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Abstract:

This paper considers an infinite stage two person coordination game in which players are

asymmetrically informed about the changes in the stage-game pay-offs.

The main result is that, in all equilibria, if players start by conforming to a stage-game

norm then, inspite of the existence of signalling possibilities, the informed player chooses

not to signal an interval of strict pareto-improving changes in stage-game pay-offs, ,and

this leads to the persistence of norms, which have become in-efficient.
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1. Introduction.

Akerlof(1980), and in more recent years, Cole, Mailath and Postlewaite (1990), Lai

(1988) among others, have constructed formal models which highlight the central role of

social conventions and norms in understanding economic growth and efficiency. This work

suggests how particular conventions and norms may be detrimental to growth or lead to

inefficient outcomes, whereas other norms may fare better. Faced with these results, one

is naturally led to ask the following question: How do inefficient norms survive, specially

when those who conform to them are aware that these norms are inefficient?

This paper provides an answer to this question in the framework of infinite stage co-

ordination games. Incentive conflicts are not at issue in such a framework and this allows

us to make our points in a simpler way. In another paper (Goyal and Janssen(1991)),

we have explored the problem of learning to co-ordinate in the absence of communication

between the players.' This work has suggests the need for some extra-individualistic feature

in the model to help attain co-ordination in stage-game play. We assume in this paper

that, in view of these problems, players may conform to a stage-game norm (Definition

2.2, below), which suggests actions, for all stage-games. It is important to note, one, that

a stage game norm does not fix an action for each player, but simply suggests an action

which agents are free to follow or not follow; and two, since this action is related to the

specific stage game, it is generally different for different stage games.

We study the persistence of in-efficient norms, by introducing the possibility of a strictly

pareto-improving change in the structure of pay-offs of the stage game. Both the precise

nature of this change and its timing are stochastic. When the change actually occurs it is

observed privately by the players. We introduce the idea of signalling norms (Definition

3.1., below), to facilitate communication of this information, from the informed player to

the uninformed player. These signals operate via the pay-offs in the co-ordination game,

which are commonly observed.

In this setting we demonstrate (Theorem 1) that, in any signalling equilibrium (Definition

3.2) of the infinite stage game, if players start by conforming to stage-game norms, then

the informed player. who knows about a strict pareto-improvement in the stage-game pay-

offs, chooses not to signal this change. This leads to the persistence of norms, which the

informed player knows are in-efficient. Theorem 2 shows that there exist such equilibria.

The intuition behind Theorem 1 is as follows: In the absence of possibilities of direct
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communication of change, the only way to signal change in the pay-offs is via the switching

of action in the stage game. This could lead to a loss of pay-offs in the stage-game, if the

uninformed player in confirming to a norm, plays the action consistent with the previous

stage-game. The informed player has to balance this loss against the prospective increase

in pay-offs from future stage games. If he discounts future pay-offs, it is possible that for

some interval of strictly pareto-improving pay-offs in the stage-game, the sum of discounted

pay-offs may be less than the present sacrifice. This would make it optimal for the informed

agent to persist with an action that is consistent with initial stage-game norms, but in-

efficient.

We also show that this interval of in-efficiency is monotonically increasing and unbounded

in the impatience of players and also in the number of actions of the players, respectively

(Propositions 3).

The results in this paper, we believe, provide a new insight into the problem of how in-

efficient norms persist in environments with private information. Our paper is closely

related, in its motivation, to Akerlof(1976,1980) and Boyer and Orlean(1991). Akerlof

considers static models, and demonstrates how social norms, such as caste, views about

race-worker productivity relationship and fairness are sustained in equilibrium and relate to

issues of efficiency and un-employment; in contrast, our paper demonstrates how inefficient

stage-game norms may persist in a dynamic setting. In addition, Akerlof's results are

derived for large social settings, in which in-efficient outcomes, once they are in place, are

easier to sustain, due to the insignificance of personal initiative; in contrast our results are

derived for two agent setings. These two aspects of our model suggest that our results

greatly re-enforce the pessimism about decentralized systems that is present in .Akerlors

work.

With respect to the Boyer and Orlean( 1991), the main difference is in the way that players

are modelled; we take players to be rational and optimizing agents, whereas Boyer and

Orlean(1991) use an evolutionary model, with agents' choices exogenously determined.

The principal result in their paper is that with suitable local interaction structures, strict

pareto-improvements if they are feasible can be attained, as evolutionary stable outcomes.

In contrast, we show that in environments with asymmetric information and with only

two agents, (hence. strictly local interaction. only) in all equilibrium, an interval of strict

pareto-improvements is unattainable.
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Our main argument is made with the help of a very simple model, which is described in

Section 2. Section 3 presents the main results and section 4 considers the robustness of

these results. Section 5 concludes.

2. The Model.

In this paper we are concerned with an infinitely 'repeated' version of the following

type of a symmetric coordination game.

((a, a) (0,0) )

(0,0) (/3,/3)

There are two players in the game, the column player and the row player, denoted by C

and R, respectively. The set of actions for both players, C and R is A = {l, r}, and a

generic element in this set if denoted by a. The set of mixed strategies for a player is
„

denoted by A. The pay-offs are given by 71-i, where 7ri : A x A R1+ and i = CorR.

We are concerned only with strictly symmetric co-ordination games, i.e., for those games

where 7ri(i,r) = 7ri(r, 1) = 0, and 7ri(1,1) = a > 7ri(r,r) = > 0, for i = C or R; and hence,

without loss of generality, we may simplify the notation and denote pay-offs without a

subscript. Denote the generic stage-game by F.

Evolution of Pay-offs: A novel feature of our model is the evolution of pay-offs across time.

We allow the pay-offs to change over time but retain the co-ordination game structure of

the initial game. In particular, we assume that the initial pay-offs are given by 74/, 1) =

1> 7(r, r) = > 0. Denote this structure by Go. This is the structure with which players

start the infinite stage game. At some point in the course of the game, which is stochastic,

the pay-offs can change to al or a2, where 0 < a, < < 1 < ai . In particular, we

consider for simplicity only strictly local changes, and thus the initial stage-game, Go, may

change to any of the following four cases:

(C1). 74/,/) = al, ( r) = 13;

(G2). 7(1,0 = a2, 7r(r,r) = /3;

(C3). 7(1,1) =1, 7r(r, r) = al;

(G4)• (1,1) = 1, 7r(r.r) = a2.



•••

The evolution of the structure of pay-offs over time is defined by a stationary Markov

process. The probability of change from Go to Gk, for k 0, is given by p> 0; given a

change all the new games, Gk for k=1...4, are equally likely. Also we study the simple case

where change occurs but once. These assumptions are represented in a compact way, in

the following transition probability matrix.

Go G1 G2 G3 G4

GO 1 P/ P/ P/ PR\

Gi 0 1 0 0 0

P = G2 0 0 1 0 0

G3 0 0 0 1 0

C4\ 0 0 0 0 1)

We denote by Gt,k, the particular structure of pay-offs at stage t and by Gt,k, the realized

evolution of stage-game pay-offs, where k refers to the nature of change and t refers to the

point at which the change takes place. The players can compute, for each t, the probability

of different Gk. We denote these probabilities derived from P by {Pt} = (p7, p,p , p, pn,

where p, denotes the probability of the stage game at point t, being k. This structure of

pay-offs implies, in particular, that in the limit the probability of change in the structure of

the game is 1. The next issue is the player's information about the changes in the pay-offs.

Information Structure: We assume that one and only one player observes change in the

pay-offs, and he does so, if and only if, it actually takes place.2 In other words, there

is no noise in the observation process. This information structure generates asymmetric

information in the course of the game and we refer to the informed player as of type

I and the uninformed as of type U. More formally, the type set is defined as T, where

T = {(.4)4k=1, ET}. In the analysis below, however, we use type I to refer to the the generic

informed player, for notational simplicity. We can formally state the above assumptions

as,

Prob(One player is of type I at Elchange at stage i) =1,

Prob(C or R observe change at stage k, !change at stage 1) = 0.

The evolution of beliefs of a. player who is of type I is then straightforward. How do the

beliefs of the type U player evolve? This depends on the game until a particular stage,

and to understand it we turn to a description of history.



History: We assume that at the begining of a stage game, players have a chance to observe

the move of nature and then at the end of each stage the players recall their own action

and can observe only the pay-offs. The motivation for this assumption is that in a variety

of settings, such as co-ordinated action in battles, actions are not observable but outcomes

are observable. This assumption does not play an important role in the 2 action case, but

is crucial for results in a more general action space (see Proposition 4, below).

The time line for a specific t stage game may be represented as follows: 40): nature moves;

t(1): one player observes outcome; t(2): updating of beliefs by players; t(3): players make

their moves; 44): the pay-offs accrue to the players; t(5): players update their beliefs about

the pay-offs structure. End of stage t game. In particular then, players may learn, about

the structure of the stage-game, from the move of nature and the pay-offs that result. We

shall specify how this updating take place in more detail below.

At any stage a player can recall perfectly all his own past actions, and all past pay-offs.effs.

History at stage t is thus a sequence, = *070,, and 

h 

H' . We next describe how this history is incorporated in the evolution of player's beliefs

over time.

Beliefs: We model players as Bayesian agents in the sense that they have beliefs, in the

form of probability distributions, about the stage-game they are playing, and use Bayes'

Rule to update these beliefs on receiving relevant information concerning these unknowns.

We denote beliefs at stage t(0) for player i, by bi,t, where = {(1-4,t) E4k=o 4,t =

Here t represents the probability mass assigned to stage-game Gk. Denote the set of

possible beliefs by B.

At stage 1, all players know the stage-game is Go, that subsequently the game may change,

and that they may not observe the change. Thus players enter with prior belief about the

true stage-game, bo which assigns full probability mass to Co, i.e., it 0 = 1, V i. A player's

beliefs evolve in the course of the game, as a function of the stochastic process defined

above, (as represented in the transition matrix P), his/her possible observation of nature's

move, and past pay-offs. N. bi,t are derived from prior beliefs bi,o, given the type, Ti and

history, ht using Bayes' Rule. and may formally be defined as,

:Px Tx ilt-1 --+B



Recall that updated beliefs, bi,i are constituted of Wilt.0. As an illustration, for the

updating procedure, we consider the situation where a player knows that his opponent's

strategy is specified as follows: For T = U, si,t (U, h) =1,Vh:-1; and for T =

si,t(I , kti-1) = r, only if Gt,k = G3 and si,t (I, = 1, otherwise. Suppose that at stage

14'1 = (v t < i,st = i;vt <(I-1),rt= = 0)

and type of player i, To' = U, then we derive [Lift, as follows:

f4t(U, = Prob(Gi,f = GklU,14-1)

Prob(U,14-1-1Ge,I=Gk)•11,_i
= 4
Ek=o Prob(U,Itti-11Gf,f=G0•1 _ 1

Given the strategy being followed by his opponent, and the history observed, a player can

calculate that Prob(U,iii— IGi,f = Gk) = 0, for k = 0,1,2 or 4. Hence, 1(U, h) = 0,

for k = 0,1,2, or 4, and [q,i(U , = 1.

We also denote by bi = (bi,t)t'=1, the beliefs of player i, in the infinite stage game.

Strategies: For the stage-game the strategies are denoted by si,t, and defined as a mapping,

si,t : T x Ht-1 A. Also the behaviour strategy for player i, in the infinite stage game is

defined as an infinite sequence of such stage-game mappings, and denoted by si, for player

i, i.e., Si = (si,t)t("Zi, and St = (8C,t18R,)•

The expected pay-offs in the stage-game are denoted by Xi,t(sc,sR/bi,t) where, Xi,t(sc,sR

/bi,t) = Prob(sc,t = sR,t = /)(1-4,t 1-11,t•cti [11,t•cv2 /4,t tet,t) Prob(sc,t = SR,,t

r)(,t +111.,t + 'i 4,t•a2).

The expected pay-offs in the infinite stage game is defined as a sum of the expected pay-offs

from the stage-games, and denoted by,

sc, SR) =

00

t=

h: for i =
(5,txt[sc.t.sR,th C.

-We define an equilibrium concept, incorporating the idea of sequential rationality, as fol-

lows:

Definition 2.1: Equilibrium: An equilibrium is a strategies and beliefs pair, Ittit,i)t} 1,

5. t.,



I. For any 141

00 00

E61—e XtPi,t,,4—i,t1'6i,t
t.ti t=t1

at—tix „Va E Alt

Here Alt represents the set of actions after stage (t-1).

2. The beliefs, bi,t, are derived as follows:

For Ti,t, = I, bi,t, is 3.1., t, =1, for the k representing the observed new game.

For Ti,t, = U, bi,t, depends on the transition matrix P, and the history, h'_1. In particular,

(i). Vh:1— , which occurs with strictly positive probability, given (Sc, SR), bi,t are derived
using Bayes' Rule.

(ii). Vh:' , where Bayes Rule is inapplicable, if for some t < t', 7rt(.) = al or a2, then

is s•t., = 1, for the corresponding Gk; and otherwise, all beliefs bi,t E B, are
admiss able.

In the analysis below for simplicity we will consider only equilibrium in pure-strategies.

Our focus is the persistence of in-efficient stage-game norms, in equilibrium. To facilitate

the statement of results, we formally define stage-game norms and persistence of inefficient

norms.

As a motivation for the definition recall the well known example of which side of the road

to drive on; the norm in France suggests that you should drive on the right side of the

road, whereas if you were in England, then the norm suggests that you should drive on

the left side of the road. Thus a. stage-game norm suggests actions for each player in a

stage-game. We consider a class of stage-game norms with two properties: (i). For every

mutually known stage-game the norm specifies a. particular pair of actions; (ii). For stage-

games not mutually known, it suugests that players choose actions that are the same as the

actions in the last mutually known stage-game. (Formally, a fact is mutual knowledge, if

Vi, player i knows that it is true and also knows that player —i knows that it is true.) This

is a. natural set of norms; examples include contingent plans in battles, and statements

in bilateral agreements which say " both parties agree to do 'x' unless mutually informed

about a new contingency". In the analysis below, for expositional simplicity, we consider

a particular member of this class of norms: Our stage-game norm suggests pareto-efficient



actions in mutually known stage-games. It is easily verified that our results carry over to

the more general class of norms outlined above. Formally,

Definition 2.2: Stage-Game Norms. A stage-game norm suggests that: (a). When

Go, G1, or G4, is mutually known to be the true stage-game, then both players should play

1 and when the true stage game is mutually known to be G2 or G3, then players should

play r; (b) For stage-games which are not mutually known, players choose the same action

as in the last mutually known stage-game.

We say that players conform to a norm when they take actions recommended by the norm,

and define in-efficiency of stage-game norms, using an expost notion, as follows:

Definition 2.3: In-efficient Stage-game Norms. A stage-game norm is said to be

in-efficient if in equilibrium play, in a stage-game in which players conform to it, the

stage-game outcome is pareto in-efficient.

This leads us to a definition of persistence of in-efficient stage-game norms, as a property

of equilibria of the infinite stage game.

Definition 2.4: Persistence of In-efficient Norms. An equilibrium has the persistence

of in-efficient norms property if, players conform to the stage-game norm forever, despite

it being in-efficient from some point onward with strictly positive probability.

3. Analysis.

In this section we analyze the implications of allowing norms to play a role in the

decision making of rational individual agents in a strategic setting. The principal result

(Theorem 1) is that if, ai c (1, 1), then in all signalling equilibria (see Definition 3.2,

below), in which players start by conforming to stage-game norms, they persist with playing

/, forever, when the true stage-game is G3 after some point. (By start by conforming we

mean that players conform to the stage-game norm in the first stage-game.) Theorem 2

shows that there exist signalling equilibria in which players start by conforming to the

stage-game norm.

Our first set of results (Propositions 1,2) pertain to the extent of learning of the true stage-

game. Recall, from assumptions above that, when it occurs, one player always observes

the change in the game. Thus the issue is: Does the type U player also learn that the

game has changed?



The first result answers the above question in the affirmative, by showing that even in the

absence of any learning via pay-offs, since the posterior beliefs of players evolve over time,

as a natural consequence of the probability structure of change assumed above, in the long

run type U too is certain that the stage-game has changed. This observation is formally

stated as follows.

Proposition 1: Suppose that players choose action 1, for ever; then, the sequence of

posterior beliefs about Go, {tin ft° = 0.

Proof: This is a direct consequence of the consistency of Bayesian posteriors.

Our second observation shows that players do not necessarily learn the true stage-game.

In particular, we show that there exists an equilibrium in which the type U player does

not learn the true stage game, even in the long run.

Proposition 2: There exists an equilibrium, in which players start by conforming to the

stage game norms and the uninformed player never learns the true game being played.

Proof: (Sketch) Consider the following strategy-beliefs pair: VT, and VW: , s.t., _1

= (1,1 or al) or (r, a2), si,t = 1; and VT, s.t., for some t < t', hi,t = (1, a2) or (r, al),

= r, Vt > t', and i = C, R. The beliefs, bi,t are derived using Bayes' Rule for all

histories which, given t.4 occur with positive probability, and for histories which have for t a

component (1, al or a2), (r, a1 or a2), the beliefs correspond to the true state game, then.

Finally, for all other histories which occur with zero probability, given all beliefs b E B

are admissable. It is easily checked that this is an equilibrium of the infinite stage-game,

and that in it players start by conforming to stage-game norms. However, note that there

is no learning of the true stage game, along the equilibrium path, if the stage game after

period t is G3 or G4. Q.E.D.

Our principal concern is with the persistence of in-efficient norms and so from now on

we will focus on the case where the realized change is C3. In this context, the following

corollary is an immediate consequence of the above proposition.

Corollary: There exists an equilibrium in which players choose to play 1 forever, despite

Gt,k = G3, Vt > t.

The corollary demonstrates that it is quite easy for a stage-game norm, once in place,

to persist inspite of some player knowing that it is in-efficient. This result may be seen

as an analogue to the results on persistence of in-efficient norms. derived by derived by
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Akerlog1980), in a static setting. Unlike in his results, however, in our setting social

sanctions are not necessary, to sustain the norm.

The dquilibrium constructed in Proposition 2 points to the static nature of the norm defined

above as a possible cause of this in-efficiency. The stage-game norm does not say anything

about what action to choose when the opponent has played r, and this creates the following

problem: An informed player does not have an incentive to signal when the uninformed

player is not ready to receive the signal (Crawford and Sobel(1982)). We introduce the

notion of signalling norms to overcome this problem.

As a motivation for signalling norms, recall the homely example: What does a person infer

when suddenly one morning he observes that all motorists are driving on the wrong (say

the right) side of the main road? He might think that everyone has made a mistake, but

it is more likely that he thinks that, they must have some good reason to do so, i.e., the

structure of the pay-offs has altered 

The following definition of signalling norms is introduced to take account of this reasoning

in the face of knowledge that the world is changing and this change is imperfectly observed.

Definition 3.1: Signalling Norms. A signalling norm specifies, for a player who has

not switched actions;

(i). A rule to modify beliefs, about the true stage-game being played, when an opponent

first takes an action inconsistent with initial stage-game norms; and

(ii). Beliefs about opponent's actions in the event that opponent does not observe any move

by nature; in particular, a player, after a history when no one has switched, believes that

his opponent will switch first only if he (the opponent) observes a change in stage-game

p ay - o ffs .

Note that part (ii) in the definition above is needed for part (i) to be useful as a norm

about signals. If the opponent can switch randomly or experimentally then the switch in

action will cease to be a signal.'

As an application of signalling norms, we consider the case where a player of type U, who

has not observed nature change the game to G3, observes that the pay-offs in a particular

stage game are 0. Given that he himself has not chosen r, he updates the belief about the

other player's action in the direction of assuming that there must be a good reason for

the player to switch suddenly to playing r, which given the structure of the model, must

11



lie in the change in stage-game pay-offs. Thus he comes to believe that the game must

be G2 or G3 . This intuition is similar to the idea present in van Damme's definition of

equilibrium consistent with forward induction (see Fudenberg and Tirole(1991), Definition

11.8, p.464); however, we do not formally develop this idea further, as this is not the focus

of the present paper.

For example, we say that equilibrium beliefs satisfy signalling norms if the following is

true:

For Ti,t, = .U, Vh:' —1 3.1., Vt < (ti — ),hi,t = (1,1 and hi,t,_1

{Pi, , = 1}.

Signalling norms thus restrict beliefs off the equilibrium path, and the above specification

has the important effect of eliminating certain equilibria, on grounds of sequential ratio-

nality. For instance, in the equilibrium used in the proof of Proposition 2, type / player

will, for sufficiently high values of al, certainly find it more profitable to switch and thus

signal a change of the game to C3, given that type U player interprets this as a signal for

a change in the stage-game. The type / player will note that such a switch involves a loss

of one period pay-offs in the present stage-game, but possibly a substantial increase in all

subsequent pay-offs, since the type U player, on observing the 0 pay-offs will, following on

the signalling norm, infer that the game has changed and the new game is given by G2
or C3. Hence he will play r too, as this is the optimal response to a belief about type /

player's action in these two stage-games.

(1,0 =

But does this signalling norm eliminate in-efficient stage game play and hence in-efficient

norms? The answer is, No. The reason for this is that for an interval of values of al

higher than hut close to 1, the type / player has inadequate incentives, given that 6 <1,

to switch. We show that this interval is non-empty for all equilibria in which player's abide

by signalling norms.

We refer to an equilibrium in which players play in conformity with signalling-norms as a

signalling equilibrium. Formally,

Definition 3.2: Signalling Equilibrium. An equilibrium (.i)) is called a signalling

equilibrium, if and only if, the strategies, and beliefs, (i)) are consistent with signalling

norms.

We can now state our main result.

12



Theorem 1: Suppose 1 < al < 16. Any signalling equilibrium, in which players start by

conforming to the stage-game norm, has the persistence of in-efficient norms property.

Proof: This is a claim about equilibria in which players start by conforming to the stage-

game norms, and in addition, also conform to signalling norms. In any such equilibrium,

for the claim to be true, it suffices to show that if 1 < al < then if Gt,i, = G3 Vt >

players do not switch actions and continue playing 1 forever. Given the hypothesis that

an equilibrium satisfies signalling norms, any such switch must be initiated by the type /

player. Thus, we only have to check if type / player has the incentive to switch.

In a signalling equilibrium, the player of type / knows that unless he switches to r both

players will continue playing 1, forever. Observe that switching is better than never switch-

ing if pay-off from switching now, X(/), or pay-off from switching after n periods, X(I),

is greater than the pay-off from never switching, C/7.9(/). We compare these cases below.

X:1)‘99(/) 11-6; Xrc 1—t°(/) 16:-1 6 + 61;4 ; X-:( /)72)( 

After simplification, these expressions show that, X(/) > .APZ(/), only if, al

Likewise, it is easy to show that XT (/) > X(/), only if, al > 1. Q.E.D.

Remark: This result can be extended to the case where both players can privately observe

the change in the true stage-game, with strictly positive probability.

This shows that in any signalling equilibrium, if players start by conforming to stage-game

norms, then there exists an interval of possible strict pareto-improvements which are not

exploited as the informed player has an incentive to not switch. Moreover, it is immediate

that this interval of in-efficiency is increasing and unbounded as the players get more

impatient.

The role of asymmetric information is crucial here, because if there were mutual knowledge

of the new stage-game, conformity to stage-game norms would be sufficient to erode old

norms and thus eliminate inefficiency of the sort identified above.

We conclude this section by showing that there exist such equilibria..

Theorem 2: There exists a signalling equilibrium in which players start by conforming

'with, stage-game norms.

Proof: Consider the symmetric strategy belief profile, (s, : where
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(Pi,t is s.t.,

= /, for i C and R.

For To = U, (i). Vlifi s.t., if for any t < 1', = (r, ai), or (1, a2), then s,ti = r; and

if ho = (1, ai), or (r, a2), then :six = 1; (ii). s.t., Vt < t' —1, ho = (1,1), gi,t,= 1;

(iii). Vh:1-1 not in case (i), and, s.t., Vt <1 < , h = (1,1), and hi,i = (1,0), = r;

(iv). Vh:' —1 not in case (i), and, s.t., Vt < <t', h = (1,1),hi,- = (r, 0 00), = r;

(v). V11 1-1 not in case (i), and s.t., h,1 = (1,0) or (r,0 or 0), = r.

For To, = I, the strategies for each of the above five classes of histories, are as follows:

(i), (iii)-(v), are the same as for To, = U, above; (ii). V141-1, s.t., Vt <t', ho = (1,1), then

if To, = /3, then go, = r, if al > 1, and = 1, if al < 1; also if To, = 11,12 or, 14,

then go, = 1.

The beliefs, bo, are derived as follows: For all histories, that occur with positive prob-

ability, given g, above, bi,t are derived using Bayes' Rule. For those histories which, given
.4, obtain with zero probability, if htil-1, is s.t., ho = (1,1),Vt <t' — 1, and ho,_1 = (1,0),

then {/44,(U) 14,,(U) = 11; and Vhtii-1 in class (i) above, = 1, for the correspond-

ing Gk, whose pay-offs were observed. For all other histories, which are observed with

zero probability, given any belief b E B, is admissable. It is possible to show that this

strategy-beliefs pair constitutes an equilibrium, satisfies signalling norms and that players

start by conforming to stage-game norms. Details are given in the appendix. Q.E.D.

4. Extensions.

Are the above results robust? In this section, we examine how this interval of in-

efficiency, 1 < al < 1, is related to the parameters of the model. In particular, we look at

the role of the number of actions.

Number of Actions: The results in the previous sections have been proved for the case

when there are only two possible actions in each stage game; 1 and r. It is possible to

generalize the results to a more general action space, say with N actions. Co has the

structure, 7(0 = 1, and r(rj) = /3 < 1, Vj = 1,2...(N — 1). Each of the r(a) can change

to one of al or a,, and as before, 0 < a, < < 1 < al; C1 and G, are defined as in

section 2 above, and account for local changes for 7(0 to al or a2. The structure of the

new stage-games corresponding to G3 and C4, can then be represented as follows,

14



G3, = { (/) = ; ; 7r(ri0j) =

G = {740 = 1; 7r(ri) = a2; r(rioi) = p}.

Furthermore, we retain the Markov structure of the evolution of the pay-offs over time. In

particular, the probability of change at any point is 0 <p < 1, and each of the 2n new

stage-games have an equal probability, -2-2n of occuring.

Given the signalling of type I player, there are several ways in which the type U player may

search for the new optimal point. We focus on two relatively straightforward strategies:

Equi-Probability Randomized search and Deterministic search. Moreover, in equilibrium,

the type I player can, after he has signalled change in stage-game, choose to co-ordinate or

not to co-ordinate with the search strategy of the type U player. It is possible to show that

if type U player is playing an equi-probability randomized (deterministic) search strategy,

then the best response of the type I player must be to persist with the new optimal action

ri (choose actions in a co-ordinated way). So in the proposition below we focus on the

cases: Uncoordinated randomized search and deterministic coordinated search.

An interesting consequence of expanding the action set is that the interval of in-efficiency

for all signalling equilibria expands. It is shown below that this interval is unbounded as

the set of actions grows. In particular, if we denote the number of actions in the set Ai

by N, the interval of in-efficiency, for a signalling equilibrium, by Z(N),_ the supremum of

this interval by Zs(N), then as N gets large, .Zs(N) is unbounded. The intuition behind

the result is that, as the number of actions gets large, the time taken to discover the true

location of change, for the U type player grows, and hence the prospect of losses for the

type I player in the interim, grows as well, thus discouraging any switching by the type I

player.

Proposition 3: In any signalling equilibrium, if players start by conforming to stage-

game norms and if type U player uses an equi-probability randomized search process or the

deterministic search process, then limN___Zs(N) pc.

Proof: See appendix.
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5. Conclusions.

Formal analysis of norms as devices for co-ordinating expectations, by Akerlof and

others, suggests that such social arrangements may sustain outcomes which are pareto in-

efficient. A natural question arises: Why do these norms persist inspite of agents knowing

their inefficiency?

We provide an explanation for this phenomena, in a dynamic context. It is shown that in

all equilibria of an infinite stage game, if players start by conforming to a stage-game norm

then, inspite of the existence of signalling norms, the informed player, who knows about

a strict pareto-improvement in the stage-game pay-offs, chooses not to signal this change.

This leads to players persisting with initial stage-game norms inspite of their in-efficiency.

The framework developed here is, we believe also quite appropriate for understanding one

of the fundamental issues in the economics of organization (Arrow 1972); viz., the optimal

design of information transmission systems. Our results on the in-efficiency of norms, in

particular, point to the need for investigating the nature of ex-ante optimal organization

design in the presence of environmental uncertainty.

Notes.

(1). Crawford and Haller(1.990), study the problem of optimal learning rules for coordina-

tion, in the absence of common labelling of the stage-game. There are several optimal rules

in their model, and, in our view, this suggests the need for some form of communication

norms, to sustain their choice of an optimal rule.

(2). More complicated signalling and coordination norms are possible, in which experimen-

tation by players about the true stage-game is allowed, and also co-ordinated. Generally

such norms are of little relevance, due to the large transition costs associated with regime

switching; besides in our framework, given the pareto ranking of pay-offs in the stage-game,

such norms will involve direct losses.

Appendix:

Proof of Theorem 2: First, it is shown that the pair, I)), constitutes an equilibrium;

next we prove that it satisfies signalling norms and players start by conforming to the

stage-game norms.
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The proof for existence is done in two steps; one, it is shown that Vh,11 and for all

given and beliefs, b, .gi is the optimal strategy for player i; then it is shown that b

satisfy the requirements in the definition of equilibrium.

There are two types of players and five classes of histories; must be optimal for each of

these cases.

We first consider the case where Ti,t, = U,

(i). V , s.t., for some t < (t' — 1), h i,t = (1, ai), or (r, a2), given Vt > t' s = 1,

and it it is immediate that Vt > = 1 attains the maximum attainable pay-off and

hence is the best response. Analogous arguments can be made for the optimality of of tgi,

in case of 14', s.t., for some t < t' —1, hi,t = (1, a2), or (r, ai)•

(ii). Given opponent strategy s_i, denote the pay-off from a strategy which involves

switching now, by X. This pay-off can also be written as follows: A7.9n= Prob(T—i,t, =

i)Xs"n(T—i,t, = + Prob(iti,t, = U), where the latter two pay-offs refer

to the cases where player —i is of type I or type U, respectively. We consider the case

where al > This is the harder case to prove, but a similar argument works for al <

The proof consists of showing that irrespective of the actual type of the other player, at

stage t', given his strategy it is optimal for player i, of type U, to follow j,after a

history in class (ii).

Denote the pay-off from following j, as a response to given that the opponent is of

type I, by Xr(T_i = I). X (T___i = 5_ 41 (16 '136 -1- 164 6 + 8.a2 + 612-16), since

the expresion on the r.h.s. is the maximum pay-off possible after playing r at stage t',

given ;;_ i. Denote by X(T___i,t, = I) the pay-off from playing = =

a2 16.136 + 61.a16 +  1 6 ). It is checked easily that Xs̀t(T_ i,t, = I) > = I)

only if, a2(1 — (5)2 + 1 — 6./3 — 62 < 0. Since this is never true, Xs̀t(T_i,ti = I) <

, I)

Next consider the case where the opponent too is of type U. and denote the pay-off from

following j, given by = U). W.l.o.g., consider any particular time period

of change, of the true stage-game, and fix this period of change as if. It can be shown that,

for any such period Of change of the stage game,

LT)(i) < 6./3 8'1.3 + 7(13 +   + 1 _6 +a+ 1 6 6 )1
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since the expression on the r.h.s., is the maximum pay-off possible, after si,t, = r, given

that opponent is playing L. Likewise, it is possible to calculate the pay-off from following

, and,

,U)(1), =1+ + ....8i-1 o2 + 16'136 + §19- + 1 16)

It is easy to check that U)(E) > = U)(1), only if (1 — 6),3 --1-- +8 2

&al +1, which is impossible. Since this is true for any t> t', it is also true for the expected

value over all I > t', i.e., = U) < U).

Putting together the two cases examined above proves that X98° > X, and this completes

the argument for optimality of after class (ii) histories.

(iii). For all such 14', it must be true that h i = (r, 0), and given j, irrespective of

the type of the opponent, = r, and also Vhf not in class (i), Vt > t', s_i,t = r.

There are four cases to consider, Gt,k = G(1,2,3, or 4). Given Lj, it is immediate that for

Gt,k = G(2 or 3)) Si,t = r is optimal. If Gt,k = Gi, then given the maximum possible

pay-off is 1 136, and gi attains it, thus it is optimal. Finally, if Gt,k = G4, then maximum

attainable pay-off for player i, given Lj, is equal to o2 + 8 1 1 6. which is attained by

This establishes the optimality of after class (iii) histories.

(iv). For these histories, it must be true that h i = (1,0). This implies that irrespective

of the type, s_o, = r, and furthermore, Vh_i,t>v, (save histories in class (0), so = r;

hence, for type U, j, is optimal using exactly the same arguments as in case (iii) above.

(v). For such histories there is a mirror image in class (v) for the opponent, and since for any

evolution in the future, except the case of histories that lead to case (i), Vt > 1, = r,

the optimality of j, is immediate, (given case (i) above).

We now consider the case, To, I,

For cases (i). (iH), (iv) and (v), arguments sketched above can be used to demonstrate

optimality. Case (ii) is different and proved as follows.

(ii). For such histories, Vt < t' — = (1,1), and given = /, and case (ii) and

case (iii) above, for Ti,t, =U, in case of Ti = 1-3, the pay-off is given by X(I) = 6.1716;

the pay-off from switching n periods later is given by X'(/) = 1-6 
11 - 6 11

 + , and pay-offn 1-6
from never switching is given by X,Ts)(/) = 1 1 6. Given L j, it follows that si,t, = 7- is better

if and only if, ai > 71s-. For the case To, /1, or 14, given case (ii) above, Vt > = 1,
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and so attains the maximum pay-off, -P-6-, or i5' depending on the true stage-game. If
643 

= 12, given for case (i), and that a2 > 0, the highest pay-off possible is a2

and since si,t, = 1 attains this pay-off, it is optimal.

Next we show that beliefs are consistent with rules specified in the equilibrium definition:

Note that for all histories that occur with positive probability, the beliefs, bi,t, are updated

using Bayes' Rule, and off the equilibrium too for all histories in class (i) they satisfy the

requirement; finally for histories that occur with zero probability given ‘4, since all beliefs,

b E B are admissable, the specified beliefs too meet the requirement. This completes the

existence proof. Next it is shown that (., b) satisfies the requirements of stage-game and

signalling norms.

Stage-game norms: implies that both players play 1 in the first stage-game. This proves

that in this equilibrium players start by conforming to stage-game norms.

Signalling Norms: Signalling norms pertain to actions, for all histories where players have

not already switched, and updating of beliefs Vhf , s.t., Vt- < — 1),hi,t = (1,1), and

= (1,0), for the type U player. t;i satisfies the requirement, since for all histories

of this type that can occur, i.e., classes (i) and (ii), it recommends actions that fulfill the

signalling norm beliefs of the players. Next consider the beliefs, b; given ‘;_i, irrespective

of whether T_,'= I or U, \-/q , s.t , Vt < (t' — 1), hi,t = (1, 1), and hi,ti_i -= (1,0), Bayes'

updating by type U player implies that {14,t, 14,t, = 1}. Off the equilibrium path too

this requirement is satisfied, by construction. Q.E.D.

Proof of Proposition 3: Fix the number of actions in the game, N and consider a

signalling equilibrium, in which players start by conforming to stage-game norms. Also

fix the evolution to be s.t.,Vt > Gt,k = G33, for some 3 E [NV ,N — 1]. Note that
the probability of such realizations, for 3 E   — will be at least always, in our

structure. For such an equilibrium to be efficient it is required that type I switch and so

we focus on the decision of type I player, after nature has moved and the new stage game

is G3, j for some 3 E [NV, -

Player of type I will switch only if, following on the argument of Theorem 1, Xs°cri(/) >

X(I) or, if _,V;.° > Al7ics(/).
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In the randomized search case, the optimal way to search, for the type U player, is to

randomly move between the actions, eliminating one at a time. Given this search process,

the pay-offs for the type I player may be computed as follows:

X rn(I) = 0.a1 + N1 
+ N1

1-6
v•Ar -1 6t

___  Lat=i 
— 1-6 N-1

On the other hand,

X.,Ts(I) 1.16.

'ç--N--1 6t
Thus for type I to switch from 1 to r3, it is necessary that, al zirli 1, and this

implies that al > ,NN1  . Following on the argument in Theorem 1, a similar expressionst
Lt=i

is valid for switching n periods from now. As N increases the expression on the r.h.s. is

unbounded. That completes the argument in the case of randomized search by the type U

player.

In the case of deterministic search by type U player, the optimal response of the type I

player is to coordinate with the type U player, in the stage-game actions, in the interim

search period. The pay-offs from switching now, X(/) are then calculated as follows:

Given that X.(/) = 1 1 6, the type I player will signal r3, only if al > 0+ 175)6;13. A similar

argument can be made for tile option of switching n periods from now, as in Theorem 1.

But as the number of actions N gets large, and hence 3 gets large, the r.h.s of the above
expression is unbounded. This completes the proof. Q.E.D.
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