

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

University of Reading
 Department of
 Agricultural Economics \& Management

GRASS AS A BREAK

An economic study in Southern England

J. A. L. DENCH

with contributions from A. K. Giles, C. Ritson and W. G. Gwynne (ADAS)

Agricultural Enterprise Studies in England \& Wales

Economic Report No. 35

UNIVERSITY OF READING

DEPARTTENT OF
AGRICULTURAL ECONORICS AND IMANAGERENT

```
GRASSASABARAK
An economic study in Southern England
```

J. A. L. DENCH
with contribution from A. K. Giles, C. Ritson and W. G. Gwynne (ADAS)

Agricultural Enterprise Studies
in England \& Wales
Economic Report No. 35

1975

CONTENTS

Page
Foreward
Preface and Acknowledgements
I An Introduction 1
II Some Technical considerations 7
III Grassland policy and practices on 174 farms 14
IV Grassland performance - livestock output and 35 principal inputs
V The outlook for grassland based enterprises 51
Appendices
I Definition of farm groupings 58
II Data from 174 farms 59
III Structure of livestock sales and inputs 78
Other publications in this series 81
University Departments publishing in this Series 85

FOREWARD

AGRICULTURAL ENTERPRISE STUDIES IN ENGLAND AND WALES

University departments of Agricultural Economics in England and Wales have for many years undertaken economic studies of crop and livestock enterprises. In this work the departments receive financial and technical support from the Binistry of Agriculture, Fisheries and Food.

A recent development is that departments in different regions of the country are now conducting joint studies into those enterprises in which they have a particular interest. This community of interest is being recognised by issuing enterprise reports in a common series entitled "Agricultural Enterprise Studies in England and Wales", although the publications will continue to be prepared and published by individual departments.

Titles of recent publications in this series and the addresses of the University departments are given at the end of this report.

PREFACE AND ACKNOWLLEDGEIENTS

In recent years this Department has been engaged on a series of studies concerned with the economics of break crops on the cereal growing farms of Southern England. Beginning with separate studies of Oilseed Rape and Outdoor Pigs, the Department then turned its attention to a more comprehensive study of Cash Break Crops, published in this series in 1972, and updated in 1974. The Department is currently co-ordinating a national study of forage crops other than grass. Between the earlier study of Cash Break Crops and the present work on forage crops attention has been devoted to 'grass as a break' and the results of that work are contained in this report.

Again, attention is focused largely on the use of grass as a break crop on the dominantly arable farms of Southern England, and the Department wishes to thank the many farmers who have helped to provide the raw material for sections III and IV of the report. Special thanks are also due to Irr. W.G. Gwynne of A.D.A.S. who has contributed Section II.

Within the Department, J.A.L. Dench has been responsible for the two main sections of the report (III \& IV) which present the results of field work and analysis undertaken largely by himself, J. Wright, E.G. Hunt and Miss F. Vilks. A.K. Giles has written an introduction and C. Ritson a concluding section on the outlook. Mrs. H.B. Davis has been responsible for the reproduction of the report. An accompanying bibliography has been prepared by Miss S.M. Fletcher.

SECTION I : AN INTRODUCTION - A.K. Giles
In post war British agriculture cereal growing has been one of two farn enterprises (the other one being dairying) that, given reasonable levels of management, have usually been capable of yielding profits, together, alone, or in combination with other enterprises, these two have nore of ten than not provided, and still do provide, the major part of many farmers' incones. From time to tine one of then may have outstripped the other in profit terns but generally speaking it would be true to say that dairying has provided the more even profit levels and cereal growing, more vulnerable as it is to world harvests and trade, the greater variations in returns.

A good example of this phenomena has coccurred in the early 1970's with, initially, the conbination of good harvests and high prices working together to produce unusually high profits - only to be followed by falling world and donestic prices combined with a dranatic increase in the cost of cereal growers' main inputs. Generally speaking, however, the swing of the pendulum has not been unfavourable to cereal farmers, especially when measured in terms of return on capital, and as a result nany individual farmers have sought to increase their cereal acreage. In the majority of cases, however, this increase has stopped well short of the point of monoculture. On the light downlands of Southern England, for instance, where this particular study has been concentrated, it is relatively rare to find cereals occupying as much as 70% of the total area on any one farm; in most cases it is substantially less than that. The sophistication of contemporary farning especially in terms of its capital and managerial requirements has pointed the way towards increasingly specialised systens, but except in the case of relatively small grassland farms, this trend has not usually gone all the way. Mixed systeas still dominate.

The alternative breaks
So far as the cereal grower is concerned a 'mixed' system will mean one of four basic alternatives, or some combination of them: cereals with:
(i) An intensive livestock enterprise e.g. pigs, frequently (in the South) located at least partly outdoors and becoming part of a rotational system.
(ii) Cash crops other than cereals
(iii) Fodder crops other than grass
(iv) Grass - with or without livestock.

As part of this Department's continuing interest* in the 'break' in cereal rotations, this particular study is concerned with the fourth of these alternatives and especially with the use of grassland by livestock. It is not conerned with permanent pasture as such (although small qualities do exist on some of the surveyed farns), nor even with grassland where it forms an equal or dominant part in a mixed system - but with grassland in a dominantly cereal system of farming.

Some advantages of grass

The reasons why grassland appears in this role at all are fourfold. First, it has a husbandry contribution. Except where the rare arts of continuous corn have been mastered, econonic cereal yields are maintained through rotational or 'balanced' cropping systems. Some of the technical arguments in favour of grass in this context are discussed in Section II. Secondly, there are economic argunents - not least in the maintenance of cereal yields just referred to. To this extent, husbandry and economic arguments amount to one end the same thing. In addition, however, a grass break provides a degree of economic manoeuvre, through variations in its style and intensity of use, which is virtually non-existent in cereal farming. It also permits a spreading of risks in that, climatically speaking, 'poor' ceral years can often be 'good' grassland years (and vice versa) and in so far as cereals constitute an important share of the total inputs for most forms of livestock production, cereal prices can hardly be unfavourable for the cereal and the livestock farmer at the same time. Thirdly, there are in addition to these technical and economic arguments in favour of a grass break, arguments steming more from managerial considerations - such as the evening out of work loads and of cash flows throughout the year - and finally there are arsuments related to perisonalt. preferences reflecting perhaps an individual's aesthetic attitudes or his particular farming interests.

[^0]Each of these four different kinds of arguments in favour of a grass break might apply equally well where the break is provided by alternative cash crops. The particular reasons why some farmers in fact elect for grass and for livestock, however, is summarised in Section III of this report and these reasons can be compared with the technical arguments presented in Section II.

Which livestock?

Except for outdoor pigs which usually occupy only a small part of any rotation, livestock on grass means dairy cows, beef or sheep and which of these three, or which combination of them, a particular farmer chooses will depend on a variety of economic, technical and personal factors. In the important but limited context of what contribution each of these enterprises can arke towards the overall farm profit (measured in terns of gross margin) dairying has always outstripped the other two. At the time of writing, a well managed dairy unit might be expected to yield a gross margin of over 2100 per acre. By contrast, fat lamb production, with conventional levels of stocking, and numerous beef systems, including even some of the semi-intensive ones, would be unlikely to yield more than between a third and a half of this value. As all farmers know, however, the contribution that any particular grazing livestock enterprise can make to an overall farm system does not begin and end with its gross margin. The overall level of fixed costs will, in part, be determined by the type and scale of livestock enterprise. In some cases some of those costs will be clearly identifiable with the enterprise in case, whilst in others the sharing of such costs between two or more enterprises makes any thought of allocation - especially when large indivisible units are involved - a rather futile exercise. Different livestock enterprises will also make different levels of demand on available working capital; will have different requirements for fixed equipment and buildings; will make different seasonal calls upon labour and management and for various reasons will dovetail more or less easily into the remainder of the farm system. Sheep, for example, are the classic example of a grazing livestock enterprise which, relatively speaking, do not produce a handsome gross margin but which, within certain limits of scale, score heavily on most other counts i.e. in terms of their
relatively low requirements for capital, for buildings and for labour, and because of their high contribution as scavengers to the growth and utilization of crops grown primarily for other purposes, Depending upon the scale of operation and the particular kind of system adopted, beef cattle also have some of these same advantages with the result that farms can more easily move in or out of either sheep or beef production than is usually the case with dairy cows. The same would be true so far as expansion and contraction is concerned - where in many cases the expansion and contraction might occur within an existing beef or sheep enterprise with relatively little impact on fixed costs. The need for budgeting data - and the difficulties of obtaining it

In any situation where such changes are being contemplated, irrespective of the scale or direction of the change, it will not be undertaken these days by any thinking farmer without first some evidence from supporting budgets. Recent uncertainties about product prices and the costs of inputs have, inevitably, nade budgeting a more hazardous process but, for these same reasons, an even more essential exercise. Fuch of the information in Section IV of this report has been collected and presented with that purpose in mind. Because of the constantly changing financial situation the emphasis has been placed on physical information. It must be stressed, however, that this data is not the result of experimental work and neither does it suggest target performance levels of the kind that current research and advisory effort may be directed towards. It is, rather, a statenent of what has actually been achieved by commercial farmers and to which normally efficient farmers can, therefore, reasonably be expected to aspire. For each of the specificied livestock systems physical performance levels in respect to output, to variable costs and to the nore fixed type of cost have been indicated. Farmers and their advisers are invited to select, in any particular situation which of these itens are relevant to any faraing situation, or particular change that is boine contemplated, and to 'clothe' that physical data with the bost possible estinates that can be made of costs and returns in the tine period under review.

This latter part of the exercise may be a difficult task, but the alternative is either not to attempt it, or perhaps not even to contemplate change. In the present uncertain economic climate, many farmers may prefer to react in this latter way despite the encouragement of proposed new expansion programmes for British agriculture. For a limited period, a cautious attitude so far as investment is concerned, with increased attention to good technical management and to careful cost control, may well be the most sensible policy for many. Unless, however, the relative movement of product prices and of costs is such that existing profit levels are automatically maintained or improved - and how many farmers would ever bank on that? - sone form of change sooner or later becomes synonomous with growth and survival. Basically there are only two kinds of change that can be made: either to the system of famming or to the level of performance within the existing system. The latter kind is usually nore difficult to effect than the former and whilst grassland farming presents a potential for improvement (e.g. through increased stocking rates) not enjoyed by the arable sector it also, because of its conplexities which often make precise measurements of performance difficult calls for managerial levels which only the best can obtain.

Despite these difficulties however, and those of the present financial situation, strategic decisions involving some form of change will sooner or later confront most farmers. In many cases these decisions will involve capital investment. The current uncertainties that surround these decisions have recently been described in an article published from this Department ${ }^{1}$ and reference is made there to the stultifying effect of extreme uncertainty on investment decisions. Nevertheless when the time comes on any individual farm for some investment to be made, it will remain in the nature of things that investment has to take place now in anticipation of some future return. It is an inescapable fact that the future is unknown and that at best some best estimate of the future has to be made. This process has never been easy and the current economic clinate certainly means that past and present price and cost levels are a less good guide to the future than we have been accustomed to then being.

[^1]Because of the situation just described the farner contemplating change, now finds himself looking increasingly beyond his traditional use of physical and financial budgeting data (of the kind presented in Section JV) and even beyond the normal supply of market intelligence data that is at his disposal. Increasingly, he will be looking also for a longer tern 'outlcok' type of assessment of the prospects for particular enterprises and commodities. Assessments of this kind are usually difficult, if not impossible to quantify. They are concerned with long tern indications of supply and demand and with the likely and possible influences of regional and international policies and events many of which defy more than the broadest of speculation. Nevertheless, it is in the context of these kinds of considerations that strategic plans have to be made and it is for this reason that the final Section of this report has been devoted to 'the outlook' for grassland-based enterprises.

SECTION II : SOME TECHNICAL CONSIDERATIONS - W.G. Gwynne (A.D.A.S.)

If the term grass is taken in its widest context to include herbage legumes, the grass crop is the most popular break on the arable farm and indeed until the idea of free rotations became popular and accepted it was practically the only break crop.

Since grass is not a readily saleable commodity and usually has to be processed into meat or milk the grass break is alnost always associated with dairying, beef, or sheep enterprises. Nevertheless, the grass break can be and of ten is an enterprise in its own right, the produce being directly sold as a cash crop. Examples of this are frequent in Southern England and comprise herbage seed, hay grown for sale and more rarely green crop drying. There are also cases of grass areas grown especially for a break from cereals, the grassland being let for grazing or conservation to a neighbouring livestock farmer.

Grass in its own right

Herbage seed production is a specialized enterprise particularly well suited for integrating with cereals and oil seed production. Grass seed crops may only be grown on land which has a previous history of four cereal crops, is well isolated from crops of hay and silage and preferably on open fields not overhung with trees and shade. Such conditions are found on cereal farms and furthermore the mechanization needs of grass seed crops coincide with those for grain, namely adequate combine harvester strength and the availability of crying facilities. It is not surprising therefore that the South East of England and East Anglia produce the bulk of our home grown grass seed.

A popular break on the cereal farm is the one/two year red clover ley to produce hay for sale. The difficulty of making large areas into hay and the relatively low returns have put a limit on the popularity of this method of cropping. Technically, however, the systen has much to comend it. Red clover being non-gramineous is a complete break from cereals. The crop makes no demand for nitrogen fertilizers and modern varieties are capable of producing up to five tons of dry matter in most seasons. Red clover for hay has a well deserved reputation as an excellent entry for winter wheat. Its popularity is likely
to increase with the availability of new and nore productive varieties, many of which are resistant to the pests and diseases which have in the past rostricted red clover cropping. It has to be adritted, however, that with modern methods of hay making the hay fron red clover is of mediocre quality.

Lucerne is suitable forlonger breaks of three to four years and is not popular due to its rigid managenent requirements, difficulties of establishment and its proneness to disease. It could stage a revival with the high cost of nitrogen and the availability of new, relatively disease free varieties. Its excellence as a break in the rotation is well proven. Again, the hay is of mediocre quality.

Green crop drying is a specialized enterprise and is unlikely to make widespread headway on the cereal farm. Suitable herbage crops for this purpose are tall fescue, Italian ryegrass and lucerne.

Grass breaks and livestock

Most grass break enterprises on cereal farms are associated with livestock. These farms have many advantages when compared with specialised grassland farms. Probably the most obvious advantage is the freedom from the vital necessity of "preserving" the pasture or ley at all costs to enable production to be maintained for a number of years. In most cases on the farms under discussion the grass break will last two or three or at nost four years. This means that the grassland management can often be a secondary consideration, especially in the last year of the life of a ley since ploughing and reseeding is no problem. This can be a serious constraint on the grass farm especially during wet seasons. The arable farmer has another advantage, the ability to sow catch crops such as Italian ryegrass or stubble - turnips to supplement his winter fodder in times of scarcity. Machinery is always available for such operations and there is no shortage of an area of stubble which can be put to this use. The abundance of power on the cereal farm makes light work of any mechanical operations such as the making of silage, topping of pastures and cultivatiors for renewing grass.

Grass and Dairying

Dairy farming is frequently associated with cereal production. At the time when milking bails were popular it was not uncomon for the dairy herd to move round the farm and leys of three to four year duration were utilized for grazing sometimes integrated with conservation or supplemented by one year cutting leys. With the virtual disappearance of the bail the picture has changed. Fixed milking parlours with their associated yards, cubicles and silage and hay stores have meant a concentration of the grazing for the herd in the vicinity of these facilities with a separation of the conservation grassland to the nore remote areas of the farm grown in rotation with the cereals. The pernanent type of sward has becone popular for the grazing area consisting of the late leafy perennial ryegrasses which thrive on close defoliation and heavy nitrogen fertilizing and are capable of forming a dense turf which minimizes poaching danage. Ploughing is rarely necessary so that the impact of this part of the farm on the fertility of the arable land is less than when bail milking was in vogue. The yarding of the animals in winter does, however, provide an abundance of dung which is available for use on the arable areas within easy reach. Hitherto referred to as the slurry problem, the situation is changing with the high cost of fertilizers and the slurry is rapidly becoming an asset and nore serious attention is being given to its efficient disposal. Dairy cow grazing can be concentrated on as little as half an acre of grass so that the pasture area can have only a linited effect on the overall farm fertility.

Silage and hay for the dairy herd will come in the main from areas renote from the buildings but distance does have a bearing on the areas cropped for grass conservation. One or two year leys based on Italian ryegrass and early types of perennial ryegrass are normally used, with modest dressings of nitrogen. The difficulty of handling the very heavy cuts potentially available fron the lavish use of nitrogen places a linit on the quantity of fertilizers applied.

Dairy herds usually of ten carry the appropriate number of followers. The arable farm is well placed for rearing with the possibility of newly sown leys iree from parasitic infestation. The young stock frequently utilize the conservation areas and there are few problens in providing for their needs.

Grass and Beef

Beef is a popular enterprise and can be integrated with arable cropping rather more easily than dairying. There is no restriction to the vicinity of the buildings during the grazing season so that the full benefit of the ley break can be realised. As in the case of young dairy replacements health problems are more easily tackled and the provision of clean grazing presents few headaches.

There is a tendency to increase the intensity of stocking during the grazing period. While the process has not gone as far as with dairy cows a number of systems incorporating "paddock grazing" have been demonstrated for beef grazing allowing a heavier stocking capacity coupled with satisfactory growth rates. The 18 month system in which the animal is kept growing actively for the entire period to slaughter at eighteen to twenty-one months is popular on many farms while others are successfully practising more intensive systems with older finishing ages.

Building design too has revolutionized beef on many farms. Modern multipurpose buildings are popular, the building being frequently utilized for corn storage in the Autumn and early Winter and as a fattening yard during the later part of the winter.

Conservation is fairly easy on the cereal farm with its abundance of tractor power. Silage is the preferred form of winter feed as this is easily fitted into the work on the farm. Rapid ensiling is the key to success and this is easily achieved. The best silage is normally made in the vicinity of the animal yards but second quality material can be ensiled where grown and fed in the field on many classes of soil particularly in early winter and to store animals.

The finishing of store cattle is a frequently popular enterprise on the cereal farm. Possibilities exist for growing catch crops of Italian ryegrass, kale and other brassicas for grazing during the early winter with later fattening in the yards. The possibilities of feeding home produced grain and the abundance of cheap straw are an advantage denied to many other beef producers.

Beef systens are thus infinite in their variety and the cereal producer on dry land is uniquely placed to take advantage of the rather changeable scene and make the most of the prevailing market situation.

Grass and Sheep

Sheep production is the traditional adjunct to cereal growing. In the past the sheep were grazed on the red clover and roots considered necessary as a break to cereals. Today the scene is completely different, the sheep being carried nuch in the same way as beef on short term grass leys. To a large extent sheep have defied intensification so that on most cereal farms they are carried extensively and well below the numbers which have been demonstrated as feasible. Fencing is a deterrent to intensification but the cereal farm is well flaced to take advantage of the disease control which is possible in this situation and is the key to more intensive production from sheep. The Grassland Research Institute is currently demonstrating the potential of sheep on the arable farm with highly fertilized short leys and rigid disease control.

In a similar way to the beef finisher on the cereal farn so the purchasing of autumn store lambs and early winter fattening is feasible and popular. Good autumn grass and roots are easily produced. Many producers too make high grade silage for part of the winter feed. The quantities necessary, however, are small and have a negligible effect on the cropping policy.

Some Benefits of Grass as a Break Crop

Continuous or close cereal cropping can lead to a number of problens such as the build-up of cereal diseases and pests, arable weeds such as couch, blackgrass and wild oats and a deterioration
in the structure or workability of the soil. The introduction of a break crop can do much to improve this situation. The inprovement will depend on the duration and use to which the break crop is put.

The grass break gives an excellent rest fron cereal diseases especially "take all" and the leaf and straw pathogens. A one year ley will alleviate the disease problea somewhat but greater benefit is derived from longer breaks of two or three years. Careful cropping with grass can reduce the incidence of weeds such as couch. In this instance the break can be a twomedged weapon and leys cut for conservation or herbage seed will encourage couch grass, and benefit will only be derived when longer ley breaks are used with intensive grazing. Wild oats are reduced during a grass break especially if the grass stays down for a number of years and there is no restriction to the use to which the grass may be put. Meadow grass is unlikely to be reduced cluring a grass break and a long period in grass would be necessary to effect much improvenent in the case of blackgrass. The pests of grass can affect cereals and the seriousness of frit fly to grassland and to subsequent cereals has been fully appreciated only in recent years.

Cereal nonoculture has been blamed for an alleged deterioration in soil structure. The situation is complicated since structure can be damaged in many different ways and soil types vary in their stability. It is generally agreed that a break in grass is beneficial to soil structure and workability due to the increase in soil organic matter which results during a period in grass and the return of animal residues fron the associated livestock enterprise. The one year ley, however, cannot be expected to contribute much to soil organic matter unless large quantities of farmyard manure are available for surface application. The one year red clover ley has been mentioned earlier as an excellent entry for winter wheat. In this case the benefit is less to soil structure than an improvement in the soil nitrogen status following a leguminous crop and a temporary reduction in soil pathogens and pests. For a real improvement to soil structure a three year break in grass provides the best answer especially when associated with intensive livestock.

Grazed grass is more beneficial than that taken for hay, silage or grass seed and there is little to choose between the grass species. Cocksfoot has long been held in high regard for improving the structure of heavy soils but experimental evidence indicates that ryegrass is equally effective.

The cereal farmer then is in a situation where a number of alternatives are open to hin to make profitable use of his grass break in the sequence of cereal crops. Many of the opportunities are unique to the cereal grower and enable him to enhance his fertility, break down cycles of disease and pests while at the same time building into his systen the flexibility which is so necessary in modern farming practice.
Introduction
In the study of cash break crops carried out by this Department in 1970 1. a postal survey of nearly 1200 farms established the following broad patterns of cropping on "nostly cereals" farms 2 in Southern England.
Percentage of total farm area
Cereals
67
Non cereal cash crops 7
Fodder crops and fallow 3
Temporary grass and lucerne 10
Permanent grass 10
Rough grazing and other area 3
100

Comparison with the national cropping figures shows that these farms differed very little in terms of land use fron the broader national average on this kind of farm and moreover that the picture has changed relatively little since then. The proportion of farm area which is devoted to grass - whether temporary or permanent is (by definition) relatively small. But in absolute terms grass often forms an important and integral part of the farming system both solving and creating cortain technical and cconomic problens. It was therefore decided as part of this Department's Iong-term interest in the general problem of break crops in Southern England, to examine the grassland aspect of these farms in more detail.

To this end a sub-sample of 174 farms was selected from the 1200 on which not less than 20 acres of temporary grass 3 existed. The selected farms were visited during 1972 when the farmers and farm managers involved kindly answered a dotailed enquiry into the size, use and management of this grassland area. The purpose of this section, and of the next section, is to describe the results of that enquiry. In this section the emphasis is on a description of the farms and the grassland practices adopted; in the next it is on the more quantifiable findincs for use in farm planning.

[^2]To do justice to the subject this section is lencthy and in order to facilitate easy reading it is, as far as possible, confined to text with rast of the tables relegated to Appendix II. The topics that are touched on are as follows:

Page

Location and type of farm 15
Grass in the crop rotation 16
Why temporary grass on cereal farms? 18
Factors dictating the area of grass 19
Problens associated with grassland 19
Livestock numbers and iforage acreage 20
Composition and duration of temporary grass 22
Hethod of ley establishment 23
Types of seeds aixtures 23
Methods of grassland management 25
Conservation 26
Other fodder crops 26
Arable by-products 27
Livestock policies 28
Non-livestock farms 33
Hedges 33
Conflicting labour requirements 33

Location and type of farm

The visited farns were located in the four counties of Berkshire, Buckinghamshire, Hampshire and Oxfordshire. Their detailed geographical and soil-type location and their broad production characteristics are shown in Table 1 and 2 of the Appendix. In Table 2 a dual classification by soil and production type ${ }^{1}$, has been adopted that is frequently used (either separately or together) throughout the report.

Cropping patterns on the 174 farms for 1970 (the time of the original postal survey) and for the year in which they were visited for this study, 1972, are detailed in Appendix Tables 3 to 6. The average size of farm in the sample increased by approximately 40 acres (6%) during this period. The proportion under arable cropping declined very slightly but the proportion of arable devoted to cereals and to temporary grass both increased at the expense of a decline in the area of other cash crops. Temporary grass on the 174

1. See definitions Appendix I
farms in 1972 averaged 18% of the total farm area and a slightly higher proportion (20.8%) of the arable acreage only. On a percentage basis virtually all of the rest of the arable area was in one or other of the three main cereals: dominantly barley (42.6%) and wheat (25.9%). Generally there was little difference in cropping pattern between farms in the predominantly chalk or limestone soil areas and the others. But the relationship varied in the following way between cereals and temporary grass according to the nature of the livestock enterprise. Not unexpectedly the highest proportion of temporary grass was found on the dairy farms and the lowest on the non-livestock ones.

	Single Suckle	Other Cattle	Dairy	Sheep	Cattle and Sheep	$\begin{aligned} & \text { No } \\ & \mathrm{L} / \mathrm{S} \\ & \hline \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Types } \\ \hline \end{gathered}$
Number of farms	20	50	26	20	43	15	174

Percentage of arable area in 1972

Cereals	$73 \cdot 6$	$75 \cdot 2$	67.8	$73 \cdot 1$	$71 \cdot 4$	$79 \cdot 4$	72.2
Temporary Grass	$18 \cdot 1$	$20 \cdot 0$	23.8	20.4	21.6	$13 \cdot 9$	20.8

The proportion of permanent grass and rough grazing in the total farm area varied within slightly wider limits than the temporary grass (Appendix Table 6). At the lower end, it accounted for under 8% in the "sheep" group, but in the "single suckle" group the proportion was nearly 14% of the farm area. These two extremes may well be a reflection of the suitability of these two classes of livestock for utilizing permanent grass and rough grazing. In many cases this area represented an irreducible minimum of relatively unploughable land, the utilization of which was stated by a number of farmers as a reason for keeping a grazing livestock enterprise. An additional area of temporary grass being necessitated in order to support a viable sized unit. The Place Occupied by Grass in the Crop Rotation

Whilst rotation or cropping sequences may not be rigidly adhered to by many farmers, most of those in the survey had some sequence of crops in mind when planning their cropping policy (Appendix Table 7). Many farms were operated under two or more separate rotations to suit blocks of land having different soil types or accessibility, i.e. continuous cereals or barley, or a sequence including a break crop other than grass on part of their area.

Clearly (Appendix Table 7) the most usual crop to follow grass was wheat - after about 80% of the grass breaks - with barley very much second in frequency. In about 50% of the cases where a barley or an oat crop followed a ley it in turn was followed by one or two wheat crops before the land again carried barley. This practice, of introducing a barley crop between a ley and the following wheat crop or crops was a little more common in the "chalk/limestone" areas than in "other soils" areas. The crop preceding a ley was even more universal, 85% of the leys followed barley. In the few instances where crops other than wheat or barley either preceded or followed a ley they were usually adding an additional year to the break from cereal growing provided by a short ley.

From Appendix Table 8 it will be seen that 5, 6 and 7 year rotations were the most common and that one, two or three year leys respectively were very roughly associated with them, although more one year leys occurred in the 6 years rotations that in any other. Appendix. Table 9 shows that there was a roughly similar association of three, four and five year cereal runs following one, two and three year leys, although within this grouping there was very little relationship between length of ley and the length of the following cereal run. Similarly with the number of wheat crops grown after a ley (Appendix Table 7), the most popular number was two with a single crop in close second place. The ley was not followed by wheat in rather more rotations on the "chalk/limestone" soils than on the "other soil" types. Although there was again no close association, a single wheat crop most frequently followed a one year ley and two years of wheat frequently followed the two year leys on both soil types.

Thus a general picture emerges of the most common cropping sequence as being of six years duration with a two year ley break followed by one or two wheat crops depending on weed and fertility conditions followed in turn by three or two barley crops. This, although giving roughly the same proportions of wheat to barley as shown in Appendix Table 4, represents a higher proportion of grass to cereals than in the sample as a whole. The "non-grass" rotations and areas under continuous cereals will account for this difference.

Why is temporary grass grown on cereal farms?

In both the 1970 and the 1972 surveys co-operating farmers.were asked their reasons for growing temporary grass. Seven possible reasons were suggested and other reasons specified by the farmers were noted (Appendix Table 10). The overall response from the 174 farms indicated the following order of priorities in 1972.

Replies \% of 174 farms 1

To improve cereal yields 70

To maintain soil structure 70

To control persistant weeds 45

For cereal disease and pest control44

For the income generated (mostly through livestock) 30
To keep down fertilizer costs for cereals28

As a short duration crop in place of a full bare fallow 18
Other reasons
The most frequently given "other reasons" for growing grass were to provide feed for livestock; i.e. it was dictated by the livestock policy, and secondly to provide a wheat entry - probably linked to the leading reason "to improve cereal yields".

Slight differences in the order of priorities are apparent between 1970 and 1972, and between the different groupings within the 174 farms but the general pattern was fairly consistant. There was, for example, a shift away from regarding grass as an income generator between 1970 and 1972. As might be expected, the "no livestock" farmers who grew grass emphasised the income generation aspect more than the livestock farmers, but to a much lesser extent in 1972 than in 1970 as a result of the poor market for hay in that period. Again not surprisingly, the "other soils" farmers emphasised the beneficial influence of grass on soil structure to a greater extent than did the "chalk/limestone" farmers, the former placing this first above the benefits to cereal yields in 1972. The fact that a large proportion of the "cattle and sheep" group of farms were situated in "other soils" areas 2 , may account for the emphasis placed on soil structure benefits by this group.

[^3]Rotational reasons 60
Livestock requirements 50
Other factors15

Rotational requirements were given as the main factor dictating the area of temporary grass (Appendix Table 11) on all except "dajry" farms and the "cattle and sheep" and "other cattle" farns in "chalk/ limestone" areas. The emphasis for these groups was placed on the requirements of the livestock. Relatively few "other factors" were given: field size, a use for land unsuited to arable cropping and production of hay for sale being the most common.

Problems associated with grassland (Appendix Table 12)
Just one third of the 174 farmers stated that they experienced technical and managerial problems in connection with grassland, one quarter said that its inclusion in the farm cropping system involved problems of capitalisation for livestock and over a fifth claimed that weed problems were created by temporary grass. Some experienced all three. Technical/managerial problems appeared to be least frequent on the "sheep" farms and most prevalent in the "no livestock" group and on farms in "other soils" areas. The four most comon problems, accounting for over 50% of the replies on this theme were, in order of irequency:
(i) Fencing for livestock.
(ii) Difficulties in ley establishment including poor yields from undersown cereals.
(iii) Problems created by the labour requirement for conservation and ditficulties associated with effective conservation. (iv) DiEftrisities in utilizing grass profitably including poor profitinility of grazing livestock enterprises.

Cupital problems were rather more prevalent on "single suckle" and "cattle and sheep" farms than the other groups, possibly due to their investment in beef cows - an enterprise having a fairly slow turnover. By far the major difficulty in this context was the capital investment required for the livestock thenselves, but capital for fencing and water supplies also imposed restrictions on some farms. In relatively few cases was the capital requirement for buildings mentioned.

In spite of the fact that 45% of farmers in the sample claimed to grow temporary grass in part at least because it helped to check or control persistant weeds in cereals, 22% also claimed that grass itself gave rise to weed problens. Significantly perhaps a very much smaller proportion of the "no livestock" group made this assertion. The weeds most frequently mentioned were couch, followed by volunteer grasses in the succeeding cereal crops. Other weeds mentioned were black-grass (mainly in "other soils" areas) and wild oats (mainly in "chalk/limestone" areas).

Cereal crop disease and pest problems associated with temporary grass appeared to be of very minor significance, the pests being mainly leather jackets and slugs (on "other soils"). The only cereal disease getting a mention was mildew.

Livestock numbers and composition of the forage acreage

Attention has already been drawn to the basis used for grouping the 174 farms according to their livestock enterprises. It may be appropriate at this stage however to describe in a little more detail, the type and number of livestock (Appendix Table 13) and the composition of the forage area (Appendix Table 14) in the six groups. The essential outline presented in the following Table shows clearly that in all groups except the "no livestock" group the whole basis of the grass and forage systens is grass utilized by cattle or sheep. Other forage crops are of relatively small importance and the other uses of grass also account for a relatively small area.

Livestock Numbers

Grazing livestock per 100 adjusted acres ${ }^{1}$ of forage grassland Cattle

	Single Suckle	Other Cattle	Dairy	Sheep	Sheep	No L/S
Dairy Cows	-	-	34	-	-	-
Beef Cows	36	3	2	-	13	-
Other Cattle	64	100	50	-	48	-
Ewes and Rams	-	-	18	302	90	-
Other Sheep over 6 months	-	-	4	76	59	-
Outdoor Sows and Boars	-	1	2	2	5	-
Pigs under 4 months	-	\cdots	\cdots	\cdots	20	-

Composition of forage area acres per farm

Adjusted acres of forage grass per farm	220	138	389	112	211	95
Add:						
Fodder crops	9	2	23	10	17	
Purchased keep and fodder (acres equivalent)	4	3	5	3	7	-

Deduct:

Keep let and area used by pigs and horses
Acreage equivalent of
hay sold
$=$Forage acres per farm used by cattle or sheep

Average forage acres per grazing livestock unit	1.62	1.61	1.55	1.45	1.60	-

1 Adjusted for grazing equivalent of rough grazing Symbols: - means Nil
.. means less than 0.5

A breakdown of the temporary grass acreage on the 174 farms according to its duration (Appendix Table 15) reveals a roughly similar pattern to that derived from the crop rotation analysis. Leys over three years duration, however, account for a larger proportion of the grass area than the rotation analysis would indicate. This may be because a number of long leys were in fact shorter leys left down for an extra year or so.

Two year leys account for a little over one third of the temporary grass area excluding that set aside for herbage seed production, more on the "chalk/limestone" farms than on those in the "other soils" areas.

Composition of temporary grass area

	Chalk Limestone	Other Soils	All Types
	\%	\%	\%
1 year leys	22	14	18
2 year leys	42	30	35
3 year leys	30	23	27
Over 3 years	6	33	20
	100	100	100

Another feature is the hicher proportion of shorter leys on the "chalk/limestone" farms (64% of the area was down to one and two year leys compared with 44% on the "other soils" farms).

When the composition of the grassland area is related to the type of livestock enterprise instead of soil type it appears that the shorter leys are particularly favoured by the specialist "sheep" farmers and the "no livestock" group also, to a lesser extent, by the two groups having beef cattle only.

Percentage of temporary

Livestock enterprise group	grass down to 1 and 2 year leys
Single Suckle	59
Other Cattle	61
Dairy $\quad \therefore$	52
Sheep	79
Cattle and Sheep	37
No livestock	69 (63\% 1 year)
All types average	53

There may however be some connection between these proportions and the soil type area because half the 'dairy" farms and nearly three quarters of the cattle and sheep farms are situationed in "other soils" areas (Appendix Table 2)。

Method of Ley Establishment

The most usual method of ley establishment was by undersowing to a cereal crop, almost invariably barley (Appendix Table 16) as opposed to direct seeding.

Proportion of temporary grass area

	Chalk/Limestone	Other Soils	All Types
	\%	$\%$	$\%$
Undersowing to a cereal	186	68	76
Direct sowing	14	32	24
	100	100	100

Undersowing was rather more usual for one and two year leys than for leys of 3 years duration but the proportion of leys of over 3 years duration which were established by undersowing was greater than for 3 year leys. One inference which may be drawn from this is that, as indicated in the previous section, some leys reported as of over 3 years duration were origianally intended to be of shorter duration.

When the method of establishment is examined in relation to the livestock enterprise on the farm it is noticeable that a smaller proportion of the temporary grass area was established by undersowing (61%) in the "dairy" group than in any of the others. This may be a reflection of the importance placed on productive grassland for this enterprise.

Composition of the Temporary Grass Area - Types of seeds mixture
The most striking feature in the analysis of seeds mixtures overleaf .and in more detail in Appendix Tables 17 and 18) is the very small proportion of the temporary grass area which is down to leys which do not contain ryegrass. This must considerably reduce the value of leys in general as a check to cereal disease. Notable exceptions are the leys of over three years duration, just over a third of the area of these did not contain ryegrass. However, the figures clearly show the popularity of ryegrass either alone or in mixtures with other grass species and clovers.
Proportion of tenporary grass area

Chalk Limestone	Other Soils	All types
16.0	14.3	$\%$
25.0	27.5	15.1
		26.4
51.2	38.2	44.6
5.0	14.8	9.9
2.8	5.2	4.0
100.0	100.0	100.0

Appendix Table 18 presents an analysis of the seeds mixtures by livestock enterprise grouping as well as by intended duration. In view of the small acreages involved in some of the categories it would be unwise, however, to draw many conclusions from this analysis.

The combinations of cutting and grazing treatment, and systems of grazing management, practiced on the 159 Parms which carried livestock are summarised below and a more detailed analysis will be found in Appendix Tables 19 and 20.

Cutting/Grazing Treatment

Percentage of 159 farms on which the treatment or system was operated over at least part of the grassland area.
Alternate cutting and grazing through the season 37
Separate cutting and grazing blocks 47
for part of the season
Areas set aside for cutting only 36
Areas set aside for grazing only 50
Zero grazing 1
Grazing Management System
Set stocking 57
Rotational paddocks 36
Rotational paddocks in large blocks 13or fields
Forward creep (for sheep) 2
Sideway creep (" ") Nil
Rotational strips without a back fence 7
Rotational strips with a back fence 3
No system. 13
Not stated 9

Note: 159 farms $=100 \%$, hany farms operated more than one system.

With the exception of grass areas intended for cutting only, a combination of cutting/grazing treatment and grazing management would be operated on any given piece of grassland. For example alternate cutting and grazing might be operated with rotational paddock grazing. The high proportion of replies stating that the grazing management was set stocking may be a little suspect. Although many farmers may try to manage their grazing on a set stocking basis the system adopted might not in all cases be regarded as set stocking in the strict sense.

Quite a large proportion of the grass area, especially of shorter duration leys, was set aside for cutting only. This implies not only grass grown for this purpose alone but also leys set aside for cutting only in a particular year of their life i.e. the first or the second year of a two year ley.

In whatever light one may regard the pattern of replies on grazing management, they show clearly the popularity of systems having a low labour requirement and the tendency to avoid the more "intensive" strip and creep systems. Even in the "dairy" group only a third of the farms practiced some form of strip grazing.

Areas of grassland used for conservation
The proportions of the adjusted area of forage grassland nown for conservation are summarised below, (see also Appendix Table 21). The proportions are calculated on the area nown including the areas of any second cuts.

	Conservation per 100 adjusted acres of forage grass						
	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	A11 Types
Hay	30	46	24	40	30	62	34
Silage	18	9	20	-	2	-	11
Haylage	-	-	3	-	1	-	1
Drying*	-	-	-	-	6	-	2

*One farm with a commercial grass drying plant - nearly all the production sold.

Hay was clearly the most important method of conservation and only on farms having a sizeable beef or dairy cow population did silage play a significant role.

Fodder Crops

From the Table on page 21 and Appendix Table 13 it will be seen that the contribution from fodder crops was on average fairly small although they made a significant contribution to livestock feeding on some farms. The composition of the forage crop area is set out in Appendix Table 23. Kale type crops accounted for a major part of the fodder crop area on the cattle and dairy farms while roots made a more significant contribution on the farns carrying sheep. Only on dairy farms were arable silage crops including maize of any importance.

```
                    Single Other Cattle All live-
```

Kale	50	58	54	48	24	39
Roots	-	5	-	40	42	22
Other including rape, mustard mixtures and rye	50	26	2	12	29	17
Cereal silage	-	-	35	-	5	17
Lucerne	-	11	9	-	-	5
		100	100	100	100	100

Arable by-products and catch crops

The contribution to animal feed by arable by-producto and catch crops is indicated in Appendix Table 22. Significant, though not large, by-product contribution came from herbage seed straw and a certain amount of autumin and spring grazing on the herbage seed area. The extent of both these contributions depend very much on the species of herbage being grown for seed. The grazing of winter cereals also provide some early spring keep for sheep.

Of the catch crops, stubble turnips accounted for the largest area followed by stubble grazings of italian Ryegrass.

> Composition of total area of catch crops grown on 159 livestock farms
$\%$

Stubble Turnips
 33

Italian Ryegrass 25
Rape or Rape and Turnips 24
Other types of catch crops 18

Past, Present and Future Livestock Policies

The reasons why any business proprietor makes a particular change or adopts a certain policy in his business tend to be highly individual and dictated by a number of particular personal circumstances. Thus any attempt to analyse reasons, considerations or factors contributing to the policies adopted by a relatively small group of 174 farmers is bound to result in a multiplicity of answers which present no very coherent pattern. Especially if the decisions in question are taken at differing periods in time. There are, however, a number of salient features which emerge, some of which are summarised below.
(1) A fairly high proportion of farmers have persued their present livestock system without major change for over 10 years:
Single Other

Suckle Cattle Dairy Sheep | Cattle |
| :--- |
| \& Sheep |

Proportion of farmers operating $35 \% \quad 36 \% \quad 42 \% \quad 45 \% \quad 56 \% \quad 4.7 \%$ present system for 10 years or more
lany claimed not to have made any major change for a great deal longer than ten years.
(2) Personal preference was the most frequently mentioned consideration involved in the original choice of system, considerations involving labour requirements or utilization and suitability of land or grassland for a particular livestock system also played an important part.

The three most frequent considerations in each group including "ties" for one of the three "placings" were:

	Proportion of number of holdings in each group					
	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Gheep	No L/S
	\%	\%	\%	\%	\%	\%
Personal preference	45	34	35	55	33	27
To utilize land/grassland better suited to the enterprise	30	-	31	-	23	20
Low labour requirement or to improve farm labour utilization	30	30	-	25	43	-
Simplicity of the system	30	28	-	-	-	40
Tradition	-	-	42	-	-	-
To improve soil fertility through grassland	-	-	-	25	23	-
Low capital requirement	-	-	-	35	-	20

Note: The percentages add to more than 100% because frequently more than one consideration was involved.

It is interesting that simplicity of the system does not appear among the sheep farm "placings".
(3) In the period 1968 to 1971 the pattern of changes made in livestock enterprises showed no particular pattern of shift out of one type and into another except for a movement out of milk production (6 "from" 2 "into"). For the other enterprises the movements "from" were broadly balanced by the movement "to" similar types of enterprise within the sample of 174 iarms. There was however, a tendency to increase the size of existing livestock enterprises, nearly 10% of the 174 farms did so as against just over 2% who reduced their livestock during this period. Other frequently made changes, i.e. those occurring on 5% or more of the total of 72 farms making some form of change, were as follows:

(5) In relation to the changes they had made, the farmers making them were asked specifically whether any of three particular considerations influenced these decisions:

Percentage of 72 farms making a change 1968-71

Expansion of the farm business

42profit per acre devoted to the enterprise 33
Return on capital invested25

Perhaps the most interesting feature of these replies is the proportion of farmers (over a quarter) for whom none of these factors were important considerations and secondly the suall proportion who considered that return on capital was an important factor.
(6) Fresh injections of capital were, however, required in over 60% of the changes made, mainly for livestock but also quite frequently for buildings. The most usual source other than transfer fron the enterprise discontinued, was outside borrowing, i.e. fron banks, but fresh introductions of the farmers' own capital from some off-farn investnent was also quite frequent (31% of farms introducing fresh capital). Investment through the gradual build-up of the enterprise, i.e. saving through deferred output, was a less common though not unusual source of capital (over 8% of farmers).
(7) No change was planned for the immediate future in the livestock enterprise on 40% of the 159 farms in the sample which carried livestock and of the 60% planning a change of some sort nearly a third were simply planning to expand their existing enterprises. For the others a multiplicity of possibilities again precludes any distinct pattern. The two most frequently mentioned enterprises which farmers had definite plans to move into were milk production (5 farms) - in contrast to the changes in the previous four years and single suckle cow herds selling the progeny fat (5 farms). The retention of surplus dairy calves and rearing them for beef was planned on another four dairy farms. Perhaps not surprisingly, fattening purchased store cattle was the only enterprise which can be singled out as one which any nember of farmers were planning to give up.
(8) Reasons given for the changes planned, follow roughly the pattern evident in some of the provious analysis tables. Farmers planning expansion of their livestock nurbers gave the following reasons most frequently:

Percentage of farmers
\qquad
The improved profitability of livestock 44

To expand or intensify the farm business 13

To improve the farm fertility through grass and livestock
and farmers planning other changes, i.e. from one enterprise to another or the introduction of a fresh enterprise were mostly prompted by the following:

The improved profitability of livestock 16
Difficulty in obtaining calves or the high price of calves for rearing

16
To reduce labour requirements because of cost or labour shortage
(9) In 1971-72 the impact of E.E.C. membership on farmer's decisions was not very great. Of the 159 livestock farms in the sample just under 40% said that this was a factor influencing their future plans.
(10) Response to the question "have you ever seriously contemplated giving up livestock" provides further evidence of the importance attached to grassland and grazing livestock enterprises on a large proportion of cereal farms. Nearly 85% of the 159 livestock farms replied "No". Problems in livestock management and the desire for a simplified system appeared to be factors influencing the 6% or so of. farmers who had considered giving up their livestock enterprises.

The few farmers who had farmed without livestock in the past but had abandoned doing so, gave their reasons for keeping livestock again as poor profits from cereals and an increase in weed problems.

Question on policy which were put to the small group of 15 non-livestock farmers (all of whom had sone area of temporary grass) of necessity differed from the questions designed for the livestock farmers.

The fairly high proportion (4 out of the 15) who had been operating their system for over 20 years (in "other soils" as well as "chalk/limestone" areas) indicates that in the right hands such systems can operate successfully for an indefinite period. Further evidence of this is offered by the fact that three out of these four farmers (and 8 out of the 15) had no intention of keeping livestock again under any foreseeable circumstances. Two of the 15 however were in effect farming with livestock by taking in their neighbours : animals at keep or letting the grass.

The most frequent reasons given for originally giving up livestock were labour problems (5 farms) and inadequate buildings, fencing or water supplies ($\&$ farms). Three farners inherited their non-livestock systens and three others mentioned the high capital requirenents of livestock as a factor in their decision to operate non-livestock systens.

Hedges

The general impression conveyed by farners answers to questions about hedges was that with the aid of modern triming machines and contractors: services hedge upkeep presented few problems and no great cost. Although 37% of livestock farmers claimed that they did not retain the hedges they had in order to provide shelter for their livestock 57% did do so partly at least for this reason. Comments indicated that most farmers had already reduced the hedges on their farms to the minimum that they considered desirable and a few were considering replanting some.

Conflicts between the labour requirements of grassland and cereals

The main labour demands associated with grassland are those of the livestock which utilize it and that required for its conservation. Although the labour demands of livestock are generally more level than those of cereal production, many livestock enterprises require constant if minimal attention which can be an embarrassment at such peail times as cereal sowing and harvest. Also, even with the best of planning,
busy times with the livestock such as lambing, calving, yarding etc. can conflict in an abnormal season particularly with drilling. Labour requirements for grassland consdervation on the other hand, although critical in timing, tend to fall into a period when the requirements of cereal production are low - between spraying and harvest - and so create few problems. In a number of cases conservation fitted in well to the extent of levelling up the labour demand through the summer. The relative importance of both the potential points of conflict is indicated by the proportion of farms on which difficulties were experienced:

> Proportion of 159 livestock farms on which there was conflict at certain periods with labour requirements for cereal production

> Labour demands by livestock enterprise 30%
> Labour demands of grassland conservation 8\%

Spring drilling was the most frequently mentioned "problem" time followed much less frequently by Autumn drilling and still less frequently be difficulties at harvest time. The available labour at these times was "stretched", usually by working longer hours and by keeping the attention given to livestock down to a minimum, also by the use of contract or casual labour in some instances. The general tenure of the replies, combined with the high proportion stating that there, was no problem, conveyed the impression that most difficulties were avoided by careful selection of the livestock enterprise or by planning to avoid a combination of peak requirements. Also, especially on larger farms, through having the livestock units of sufficiently large size for then to be self.contained in terms of labour, except for occasional help, and by mechanization of such jobs as bale handling the cost of which can be spread over straw as well as hay.

The reader is advised to read the following text carefully before attempting to use or interpret the data contained in this section.

Explanation of the data

The tables in this section have been compiled from data collected on a survey (question and answer) basis rather than from purposely kept records on the farms involved. The periornance standards presented hore are therefore intenced as a guide to the levels of input and output achieved by grazing livestock eaterprises on cereal growing farns in Southern England rather than as an exact record of periormance on the particular farms included in this survey. Also, ontwat and the main inputs have been shown as far as possible in physical feras the reader being left, in times of rapidey changing prices and costs, to apply current values: ${ }^{1}$

The reader is ennecially asked to note that some variable and fixed inputs have been omittied, In the case of varianle cosis this has been either because they are relativciy small (e, E. spreys for grassland) or are fairly easily ascertained from the various farm management handbooks and enterprise study renorts available, and are not likely to be markedly different on these farms (e.g. veterinary fees and medicines and the cost of seed for grassland and forage). Certain fixed costs have not been shown, not because they can be ignored but because their assessment would have involved a major additional task which lay outside the scope of this particular survey (e.g. labour and tractor costs for grassland and for hay and silage making, also investment in permanent fencing and water supplies).

Use of the Data

It is intended that the main use of this section will be to provide a bases upon which to build budgets for actual or nodal situations. The main economic features of a variety of grazing livestock enterprises have therefore been described in the hope that they can be varied to fit a fairly wide range of circunstances on cereal farms.

1. Capital investment in machinory and empipmont for grossland and livestock is the ony itow mich is siored in aranovel terms (based on 1974 new values) becalise of the difificulty of finding neaningful physical measures.

The data have of necessity, been grouped into five main types of grazing enterprise ${ }^{1}$ as follows:-

1. Single suckling
2. Other cattle (but not dairying)
3. Dairying
4. Sheep
5. Cattle and sheep

Tables showing the physical distribution of the origin and sales of livestock within these groups have been placed in Appendix III leaving the main set of tables that comprise this section to itemise the more important details of performance in terms of physical production and the principal inputs used to create that production. There are 12 main tables presented without text and dealing with:

```
1. Performance of livestock enterprises
2. Composition of livestock "output" and "input"
3. Concentrate feeding - farms with beef cattle only
4. Concentrate feeding - farms with dairy cows, sheep
    only, and cattle and sheep.
5. Concentrate feeding - some specific enterprises
6. Fertilizers
7. Labour
8. Machinery and equipment - capital
9. Machinery and equipment - an inventory
10. Buildings - age, type and usage.
11. Buildings - cost of construction 1967 to 1971
12. Field boundary maintenance
```

An indication of how the data contained in these tables may be used in building up a budget for an actual or modal situation is presented opposite. It depicts the kind of financial margin per forage acre over certain specified variable and fixed costs that might be expected at prices reigning at the time of going to print (i.e. late 1975), on a mixed cattle and sheep farm of the type comprising group 5 in this survey. The final result, of course, will always depend greatly on the proportions of any specific holding devoted to cattle and to sheep respectively as well as on the price and cost levels which are taken to be relevant at the time.

1. See Appendix I for a full definition of those five groups.

Table Number

4

Output	4	Adjusted liveweight output per forage acre $=4.04 \mathrm{cwt}$			
Cattre		64\％cattle $=2.59 \mathrm{cwt}$	25.75		67
Shicp		$\begin{array}{r} 36 \% \text { sheep }=1.45 \mathrm{cwt} \\ =1.45 \times 112 \times 50 \%=31 \mathrm{lbs} \\ \text { D.C.W. } \end{array}$	0.36		29
				Total	96
Variable inputs					
Cancentrasas （may be priced in more or less detail）	4	Cvt．ger livestock umit Cereals 6.22 Compounds 2.80 Others 0.39 ．	玉70／Ton €80／Ton £85／Ton	$\begin{array}{r} 21.77 \\ 11.20 \\ 1.60 \end{array}$	
		9.41		34.57	
		$34.57 \div 1.6$ forage acres per livestock unit $=$			22
Fertilizers	6	Units per forage acre $N=85) 2$ cwt．compound $P=30$ ） $1 \frac{1}{2}$ cwt．nitrogen $K=20$ ）	玉85／Ton \＆55／Ton	$\begin{aligned} & 8.50 \\ & 4.13 \\ & \hline \end{aligned}$	13
Other variable costs	Footnote （3）	Seed for leys and forage Sprays and sundry for grassland Veterinary fees \＆medicines		$\begin{aligned} & 2 \\ & 1 \\ & 4 \end{aligned}$	
	，			$\xrightarrow{7}$	7 42
Gross margin		$96-42=$			54

Fixed costs ${ }^{(2)}$
Labour for livestock Machinery $\&$ equipment

7

8

Standard	Calculated Output／Input
value per	Per forage
unit（1）	acre

虎 全
acre

合

（2）

Labour for
livestock
Machinery \＆
equipment

Man－days per forage acre $=1.48$ §10 per man－ day

Capital per forage acre 1974
$=20.2+$ price index change
since 1974（say 45\％）
$=29.3 @ 15 \%$
$=$ annual charge for
depreciation \＆repairs

Group		Single Suckle		Other Cattle		Dairy		Sheep		Cattle \& Sheep		All Farms with Livestock	
		Ave	$\text { Prem }{ }^{(1)}$	Ave	$\mathrm{Prem}(1)$	Ave	$\text { Prem }{ }^{(1)}$	Ave	Prem ${ }^{(1)}$	Ave	Prem ${ }^{(1)}$	Ave	Prem ${ }^{(1)}$
Number of farms		20	5	50	12	26	$\begin{gathered} 7 \\ \text { Acres } \end{gathered}$	20	5	43	11	159	40
Forage acres per farm		218	168	128	96	396	376	107	118	213	150	203	172
Forage acres par grazing livestock unit		1.62	1.11	1.61	1.03	1.55	$1.16{ }^{\circ}$	1.45	1.01	1.60	1.13	1.58	1.11
Livestock output per ${ }^{(2)}$ forage acre Liveraichtoutput per ${ }^{(2)}$	cwt.	3.50	6.26	5.37	11.19	$\frac{\text { Livew }}{6.46}$	9.55	3.52	5.37	4.04	6.76	4.97	8.39
grazing livestock unit	cwt.	5.67	6.95	8.65	11.53	10.01	11.08	5.11	5.43	6.46	7.64	7.85	9.31

ANNUAL NUMBER OF HEAD PER 100 FORAGE ACRES (See Table 2 for breakdown)

Cattle output (sales plus home reared replacements)	46.5	81.4	88.3	170.1	36.6	54.4	-		39.1	72.1	46.4	76.7
Cattle purchases ${ }^{(3)}$	13.4	41.1	86.8	172.0	3.8	9.9	-	-	26.6	63.9	27.7	53.1
Sheep output (sales plus home reared replacements)	-	-	-	-	40.7	50.1	477.8	732.4	205.3	226.2	102.8	136.5
Sheep (3) purchases	-	-	-	-	9.3	38.0	30.4	33.9	56.5	27.3	21.1	24.0

ANNUAL REPLACEMENTS PER 100 BREADING ANIMALS
Breading herd replacement

Heifers per 100 cows	11.0	10.6	-	-	22.7	24.7	-	-	-	-	$\begin{gathered} 13.5 \\ \text { (18 SS herds) } \end{gathered}$	$\begin{aligned} & 14.1 \\ & (6 \text { S.S.herds) } \end{aligned}$
Sheep per 100 ewes	-	-	-	-	NA	NA	20.4	16.0	23.2	21.6	20.4	18.5

Cattle

Sheep								
Group	Dairy		Sheep		Cattle \& Sheep		All Farms with Sheep	
Group								
	Ave	Prem	Ave	Prea ${ }^{(1)}$		Pren ${ }^{(1)}$	Ave	Prem ${ }^{(1)}$
Sheep output	$\%$	\%	\%	$\%$	$\%$	\%	$\%$	\%
Store lambs under 6 months	-	-	11	1	7	23	8	10
Store lambs 6 months \& over	-	-	7	-	5	2	5	1
Fat lambs under 6 months	33	24	62	83	42	37	48	56
Fat lambs 6 months \& over	59	76	9	6	30	35	27	27
Breeding sheep under 12 months	-	-	2	5	-0	-	1	2
Breeding sheep 12 months \& over	-	-	7	5	13		9.	3
Ewe flock replacement	3	-	2	1	2	2	2	1
	100	100	100	100	100	100	100	100
Sheep "input" ${ }^{(4)}$	\%	\%	$\%$	$\%$	$\%$	$\%$	$\%$	\%
Home bred lambs	76	24	94	95	73	3	79	82
Purchased:								
Store lambs under 6 months	-	-	-	-	5	-	3	-
Store lambs 6 months \& over	24	76	-	-	9	11	ε	15
Ewe lambs for breeding	-	-	6	5	13	1	10	3
	100	100	100	100	100	100	100	100

Notes on Tables 1 2 2

(1) Premium figures represent the best 25% of farms in the group in terms of liveweight output per forage acre.
(2) Liveweight output includes the liveweight gain by animals reared as breeding herd or flock replacements less the estimated liveweight of all young animals purchased. Liveweight "output" in the form of animals sold at the end of a breeding life (culls etc) is thus taken into account. The liveweight output from dairy farms includes the estimated equivalent of milk produced in terms of liveweight production. This estimation is based on the total S.E. requirements to produce an 11ewt. fat beast and for maintenance and production by a cow producing 977 gallons per year.
(3) The number purchased excludes purchased breeding herd or flock replacenents unless bought as young animals for rearine, it therefore represents the proportion of cattle or sheep output which originated as purchased animals.
(4) Excluding purchased replacements for the breeding herd or flock unless bought as young animals for rearine

Notes on Tables 3, 4 and 5.
(1) a. Group averages comprise all the farms in each enterprise group for which details of concentrate feeding were obtained.
b. The sub-groupings represent 25% of the number in the group average.
(2) These sub-groupings were almost identical with those consisting of farms having the highest liveweight output per forage acre.
(3) Three of the four farms in this sub-group carried sizable calf rearing units for purchased calves besides a single suckle herd.
(4) Based on the average number of livestock units for the enterprise calculated on an annual basis.
(5) (Table 5) Figures for specific enterprises have been calculated where five or more farms were involved for which feeding details could be separated.

Symbols:
.. means less than 0.005 cwt.

- means nil.

Sales

Group (1)	Farms with dairy herds			Farms with shoop onty			Farus with cattle and sheep		
	Group Average	Farms with highest liveweight output equivalent per feed acre(2)	Farms with lowest concentrate input per cwt. of liveweight output	Group Average	Farms with highest liveweight output per feed acre(2)	Farms with lowest concentrate input per cwt. of liveweight output	Group Average	Farms wzen highest liveweight output per feed acre(2)	Farms with lowest concentrate input per cwt. of liveweight output
Number of farms	19	5	5	20	5	'5	40	10	10
Type of concentrate				Ciwt. per average livestock umit ${ }^{(4)}$					
Cereals and equivalent straight feeds	7.86	14.79	7.48	2.31	1.00	0.12	6.22	8.27	2.46
High protein and grain balancer compoumds	0.97	1.72	0.62	0.02	-	-	0.68	1.46	0.05
Bolanced compounds	10.51	4.52	2.06	1.43	1.74	0.09	1.56	1.33	0.94
Minsrals etc.	0.04	-	0.10	0.04	0.04	0.01	0.09	0.01	0.01
Drixd grass (ono famm)	-	-	--	-	-.	-	0.17	-	-
Bre vers grains (two farms)	0.92	-	\checkmark	-	-	-	-	-	-
Urea, glucose and malasses feeds	0.48	0.21	0.89	0.01	0.03	0.10	0.13	-	0.15
Calf milk and rearar feeds	2.03	3.61	0.37	\bigcirc	-	-	0.36	0.88	0.74
Total concentrates	22.81	24.85	11.52	3.81	2.81	0.32	9.41	11.95	3.75
	\cdots			Acres per average livestock unit (4)					
Acreage equivalent of concentrates	0.74	0.80	0.37	0.12	0.09	0.01	0.30	0.39	0.12
Forage acres	1.55	1.16	1.58	1.45	1.01	1.39	1.60	1.13	1.75
Feed acres	2.29	1.96	1.95	1.57	1.10	1.40	1.90	1.52	1.87
	cint.	cwt.	civt.	cwt.	cut.	cwt.	cht.	cut.	cut.
Total concentrates per cwt. of liveweight output Liveweight output per average grazing livestock unit	220	2,24	1.33	0.75	0.52	0.06	1.40	1.56	0.65
	10.01	11.08	8.68	5.11	5.43	5.57	6.46	7.64	5.75
Liveweight output per feed acre	4.37	5.65	4.45	3.25	4.94	3.98	3.40	5.03	3.07
Liveweight output per forage acre	6.46	9.55	5.49	3.52	5.37	4.01	4.04	6.76	3.29
Composition of output	\%	\%	\%	\%	\%	\%	\%	\% $\%$ '	\%
Milk (as liveweight equivalent)	57	56	53	-	- .	-	-	-	-
Beaf and cattie	38	42	38	-	-	-	64	78	58
Sheep and lamb	5	2	9	100	100	100	36	22	42
	100	100	100	100	100	100	100	100	100
Millk yiold per cow - gallons...	977	1060	964	- -	-	-	-	-	-

TABLE 7

(1) The number of forms for which labour details were available
(2) One men-day $=8 \mathrm{hrs}$.
(3) Contrectors charges (1971-72 rates) for such work as much removed from yeards, branding, sheep shearing

Symbols:-

[^4]| Group | Single suckle | | Other cattle | | Dairy | | Sheep | | Cattle \& Sheep | | No livestock | | All Farms | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Average | $\begin{aligned} & \text { Premium } \\ & \text { Stocking } \end{aligned}$ | Average | Premi Stocki | $\text { 1) }{ }^{\text {Average }}$ | $\begin{aligned} & \text { Premium } \\ & \text { Stocking } \end{aligned}$ | Average | $\begin{aligned} & \text { Premium } \\ & \text { Stocking } \end{aligned}$ | Average | $\begin{aligned} & \text { Premium } \\ & \text { Stocking } \end{aligned}$ | | rage | Average | Premium Stocking (1) |
| Number of farms | 20 | 5 | 50 | 12 | 26 | 7 | 20 | 5 | 43 | 11 | 15 | | 174 | 40 |
| Forage acres per livestock unit | 7.62 | 1.03 | 1.61 | 1.05 | 1.55 | 1.15 | 1.45 | 1.04 | 1.60 | 1.05 | - | | $1.58{ }^{(2)}$ | 1.08 |
| Annual fertilizer application Units per forage acre | | | | | | | | | | | | | | |
| Nitrogen (N) | 158 | 201 | 122 | 182 | 183 | 225 | 134 | 184 | 85 | 134 | 5 | | 133 | 185 |
| Phosphate (P) | 46 | 46 | 28 | 37 | 37 | 32 | 40 | 48 | 30 | 40 | 12 | | 34 | 38 |
| Potash (K) | 36 | 36 | 25 | 29 | 35 | 35 | 23 | 39 | 20 | 29 | | | 28 | 32 |
| Premium ferms difference | | | | | | | | | | | | | | |
| N | | $+43$ | | $+60$ | | +42 | | +50 | | +49 | | | | +52 |
| P | | 0 | | +9 | | - 5 | | + 8 | | +10 | | | | $+4$ |
| K | | 0 | | + 6 | | 0 | | +16 | | +9 | | | | +4 |
| Fertilizer applications by | | | | | | | | | | | | | | |
| soll type district | L'stone | $\begin{aligned} & \text { Other } \\ & \text { Soils } \end{aligned}$ | L'stone | $\begin{aligned} & \text { Other } \\ & \text { Soils } \end{aligned}$ | L'stone | $\begin{aligned} & \text { Other } \\ & \text { Soils } \end{aligned}$ | L'stone | Soils | L'stone | Soils | L'stone | Soils | L'stone | Soils |
| N | 155 | 162 | 129 | 117 | 152 | 206 | 155 | 101 | 130 | 69 | 72 | 53 | 142 | 128 |
| P | 45 | 47 | 29 | 26 | 44 | 33 | 39 | 42 | 40 | 26 | 20 | 9 | 39 | 30 |
| K | 34 | 40 | 25 | 22 | 44 | 29 | 35 | 6 | 38 | 13 | 20 | 4 | 37 | 21 |

Fertilizer applications to temporary grass

Duration
Soil type district

	ONE YEAR LEYS
Chalk	
Other	
L'stone	Soils
114	97
24	24
2	15

Units per acre

type distric	L'stone	$\begin{aligned} & \text { Other } \\ & \text { Soils } \end{aligned}$	All soil	I'stone	$\begin{aligned} & \text { Other } \\ & \text { Soils } \end{aligned}$	$\begin{aligned} & \text { All soil } \\ & \text { types } \end{aligned}$	L'stone	Soils	types	L'stone	Soils	types
N	114	97	105	146	155	151	168	117	140	95	133	123
P	24	24	24	42	41	41	53	34	43	17	28	25
K	22	15	18	35	27	31	38	19	27	53	21.	29

(1) 25% of the farms in each group having the highest stocking rate, i.e. lowest forage acres per livestock unit
(2) For 159 farms carrying grazing livestock
(3) Incleding mome lucerne and tetrap2oidelover leys grown for cutting

Group

Single Suckle	Other Cattle	Dairy	Sheep	Cattle \＆Sheep	All farms with livestock	Farms with no livestock
19	48	22	18	40	147	11
213	139	351	120	216	199	113

grass per farm

Type of machinery or
equipment（Z）
For grassland
establishment \＆maintenance
For hay \＆silage making
For foddering
Milling \＆mixing
Miscellaneous：
Milking machines \＆
bulk tanks
Sundry catte
Sundry－sheep
Total

Forage acres per acre of forage grass (3)

Approximate 1974 new value per adjusted acre of forage grass
Number of farms（1）
Adjusted acres of forage
grass per farm

£	玉	\％	¢	玉	玉	玉
1.7	2.5	1.6	2.9	2.1	2.1	3.4
16.5	21.1	13.3	22.5	14.1	16.4	24.5
1.2	0.3	1.3	－	0.5	0.7	－
1.6	2.7	1.6	1.5	1.9	1.9	－
－	－	20.7	－	－	5.5	－
1.6	1.2	0.7	－	0.6	0.9	－
－	－	$0 \cdot$	2.8	1.0	0.5	－
22.6	27.8	39.2	29.7	20.2	28.0	27.9

of forage grass (3) Fodder storage requirements	Cumulative ${ }^{0.99}{ }^{(4)}$		e conserved per 100 adjusted acres of forage grass				
Hay	30	46	24	40	40	32	62
Silage	18	9	23	－	3	12	－

（1）The number of farms for which machinery details were obtained．
（2）See Table 9 opposite for an inventary of types of machinery and equipment．Iractors，general cultivating implements and trailers not specifically for gressland have been excluded，as also has investment in silos．
（3）The values are intended to be an estimate of the investment involved per acre of grass on the farm． The distinction between the adjusted area of forage grass and＂forage acres＂will be apparent Prom Section III Page 21．The distinction does not affect the above values significantly，（except for farms without livestock）but if desired the values may be converted to a forage acre basis by dividing them by the apropriate figure＂for forage acres per acre of forage grass＂．
（4）Including the acreage of second cuts conserved．

Notes

1．The written down value（based on 1974 prices）may be taken as roughly half the above figures．This would be the case ir the average age of all machinery was four years and has been depreciated at 15\％ on a reducing balance basis．
2．An estimation of the annual charge for machinery and equipment may be made by assuming a figure of about $7 \frac{1}{2} \rho$ of the current new value for repairs．If the average written dom value is taken as half the new value and it is depreciated at an annual rate of 15% this represents a further $7 \frac{1}{2} \%$ on the full new value． Thus an estimation of the average annual charge for repairs and depreciation may be made by taking 15\％ of the current new value．
3．The values in this table may be very approximately updated by reference to one of the price indicas published in ${ }^{\prime \prime}$ Irade and Industry＂e．g．the wholesale price index for mechanical engineering products－ early $1974=143$ and October $1975=208$ ，i．e． 45 登bincrease．

Symbols：－means nil

．．means less than $£ 0.50$

Group	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	All Farms with Livestock
$\text { Number of farms }{ }^{(1)}$						
With no special buildings	2	3	-	6	2	13.
With some livestock buildings	9	27	8	12	23	79
Total	11	30	8	18	25	92

Building age	Percentage of total building area					
1 to 5 years	42	27	26	27	30	30
6 to 10 years	12	12	15	3	5	11
Over 10 years or nat known by occupier	46	61	59	65	65	59

Cattle	87	99	92	-	74	85
Sheep	-	-	1	86	7	6
Handling only	-	-	-	5	-	-
Multiptryose (ise. buy then cattle or cattle \& sheep)	3	-	7	9	19	8
Other \& "availahle if necessary	-	1	-	-	-	-
	100	100	100	100	100	100
		Square feet of building area ${ }^{\text {(2) }}$				

unit	68	89	93	34	79	77
Building area per 100 adjusted acres forage grass (3)	4100	5100	6100	2300	4800	4900
Building area per 100 forage acres (3)	4200	5600	6000	2400	5000	5100

(1) The number of farms for which sufficient details of building was obtained.
(2) Calculated for all farms including those without any livestock buildings.
(3) For the distinction between adjusted area of forage grass and forage acres see Appendix I table 13.

```
Symbols: - means nil
    .0 moans less than 0.5%
```

Net cost of construction of new and second hand buildings in the five years 1967 to 1971

By type of building	$\begin{gathered} \text { \& per } \\ \text { sq. ft. } \end{gathered}$	Number of buildings	Average size to in sq.ft.
Covered yards	0.53	31	6050
Semi covered yards	0.22	8	4300
Dutch barns	0.31	No meaningful average ${ }^{(1)}$	1700
Other types		No meaningful average .	
All types	0.55	62	5040
By use			
Cattle on dairy farms	0.92	8	6150
Cattle on non dairy farms	0.57	13	4940
Fattening cattle	0.79	6	4340
Calves	0.42	9	2270
Single suckling cows \& chives	0.31	7	5800 4460
Store cattle	0.43	5	4460
Sheep housing Other uses	0.27	No meaningful average ${ }^{\text {(1) }}$	4740
All uses	0.55	62	5040

(1) Small numbers of diverse types

Note: Current construction costs for various types of farm buildings are to be found in:
(a) Farm Management Pocketbook by John Nix, Farm Business Unit, Wye College.
(b) Farm Building Cost Guide 1975, pub. by Scottish Farm Buildings investigation Unit, Bucksburn, Aberdeen.
(c) Farm Buildings Digest, pub. by Farm Buildings Centre, Kenilworth, Wawwickshire.

(1) Major works of replacement etc have not been included
(2) The capital cost of fencing (and materials for fence maintenance) are not included.
(3) Fencing carried out by stockmen has been included in livestock labour time and not here.

SECTION V : THE OUTLOOK FOR GRASSLAND BASED ENTERPRISES - C. Ritson

The profitability of an agricultural enterprise is determined by a complex set of inter-related factors, but it is possible to classify these factors into two broad groups, namely technological factors and financial factors. Thus, if we are to attempt to forecast some longer term changes in the relative profitability of alternative agricultural enterprises, such changes will be on account of either:
(a) The introduction of a new technology which improves the profitability of a particular agricultural enterprise for any given set of input and product prices, or
(b) A movement in relative input or product prices which alters the relative profitability of agricultural enterprises for given technological conditions of production.

One of the best examples of the way technological change can alter the relative profitability of agricultural enterprises was the dramatic increase in cereal yields experienced in the $U_{0} K$. after the Second World War. In the case of wheat a yield that averaged a little under 20 cwts . per acre in the 1930's and 1940's was transformed in ten years into one that has averaged well over 30 cwts. per acre since 1962. These yield increases were due to many factors, including the introduction of better varieties, the control of soil fertility by the use of artificial fertilizers, the development of plant protecting herbicides, and mechanization which allowed farmers to gain a reasonably good crop when previously bad weather would have meant a poor one. All these factors come within our technological change" category and D.B. Wallace* argues strongly that farmers have not given sufficient credit to the contribution of the crop scientist to improving the financial position of farming after World War II; but these technological changes undoubtedly did make cereal production more profitable and the total U.K. cereal acreage was about double its pre-war level by the late 1960^{\prime} s.

[^5]Looking to the future, it seems unlikely that U.K. farming will again be affected by a technological revolution as dramatic as that which raised cereal yields. On a smaller scale, however, we must continue to expect individual crops to be affected by the introduction of new techniques, such as recent developnents in silage making.

One example of a more general technological impact upon the relative profitability of grassland based enterprises would occur if there was a general "levelling up" in the application of existing technology to grassland production. There is a view expressed both in this report and elsewhere* that there is considerable scope for improvements in the average level of grassland managenent. It appears that the range of performance in grassland is greater than that experienced with most other forms of farming.

Technological changes which alter the relative profitability of farm enterprises, except in as much as they involve the more widespread adoption of existing techniques, are however virtually impossible to predict. Against this, their impact is the positive one of improving the profitability of a particular enterprise, and a new practice will normally be introduced gradually throughout the agricultural sector allowing individual farmers time to adjust their systems to a new environment. In contrast, price changes, even when these predominately reflect long term shifts in relative prices rather than shorter term disturbances, have the unfortunate habit of occuring quite sudcienly; although the underlying factors influencing a change in relative prices nay build up gradually over a period of years, agricultural markets of ten have the effect of concentrating the full weight of such factors into price changes over a matter of months or even weeks. In addition price changes can of course alter the relative position of agricultural enterprises by reducing the profitability of a particular enterprise. It is for these reasons that greater anxiety tends to be caused by uncertainty over future price movements than by questions of technological change, and this section therefore concentrates upon the "outlook" for prices affecting grassland based enterprises.

[^6]The first question to ask is "why should the balance of agricultural prices change through tine"? The price of a product equates the quantity of it supplied to and demanded from a market per time period. If there is a change in the quantity that sellers are prepared to supply or buyers are prepared to purchase at a particular price, the price will move in order to re-egtablish equilibrium.

The main influence on demand which might alter the balance of agricultural prices is incone changes; as incomes rise, people tend to alter the composition of their food purchases. On the suppiy side, the major factor affecting price changes is again technological improvement, both within the farming sector and within input and processing industries. But agricultural prices are also influenced by Ministerial decision. The Governments of Western Europe exercise a considerable degree of control over the prices received by farmers for their produce and the prices they pay for their inputs. Many factors are taken into account when a Government decides to aim for a particular level of farm prices, or to allow a particular price change, but it is possible to . detect two main, and sometimes conflicting objectives. These are:
(a) Questions of "fairness". Agricultural Price changes affect the standard of living of both those who produce and those who consume food. In the past, agricultural policy has operated predominately so as to attempt to secure acceptable income levels for the farming .population. More recently, Governments in Western Europe have bcone involved in policies to offset the worst effects of rising food prices on consumers.
(b) To achieve some desired level of production in individual agricultural products. In essence this objective has tended to involve a price level which follows world narket trends, as this allows the nation to achieve its food supply at lowest cost. This policy has, however, been tempered to a greater or lesser extent by the desire for national self-sufficiency in food supplies.

In the case of the $U . K$. the influence of these two factors is complicated by the operation of the Common Agricultural policy of the E.E.C.; the farm prices likely to apply in the U.K. in the future will increasingly need to be viewed in the context of both "fairness" in a European - wide sense, and self sufficiency for the European Comunity as a whole. It seens probable that, whereas in the shorter tern questions of fairness relating to farn incomes can have a predoninant influence upon farm prices, in the longer run it is a Governnent's attitude towards national selfsufficiency in individual agricultural products which is responsible for chares in the balance of agricultural prices. The European Commity is now more or less self sufficient in most agricultural products and will find it increasingly difficult in the future to justify a level of farm prices which diverges significantly from prices on world markets. Therefore, it is the overall world balance between supply and demand for individual agricultural products which must be the central feature of the "outlook" for U.K. farm prices.

In the context of the present study, there are three areas in which a longen term forecast of relative agricultural product and input prices is relevent to the outlook for grassland based enterprises. These are:
(a) The relative profitability of grassland based enterprises compared with alternative enterprises used as a break in a predominantly cereal rotation.
(b) The relative profitability of grassland based enterprises compared with cereals; which influences the appropriate balance between grass and cereals in a predominately cereals rotation.
(c) The relative profitability of alternative grassland based enterprises.
(a) Taking the first of these, there do not appear to be any substantial grounds for suggesting that non-grass break crops will tend to become more or less attractive in relation to grassland based enterprises than at present. Most break crops are either fodder crops or are used as constituents in proprietary animal feeding stuffs. These crops therefore have in common with
grass breaks that, in the longer term, whether or not they are profitable is dependent upon conditions in the livestock sector of farming. A buoyant livestcck industry will make the grass break more attractive but will also improve the market for other break crops. In the shorter term, of course, there can be wice divergences in the movements of livestock and feed prices. A rapid rise in feed prices, such as that experienced by British farmers in $1973 / 74$, can put the farmer with a livestock enterprise at a severe disadvantage vis-a-vis the producer of a feed crop for off-farm sale。

Of the break crops not directly linked to livestock production (some 11 to 12 per cent oi all break crops including grass, according to a survey carried out in the southern region of England*) potatoes and sugar beet are likely in any case to continue to be regulated by quota and will tend to present relatively profitable opportunities for those farners who obtain a. quota.
(b) The nost sisnificant event of recent years on world agricultural markets has been the rapid rise in cereal prices. The weight of evidence at present points to the conclusion that, although world cereal prices will continue to fluctuate, nevertheless the world has experienced a major long term shift in the balance between supply and demand for cereals and that we must therefore expect cereal prices to be higher relative to other agricultural product prices in the 1970's and 1980's than they were in the $1960^{\prime} \mathrm{s}$.

Since the Second World War, there has been a gradual increase in cereal acreage and reduction in grass acreage in the U.K. The two major reasons for this trend have been technological - the rapid rise in cereal yields already mentioned, and the introduction of new techniques for intensive livestock production using purchased cereal-based feedingstufis. The development of intensive livestock systems has meant that movements in relative product prices of cereals and livestock products have not in thenselves had very much affect on the balance between grass and cereal acreage; a rise in cereal prices improves the relative

[^7]profitability of both cereal production and grass based (as opposed to grain based) livestock enterprises. For exanple; studies of the likely impact on U.K. farming of adopting the Common Agricultural Policy, made prior to nembership of the E.E.C. (when it appeared that nembership would imply a rise in U.K. cereal prices relative to most other agricultural prices) indicated that the inpact of higher cereal prices on the profitability of cereal production was just about offset by the corresponding improvement in the profitability of grassland livestock enterprises.* The upshot is that cereal prices can change quite substantially without this affecting the relative profitability of cereals and grass in a predominately cereal farm incorporating a grass break.
(a) It is in connection with the third "outlook" question which livestock enterprise? - that it seems most likely that the future might see some variations in relative profitability. The British Government recently issucd a White Paper** examining the prospects for U.K. food production over the next five to ten years. This forecasts increases in output from the three main grassland based enterprises - milk, beef; and sheep - but comes down décidedly in favour of dairy production rather than lowland sheep or beef. This conclusion appears to have been arrived at by a straightforward application to U.K. agriculture of projections of the existing E,E.C. prices to which the U.K. is adjusting. However, it was mentioned earlier in this section that questions of the overall balance between supply and demand for agricultural products are likely to become the more important influence upon price formulation as the tine horizon is lengthened. The outstanding characteristic of the present E.E.C. dairy policy is the extent to which dairy product prices under the C.A.P. are in excess of the prices at which supplies are available from world markets. Whereas most C.A.P. prices can now be defended as realistic in relation to world market conditions it seens only possible to justify present dairy product prices on account of the important contribution that milk prices make to supporting the incomes of many European small farmers. But the growth of butter stocks and the innense potential for further increases in milk oupput within the E.E.C. nakes it

* See for example Brian Davey "Trade and the Changing Structure of Farn Production" in "Burdons and Benefits of Farn Support Policies". Trade Policy Research Centre, 1972.
most unlikely that the European Comunity will be able to sustain milk prices at their existing level relative to livestock prices. This author's view therefore is that the outlook for dairy production is somewhat less attractive in the longer term than indicated by the Government White Paper. Better prospects apply to meat production but in view of the likely continuing strength of world cereal prices, particularly attractive are livestock. enterprises which are predominately based on grass. For the first time for many years the outlook for lowland sheep production looks favourable in relation to other livestock enterprises.

APPENDIX I

DEFINITION OF FARM GROUPINGS

1. By soil type

(a) Chalk/limestone - farms situated in parishes where the soils are predominently derived from chalk or limestone formations.
(b) other soils - farms situated in parishes where the predominent soil types are derived from other parent natural than chalk or limestone.
2. By grazing livestock enterprise
(a) Farmers without sheep or dairy cows:
(i) Single suckle - those having a single suckle cow herds, with or without some other farm of beef enterprise e.g. fattening.
(ii) Other Cattle - mostly farms without any beef cows although some have doublesuckle herds or cows for multiple suckle calf rearing.
(b) Dairy - farms having a dairy herd including some with sheep and/or beef cows and other beef cattle.
(c) Sheep - farms carrying sheep only.
(d) Cattle \& Sheep - farms having combinations of cattle and sheep enterprises including some single suckle cow herds but not dairy cows.
(e) No L/S - farms having over 20 acres of temporary grass in 1970 but no livestock of their own.

TABLE I
GEOGRAPHICAL DISTRIBUTION

Livestock group	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	All Types
Berkshire	5	9	7	4	8	6	39
Buckinghamshire	2	7	3	4	11	1	28
Hampshire	8	16	12	6	0	2	50
Oxfordshire	4	17	4	6	18	6	55
Other counties	1	1	-	-	-	-	2
Total	: 20	50	26	20	43	15	174

TABLE 2
DISTRIBUTION BY SOIL TYPE AREA

Chalk Limestone	Other Soils	All Types
11	9	20
20	30	50
13	13	20
13	7	20
11	32	43
5	10	15
73	101	174

Number of farms	Chalk Limestone			Other Soils			$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$		
	73			101			174		
	Acres	Acres per farm	$\%$	Acres	Acres per farm	\%	Acres	Acres per farm	\%
Cereals	33328	457	63.5	33350	380	62.9	71678	412	63.2
Other Cash Crops and Fallow	4066	56	7.3	3683	36	6.0	7749	45	6.8
Fodder Crops	1127	15	2.1	1103	11	1.8	2230	13	2.0
Temporary Grass	8712	119	15.6	10286	102	16.9	18998	109	16.7
Permanent Pasture and Rough Grazings	5260	72	10.0	7575	75	12.4	12835	74	11.3
Total	52493	719100.0		60997	604	100.0	113490	653	100.0
Arable area	47233	647	90.0	53422	529	87.6	100655	579	83.7

Percentage of arable area

Wheat	22.8	25.5	24.2
Barley	44.9	41.0	42.8
Oats	2.7	5.1	4.0
Other Cereals	0.2	0.2	0.2
All Cereals	70.6	71.8	71.2
Temporary Grass	18.4	19.3	18.9

Number of Iarms	Chalk Limestone			Other Soils			$\begin{aligned} & \text { All } \\ & \text { Types } \end{aligned}$		
	73			101			174		
	Acres	Acres per farm	\%	Acres	$\begin{aligned} & \text { Acres } \\ & \text { per } \\ & \text { farm } \end{aligned}$	\%	Acres	Acres per farm	\%
Cereals	35619	488	63.2	40615	402	63.1	76234	438	63.1
Other Cash Crops and Fallow	2590	36	4.6	2618	26	4.1	5208	30	4.3
Fodder Crops	1252	17	2.2	991	10	1.5	2243	13	1.9
Temporary Grass	10675	146	18.9	11238	111	17.4	21913	126	18.1
Permanent Pasture and Rough Grazings	6236	85	11.1	8935	88	13.9	15171	87	12.5
Total	56372	772	100.1	64397	637	100.0	120769	691	100.0
Arable area	50136	687	88.9	55462	549	86.1	105598	607	87.4

Percontage of arable area

Wheat	23.5	28.1	25.9
Barley	44.7	40.6	42.6
Oats	2.8	4.4	3.6
Other Cereals	-	0.1	0.1
All Cereals		71.0	73.2
Temporary Grass		21.3	20.3

Single Other Dairy Sheep Cattle No $1 / S$ All
Suckle Cattle

Chalk/Limestone	11	20	13	13	11	5	73
Other Soils	9	30	13	7	32	10	101
Total	20	50	26	20	43	15	174
				Acres			
Average Farm Size	672	485	1138	439	686	531	652

| Cereals | 61.4 | 65.4 | 59.7 | 68.4 | 61.4 | 70.0 | 63.2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Other Cash Crops
 and Fallow | 10.8 | 6.2 | 8.5 | 4.4 | 3.7 | 10.4 | 6.8 |
| Fodder Crop | | | | | | | |

	Number of farms						
Chalk/Limestone	11	20	13	13	11	5	73
Other Soils	9	30	13	7	32	10	101
Total	20	50	26	20	43	15	174
	Acres						
Average Farm Size	792	500	1222	449	727	529	694
	Percent of farm area						
	\%	$\%$	\%	$\%$	\%	\%	\%
Cereals	59.9	65.5	59.3	67.8	61.5	75.3	63.1
Other Cash Crops and Fallow	5.5	3.9	5.2	4.1	2.7	5.9	4.3
Fodder Crops	1.2	0.4	2.3	1.9	3.3	0.4	1.9
Temporary Grass	14.8	17.8	20.8	18.9	18.6	13.2	18.1
Permanent Pasture and Rough Grazing Percent Arable	18.6	11.4	12.4	7.3	13.9	5.2	12.6
	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	81.4	88.6	87.6	92.7	86.2	94.8	87.4

Percent of farm area

Cereals

Single	Other Dairy Sheep		
Suckle	Cattle		
Cattle		\quad	\& Sheep
:---			

Percent of arable area

Wheat	24.5	25.4	26.7	28.2	25.1	27.4	25.9	
Barley	45.6	46.1	37.0	42.2	42.9	46.4	42.6	
Oats.	3.4	3.5	3.9	2.7	3.3	5.6	3.6	
Other Cereals	0.1	0.2	0.2	-	0.1	-	0.1	
All Cereals		73.6	75.2	67.8	73.1	71.4	79.4	72.2
Temporary Grass	18.1	20.0	23.8	20.4	21.6	13.1	20.8	

(a) Number of rotations reported in 1972 survey

	Chalk Listn	Other Soils	A11 Farms
		Number	
Number of Farms	73	101	174
Rotations Including Leys	84	120	204
Rotations having other break-crops only	7	14	21
Total rotations reported	91	134	225
Farms stating that part or whole area is under:			
(i) No set rotation	11	13	24
(ii) Continuous cereals (of which continuous barley)	$\begin{array}{r} 1 \\ (-) \end{array}$	$\begin{array}{r} 12 \\ (7) \end{array}$	13 (7)

(b) place of leys in the rotation

Crop preceeding the ley	No.	\%	No.	\%	No.	\%
Wheat	3	3	4	3	7	3
Barley	73	34	102	85	175	85
Cereals (type not specified)	3	3	4	3	7	3
Oats	4	5	9	8	13	G
Oilseed rape	1	1	-	-	1	1
Fodder roots	1	1	1	1	2	1
Potatoes	2	2	-	-	2	1
	87**	100	120	100	207	100
Crop following the ley						
Wheat	63	73	104	87	167	81
Barley *	15	17	11	9	26	13
Cereals(type not specified)	3	3	4	3	7	3
Oats	2	2	-	-	2	1
Oilseed Rape	2	2	-	-	2	1
Fodder Roots	2	2	-	-	2	1
Potatoes	-	-	1	1	1	-•
	87**	100	120	100	207	100

(c) Length of wheat runs following the ley

Number of successive years wheat

Percentage of the rotations reported		
14	5	9
36	36	36
48	56	53
2	3	2
100	100	100

[^8]

TABLE 9
IENGYTH OF CEREAT RUNS AFTIER A TEY BREAK*.
Length of
Ley

Numbe	Chalk and Limestone						Other Soils						All Farms					
cereals		12	3	4	5	\%	1.	2	3	4	5	$\%$	1	2	3	4.	5	$\%$
0		-	0	0	-	3	-	-	-	-	-	1	0	-	0	-		2
1	0	-	-	-	-	1		-	\bigcirc	-	-	1	0	-	0	-	-	1
2	*	- 0	\bigcirc	0	-	8	-	0	0	-	-	4	00	0	0	0	-	6
3	*	* **	00	0	-	20	*	**	**	\bigcirc	-	27	*	**	*	0	-	24
4	*	* 䋛	㮯	0	-	43		**	**	00	-	32	*	**	**	0	-	36
5	*	* *	-0	0	-	16	**	*	*	\bigcirc	-	20	*	*	*	0	0	18
6	00	000	\bigcirc	\bigcirc	-	8	-	*	00	00	-	11	-	00	\bigcirc	0	-	10
7	-	- -	-	-	-	-	0	-	-	-	-	2	-	-	-	-	-	1
8	-	- 0	-	-	-	1	0	0	0	-	-	2	0	0	0	-	-	2
\%	26	2644	23	7	-	100	30	33	28	8	1	100	æ	38	26	7	1	100
Number of ro	at	tion		10														(20

Symbols:

```
- means nil
O.". lees than 2%
```


.* Percentages add to over 100 because grass is usually grown for several reasons.

		Rotational Reasons		Livestock Requirements				Other Reasons		
type		Chalk L'stn.	Other Soils	$\begin{aligned} & \text { All } \\ & \text { Types } \end{aligned}$	Chalk L'stn.	Other Soils	$\begin{aligned} & \text { All } \\ & \text { Types } \end{aligned}$	Chalk L'stn。	Other Soils	$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$
Single Suckle	Number	7	5	12	4	3	7	2	1	3
	$\%$ of group	64	56	60	36	33	35	18	11	15
Other Cattle	Number	9	19	28	11	15	26	4	3	7
	\% of grơup	45	63	56	55	50	52	20	10	14
Dairy	Number	5	7	12	9	10	19	-	-	-
	$\%$ of group	38	54	46	69	77	73	-	-	-
Sheep	Number	10	5	15	4	4	8	2	-	2
	$\%$ of ${ }^{\text {group }}$	77	71	75	31	57	40	15	-	10
Cattle and Sheep	Number	7	22	29	- 8	19	27	-	3	3
	\% of group	64	69	67	73	59	63	-	9	7
No L/A	Number	1	7	8	-	-	-	3	2	5
	\% of group	20	70	53	-	-	-	60	20	33
All Types	Number	39	65	104.	36	51	87	11	9	20
	\% of group	53	64	60	49	50	50	15	9	11

* The number of affrmative replies expressed as a percentage of the number of farms in the particular livestock group situated in the given soil-type area e.g. 7 as a percentage of the number of single suckle farms in chalk/limostone areas is 64%.

[^9]| (a) Forage Area | Single Suckle | Other Cattle | Dairy | Sheep | Cattle
 \& Shoep | No L/S | $\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Total acres in the sample | | | | |
| Adjusted acres of forage grass* | 4405 | 6905 | 10125 | 2238 | 9515 | 1426 | 34614 |
| Add: Fodder crops | 186 | 112 | 594 | 202 | 733 | - | 1827 |
| Purchased fodder and keepacreage equivalent | 71 | 126 | 134 | 57 | 322 | | 710 |
| | 4662 | 7143 | 10853 | 2497 | 10570 | 1426 | 37151 |
| Subtract: | | | | | | | |
| Keep let off | 75 | 90 | 230 | 117 | 152 | 616 | 1280 |
| Use for horses etc. | 110 | 76 | 186 | 1 | 130 | 37 | 540 |
| Use for pigs | - | 75 | 20 | 24 | 161 | - | 280 |
| Hay sold - acreage equivalent | 116 | 520 | 129 | 214 | 966 | 773 | 2718 |
| Total Forage Acres for Cattle and Sheep | 4361 | 6382 | 10238 | 2141 | 9151 | - | 32333 |
| Forage acres per grazing livestock unit | 1.62 | 1.61 | 1.55 | 1.45 | 1.60 | - | 1.58 |

(b) Average grazing livestock numbers per 100 acres of forage grassland

Cattle

	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$
Adjusted acres of forage grass*							
Percent of farm area	28	28	32	25	30	18	29
Total forage acres per farm	233.	142	417	125	246	95	214
Composition:	\%	\%	$\%$	\%	$\%$	\%	\%
Forage grass	94	96	93	90	90	100	93
Fodder crops	4	2	6	8	7	-	5
Acreage equivalent of purchased fodder and keep	2	2	1	2	3	-	2
	. 100	100	100	100	100	100	100
Utilization:							
Keep let	2	1	2	5	1	43	3
Horses	2	1	2	-	1	3	2
Pigs	-	1	$\bullet \cdot$	1	2	- -	1
Hay sold (acreage equivalent	2	7	1	8	9	54	7
Grazing livestock enterprise	94	90	95	86	87	-	87
	100	100	100	100	100	100	100
Forage acres per farm used by $\begin{array}{lllllllll}\text { grazing livestock } & 218 & 128 & 396 & 107 & 213 & & 186\end{array}$							
As percentage of farm area	28	26	32	24	29	-	27

Symbols:

- means nil
.- means less than 0.5
* Adjusted for value of rough grazings.

TABLE 15
(a) By Livestock Group

Duration of Ley

1 year
2 years
3 years
Over 3 years
Total

COMPOSITION OF TEMPORARY GRASS AREA

Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$	
acres \%	acres	$\%$					
49321	91721	$790 \quad 12$	49029	63911	66263	3991	18
88538	179040	263540	85450	154226	59	7765	35
$740 \quad 32$	95822	183928	30318	178431	25925	5888	27
2.189	$752 \cdot 17$	134320	453	184432	63	4270	20
2336100	4417100	6607100	1597100	5809100	1048100	21914	

Chalk Limestone	Other Soils	All Types		
Acres	$\%$	Acres	$\%$	Acres

Percentage of the temporary grass area established by undersoming to a cereal

(a) By Livestock Group	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	$\begin{aligned} & \text { All } \\ & \text { Types } \end{aligned}$
Duration of Ley	\%	$\%$	\%	$\%$	\%	$\%$	\%
1 year	92	73	87	91	98	87	88
2 years	92	74	73	90	83	100	80
3 years	43	71	58	-	73	100	64
Over 3 years	37	92	41	-	97	100	73
All Leys	73	77	61	86	87	90	76
(b) By Soil Type Area'					$\begin{array}{r} \text { A] } \\ \text { Far } \end{array}$		
Duration of Ley							
1 year	9				88		
2 years	9				80		
3 years					64		
Over 3 years	8				73		
All Leys		-			76		

TABLE 17
SEED MIXTURES (BY SOIL TYPE AREA)
Chalk
Limestone

Other
111
Farms
(*)
Mixture or Species
Italian Ryegrass
Italian Ryegrass with Red Clover
Italian \& Peremial Ryegrass
Italian \& Perennial Ryegrass with clover and/or other grass
Perennial Ryegrass
Perennial Ryegrass, Timothy and Clover

Perennial Ryegrass, Fescue, Timothy and Clover

Other Mixtures Containing P.R.G. Non Ryegrass Mixtures with or without Clover
Not specified

Percent of temporary erass area

8.8	11.6	10.2
7.2	2.7	4.9
10.9	15.2	13.1
14.1	12.3	13.3
16.8	14.4	15.6
11.5	7.2	9.3
13.0	9.2	11.1
9.9	7.4	8.6
5.0	14.8	9.9
2.3	5.2	4.0
100.0	100.0	100.0

* See Table 15 for areas.

[^10]| Type of grassland | 1 Year Leys | $2 \text { Year }$ Leys | $\begin{aligned} & 3 \text { Year } \\ & \text { Leys } \end{aligned}$ | Leys Over 3 yrs. duration | Permanent Pasture |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of farms having the grassland type and for which management details were given (i.e. the number $=100 \%$) | 62 | 74 | 66 | 31 | 114 |
| Acreage of grassland involved | 3259 | 7512 | 5873 | 3683 | 10786 |
| | Forrs reporting for whole or part of their | | | | |
| Cutting/Grazing Management | grass area as percent of the number of farms | | | | |
| Alternate cutting \& grazing through the season | 15 | 34 | 21 | 39 | 23 |
| Separate blocks for part of the season | 26 | 41 | 48 | 52 | 35 |
| Cut only | 55 | 15 | 17 | 10 | 2 |
| Grazed only | 6 | 34 | 24 | 10 | 46 |
| Zero grazed | - | - | 2 | - | - |
| Grazing Management | | | | | |
| Set stocking | 23 | 41 | 38 | 55 | 54 |
| Rotational paddocks | 8 | 34 | 29 | 29 | 17 |
| Rotational paddocks in large blocks ${ }^{\circ} \mathrm{r}$ fields | 3 | 9 | 11 | 6 | 10 |
| Forward creep (for sheep) | 2(5) | 1 (3) | | - | 1(2)* |
| Sideways creep (for sheep) | - | - | - | - | - |
| Rotational strips with a back fence | 2 | 1 | 2 | - | 1 |
| Rotational strips without a back fence | 2 | 7 | 2 | 6 | 5 |
| No system | 2 | 7 | 9 | 16 | 16 |
| Not stated | 6 | 4 | 6 | 3 | 6 |

[^11]| | Single
 Suckle | Other
 Cattle | Dairy | Sheep | Cattle
 \& Sheep | All Farms with Livestock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of farms $(=100 \%)$ | 20 | 50 | 26 | 20 | 43 | 159 |
| | Faras reporting for whole or part of their | | | | | |
| Cutting/Grazing Management | grass area as percent of the number of farms | | | | | |
| Alternate cutting and grazing through the season | 45 | 30 | 38 | 45 | 37 | 37 |
| Separate blocks for part of the season | 35 | 44 | 65 | 30 | 51 | 47 |
| Cut only | 40 | 44 | 42 | 15 | 33 | 36 |
| Grazed only | 45 | 54 | 58 | 55 | 42 | 50 |
| Zero grazed | 5 | - | - | - | - | 1 |

Grazing Management

Set stocking	30	56	77	40	67	57
Rotational paddocks	30	28	69	40	26	36
Rotational paddocks in large blocks oik fields	20	12	8	5	16	13
Forward creep (for sheep)	-	-	-	10	2	2
Sideways creep(for sheep)	-	-	-	-	-	-
Rotational strips without a back fence	-	2	27	-	7	7
Rotational strips with a back fence	-	-	3	-	5	3
No system	15	14	4	20	14	13
Not stated	15	10	8	15	5	9

TABLE 21
CROPS FOR CONSERVATION

Livestock Group	Single Suckle	Other Cattle	Dairy	Sheep	Cattle \& Sheep	No L/S	All Types
(a) Grassland and Lucerne				Acres			
Total adjusted acres grassland and							
			Cumur	acreag			
Hay	1339	3189	2444	900	2902	879	11653
Silage	796	608	2036	-	215	\cdots	3655
Haylage	-	-	299	-	70	-	369
Dried grass	-	-	-	-	$600^{* *}$	-	600
(b) Other Fodder Crops	Actual acreage						
Oat. and wetch silage	-	\cdots	70	-	-	-	70
Cereals for silage	-	3	16	-	-	-	19
Maize for silage	-	-	61	-	-	-	61
Herbage seed straw(acreage from which $f e d$)	185	64	70	15	50	-	384
Oat and pea straw	-	10	-	-	- .	-	10

TABLE 22	FODDER FROM BY-PRODUCTS AND CAICH CROPS *				Cattle \& Sheep	No L/S	All Types
Livestock Group	Single Suckle	Other Cattle	Dairy	Sheep			
(a) Bymproduct Grazing		Actual acreage					
Herbage sead grazed	250	352	56	-	73	-	731
Cereals grazed in spring	-	18	-	553	155	-	726
(b) Catch Crops (struble crops etc)							
Stubble turnips	-	99	50	196	210	-	555
Italian ryegrass	-	167	200	-	55	-	422
Rape and turnips	-	-	63	85	87	-	235
Rape	-	-	98	23	50	-	171
Mustard or rape and mustard	100	10	-	50	22	-	182
Kale or rape and kale	5	-	-	-	10	-	15
Weedy stubbles	-	-	\cdots	-	35	-	35
Other stubble crops (Rye and ryegrass) (Trefoil) \qquad	\cdots	-	20	38	15	-	73
	105	276	431	392	484	-	1638

[^12]| (a) By Livestock Group | Single
 Suckle | | Other Cattle | | Dairy | | Sheep | | Cattle
 \& Sheep | | No L/S | | $\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crop | Acres | \% | Acres | $\%$ | Acres | \% | Acres | $\%$ | Acres | $\%$ | Acres | \% | Acres | \% |
| Kale | 96 | 50 | 36 | 35 | 321 | 45 | 80 | 47 | 201 | 19 | - | - | 734 | 33 |
| Kale with rape or mustard | - | - | 20 | 20 | 67 | 9 | - | - | 52 | 5 | - | - | 139 | 6 |
| Kale and cabbage | - | - | 3 | 3 | - | - | - | - | | | - | - | 3 | \bullet |
| Kale and swedes | - | - | - | - | - | - | - | - | 11 | 1 | - | - | 11 | - |
| Swedes | - | - | 2 | 2 | - | - | - | - | 31 | 3 | - | - | 33 | 1 |
| Turnips and swedes | - | - | 1 | 1 | - | - | - | - | 23 | 2 | - | - | 24 | 1 |
| Turnips | - | - | - | - | - | - | - | - | 105 | 10 | - | - | 105 | 5 |
| Mangolds | - | - | 2 | 2 | - | - | $\overline{-}$ | - | 6 | 5 | - | - | 8 | - |
| "Roots" (mixed or unspecified) |) | - | - | - | - | - | 70 | 41 | 261 | 25 | - | - | 331 | 15 |
| Rape and turnips | - | - | - | - | - | - | - | - | 60 | 6 | - | - | 60 | 3 |
| Rape | - | - | - | - | - | - | - | - | 36 | 4 | - | - | 36 | 2 |
| Rape and ryegrass | - | - | - | - | - | - | - | - | 30 | 3 | - | - | 30 | 1 |
| Mustard (*) | 40 | 20 | 23 | 23 | 16 | 2 | - | - | 166 ** | 16 | - | - | 245 | 11 |
| Cereals for silage | - | - | 3 | 3 | 16 | 2 | - | - | - | - | - | - | 19 | 1 |
| Oats and vetches for silage | - | - | - | - | 70 | 10 | - | - | - | - | - | - | 70 | 3 |
| Maize for silage | - | - | - | - | 61 | 9 | - | - | - | - | - | - | 61 | 3 |
| Rye for fodder | 57 | 30 | - | - | 97 | 14 | 20 | 12 | 50 | 5 | - | - | 224 | 10 |
| Lucerne | - | - | 11 | 11 | 67 | 9 | - | - | - | - | 32 | 100 | 110 | 5 |
| Total | 193 | 100 | 101 | 100 | 715 | 100 | 170 | | 1032 | 100 | 32 | 100 | 2243 | |

(b) By Soil-type Area	Chalk Limestone		Other Soils		$\begin{gathered} \text { All } \\ \text { Types } \end{gathered}$	
Crop	Acres	$\%$	Acres	$\%$	Acres	\%
Kale	374	30	360	36	734	33
Kale with rape or mustard	127	10	12	1	139	6
Kale and cabbage	3	-	-	-	3	-
Kale and swedes	-	-	11	1	11	\bullet
Swedes	1	-	32		33	1
Turnips and swedes	-	-	24	2	24	1
Turnips	105	ε	-	-	105	5
Mangolds	3	\bullet	5	1	8	\bullet
"Roots" (mixed or unspecified)	205	16	126	13	331	15
Rape and turnips	-	-	60	6	60	3
Rape	36	3	-	-	36	2
Rape and ryegrass	-	-	30	3	30	1
Mustard (*)	72	6	173 **	18	245	11
Cereals for silage	-	-	19	2	19	1
Oats and vetches for silage	70	6	-	-	70	3
Maize for silage	20	2	41	4	61	3
Rye for fodder	204	16	20	2	224	10
Iucerne	32	3	78	8	110	5
Total	1252	100	991	100	2243	100

Symbols:

$$
\begin{aligned}
& \text { - mean nil } \\
& \text {.. means less than } 0.5 \%
\end{aligned}
$$

* Some grown for ploughing in as green manuro.
** 150 acres on one farm let for grazing.

APPEndIX III

Structure of livestock sales and input in the five livestock enterprise groups(Sce definitions Appendix I page (53)

SINGLE SUCKLE GROUP - 20 FARMS

Soles		mput (oricin of ca Home tred single- suckle colves only	Home bred single suckle calves plus other inputs
	Number of farms		farms
All fat 10 months old or less	4	4	-
All fat over 18 months old	1	-	1
all fat at various ages	2	-	2
All stores 18 months old or less	6	5	1
Fat and store 18 months or less	2	-	2
Store and for breeding(50% or over)	2	2	-
Fat and for breeding (50\% or over)	3	3	-
	20	14	6

* Other inputs

Purchased calves	3 farms
" young stores	
" siores over 12 months old	2 farms

OTHER CATTLE GROUP - 50 FARHS

Sales		Input (origin of cattle sold)			
	Number	Calves	\qquad Stores month r les	$\begin{gathered} \text { Stores } \\ \text { over } \\ 12 \text { months } \\ \hline \end{gathered}$	Other*
	of forms	Number of forms			
All fat 18 months old or less	11	5	2	-	4
All fat over 18 months old	19	2	4	9	4
All fat at various ages	2	1	-	-	1
All stores 18 months old or less	6	5	-	-	1
All stores over 18 months old	3	2	1	-	-
Fat and store 18 months or less	2	2	-	-	\cdots
Fat and store over 18 months	4	-	1	2	1
Fat and breedine heifers(over 50\%)	2	1	-	-	1
Store and treeding heifers(over 50\%)	1	-	1	-	-
	50	18	9	11	12

[^13]\[

$$
\begin{aligned}
& \text { Home bred calves from own beef cows } \\
& \text { Furchased calves and strong stores } \\
& \hline
\end{aligned}
$$
\]

| Cattle sales |
| :--- | :--- | :--- | :--- | :--- |

* Other inputs

Home bred calves from single suckle beef cows

4 farms
3 farms
1 farm
1 farm
9

** Farms from which between 10% and 40% of cattle sales are dairy heifers over 13 months old.

Sheep Sales
Number
Ail fat under 6 months old
All fat 6 months old and over

SHEEP GFOUP - 20 FARITS

Sales

All fat lambs under 6 months old
All fat lambs 6 months old or over
All fat lambs at various ages
All as store lambs
All as thaves
Fat lambs and thaves
Store, fat and breeding (ewe) lambs
Store and fat lambs

Input (origin of sheep sold) Nuraber of farms 4	Lambs from own ewe flock only	Lambs from own ero flock plus rearing purchased eve lambs.	Purchased ewe lambs only
1	4	Number of farns	
3	1	-	-
3	3	-	-
1	3	-	-
3	-	-	-
1	1	2	1
4	4	-	-
20	16	2	2

[^14]| Cattle Sales | $:$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |

* Other inputs

Home bred single-suckle calves plus purchased stores under one year Furchased calves and stores over 18 months old Purchased calves and stores 13 months old or less

* Bearing ewe lambs and selling part or all as lambed thaves and theirlaubs fat or as stores

No. 18	Peas in Britain and Europe: A Commodity Study
	By W.L. Hinton
	University of Cambriclge.
	July 1973

No. 19 Early Potatoes in West Cornwall 1962-1972: An Economic Study By Helen M. Cole University of Exeter June 1973

No. 20 The Economics of Hill Sheep Production By W. Dyfri Jones (with others) University College of Wales, Aberystwyth July 1973

No. 21 Red Beet
By H.W.T. Kerr
University of Nottinghan
August 1973
No. 22 Hill and Upland Beef. Herds: an economic analysis of mainly single-suckled calf production in the hill and upland areas of the North of England and Wales
By. S. Robson and D.C. Johnson University of Newcastle upon Tyne August 1973

No. 23 Veterinary and Medicine Costs and Practices in Lowland Sheep
By D.D. Pout and W.J.K. Thomas
University of Exeter September 1973

No. 24 Results of Pig Management Scheme 1973
By R.F. Ridgeon University of Cambridge January 1974

No. 25 Dry Bulb Onions: A study of production economics of the 1971 dry bulb onion crop in the East Midland Region including the Holland Division of Lincolnshire
By H.W.T. Kerr
University of Nottinghan November 1973

No. 26 Pig Production: Results of a study in South West England in 1972-73
By W.J.K. Thomas and E. Burnside University of Exeter January 1974

No, 27 Dessert Apples and Pears in 1972-73 By R.R.W. Folley Wye College (University of London) April 1974

No. 29 Hardy Nursery Stock in England and Wales A brief study of scale, location and structure By. J. Rendell and S.R. Wrage University of Bristol August 1974

No. 30 Pig Management Scheme 1974
By R.F. Ridgeon
University of Cambridge January 197550p

No. 31 Pig Production: Results of a study in South West England 1973-74
By W.J.K. Thomas and A. Sheppard University of Exeter February 1975

No. 32 Field Beans: A study of the husbandry and production economics of the 1973 crop in England By H.W.T. Kerr, P.D. Hebblethwaite and K.N. Holloway

University of Nottinghan March 1975

UNIVERSITY DEPARTMENTS PUBLISHING IN THIS SERIES

BRISTOL	Agricultural Economics Research Unit Department of Economics University of Bristol 79 Woodland Road, Bristol BS8 1UT
CAMBRIDGE	Agricultural Economics Unit Department of Land Economy University of Cambridge Silver Street, Cambridge CB3 9EP
EXETER	Agricultural Economics Unit, Department of Economics University of Exeter Lafrowda, St. German's Road, Exeter EX4 6TL
LEEDS	Department of Agricultural Economics, The University of Leeds Leeds LS2 9JT
LONDON	School of Rural Economics \& Related Studies Wye College (University of London) Nr . Ashford Kent TN25 5AH
MANCHESTER	Department of Agricultural Economics Faculty of Economic and Social Studies University of Manchester Manchester M13 9PL
NEWCASTLE	Department of Agricultural Economics The University Newcastle upon Tyne NE1 7RU
NOTTINGHAM	Department of Agriculture and Horticulture The University of Nottingham School of Agriculture Sutton Bonington Loughborough Leics LE12 5RD
READING	```Department of Agricultural Economics and Management University of Reading 4 \text { Earley Gate} Whiteknights Road Reading RG6 2AR```
WALES	Department of Agricultural Economics The University College of Wales School of Agricultural Sciences Penglais Aberystwyth Dyfed SY23 3DD

ISBN	0	7049	0192	7
ASSN	0306	-8900		

[^0]: *See Preface

[^1]: 1. Uncertainties facing British Farmers by J.S. Marsh in
 "Farm Business Data 1975" pp 13-15.
[^2]: 1. Dench and others op cit.
 2. "Cropping mostly cereals farms" defined by the M.A.F.F. as farns having over 50% of their standard man-day requirement devoted to cropping of which 50% or wore is for cereal production. 3. Temporary grass in the sense that it was part of an arable rotation.
[^3]: 1. Percentages add to over 100 because grass was usually grown for several reesons
 2. See Appendix Tä̉le 2.
[^4]: .- means less than $£ 0.50$

 - means nil

[^5]: * D.B. Wallace. "The Crop Scientist and the Faryer in England 1940-1960" Journal of Agricultural Economics. Vol.XXVI No. 1.

[^6]: * See for example "U.K. Farming and the Common larket: Grass and Grass Products" A report by the Economic Development Committee for Agriculture" National Economic Development Office. Nov. 1974.

[^7]: * J.A.L. Dench et al "Break Crops: An economic study in Southern England". University of Reading, Department of Agricultural Economics and Management 1972.

[^8]: * In approximately 50% of these instances one barley crop following the ley was followed by wheat.
 ** Three long rotations reported included two ley breaks.

[^9]: * A number of farmers expressed more than one type of problem so that the proportion expressing no problems was much greater then the balance required to make a total of 100% in these tables.

[^10]: * See Table 15 for areas.

[^11]: * Percent of farms having sheep.

[^12]: * The acreage of these crops has not been included in any calculations of forage area or forage acres per livestock unit.

[^13]: * Other inputs

[^14]: * Rearing ewe lambs, selling approximately half as lambed thaves and their lambs fat.

