.e., the stage) is planting time in this
application; the state variable is the level of soil moisture at
planting time; and the control variable is the decision to crop or
fallow. :

A key ingredient in this stochastlc dynamic programming problem is
the initial soil moisture transition matrix P. The transition matrix
gives the probabilities of attaining a particular soil moisture level
next year, given (1) the current soil moisture level and (2) the current
value of the control variable--crop or fallow. The probability is
greater that the soil moisture level attained next year is higher when a
field is currently being fallowed than if the field is currently in
crop. Thus, the expected return next year will be higher when a field
is in fallow this year. However, the net return during the current year
will be lower (indeed negative) if the field is in fallow and not in
crop. The DP methodology takes this fact into account, as well as the
need to discount future returns.




The dynamic programming problem can be reduced to a single
recursive equation which needs to be solved for period n, where n is the
number of years left in the planning horizon. For the general case,
where returns from soil moisture cropping choice combinations are
stochastic and producers are risk averse, risk-adjusted net returns can
be substituted in the DP algorithm (Karp and Pope). Of course, under
risk neutrality, use of expected returns is appropriate (Zacharias,
Liebman and Noel). Mathematically, the standard problem is to choose a
value of the control variable k (crop or fallow) which maximizes:

k m k
f (i) =max [R7(i) + B £ P (i,3)f (3)1, (1)
n X ) j=1 n-1

where fn(i) is the discounted value of future risk-adjusted net returns,

given soil moisture level i at the beginning of an n-stage process; »
fn_l(j) is the discounted value of future adjusted net returns over the

remaining n-1 years of an n-year process, given soil moisture j and that

the optimal path is followed; Rk(i) is the current risk-adjusted net
return for decision k, given soil moisture level i and that there are m

soil moisture levels; Pk(i,j) is the probability of moving from the
current soil moisture level i to soil moisture level j in the next
period, given that the current decision is k (crop or fallow); and
B = 1/(1+4r), where r is the real rate of discount.

* Karp and Pope incorporate risk in (1) by converting dollar payoffs
to expected utility assuming an arbitrary constant absolute risk
aversion utility function. In a later section, we propose an
operationally more tractable risk adjustment based on Katoaka's
safety-first criterion.

The dynamic programming problem is recursive, and the solution
algorithm begins at the end of the multi-stage process. Further, it is
assumed that soil moisture level in a given year has no influence on the
level of soil moisture two years in the future; today's soil moisture
only affects soil moisture next year. This is the standard Markovian
assumption, which was validated statistically in this application by
regressing current soil moisture on soil moisture lagged two years. No
significant influence was detected at the 5 percent level (Young 1986).

The recursive relationship described above converges to a constant
strategy if the time horizon is chosen sufficiently long (n is large)
and returns to cropping or fallowing within states are constant in every
time period--that is, the objective function is stationary. The optimal
policy can be found by the algorithm employed by Burt and Allison, and




initially described by Howard as the policy-iteration approach. The
method is to carry out the iterations of the recursive relationship (1)
until a number of repetitions of the same policy occur. This policy is
checked to determine if it is optimal. If it is not optimal, additional
iterations are performed until a new strategy is found. The new
strategy is then checked for optimality and the process is repeated
until a constant solution is found. '

The procedure for finding the long-run average annual net return
and the variance of long-run annual returns is to find the solution
vector (Il) to the equation I Q = II, where Il is the vector of long-term
probabilities for achieving each of the soil moisture levels (Kemeny and
Snell). In accordance with the Double Expectations Theorem (Bickel and
Docksum, p. 6), the long-run expected net return is then found simply by
pre-multiplying R (the vector of expected monetary returns for each soil
moisture level under the optimal risk-sensitive strategy) by II. As
usual, one would anticipate the expected net returns to decline for
strategies which are found to be optimal for more risk averse growers.
The variance of the long-run annual returns under the optimal strategy
is (Burt and Johnson): ’

m
Variance of return = ¥ Hi (Ri - R) . S, (2)
i=1 i
where Hi is the long-run probability of attaining soil moisture level i

. , 2, . s
" in a given year, Si is the variance of returns within soil moisture

level i, Ri is the expected return for the ith soil moisture level given

the strategy, and R is the overall expected return for the strategy.
The variance decomposition in (2) can be directly derived from the
familiar partitioning of total sum of squares in analysis of variance
between treatment and error sum of squares. The first term in (2)
measures variation in predicted returns at planting time when a grower
follows the DP flexcrop strategy at each soil moisture level. The.
second term measures the within-year components of a strategy's
variance. Si measures the risk which still confronts the grower each

spring when the flexcrop decision is made. In this study, one would
expect risk averse growers to select strategies which reduce this

component of variance. '

Yield and Soil Moisture Relationships

The model is applied to the Lacrosse region of western Whitman
county in eastern Washington. Farmers in this 12 to 15 inch annual
rainfall region generally employ a fixed two-year, winter wheat-fallow




(W-F) rotation. However, a few growers plant continuous spring barley
(SB) , except when soil moisture at planting time is extremely low, in
which case they fallow. Hence, spring barley is considered for
flexcropping and is compared to a winter wheat-fallow rotagion.

Expected yield is estimated as a function of soil moisture at
spring planting time. Since adequate empirical data on spring barley
yields and soil moisture did not exist for the study region, synthetic
yield and soil moisture data were obtained using the EPIC simulation
model (Williams; Williams, Renard and Dyke). Unfortunately, EPIC is not
a panacea for those seeking production function relationships when data
are lacking. Considerable effort is required to calibrate EPIC to new
regions. For the Lacrosse region, this was done by adjusting EPIC input
data and parameters to achieve a correspondence between a 1971-85 spring
barley yield series for a farm in the region and an EPIC simulation of
continuous spring barley for the same period (Young 1986, Dorman).
Actual daily rainfall and the farmer's management practices over the
15-year period were utilized in the simulation.

Yield as a function of soil moisture was estimated by nonlinear
least squares using the Mitscherlich-Spillman functional form:-

Y = a + B(1-y T, 3)

where Y is spring barley yield in lbs/ac, SM is soil moisture in inches
at planting time, and a, B and y are parameters. Based on 100 years
output from the EPIC model for the Lacrosse region, the following
relationship was estimated:

Y = -88.0 + 3,137.0 (1 - 0.636°™), R° = 0.473,

(=0.21) (7.50) (4.54)

where the asymptotic t-statistics are provided in parentheses. The
standard error of the estimate is 538.0, the mean of the dependent
variable (barley yield) is 1,767 lbs, the mean and standard deviation of
available soil moisture are 2.15 or 0.90 inches, respectively.

The standard error of the estimate times expected output price is
used as an estimate of Si in equation (2) for those soil moisture levels

where the optimal strategy indicates cropping. This approach considers
only yield or production risk since nonstochastic output price and
production costs are assumed. This is consistent with the usual purpose
of flexcropping as a means of managing the moisture-dependent yield risk
of spring cropping. Si equals zero for fallowing because the costs of

fallowing are assumed known with certainty;




Simulated yields reasonably approximated those for the study site
used for calibration (Dorman), but they were below the average yields
for the entire Lacrosse region. To ensure that the continuous spring
barley yields used in the DP model exactly reflect published average
yields for the region, the response function (4) was adjusted vertically
upwards by 154 lbs--that is, © was set equal to 66.0.

For the purposes of the DP model, soil moisture was divided into
ten discrete intervals. The intervals and their mid-points are provided
in Table 1. The soil moisture transition matrix (P) for Lacrosse was
obtained by first conducting a 300-year EPIC simulation of a
SB-SB-fallow rotation. Then, spring (April 1) soil moisture in the year
following fallow was regressed on spring soil moisture of the preceding
fallow year. Similarly, spring soil moisture in the year following a
Crop year was regressed on spring soil moisture of the breceding crop
year. A double-logarithmic functional form was used for both
regressions. This implies that the error term is multiplicative and
that soil moisture has a log-normal distribution. The regression
results are as follows:

Fallow: ln SM_ = 1.02 + 0.33 1n SMt-l’
(19.76) (5.22)

R2 = 0.301, SEE = 0.227 and n = 100.

" 1n SM_ = 0.87 + 0.16 1ln SM

(12.99) (2.04) -1

R2 = 0.021, SEE = 0.452 and n = 200.

In the regressions, SEE is the standard error of the estimate, n is the
number of observations and the t-statiStics are provided in parentheses.
As expected, the intercept and slope for the crop equation are lower
than for the fallow equation. :

Result (5) was used to find the probability p(i,j) of attaining
soil moisture interval j given that soil moisture in the previous year
was in interval i. This probability p(i,j) will depend upon whether the
field was fallowed or cropped the previous year and is found as the area
under a log-normal distribution function between the (logarithmic)
end-points for interval j (Aitchison and Brown, p. 8). The resulting
soil moisture transition matrix is provided in Table 1.

The annual costs of summerfallowing and of planting spring barley,
excluding returns to land, labor and management, were $31.27 and $109.86
per acre, respectively.




Including Producer Risk Preferences

In the DP decision algorithm, the decision maker is assumed to
maximize, at each time period and for each soil moisture level, the
Present value stream associated with cropping (k=1) versus fallow (k=0).
'This‘binary choice is represented in equation (1). In the case of zero
risk and/or risk neutrality, it is appropriate to substitute expected

(j).  However, in

values for all current year returns in Rk(i) and fn—

1

the case where the forecasted returns for soil moisture level i and
decision k are risky, and the decision maker is risk averse, Katoaka's
safety-first criterion suggests substituting the lower bound of the
(1-¢) percent one-tailed confidence interval for all random current year
returns. Net returns will exceed or equal this lower bound (1-a)
percent of the time.

Formally Katoaka's objective function under risk can be expressed
as

Maximize L  subject to Pr(R<1L) S a,

where L is the lower bound and R is random returns. It contrasts with
Roy's safety~-first criterion which Proposes minimizing the probability
of falling below a specified minimum ("disaster") level, and Telser's
criterion which maximizes expected profit subject to the probability of
returns falling below a specified level not exceeding @, Katoaka's
criterion requires eliciting only one risk preference parameter, the
assured confidence level (1-@), whereas Telser's method requires
eliciting two preference parameters, the decision maker's personal
disaster level and disaster exposure tolerance (@). Unlike Roy's and
Telser's criteria, Katoaka's criterion transforms every risky option
into a risk-adjusted equivalent L, which is measured in dollars. This -
is convenient from an operational perspective when incorporating
risk-adjusted results into the DP equation (1). It also facilitates
communication of results to users. These advantages have motivated
previous use of Katoaka's risky choice criterion in both extension
(Musser, Ohannesian-and Benson) and research (Moscardo and de Janvry)
applications.

From a numerical perspective, Katoaka's criterion and the -simple
expectation-variance expected utility (EU) model used by Karp and Pope
(and in most non-DP applications of EU theory) are very similar. Both
subtract from expected returns (ER) a "risk premium", which is a
function of standard deviation (0), to obtain a (risk-adjusted)
certainty equivalent. For the former, L = ER_Z(l-a)O' where Z(1-a) is

the desired confidence-level statistic from the appropriate probability




distribution; for the latter, C = ER—(A/2)02, where A is Pratt's
absolute risk aversion coefficient (Freund).

While the Katoaka and the simple EU model are algebraically
similar, as both are simple functions of the mean and standard deviation
of outcomes, the greater theoretical generality of EU maximization has
favored its use in most applications. EU maximization can be derived
from the von Neumann-Morgenstern "axioms of preference” hypothesized as
reasonable tenets of individual behavior (Anderson, Dillon and
Hardaker). However, Pyle and Turnovsky show that there is a close
relationship between Katoaka's criterion and the expectation-variance EU
model. They show one can always identify a unique assumed confidence
level (1-a) for maximizing L which yields the same solution as a given
two-moment EU model. Of course, the reverse correspondence is not
unique because any linear monotonic transformation of a utility function
yields equivalent rankings. Consequently, there are an infinite number
of utility functions which can generate the same solution as a unique
Katoaka objective function.

Unfortunately, the popularity of EU maximization based on its
theoretical appeal has not been matched by equal progress in eliciting
empirical risk aversion coefficients. Many researchers, like Karp and
Pope (p. 442), simply select an arbitrary value for the risk aversion
coefficient, which may or may not represent the range of risk
preferences of their study group. Others (e.g., Harris and Nehring)
conveniently "borrow" risk preference elicitations from producers in one
region of the country to characterize a different set of producers in
another region.

The reluctance of researchers to elicit situationally-specific risk
preferences for EU applications probably relates to the time consuming
and difficult nature of the task. EU risk aversion coefficients are
theoretical constructs which cannot be provided directly by decision
makers, but must be derived from elicited utility functions. Past
attempts to directly elicit utility functions has lead to serious
concerns about their stability and accuracy (Binswanger; Whittaker and
Winter; Young 1979). )

Even if improvements in procedures for eliciting utility functions
could resolve all concerns about their accuracy and stability, it is
likely that purely logistic problems would preclude their use in many
practical farm management decisions. Extension agents are unlikely to
have the time or training to elicit updated utility functions for each
grower desiring a cropping recommendation.

The Katoaka model, on the other hand, permits characterizing risk
preferences by a single "desired confidence level" (1-a) which can be
provided by the grower himself. This made it possible, in the current
study, to achieve the research funder's goal of collecting all input
information, including individual risk preferences, with a brief
interactive program on microcomputer diskette. Consequently, we




selected the Katoaka model for its strong operational advantage despite
a possible sacrifice in theoretical generality.

To implement the Katoaka risk adjustment in the DP algorithm, it is
necessary to substitute forecast confidence interval lower bounds for
the expected spring barley yields in equations (3) and (4). 1In
accordance with the assumed normality of the individual yield forecasts
from equation (4), the lower bound (L) of the (1-a) percent, one-tailed
confidence interval of each current year return from growing spring
barley is calculated as: :

L=ER=-P[Z, S,

_where ER is expected returns at the prevailing soil moisture level,
which is calculated as expected price (P) times expected yield minus
annual production costs. SF is the appropriate yield forecast standard

error, as discussed below. Z(l-a) is the standard normal variate which

encloses 100(a) percent of the probability in the lower tail. 2 is used
as a convenient proxy for the t-statistic in this user-oriented analysis
to avoid adjusting the risk aversion coefficients for differences in
degrees of freedom over different response functions. Given the large
sample size (N = 100) for the Lacrosse region application reported here,
the normal distribution closely approximates the t-distribution.

As noted above, risk is induced in the dynamic decision sequence by
the remaining variability in spring barley yield even when measured soil
moisture at spring planting time is known. A conceptually appropriate
measure for the current problem is the variance of a single year's
barley yield forecasted from response function (4) for soil moisture
level i. These forecast variances are used to represent crop yield
variances in (6). It is appropriate to use forecast variance as opposed
to simple regression variances because they encompass the total risk
confronted by a decision maker basing a decision on yield (and thus
return) forecasts at each soil moisture level. The forecast variances’
are appropriately adjusted for the type of estimation used and for the
distance of the soil moisture level used in the forecast from the mean
of soil moisture data used to estimate the equation.




The expression for the standard error of an OLS regression forecast
is well known (e.g., Johnston, p. 154.). We derive the corresponding
approximation for the NLS estimate of the nonlinear equation (3) below.
Consider y = £(X, 6) + € and

LY ~

y = f(x, e)l

where y and y are actual and predicted dependent variable vectors,
respectively, X and x are the matrix of actual values used for the
estimation and the vector of new values (for the forecast) of the
explanatory variable, respectively, 6 and 6 are true and estimated
parameter vectors, respectively, f is the functional operator for the
(potentially) nonlinear function, and € is the well-behaved additive
error term.

A first-order Taylor series approximation of nonlinear (7) about 6
is:

f(;, 6) - f(;, 8) + (9£/06)' . (8 - 8).
6=0

X=X

Recognizing that f(x, 6) is deterministic, and substituting the
consistent estimator 6 for the unknown 6, we obtain the following
consistent variance of (8): :

lThe OLS standard error of the forecast is calculated as follows:

op = 0[1 + ¢ x'x) "t ey,
where 0 is the standard error of the estimate, ¢ is the vector of
explanatory variables used in the forecast, and X is the matrix of data on
the explanatory variables used to estimate the original equation.

2The assistance of Ron Mittelhammer is gratefully acknowledged for this
derivation.




s2[(0£/36)'.  ((3£/36)' .  (3£/38))=2 (9£/36) . + 11,  (9)
6=6 - 6=6 =6 6=0 ,

X=X X=x X=x X=X
sample sample

where 52 is the estimated variance of €. The general expression (9)
includes the familiar linear forecast variance as a special case. When.
f is linear in 6, 3f/36 equals X, so (9) reduces to:

s2mx' (x'0) Ik + 1. | | (10)

Because the Katoaka criterion bases choices on comparisons of
forecast confidence interval lower bounds, it is necessary to elicit the
decision maker's desired confidence level (1-a) on these bounds.
Obviously, a grower who requires a 90 percent assurance that stochastic
yields and returns exceed the level utilized in the model when planting
spring barley at a particular moisture level is more risk averse than
one requiring only a 50 percent (risk neutral) assurance level. We
successfully elicited these assurance levels using a sequence of
questions in an interactive microcomputer brogram asking whether the
grower would be willing to base the decision to plant or fallow on a
soil moisture based (risk-adjusted) forecast of crop yield if
...the actual yield will exceed the forecasted yield ONE-HALF the time,

and fall below it ONE-HALF the time?
...the actual yield will exceed the forecasted yield TWO-THIRDS of the
time, and fall below it ONE-THIKRD of the time?
.+».and similar questions with increasing assurance levels.
The first question in the sequence receiving an affirmative answer was
taken to represent the respondents required assurance level. For
example, the preferences of a respondent requiring a 75 percent
probability that actual yields exceed forecasted yields were modeled by
substituting the 75 percent one-tailed confidence interval lower bound
as the utilized "forecast" of spring crop yield (and returns) at each
soil moisture level.

Results of Flexcrop Application

The previously described dynamic programming algorithm was used to
determine the impact of risk aversion on the critical level of available
soil moisture (ASM) for flexcropping spring barley in southeastern
Washington. The decision rule is to fallow if measured soil moisture at
planting time is below the critical level and to Plant otherwise. Since
the discount rate did not affect the analysis over a realistic range of
variation, only the price and level of risk aversion are varied in Table
2; a real discount rate of 5.4 percent is used. Two levels of risk
aversion are considered--risk neutral (2=0) and moderate risk aversion
(Z=0.674 for 75 percent assurance level). The results are presented in
Table 2. : ‘ '




At 1987 target prices for both wheat and barley, $4.38/bu and
$108/ton, respectively, a risk neutral grower can expect a net annual’
return of $16.19/acre by planting spring barley whenever available soil
moisture exceeds 2.0 inches on April 1; winter wheat-fallow provides an
average annual return of $16.84/acre, somewhat more than flexcropping
SB. However, under the current Farm Bill, the ratio of the target to
market price of barley is lower than that for wheat. Thus, government
programs are biased toward the planting of wheat as opposed to barley,
thereby making the wheat-fallow rotation more attractive than it would
otherwise be. The Lacrosse producer who grows barley every year at
target prices would average only $13.80, about $2.40 per acre less than
under a flexcrop program and $3 per acre less than under the continuous
wheat-fallow rotation (Table 2). This illustrates the capacity of
flexible cropping to increase returns over a fixed program such as
continuous spring barley. As expected, and as indicated in Table 2,
higher barley prices lead to less conservative flexcrop strategies in
the sense of less summerfallow.

Notice that the flexcrop grower will fallow 18 percent of the time,
versus 50 percent for the W-F rotation. From a social soil conservation
perspective, the flexcrop system pays large dividends. Due to the
reduction in fallow and the switch from fall- to spring-planted crops,
soil loss can be reduced by five-fold or more. Furthermore, since the
flexcrop system is relatively profitable from a private standpoint,
public costs to motivate its adoption should be modest.

Winter wheat-fallow exhibits consistently less total annual income
variability than flexcrop spring barley. At target prices and a risk
neutral flexcrop strategy, the standard deviation of annual net returns
per acre for the W-F rotation is 20 percent less than that for flexcrop
spring barley ($27.77 versus $34.70). As noted by Burt and Johﬁson, an
acre of wheat-fallow rotation is comprised of 1/2 acre wheat and 1/2
acre fallow and this diversification lends stability to annual returns
compared to a flexcrop system_where the entire acre is in crop or fallow.
depending upon soil moisture.

A moderately risk averse flexcropper facing a $108/ton barley price
will employ a more conservative decision rule, planting spring barley

3The wheat-fallow standard deviations are calculated as:

sD = [(1/2)2 p? Var(Yw)]l/2 = (1/2)P S

YI

where P is the price of wheat per bushel, Var(Y ) is the variance of wheat
yields per acre under a winter wheat-fallow rotgtion, and S is the standard
deviation of wheat yields. The fallow acre has zero variance, consistent
with the assumption that production costs are known. The standard deviation
of wheat yields in the study region is 12.68 bu/acre (Young 1986).




only when soil moisture exceeds 2.5 inches, compared to 2.0 inches for a
risk neutral grower. This one-half inch increase in the soil moisture
critical level reduces the producer's within-year risk (recall equation
(2)) from 26.31 to 24.48, but at a sacrifice of expected returns of
almost a dollar per acre (see Table 2). Seemingly paradoxically, the
long-run annual (total) variation in income increases from 34.70 to
35.38 under the more risk averse strategy. This result is due to a
reduction in the within-year random component but increase in the
variation in annually predicted returns, represented by the first
component of expression (2). Under the more conservative strategy, the
grower frequently switches from spring cropping to fallowing, resulting
in substantial swings in mean income which are predicted as of each
April 1. The flexcrop decision maker in this study is concerned with
the short-run risk he faces at planting time. These risk components are
reflected by the random term in expression (2) and are, indeed, reduced
by the more conservative strategy. These are the same short-run
components addressed by the expected utility approach employed by Karp
and Pope. In practice, growers under greater financial pressure are
likely to be more concerned about year-to-year short-run risk. Those
whose secure financial base permits a longer-run planning horizon are
more likely to be concerned about variation in long-run annual returns.
In practice, the relative concern about short-run versus long-run risk-
will vary by producer and business situation. An interesting
implication of the results of this study is that pressures by lenders,
landlords, or others for growers to manage risk on a short-run ,
year-to-year basis can actually destabilize long-run annual returns.

Summary and Conclusions

Use of Katoaka's criterion provided an operationally tractable
procedure for incorporating within-year risk aversion into a dynamic
programming problem. The approach facilitates use of DP for generating
risk-sensitive farm management extension recommendations because the
risk preference parameter can be provided by growers themselves.

The Katoaka criterion was applied in a stochastic dynamic
programming model used to identify optimal flexible cropping plans for
$pring barley in southeastern Washington. Increasing risk aversion was
found to lead to more conservative flexcrop strategies. More risk
averse growers required higher threshold soil moisture levels before
planting spring barley but this conservatism came at the cost of reduced
expected returns.

Optimal risk neutral flexcrop plans were shown to generate similar
expected returns compared to the currently predominant, but erosive,
winter wheat-fallow rotation. However, the flexcrop SB system displayed
greater total annual income variability than winter wheat-fallow, which
suggests that efforts to promote'flexcropping for soil conservation may
require supplemental financial incentives for some growers.

Nonetheless, the potentially competitive expected returns and




substantial soil savings of flexible spring cropping systems make them
attractive as cost effective soil conservation alternatives.

Flexcropping is likely to take on additional appeal as the
conservation compliance provision of the Food Security Act of 1985 is
phased in over 1990-95. This provision will require farmers cultivating
erodible land to meet soil conservation standards in order to qualify
for government programs. In view of the extreme erosiveness of the
summerfallow systems prevalent over much of the Great Plains and western
states, flexcropping may provide one profitable option for meeting
compliance standards without large-scale land retirement or expensive
new farming practices.




Transition Probabilities Matrix for Lacrosse, WA: Probability
of Moving to Available Soil Moisture (SM) Level in Column j
Next Year, Given SM Level is i This Year, for Fallow/Crop
Current States

April 1
SM This

. Year
(Inches) April 1 Soil Moisture Level Next Year

Current State: FALLOW

1 2 6 7 8 9 10
0.000 0.044 0.067 0.017 0.003 0.001 0.001
0.000 0.001 0.249 0.143 0.063 0.035 0.012
0.000 0.000 0.264 0.204 0.118 0.094 0.037
0.000 0.000 0.236 0.229 0.162 0.170 0.078
0.000 0.000 0.198 0.229 0.189 0.254 0.130
0.000 0.000 0.160 0.214 0.202 0.338 0.189
0.000 0.000 0.127 0.194 0.204 0.416 0.250
0.000 0.000 0.101 0.172 0.199 0.488 0.311
0.000 0.000 0.079 0.148 0.189 0.558 0.370
0.000 0.000 0.056 0.119 0.170 0.182 0.457

.
1

BB WWNDNNHER A
UIOU'IOZJ’!OUIOH
u-n.b.nwcl:wml—-o
OWOUI.C)U‘lOUI

(8,

Current State:

1 2 5 6 8 9 10
0.047 0.170 0.138 0.089 0.033 0.050 0.030
0.023 0.112 0.156 0.113 0.051 0.093 0.060
0.017 0.093 0.159 0.121 0.058 0.114 0.075
0.013 0.081 0.160 0.126 0.064 0.132 0.089
0.011 0.072 0.160 0.129 0.068 0.148 0.101
0.010 0.065 0.159 0.131 0.072 0.162 0.111
0.008 0.059 0.158 0.132 0.075 0.175 0.122
0.007 0.054 0.156 0.134 0.078 0.187 0.131
0.007 0.050 0.155 0.134 0.080 0.058 0.139
0.006 0.046 0.153 0.135 0.083 0.061 0.152
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Soil Moisture Mid-Point
Levels 0.50 1.25 3.75 4.25 4.75




Table 2: Optimal Spring Barley Flexcrop Results for Lacrosse, WA Region
for Alternative Levels of Risk Aversion and Barley Prices With
a Comparison to a Fixed Winter Wheat-Fallow Rotation

Standard
ASM Long-Run  Long-Run Deviation Long-Run
Risk Aversion/ Critical Expected Expected (s.D.) of Frequency
Barley Price Level Yield Return Long-Run of Fallow
($/ton)? (in) (lbs/ac)  ($/ac/yr) ($/ac/yr) (%)

Continuous Spring Barley
$78 . 27.60
108 38.21
121 | 42.81
Flexcropping Spring Barley

Risk Neutral
$78 3.0

108 2.0
121 1.5
Moderate Risk
Aversion
$78 2,846
108 2,594

121 : 2,594

Winter-Wheat Fallowb bu/ac

$4.38 n.a. 45.0 16.84 27.77 50

®prices of $78/ton and $121/ton represent 10-year low and high barley
prices in the region; $108/ton is the recent target price for barley.

b$4.38/bu reflects the target price for wheat in the region.
NOTE: Results are based on a real discount rate of 5.4 percent with

no discount for long-run productivity inpacts of fallow. The random
component S.D. appears in-parentheses.
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