
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


•

DYNAMIC PROGRAMMING MODELS RITE

RISK ORIENTED CRITERION FUNCTIONS

by

Oscar R. Burt

University of California, Davis

Paper presented at the 1988 meeting of Southern Regional Project S-180 in
Savannah, Georgia, March 21-23.

29



30

DYNAMIC PROGRAMING MODELS WITH
RISK ORIENTED CRITERION FUNCTIONS

*By Oscar R. Burt, Professor, Department of Agricultural
Economics, University of California-Davis

Dynamic programming (DP) is traditionally thought of being associated with

an expected value objective funciton, although Bellman frequently illustrated

the method with terminal control objective functions in his early research

(Bellman, 1961). It was Ronald Howard's seminal book in 1960 which popularized

the expected value criterion with periodic rewards in DP Markov processes. It

appears that the most fruitful way to bring risk into the usual DP algorithm is

by introducing a somewhat artifical state variable which compounds returns to

th end of the planning horizon. The other alternative is to use the linear

programming (LP) formulation of the Markov chain DP model (Hadley, p. 471).

Both of these methods are explored below for various criteria which incorporate

risk in an optimization setting. He begin with

chain DP model.

The decision process can be in a finite number of states at the beginning

of a series of discrete time stages, and the dicision agent controls the

conditional probability of going from the ith to the jth state by choosing from

a finite set of alternatives, k = 1, 2, ...K(1). Let pijk denote this

probability under decision k. In general, an immediate return is associated

with the transition from state i to state j under decision k, and this return

is a random variable which may have a component of variation associated with

the transition from state i to j under decision k, as well as independent

variation with i, j, and k all conditionally given. This total variation is

particularly important under risk considerations, although

brief summary of the Markov
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It Is moot with an expected value criterion. The random variable

return Is denoted rik with the subscripts indicating that the given

state i and decision k are parameters in the probability distribution.

The conditional expectation of rik is denoted qik.

A policy for this multistage decision process is comprised of a

decision rule which specifies a choice of k for each state i, denoted

d(i). With a particular decision rule, the transition probabilities at

each state are determined by piid(i) which in the discussion below are

abbreviated pij. If there are M states, this Markovian process can be

summarized by an MXM matrix P with (i,j) element equal to

Define the M-component row vector n(0) as the a priori probability

distribution for the initial state of the process at time t = 0. Then

it follows that the probability vector for t = 1 is n(1) = ir(0)P, and

inductively n(t) = n(0)Pt. In an ergodic Markov process, where every

state is accessible from any given state after a finite number of

transitions,

lim Pt = A,
t-co

where all rows of A are identical. It follows from this result that

there exists a limiting probability vector It such that

n = nP,

and it is the limit of n(t) as t-.00 as well as being the identical rows of

A.
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An obvious criterion for the decision process is to choose the

decision rule d(i) such that long-run expected returns are a maximum.
Each decision rule implies a vector of probabilities n given by (1), and

an expected immediate return vector q = (qi q2...qm), so we could
search over all decision rules d(i) and choose the maximum of

n2c12 + • •. nmqm •
Although economists will note that the criterion should be one of

maximum expected present value, it cannot be directly applied with the
incorporation of risk without assuming additivity of expected utilities
over the planning horizon. pp has long been recognized as the efficient
algorithm for solving this problem using an expected value criterion
(Bellman, Howard), with or without discounting.

The DP recursion formula in our notation is

(2) v(i) = maxklik 4. A E Pijkvn-1(i)),j=1

where 0 < A < I is the discount factor and vn(i) is the present value of
expected returns over an n-stage planning horizon under an optimal

policy. An expected utility function (Von Neuman and Morgenstern) can

be applied to the conditional variation in rik and thus replace qik with
this conditional expected utility, but the variation in returns over
•states through time will be ignored and the tacit assumption is that the
periodic conditional utilities are additive. Clearly this poses a
serious problem.

On the other hand maximizing n'q, which is equivalent to maximizing
the long-run expected gain per period, is readily adapted to introducing
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risk into the criterion. All the variation in returns can be

incorporated by applying a utility function to rik. Denote the utility

function U(.), and Uik =E(U(rik)Ii,k) denotes the conditional expected

utility of random returns rik, given i and k fixed. For a given
111.1.1.decision rule d(i) let the conditional expected utility be Ui, then

unconditional periodic expected utility in the long-run is

niUl + ir2U2 + . . + nmUm. Fortunately an efficient computational

algorithm is available for this criterion if the number of states M is

relatively small.

LINEAR PROGRAMMING OF MARKOV CHAINS

The following LP formulation was first published by Manne in 1960

for an inventory, problem which was for the nondiscounting case.

Discounting formulations soon followed (d'Epenoux), but they do not seem

to be any more adaptable to risk criteria than the classic DP recursion.

For any given policy, the steady-state probabilities must satisfy

(1) and in + n2 + . . + nm = 1, ni 0, i = 1, 2,...M.

clarification, we write out (1) in detail:

(1) ' - E nipij = 0, j = 1„...M.
i=1

For

For the optimal policy, nq' must be a maximum. This provides the basis

for the LP formulation which introduces the set of activities Inikl,

k = 1, 2,. where at most one nik can be positive over k, for

given I. But also the value of k where nik > 0 must be associated with
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,the optimal policy. Therefore, we can write the expected value

criterion LP model as (see Hadley, p. 471)

(3-a)

(3-b)

M K(i)
Max [ E E nikclik], subject to

(niki 111:1 k=1

K(j) M K(I)

E njk E E nikPijk = 0, j= 1. 2,...M.
k=1 1=1 k=1

M K(i)

E E nik
1=1 k=1

, nik 0, all 1,k.

The expected utility criterion can be applied in (3) by replacing qik in

the objective function with Vik as defined earlier. The summations over

k in (3-a), and the fact that one and only one nik can be positive for

given I, impose the constraints in (1)' on all basic feasible solutions

associated with the LP problem.

The mean/variance criterion can be introduced into the objective

function of (3) to give a quadratic programming model which would be

feasible for only small problems. Note that the number of activities in

(3) is K(1) + K(2) + K(M). or KM if K(1) = K. i = 1, 2....M. The

number of constraints is .M + 1. Applications can easily have over 1,000

states which is a large LP problem by any standard. The dimension gets

out of reason very quickly with a quadratic objective function or some

other nonlinear form of risk such as semivariance.

But Fishburn's "risk associated with below-target returns" is

easily applied in this expected utility framework by using the results

fb
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10 of his Theorem 2 (Fishburn, p. 120). His a-t model defines risk by the

two-parameter function

Fa(t) f t-y)adF(y)
ID -00

•

•

where F(') is the cumulative distribution function for a portfolio's

return. Using Fishburn's notation, let F and G be two distribution

functions while g(F) and µ(G) denote the respective means of F and G;

p(F) and p(G) denote the risk measure given by (4). Then by the a-t

risk criterion, F Dominates G if and only if µ(F) ) µ(G) and

p(F) ( p(G) with at least one strict inequality.

Fishburn proves that when the a-t risk criterion is congruent with

the expected utility model, the utility function can be written in the

form

(5)

U(Y) = Y for y ) t

U(y) = y - X(t-y)a for y 4 t.

Of course, the problems of choosing a specific utility function from

this three-parameter family to use in research applications in

agricultural economics are not trivial.

It is demonstrated below that the classic DP model can be modified

to a terminal control process with a risk criterion applied to total

compounded returns at the end of a finite planning horizon. Although

this reformulation requires another state variable for Markov processes

with periodic rewards, it appears to be more manageable computationally

than the LP approach.
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A TERMINAL CONTROL FORMULATION

Although stochastic firm growth models are logically formulated

with an objective function equal to net wealth at the end of a finite

planning horizon (Larson, Stauber, and Burt; Schnitkey), many other

applications fr.,cus on a small segment of the firm such that discounted

value of returns is the most common criterion. These problems are

typically modeled with an expected present value criterion, and there is

a stochastic stream of returns over the planning horizon. The task now

is to convert these problems to a criterion of maximum compounded

returns at the end of a finite horizon, which gives the same decision

rule as discounting under an expected value criterion, but risk models

can be applied to the terminal value problem, e.g., expected utility of

total compounded returns.

Expected Value Criterion

The ideas are best illustrated with an example using one state

variable where we can use continuous variables and functional

relationships. We denote the decision and state variables by u and x,

respectively, and immediate returns are R(u,x,c), where c is a random

variable. The state variable x obeys the stochastic difference equation

(6) xn-1 xnt + g(un,xn,6),

where 6 Is a random variable and n is the number of periods remaining in

the planning horizon. The expected present value criterion DP equation

for this problem is

•
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(7) f(x) = Max 01(u,x,e) Arn-1(x+g(u,x05))]

where fn(x) is the expected discounted value of net returns over an

n-stage planning horizon when following an optimal policy and the

initial value of the state variable is x.

To convert this to a terminal control process, we introduce a

second state variable which systematically compounds returns to the

terminal period, n = 0 in this notation. The stochastic difference

equation for this state variable y is

(8) Yn-1 = (1+017n R(un,xn,c

where yn is defined as the amount of money on account at the beginning

of period n and which earns interest at the rate p. Not compounding

. R(..) in (8) implies that returns are received at the beginning of the

stage, and that the process is terminated at.the beginning of the last

period of the planning horizon. These assumptions are the same as

implied by the maximum expected present value model in (7). We note

that A = 1/(1+p) in this comparison.

The DP equation for this model is

(9) fn(x,y) = Max Effn_1(x+g(u,x,c),(1+p)y + R(u,x05))

and the initial condition is fo(x,y) = y, unless x has some salvage

value to be added to y. The iterative solution of (9) starting at n=1

will make f (x,y) the expected compounded value of returns over the
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n-period planning horizon. It should be clear that the Interest rate p

Could be a random variable with known distribution and the problem would

not be much more complex.

Maximum Expecte4 Utility

A utility function to account for risk preferences can imposed

on this formulation with ease. This is accomplished by defining

fo(x,y) = U(y), then solution of (9) for n=T yields the optimal decision

rule to maximize expected utility of wealth at the end of the T-stage

planning horizon.

Numerical solution of this problem is achieved by using discrete

valued approximations for the variables u,x, and y, as well as discrete

distributions for c and 6. Thus, the problem is reduced to the discrete

Markov process discussed above. In that notation the state i designates

a pair of levels for x and y within the discrete approximation (actually

a rectangular mpia in the (x,y) plane). Again. Flshburn's a-t model i

conveniently used to obtain a three-parameter utility function which is

congruent with a large family of targeted risk criteria.

Safety-First Criteria

A two-parameter safety first criterion which can be applied to (9)

Is to maximize the mean of terminal wealth subject to a constraint that

tbe probibIlity of wealth falling below y* Is less than a specified

probability denoted y (Telser). First, we will examine Roy's

safety-first criterion of simply minimizing the probability of falling

below the specific level y* (Roy). This can be done by using the model
•

•
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In 9) after it has been approximated as a finite Markov chain. Since

the terminal state collapses the two state variables x and y into y only

by setting the terminal condition fo(x,y) = y, we do the same thing in

the discrete case. The transition matrices in stage 1 are defined such

that the first subscript on pijk goes from 1 to M, but the second

subscript (associated with a state experienced in stage 0) goes from 1

to m, where m is the number of discrete values on y. Technically, all

of the pijk associated with a given value of y are added over all

possible values of x on the subscript j. Without loss of generality, we

can take the definition of subscripts for j = 1, 2,...m such that y is

nondecreasing in the counting integers J. Then for the states defined

In stage 0, i < i* implies y < y*.

The terminal control Markov chain DP equation is

(10) v(1) = MaxtE piikvn_1(j)}
k j=1

Suppose we were to assign v (i) 0 for i = 1, and v0(i) = 1
for i i*. Then

v1 = Max[E piikvo(j)] = Max[E pijk],
k j=1 k j=i*

which is maximization of the probability that i i* (y y*) in the

terminal stage. Clearly vi(i) is the maximum probability of reaching a
state where y y* in the last stage when starting from state i at the

beginning of the first stage. If wi is the probability of going to

state i in the first stage, then it follows from elementary probability
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theory that the probability of y y* in a two-stage process Is

1i1v1(1) + + wmv1(1).

But we want to maximize the above probability for a given state!

at the beginning of a two-stage process. Therefore, we use the

recursion formula (10) again,

v2(1) ' Ma* Pijkv1(i)],
k j=1

i = 1, 2,...M,

which makes v2(i) the maximum probability of y ) y* in the terminal

stage starting from the beginning of a two-stage process. Inductively,

we see that our choice of v0(i) makes v(i) in (10) the maximum

probability of i ) i*, or y y*, and the safety first criterion of

iinimizing the probability that y < y* can be calculated efficiently

with DP.

The less conservative safety first criterion of maximizing mean

returns subject to a constraint that actual returns are at least y* with
probability (1-y) is now presented. Under this criterion we calculate

(10) as an expected value criterion by setting v0(I) = y(i), where y(i)
denotes the value of returns associated with the discrete valued state i

(midpoint of the interval associated with 1). But we also use the

recursion in (10) without the optimization operation, and v0(i) is

defined according to ROy's safety first criterion. This second sequence

Is denoted u(i) and calculated by the recursion

u(I) = E Pijkun-10).
Jai*
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for the optimal value of k given by (10). For each trial k in (10) the

following inequality must be met

(12) E Pijkun-1(J) ) (1-Y)
j=i*

The initial conditions u0(i) are for Roy's safety first criterion:

u0(i) = 0 for i < i* and u0(i) = 1 for i i*. At each iteration in

(10) as the optimal k for given i is determined, subject to the

constraint (12), (11) is used to update un(i) by using the optimal k on

the right hand side. The two sequences (10) and (11) are updated

simultaneously for n = 1, 2,... and i = 1, 2,...M for given n. After T

iterations (n=T), we have the optimal decision rule for maximizing the

expected value of returns at the end of a T-period process, subject to

the constraint that the returns are less than y* with probability y.

CONCLUDING REMARKS 

Methods have been presented for the incorporation of several risk

criteria into stochastic dynamic optimization models, but the

application of these methods will require a good deal of ingenuity,

particularly with respect to the definition of "returns." Many partial

farm analyses such as in integrated pest management (IPM) and cropping

systems research, are done on a gross margins per acre basis. This

measure is not very amenable to incorporation of risk analysis because

the returns need to reflect the impact of various random outcomes on the

financial viability of the farm operation. If one were to use gross
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margins per acre. I would recommend an expected value criterion and

justify It by the assumption that the differences In the distributions

of returns over various decision rules would not involve substantial

changes in the risk exposure of the total firm.

If one is bent on using a risk sensitive criterion, then the

burden Is on them to reformulate the return measure so that it accounts

for the risk exposure of the firm across the many possible decision

rules. In general, this would require various scenarios with respect to

the debt burden of the operator (maybe on a per acre basis) and reflect

his fixed payments' per period which would be subtracted from the returns

denoted rik in the Markov chain model. One might even add other sources

of random returns from the farm operation to the (rik) to yield a

composite measure of returns from which various cash payments would be

deducted The ancillary sources of returns would be modeled without use

of stochastic optimization to keep the focus on the main problem at

hand, e.g.. IPM decision problems.

The other main alternative is to model the entire firm, i.e., use a

full-fledged stochastic firm growth model (Larson, et al.. Schnitkey).

But then the size of the model Is very demanding and focuses on the

entire farming/financial operation and management.

•
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