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DYNAMIC PROGRAMING MODELS RITH
RISK ORIENTED CRITERION FUNCTIONS

*By Oscar R. Burt, Professon, Department of Agricultural
Economics, University of California-Davis

Dynamic programming (DP) is traditionally thought of being associated with
an expected value objective funciton, although Bellman frequently illustrated
the method ®ith terminal control objective functions in his early research
(Bellman, 1961). It was Ronald Hoﬁard's seminal book in 1960 which popularized
the expected value criterion with periodic rewards in DP Markov processes. It
appears that the most fruitful ®may to bring risk into the usual DP algorithm is
by introducing a somerhat artifical state variable which compounds returns to
th end of the planning horizon. The other alternative is to use the linear
programming (LP) formulation of the Markov chain DP model (Hadley, p. 471).
Both of these methods are'explored belo® for various criteria‘which incorporate
risk in an optimization setting. He begin with a brief summary of the Markov
chain DP model.

The decision process can be in a finite number of states at the beginning
of a series of discrete time stages, and the dicision agent controls the
conditional probability of going from the ith to the jth state by choosing from
a finite set of alternatives, k = 1, 2, ...K(i). Let pijk denote this
probability under decision k. 1In general, an immediate return is associated
With the transition from state i to state J under decision k, and this return

is a random variable which may have a component of variation associated with

the transition from state i to j under decision k, as well as independent

variation with i, j, and k all conditionally given. This total variation is

particularly important under risk considerations, although




it is moot with an expected value criterion. The random variable
yreturn is denoted rik with the subscripts indicating that the given

- state i and decision k are parameters in the probability distribution.
The conditional expectation of rjyx is denoted qjy.

A policy for this multistage decision process is comprised of a
decision rule which specifies a choice of k for each state i, denoted
d(i). With a particular decision rule, the transition probabilities at
each state are determined by Pijd(i) which in the discussion below are
abbreviated Pij- If there are M states, this Markovian process can be
summarized by an MXM matrix P with (i,3) element equal to Pij.

Define the M-component row vector n(0) as the a priori probability
distribution for the initial state of the process at time t = 0. Then
it follows that the probability vector for t = 1 is (1) = n(0)P, and
inductively n(t) = n(0)Pt. 1In an ergodic Markov process, where every
state is accessible from any given state after a finite number of
transitions,

lim Pt = 4,
t-
where all rows of A are identical. It follows from this result that

there exists a limiting probability vector m such that

(1) n = nP,

and n is the limit of n(t) as t-= as well as being the identical rows of

A.




An obvious criterion for the decision process is to choose the
decision rule d(i) such that long-run expectedAreturns are a maximum.
Each decision rule implies a vector of probabilitieo n given by (1), and
an expected immediate return vector q9 = (q1 g2...qM), so we could

~ search over all decision rules d(i) and choose the maximum of
M1q1 + M2Q2 + ... + myqgy.

Although economists will note that the criterion should be one of
maximum expected presenf value, it cannot be directly applied with the
incorporation of risk without assuming additivity of expected utilities
over the planning horizon. DP has long been recognized as the efficient
algorithm for solving this problem using an expected value criterion
(Béllman, Howard), with or without discounting.

The DP recursion formula in our notation is

M
- vp(i) = M§X[q1k + ﬂjzlpjjkvn—l(J)].

where 0 < B < 1 is the discount factor and vp(i) is the present value of
expected returns over an n-stage planning horizon under an optimal
policy. An eXpected'utility function (Von Neuman and Morgenstern) can
be applied to the conditional variation in rjx and thus replace qyk with
this conditional expected utility, but the variation in returns over
'stateé through time will be ignored and the tacit assumption is that the
periodic conditional utilities are additive. Clearly this poses a
serious problem

On the other hand maximizing n'q, which is equivalent to maximizing

the long-run expected géin per period, is readily adapted to introducing




risk into the criterion. All the variation in returns can be
incorporated by applying a utility function to rik. Denote the utility
function U(+), and Ujk = E(U(rik)li,k) denotes the conditional exﬁected
utility of random returns rik, given i and k fixed. For a given
decision rule d(i) let the conditional expécted utility be 51. then
_'dnconditional periodic expected utility in the long-run is -

nlal + naaz ...t nMGM. Fortunately an efficient computational

- algorithm is available for this criterion if the number of states M is

relatively small.

‘LINEAR PROGRAMMING OF MARKOV CHAINS

The following LP formulation was first published by Manne in 1960

for. an inventory problem which was for the nondiscounting case.

Discpunting formulations soon followed (d'Epenoux), but they do not seem
to be any more adaptable to risk criteria than the classic DP recursion.

For any given policy, the steady-state probabilities must satisfy
(1) and w3 + mp + ... + my = 1, ry 20, i=1, 2,...M. For

clarification, we write out (1) in detail:

: M
(1) ny - L mipjj = 0, j =1, 2,...M.
i=1

_For the optimal policy, mq' must be a maximum. This provides the basis
for the LP formulation which introduces the set of activities {mik},
k =1, 2,...K(1), where at most one Mjk can be positive over k, for

given i. But also the value of k where Mjk > 0 must be associated with




the optimal policy. Therefore, we can write the expected value
criterion LP model as (see Hadley, p. 471)
M K(i)

- (3) Max [ £ [ Mikdik] . subject to
{mik} 1=1 k=1

K(J) M K(i)

L mjpy - I MikPijk = 0, J = 1, 2,...M,
k=1 i=1 k=1

M K(i)
(3-b) I I mjp=1, mygx 3 0, all i,k.

i=1 k=1
The expected utility ériterion can be applied in (3) by replacing qjk in
the objective function with Ujk as defined earlier. The summations over
k in (3-a), and the fact that one and only one mjx can be positive for
given i, impose the constraints in (1)' on all basic feasible solutiqns

associated with the LP problen.

The mean/variance criterion can be introduced into the objective

function of (3) to give a quadratic programming model which would be

feasible for only small problemé. Note that the number of activities in
(3) is K(1) + K(2) + ... K(M), or KM if K(i) = K, i =1, 2,...M. The
number of constraints is M + 1. Applications can easily_have over 1,000
states which is a large LP problem by any standard. The dimension gets
out ‘of reason very quickly with a quadratic dbjective function or some
other nonlinear form of risk such as semivariance.

But Fishburn's "risk associated with below-target returns" is

easily applied in this expected utility framework by using the results




of his Theorem 2 (Fishburn, p. 120). His a-t model defines risk by the

. two-parameter function

. t
(4) Fa(t) = [ (t-y)%dF(y)

where F(e¢) is the cumulative distribution function for a portfolio'é
return. Using Fishburn's notation, let F and G be two distribution
functions while u(F) and p(G) denote the respective means of F and G;
p(F) and p(G) denote the risk measure given by (4). Then by the a-t
risk criterion, F Dominates G if and only if u(F) 3 u(G) and
p(F) € p(G) with at least one strict inequality.

Fishburn'provés that when the a-t risk criterion is congruent with
the expected utility model, the utility function can be ﬁritten in the‘

form

u(y) fory 3> t
U(y) =y - A(t-y)®*  fory € t.

Of course, the problems of choosing a specific utility function from
this three-parameter family to use in research applications in
bagriculturél economics are not trivial. »

It is demonstrated below that the classic DP model can be modified
to a terminal control process with a risk criterion applied to total
compounded returns at the end of a finite planning horizon. Although
this reformulation requires another state variable for Markov processes

with periodic rewards, it appears to be more manageable computationally

than the LP approach.




A TERMINAL CONTROL FORMULATION

Although stochastic firm growth models are logically formulated
with an objective function equal to net wealth at the end of a finite_
plannihg horizon (Larson, Stauber, and Burt; Schnitkey), many other
applications Iocus on a small segment of the firm such that discounted
value: of returns is the most common criterion. These problems are
typically modeled with an expected present value criterion, and there is
a stochastic stream of returns over the planning horizon. Tﬁe task now
is to convert these problems to a criterion of maximum compounded
returns at the end of a finite horizon, which gives the same decision
rule as discounting under an expected value criterioh, but risk models
can be applied to the terminal value problem, e.g., expectgd utility of

total compounded returns.

Expected Value Criterion

The ideas are best illustrated with an example using one state
variable where we can use continuous variables and functional
relationships. We denote the decision and state variables by u and x,
respectively, and immediate returns are R(u,x,€), where € is a random

variable. The state variable x obeys the stochastic difference equation

(6) xn-l = xnt + g(unoxnoa)v

where &6 is a random variable and n is the number of periods remaining in
the planning horizon. The expected present value criterion DP equation

for this problem is




fn(x) = Max E[R(u,x,€) + Bfp_y(x+g(u,x,6))]
u | :

where fjn(x) is the expected discounted value of net returns over an
n-stage planning horizon when following an»optimal policy and the
ihitial value of the state variable is x.

To convert this to a terminal control process, we introduce a
second state variable which systematically compounds returns to the
terminal period, n = 0 in this notation. The stochastic difference

equation for this state variable y is

(8) ‘ ' Vn-1 = (1+p)yp + R(unrxnnen),

where y, is defined as the amount of money on account at the beginning
of period n and which earns interest at the rate p. Not compounding
"R(¢) in (8) implies that returns are received at the beginning of the
stage, and thaf the process is terminated at_the beginning of the last
period of the planning horizon. These assumptions are the same as
implied by the maximum exbected present value model in (7).  We note
that B = 1/(1+p) in this comparison.

The DP equation for this model is

fn(x,y) = Max E{fy_j(x+g(u,x,€),(1+p)y + R(u,x,5))},
u

and the initial condition is fo(x,y) = y, unless x has some salvage
value to be added to y. The iterative solution of (9) starting at n=1

will make fp(x,y) the expected compounded value of returns over the




n-period planning horizon. It should be clear that the interest rate p
could be a random variable with known distribution and the problem would

not be much more complex.

- Maximum Expected Utility

A utility function to account for risk preferences can t= imposed
on this foramulation with ease. This is accomplished by defining
fo(x,y) = U(y); then solution of (9) for n=T yields ﬁhe optimal decision
rule to maximize expected utility of wealth at the end of the T-stage
planning horizon.

Nulérical sélution of this problen is achieved by ug!ng discrete
valued approximations for the variables u,x, and y. as well as discrete
distributions for € and 6. Thus, the problem is reduced to the discrete
Markov process discussed above. In that notation the state i Qesignates
a pair of levels for x and y within the discrete approximation (actually

a rectangular ayea in the gx.y) plane). Again, Fishburn's a-t model is
conveniently used to obtain a three-parameter utility function which is

congruent with a large family of targeted risk criteria.

shfetx-FirstVCriterja
A two-parameter safety first criterion which can be applied to (9)

is to aaxlulzq the mean of terminal wealth subject to a constraint that

'“'thé“yroiitillty”bf wealth falling below y* is less than a specified

probability denoted y (Telser). First, we will examine Roy's
safety-first criterion of simply minimizing the probability of falling

below the specific level y* (Roy). This can be done by using the model

.




.in (9) after it has been approximated as a finite Markov chain. Since
the terminal state collapses the two state variables x and Vv into y only
by setting the terminal condition fo(x,y) = y, we do the same thing iﬁ
the discrete case. The transition matrices in stage 1 are_deflned such
that the first subscript on Pjijk goes from 1 to M, but the'second
subscript (associated with a state experienced in stage 0) goes from 1
to m, where m is the number of discrete values on y. Technically, all

of the Pjjk associated with a given value of y are added over all

possible values of x on the subscript j. Without loss of generality, we

can take the definition of subscripts for j = 1, 2,...m such that y is
nondecreasing in the counting integers j. Then for the states defined
in stage 0, i < i* implies y < y*.

The terminal control Markov chain DP equation is

M
vn(i) = Max{L PijkVn-1(J)}
k j=1

Suppose we were to assign vo(i) = 0 for i = 1, 2,...1%1 and Vol(i) = 1

for i > i*. Then

M
vi(i) = Max[t PjikVo(d)] = Hax[Z p .
2x[L Pijkvo ] ax(z . 13k]

thch ié maximization of the probabiiity that i > i* (y z‘y*) in the
ferminal stage. Clearly v1(i) is the maximum probabilify of reaching a
state where y 2 yf in the last stage when starting from state i ét the
beginning of the first stage. 1If wi is the probability of going to

state i in the first stage, then it follows from elementary probability




theory that the probability of v 3 y* in a two-stage process is
wivi(1) + ...+ wyvy(N).

But we want to maximize the above probability for a given state i
at the beginning of a two-stage process. Therefore, we use the

recursion formula (10) again,

M
V2(1) = Max[E pyyevi(4)], 1 = 1, 2,...M,
k j=1

which makes vp(1i) the maximum probability of y 3 y' in the terminal
stage starting from the beginning of a two-stage process. Inductively,

' we see that our choice of vo(i) makes vn(i) in (10) the maximum
probability of i 3 i*, or y 2 y*, and the safety firsf criterion of
minimizing the probability that y < v* can be calculated efficiently
with DP.

The less conservative safety first criterion of maximizing mean
returns subject td a constraint that actual returns are at least y* with
probability (1-y) is now presented. Under this criterion we calculate
(10) as an expected value criterion by setting vo(i) = y(i), where v(i)
denotes the value of returns associated with the discrete valued state i
(lidppint of the interval associated with i). But we also use the
recursion in (10) without the optimization operation, and vo(i) is

 defined according to ROy'a'aafety first crltaiion. This second sequence

is denoted up(1) and calculated by the recursion

M
(11) unp(i) =sz‘Pljkun—1(.”-




'

for the optimal value of k given by (10). For each trial k in'(lo)'the

following inequality must be met

_ M
(12) jzi*pijkun-l(J) 3 (1-y)

The initial conditions ug(i) are for Roy's safety first criterion:
Uo(i) = 0 for i < 1* and up(i) = 1 for 1 » i*. At each iteration in
(10) as the optimal k for given i is determined, subject to the
constraint (12), (11) is used to update up(i) by using the optimal k on
the‘right hand side. The two sequences (10) and (11) are updated
simultaneously for n = 1, 2,... and i = 1, 2,...M for given n. After T
iterations (n=T), we have the optimal decision rule for maximizing the
expected value of returns at the end of a T-period process, Qubject to

the constraint that the returns are less than y* with probability y.

CONCLUDING REMARKS

Methods have been presented for the incorporation of several risk
criteria into stochastic dynamic optimization models, but the
application of these methods will require a good deal of ingenuity,
particularly with respect to the definition of "returns." Many partial
farm analyses such as in intggrated pest management (IPM) and»cropping
systems research, are done on a gross margins per acre basis. This
measure is not very amenable to incorporation of risk analysis because
the returns need to reflect the impact of various random outcomes on the

financial viability of the farm operation. If one were to use gross




margins per acre, I would recommend an expected value criterion and
Justify it by thg assumption that the differences in the distributions
of returns over various decision rules would not involve substantial
changes in the risk exposure of the total firm.

If one is bent on using a risk sensitive criterion, then the
burden is on them to reformulate the return measure so that it accounts
for the risk exposure of the firm across the many possible decision
rules. In general, this would require various scenafios with respect to
the debt burden of the operator (maybe on a per acre basis) and feflect
his fixed payments per period which would be subtracted from the returns
denoted rik in the Markov chain model. One might even.add other sources
of random returns from the farm operation to the {rik) to yield a
composite measure of returns from which various cash payments would be
deducted, The ancillary sources of returns would be modeled without use
of ctochasfic optilization to keep the focus on the main problem at
hand, e.g., IPM decision problenms.

The other main alternative is to model the entire firm, i.e., use a
full-fledged stochastic firm growth model (Larson, et al., Schnitkey).

But then the size of the model is very demanding and focuses on the

’éntire farning/financial operation and management.
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