

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Targeted Edge-of-Field Monitoring: Can We Monitor in a Strategic Way to Optimize Conservation Effectiveness?

Mark Tomer National Laboratory for Agriculture and the Environment Ames, Iowa

Aspects of 'targeted' monitoring: know your landscape!

What pathway?

OVERLAND

SUBSURFACE

TILE DRAINAGE 🛛

Lessons from a CEAP* Watershed

Upper Tipton watershed - Tile drained, farmed wetlands (potholes)

Rainfall event, Sept. 10-11 2006

Hydrologic and water quality responses to rainfall event at three scales

Field flume

&

Tile outfall

Stream outlet: discharge, nutrients, and *E. coli*

Hydrograph separation – Stream outlet

Sub-surface

Insight from nested monitoring of a single event on managing sources and pathways:

- ✓ Nutrient management
- ✓ Erosion control
- Glacial depressions
- Channel sources

Surface

Blind Inlet Installation

Excavated hole prior to lining with geotextile

Plumbing placed on top of geotextile & gravel

Monitoring filter socks around surface inlet

Observations from monitoring paired fields

Similarity in amounts of rainfall and runoff per event

Significant difference in runoff – P load relationship

In-Field Conservation Practices Impact on Runoff-P Load Relationship Could Influence Effectiveness of Edge of Field Practices

"Edge of field" practices

Bioreactors

- Nutrient removal wetlands
- Water and sediment control basins
- Phosphorus traps
- Surface intake filters
- Saturated buffers

Are all most effective at low inflow rates compared to high inflow rates.

Paired watershed experiments are not designed to assess effects of stacked conservation practices

- Five years duration (minimum)
- Requires two monitoring points to answer one question
- How many fields are represented by this experiment?

Evaluation of field edge practices (denitrifying bioreactor example)

Flow

Monitor inflow

Monitor outflow

- Three years duration (likely minimum)
- Requires two monitoring points to answer one question
- How does in-field management impact EoF practice performance?

An alternative experimental design (twice-paired watershed experiment)

1. Implement field edge practice and calibrate two fields (replicated experiment, 2+ years)

 Implement field practice evaluate two practices (3+ years)

- Five years duration (but useful data within 2-3 years)
- Requires four monitoring points but answers three questions
- Can pair practices that represent regional opportunities

Ho: Effectiveness of denitrifying bioreactors is influenced by drainage water management

Controlled Drainage

Bioreactors

Monitoring Sites

How do we select combinations of practices for monitoring/evaluation?

Distribution of Different Types of Watersheds Across the UMORB

Can we Match Conservation Practices to Different Types of Watersheds/Landscapes?

Poorly Drained Soils		well Drained Solls
Grass waterways, contour filter strips, terraces, ponds, riparian buffers, cover crops		In-field source controls important, riparian buffers, springs, seeps, floodplain reconnection, in-stream practices
Dissected slopes 2 - 5%) Grass waterways, ilter strips, ponds,	Non-dissected (slopes < 2%) Drainage water management	In-field source controls important, 2-stage ditches, floodplain reconnection, off- channel wetlands
iparian buffers, vetlands, bioreactors	treatment wetlands, bioreactors, 2- stage ditches	
	rass waterways, con rips, terraces, pond affers, cover crops issected ilopes 2 - 5%) rass waterways, iter strips, ponds, over crops, parian buffers, etlands, ioreactors	rass waterways, contour filter rips, terraces, ponds, riparian affers, cover crops issected lopes 2 - 5%) Non-dissected (slopes < 2%) rass waterways, ter strips, ponds, over crops, parian buffers, etlands, ioreactors Drainage water management, treatment wetlands, bioreactors, 2- stage ditches

Schilling et al, Environmental Management, 2015

Summary

 Use nested monitoring and/or landscape analyses to propose conservation strategy for watershed / region.

- Identify dominant pathways and practices to manage flows along those pathways.
- Include practices placed along a landscape continuum in strategy.
- Experiment to evaluate single / stacked practices that can be applied regionally.
- Adapt strategy and its implementation.

Fodder for discussion: Edge of field monitoring networks Environmental certification Regulatory assurance Role of producers in monitoring

Concluding thought:

A best approach for monitoring agricultural fields and watersheds will provide on-farm data and lessons that producers can use in applying conservation practices to enhance profitable production systems and environmental outcomes on their farms.