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SISAM AND MIXIN:

TWO ALGORITHMS FOR THE COMPUTATION OF

POSTERIOR MOMENTS AND DENSITIES USING MONTE CARLO INTEGRATION1

by

J. Peter Hop and Herman K. van Dijk

Abstract

Two algorithms, and corresponding FORTRAN computer programs, for the
computation of posterior moments and densities using the principle of
importance sampling are described in detail. The first algorithm makes use of
a multivariate Student t importance function as approximation of the
posterior. It can be applied when the integrand is moderately skew. The
second algorithm makes use of a decomposition: a multivariate normal
importance function is used to generate directions (lines) and one
dimensional classical quadrature is used to evaluate the integrals defined on
the generated lines. The second algorithm can be used in cases where the
integrand is possibly very skew in any direction.
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1. INTRODUCTION

DEFINITION OF INTEGRALS; EXAMPLES.

The multivariate integrals that we consider may be briefly described as

follows. Let 9 be an e-vector of parameters of interest and let g(9) be a

function of 9 that satisfies certain mathematical regularity properties so

that the integrals to be computed exist). The posterior mean of g(9) is

defined as

Eg(t9) =
fg(0)p(0II)dt9

fp(9II) dt9

where p(91.1) is a kernel of a posterior density function, given the

information set I. The term kernel means that p(OII) is proportional but not

equal to a density function. The denominator of (1.1) plays the role of

integrating constant similar to the role of 1/27 in the case of the normal

distribution and the role of r(a) in the case of the Gamma distribution with

parameter a. Further, the information set / contains the data and some a

priori conditioning assumptions with respect to the stochastic process that

is defined by the posterior kernel p(01I). For convenience, we make use of

the brief notation p(8) instead of the more cumbersome notation p(1911).

As mentioned above, we assume that the integrals to be computed exist,

that is, the function g(9)p(0) is integrable. Simple examples of g(19) are

g(9) = 9 and g(0). 09'. Note that g may be a vector or a matrix of functions

of O. We emphasize that g may be a nonlinear function of 0. Two examples of

nonlinear functions are the implied reduced form parameters of a system of

simultaneous equations and the roots of the characteristic polynomial of a

system of linear difference equations.

There are several cases where the evaluation of the integrals defined in

(1.1) is a nontrivial matter. First, the integrating constant (the

denominator of (1.1)) is not known in terms of elementary functions (e.g.,

1/271-). Second, even when the integrating constant is known, the functional

form of g(0) is such that Eg(9) is not known in terms of elementary

functions. An example of such a g(0) is the case of the roots of a

characteristic polynomial of a linear difference equation. For a case study

where the integrating constant is not known and g(0) is a nonlinear function

of 0 we refer to Van Dijk and Kloek (1980).
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MONTE CARLO NUMERICAL INTEGRATION.

For the cases mentioned above one may evaluate (1.1) by means of

numerical integration methods that are known as Monte Carlo integration

methods, henceforth referred to as MC. MC integration methods make use of the

following two properties:

(1) Generating a large sample of pseudo random numbers is very easy using a

computer procedure.

There exist physical devices that generate pseudo random numbers. However,

the use of MC integration methods involves usually a computer procedure for

the generation of these random numbers. Pseudo random numbers are generated

on a computer by means of a deterministic method. Thus, a sequence of pseudo

random numbers is perfectly reproducible. This explains the use of the term

pseudo random number. For convenience, we delete, henceforth, this

qualification.

(2) An integral may be interpreted as the expectation of a random variable.

This expected value is estimated using generated random numbers.

The accuracy of the estimation procedure is measured using standard results

from large sample theory. Alternatively, one may interpret the estimation

problem as a Bayesian estimation problem using a uniform prior with respect

to the value of the integral and a large sample of random drawings. For

convenience, we make use of standard large sample results.

EXAMPLE.

Consider (1.1). Let t = 1 and p(0 II) = 1 on the interval [0, 1] and

p(t9 I I). 0 elsewhere. The problem is to evaluate f g (9)0 on [0, 1].

Interpret 6 as a random variable with a uniform distribution on [0, 1]. Use

a computer procedure and generate a sample of uniformly distributed random

numbers 0
(1)
, ... ,O

(N)
. Given that g(0) has a mathematical regularity

property, g(0
(l)

), ,g(O
(N)
) is also a sample of random numbers and one

can make use of the following approximation

fg(0)d9

The sample mean is an estimator based on N pseudo random drawings. In the

next section we discuss the case where one can generate from the posterior

distribution with density proportional to p(0 /) and in the remainder of this

report we discuss the case where one cannot draw from the posterior

distribution.
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2. DIRECT SIMULATION

SAMPLING FROM POSTERIOR.

Consider the following problem:

Compute the integrals in equation (1.1) by means of MC for the case where a

computer procedure is available that enables one to generate a sample of

random drawings from a distribution function F(8) with a density function

that is equal or proportional to the posterior kernel p(0).

Let OW, , 9
(N) 

denote the generated random sample. Given that g(0) has a

certain regularity property (i.e., g is measurable), it follows that
go(1).,

g(O
(N)
) is also a random sample. Then we may approximate the

posterior mean (1.1) by the sample mean g, which is given as

N (0
g N iE ig(9 (2.1)

The computation of Eg(0) by means of this procedure is referred to in the

literature as direct simulation since one is able to simulate a random sample

directly from the distribution studied, using a computer procedure.

[For more examples on direct simulation and for references on computer

procedures that generate sequences of random numbers for many families of

distributions we refer to, e.g., Hammersley and Handscomb (1964, Chapter 3).

Some recent references are Kinderman and Ramage (1976), Kinderman and Monahan

(1980), Rubinstein (1981, Chapter 3) and Marsaglia (1984)].

FLOW DIAGRAM.

A flow diagram for direct simulation is given in Figure 1. Note that, in

accordance with standard usage in Fortran, we make use of an arrow sign

instead of an equality sign. For instance, one interprets Sy
(0) 

0 as: the

value zero is assigned to the variable S(0).

= 1, ,N)
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(0)
The symbol S stands for the initial zero value of the sum of the sequence

of random variables g(0(1)), ,g(O(N)); S(i) denotes the i-th partial sum

of this sequence, given as S(i) = g(.9(1)) + + g(0(2)). Equation (2.3)

illustrates that one does not have to store the large set of random numbers
go(1)), ,g(o(N) •

) as suggested by the i-th partial sum, but one can make

repeatedly use of a computer procedure that generates a random number.

start

Initial value for
random number generator

o

4.•

Generate from F(0)

i )
s ( - + g(0"

4- +

/  
< I < N >

/

iNo

Yes

(N)
S /N

pr in .results

( stop )

Figure 1. Flow diagram for direct simulation.
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STATISTICAL MEASURES OF NUMERICAL ACCURACY.

Convergence with probability one. The accuracy of the approximation

(2.1) or (2.4) may be studied by increasing the size of the sample from N to

2N, 3N,...,MN. The results can be printed at each value of jN, with

j = 1, ,M. Given certain regularity conditions (e.g., the integral Eg(0)

should exist), the Monte Carlo estimator g converges with probability one to

Eg(0). Therefore the estimator is also consistent. Proofs can be found in the

statistical literature.

Recursive update of g"... One may study the convergence of -g to Eg(0) using

a recursive method for the computation of Eg(0). Let gj denote the estimated

value of the integral Eg(0) after j samples of size N. The values gj,

j=1,...,M, are related in a recursive way, i.e., we can write

where

go = 0

jgj = (j -

(iN) (j-1)NSA3  - S3, =

(j = 1, ,M)

(2.5)

(2.6)

(2.7

and S is defined in equations (2.2) and (2.3). Note that for j = 1, it
follows that (2.7) is equal to (2.4). Using (2.5) and (2.6), it is seen that
gj can be computed in a recursive way as

-g 
_

3 igi- = 1, ,M) (2.8)

Equation (2.8) has the structure of a linear difference equation in g with
coefficients (j -1)1 j and and ASi,N / j. This indicates that -gj tends to a
stationary value when j tends to infinity since ((j - 1) / j) <1. However,
ASi,N 1 j is not a constant but the realized value of a random variable. Even
at a large value of j the additional term .63j,N / j may throw the sequence

temporarily off-track, but it will be less and less probable that this event
has an effect as j increases. Some examples of sequences of g-j are given in
Van Dijk (1987).

Asymptotic normality; Absolute numerical error (o---/VN), Relative

numerical error (1/1/N). An other measure of numerical accuracy can also be

derived from large sample theory. Under certain regularity conditions it

follows from central limit theory that the estimator -g, equation (2.4), is
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approximately normally distributed with mean Eg(9) and variance a
2 
N, where

a
2 

is the variance of g(0) and is given as

a2 = Eg2(0) - [Eg(8)]2 (2.9) a

The normal approximation tends to become more accurate when the sample size N

tends to become larger. Under the assumption that the integrals in (2.9)

exist, one may estimate a2 by the sample variance

-2 1 2 (i) -2
a = — g (0 ) - g

N i=i
(2.10)

-
Given an estimator a 

2 
for a2, one can define a 95 percent confidence interval

for Eg(9) in the usual way as [ g- - 1.96-6-/VN, g + 1.96-6/A/N]. A value of

a /VN will be defined as an absolute numerical error and a value of a 1(aVN)

may be interpreted as a relative numerical error, i.e., the numerical error

IVN scaled with the standard deviation of random variable g(0). Note that

in this case a is the posterior standard deviation of the function g(0).

Clearly, the estimated relative error is equal to 1 /1/N. [For an introduction

to the sampling theory results that we use, we refer to Mood, Graybill and

Boes (1974, Chapters 2 and 6) and for a more advanced treatment we refer to

Cramer (1946, Chapters 25 and 27), and Billingsley (1979).]

As an exercise one can determine the required size of the sample for a

pre-assigned level of numerical accuracy. Suppose one is interested in

estimating a probability, i.e., Eg(0) is a number P in the interval [0 , 1].

Suppose further that one is satisfied with a two digit accuracy at a 95 per

cent confidence level. That is, the required confidence interval bounds are

given as P - .005 and P + .005 and we impose 1.96ap/VN .005. This implies

that N must be greater or equal to 153,6640.1,2.
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3. SIMPLE IMPORTANCE SAMPLING (SISAM)

3.1. Basics of Importance Sampling

THE IMPORTANCE FUNCTION AND WEIGHT FUNCTION.

Consider the following problem:

Compute the integrals in equation (1.1) by means of MC for the case where

it is not known how one can generate a sample of random drawings from a

distribution function with density equal or proportional to p(9) but it is

known how one can generate a random sample from a distribution with a

density equal (or proportional) to i(0), which is an approximation of p(8).

The function i(0), which is known as importance function, is a density

function with convenient Monte Carlo properties that is used as an

approximation of p(0). One can replace p(19) in (1.1) by (0)i(0) where the

weight function w(0) is defined as

This yields

w(9) P(0)
i(0)

Eg(t9
fg(9)w(0)i(0)dt9

fw(9)i(9)d9

(3.1)

(3.2)

where i(0) is restricted to be positive on the region of integration. In this

section we make use of a simple choice with respect to the class of

importance functions. That is, we opt for the multivariate Student t class of

density functions. This choice is justified when the integrand is moderately

skew. We make use of the term Simple Importance Sampling (SISAM) in this

case. For more details on the choice of an importance function and for some

alternatives to simple importance sampling we refer to Van Dijk (1984,

Chapter 3), Bauwens (1984), and Ceweke (1989). An alternative method that can

deal with integrands that are arbitrarily skew is explained in Section 4.

Next, let 0
(1)
, ,O

(N) 
be a random sample from a distribution with a

density function equal (or proportional) to i(0). Then, as stated in Section

2, g(0(1)), ,g(0(N)) is also a sequence of independently distributed

random variables with a common distribution function. Let g(0)) be the

typical i-th element of this sequence. The importance sampling estimator of

the vector Eg(0) is given as
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do9)

i

(3.3)

This estimator may be interpreted as a weighted sample mean of the above

mentioned random sample where w(0 ) ,w(9 ) are the weights. If we

define g(0) = ei and g(0) =Mk where j,k =1, ... ,t, one can write the

importance sampling estimators for the marginal posterior first and second

order moments of the elements of 0 in a straightforward way.

STATISTICAL MEASURES OF NUMERICAL ACCURACY FOR A RATIO OF INTEGRALS.

The weighted sample mean is a good approximation of Eg(0) if the sample

size N is sufficiently large and the variation in the weights is bounded. In

order to evaluate the numerical accuracy of (3.3) explicitly, we make use of

results from large sample theory.

Convergence with probability one, recursive update. In a similar way as

explained in Section 2 one may increase the size of the sample from N to 2N,

3N, ... ,MN and study the convergence in probability of g(0). Given certain

mathematical conditions, it follows that g(0) converges with probability one

to Eg(19), details are omitted. The formulas for a recursive update of g(19)

are the same as given in (2.5) - (2.8) with g- replaced by g(0).

Asymptotic normality; Absolute numerical error (orync/VN); Relative

numerical error. Given certain regularity conditions from central limit

theory, it follows that the estimator g(8) is approximately normally

2 2
distributed with mean Eg(0) and variance ar1,1 N, where (7,,, is the variance of

the ratio of the correlated random variables g(8)w(9) and w(0). [For

convenience, we take g(0) as a scalar function and make use of the index mc

2
to indicate that am,/ N is the variance of the Monte Carlo estimator.] The

normal approximation becomes more accurate as N becomes larger.

Since the estimator g(9) is the ratio of the correlated random variables
2

given in the numerator and denominator of (3.3), the formula for um, is more

complicated than the usual definition of a variance [compare Section 2,

equation (2.9)]. For the case of the 3-th element of the posterior mean one

may proceed as follows. Define in equation (3.3) g(9) = ej and /o(0).'ej and

define

Ii
(i) o(i)

• — .52
N i=i

N •‘

N r w(0)

1, ... (3.4

(3.5)

•



J. Peter Hop and Herman K. van Dijk 11

Then (3.3) can be rewritten for the case of the j-th element of the posterior

mean as

oj
to

Given certain regularity conditions, in particular, the condition that

plim to exists and given that 5; is a continuous function of (ti, to), say
2

h( ti to), one may use the approximation for a7 j, given as

2
Cr mc, j *1"1

ah ah 
var(t3 , to)

a t; , t o) a(t; , to

ra5 , a5
La; atoj

rat)
var(ti) Cov(ti , to) at;

cov(to , ti) var(to) _J.

(3.6)

where the first column is the vector of first order partial derivatives of

the function h with respect to (ti , to): For a more detailed explanation of

equation (3.6) we refer to Dhrymes (1971, pp. 112-114) or Geweke (1989). The

evaluation of the right hand side of (3.6) yields [see Mood, Graybill and

Boes (1974), page 181]

2
amc,j 2 

t • ,..
  var(tj) - 2---,

t i 
- cov(ti , to + --Z- var(to)

^ ^3 ^4
t o to to

(3.7)

2
An estimator for cr follows directly from (3.7) once estimators for

var(ti), var(to) and cov(ti , to) are determined. By making use of (3.4) and

(3.5) and standard theory on sample moments [compare, e.g., Mood, Graybill

and Boes (1974, Chapters 2 and 6)] one can write the Monte Carlo estimators,

using importance sampling, for the moments given at the right hand side of

(3.7) as

var( t .)

var( to)

cov( ti ) =

1 N

N Et9 ( 2 ) C°( t 2t=i 3 W -

N
" 2
(to)

1 N 
0
, •
) 
rP (i))] 

2 ^ -
N 1-w  tito
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Given an estimator cr for cr1
2
,,, j, one can define in the usual way a 95

percent confidence interval for Eei. Let Bj = 1.96a.,,i/VN, where 1.96 is

taken from the table of the standard normal integral that is listed in most

textbooks on statistics [see, e.g., Mood, Graybill, and Boes (1974, p. 522)].

Then the interval [E 5j - Bi , EO + Bi] contains the value of L'Oi with a

probability equal to 0.95. A value for crm,,i/VN will be defined as an

absolute numerical error and (cr,„,,i1VN)Icrj, where cri is the posterior

standard deviation of i9j, will be defined as a relative numerical error. As

an example we refer to the output file of SISAM given in Section 6.3, where

the relative error are given at the bottom line and the estimated posterior

standard deviations are given below the estimates of the posterior means.

DIAGNOSTICS FOR WEIGHT FUNCTION

A necessary condition for numerically stable estimates of the integrals

is that the variation of the weights (3.1) is bounded. Simple diagnostics are

the ten drawings with largest weight and the frequency distribution of all

the weights. In section 6.3 an example is presented of such a frequency

distribution with interval bounds equal to powers of ten of the weights.

PARTIAL SUMS FOR MOMENTS AND ERROR ESTIMATES.

Summarizing, for importance sampling estimates of the posterior first

and second order moments we have to compute the following sums:

(3.11)

, k = 1, ...

[compare (3.3) and the text below (3.3)]. For the evaluation of numerical

errors of the posterior first order moments we have to compute, in addition

to (3.11), the sums:

O"))12
i=

e(ii)wC0(0)1-2 lxV,

JJ 
ej [w CO k 

21)] 2

(j = 1, ...

[compare (3.8) -(3.10)].

(3.12)
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MARGINAL POSTERIOR DENSITIES.

Univariate marginal posterior densities Af o__ _i, j = 1, ... ,t, can be

approximated by so-called frequency histograms or frequency polygons using MC

methods. We start by defining (ak-i ak), k =1, ,K, as a bounded

interval for the parameter Oj, j = 1, ... ,t. Further, let g(8) from (3.2)

now be an indicator function defined as

g(0) = 1 if ak_i < ei < ak

(3.13)
elsewhere

The probabilities gl, ,gk, ,gK, where the typical element gk is

defined as gk = g[ak_i <8, <a)], ad, can be used for the construction of a

frequency histogram using MC. The posterior density of Oi evaluated at

(ak-i+ ak)

(ak_i ak)

can be approximated by gkl(ak- ak_i) if the interval

is sufficiently small. This approximation can be used for the

construction of a frequency polygon using importance sampling.

An importance sampling estimator for gk may be derived as follows. Let

9(1), ,9(1v) be a random sample generated from a distribution with density
-(h)

i(0). Further, let 0 = , where h = h(i) is generated by the

following rule

h(0) = 0

h(i) = h(i - 1) + d(i) = 1, ,N)

where

d(i) = 1 if ak_i < ()< ak

= 0 elsewhere

(3.14)

Finally, let N1 be defined as N1 = h(N). Then an importance sampling

estimator for gk is given as

r w (4( hh
N h=1 )

(3.15)
1
N ii w[8)=

The definition of the estimator g is a bit tedious, but the computation of

gk is very simple. In fact, one has only to determine the particular interval
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to which a weight w COW) belongs. This is especially simple when the

interval width ak - ak_l is the same for all k. Let b be the common interval

width for k = 1, ,K. Let r be a real number given as

r = (8(ji - / b (3.16)

That is, r is a real number in the interval [1, K]. Truncate r at its

decimal point in order to make r an integer, defined as ir. Then it follows

that ir + 1 is the interval to which a particular weight w [19 belongs.2(i)

So, estimates for gk are computed by adding the weights that belong in each

interval and by dividing the sum of the weights in each interval by the total

sum of the weights. Details are presented in the computer program. Minor

modifications of the procedure described here are necessary when the

intervals have unequal width. Further, the extreme values ao and aK may be

equal to minus and plus infinity. (Not implemented in our programs). Finally,

we note that the computation of bivariate marginal posterior densities

proceeds in a similar way as the computation of the univariate marginal

posterior densities.

3.2. Outline of Subroutine SISSUB

A summary of the structure of the computer program SISAM is presented in

the flow diagram given in Figure 2. SISAM consists of a main program and a

collection of routines. In the main program the directives for the model

studied are read while the actual calculations are performed in the

subroutine SISSUB. For convenience we review in this subsection the structure

of SISSUB.

INITIAL VALUES.

After some declarations of variables, the square root of the scaling

matrix of the importance function is calculated by means of a Householder

reduction technique. Next, initial zero values are assigned to a number of

arrays.

2
The case where ir + 1 is exactly equal to K is not important, since it has

probability measure zero.



J. Peter Hop and Herman K. van Dijk 15

star

Initial value for
random number generator

0
4-0

loop 800]

loop 400]

jN (' - 1)N +

Generate 0
(1)

using
importance function I(0

Compute i)
weight w 0 ) p(0"))/I(9(")
function

' iClassify w(0(") n intervals

ON-1) 
+ g(0

(i)
) (0

(i)
)

(jN)
S
N, 

4- S /(jN)

\print results\

Yes

stop )

Figure 2. Flow diagram for simple importance sampling.
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INTERMEDIATE AND FINAL RESULTS: LOOPS 400 AND 800.

There are two major loops in the subroutine SISSUB, see Figure 2. The

first loop is the 800-loop with increment variable J. For every value of J

results are send to the print output file. The second loop, within the

800-loop, is the 400-loop with increment variable I. In this loop the actual

sampling from the importance distribution takes place.

GENERATION OF RANDOM DRAWING AND TESTS FOR RESTRICTIONS.

After a random vector is generated from the multivariate t importance

function, it is tested whether the random drawing falls within the region of

integration and whether it violates the restriction(s) in the by the user

supplied subroutine RSTRCT.

WEIGHT FUNCTION AND DIAGNOSTICS.

The accepted random drawing is used to compute the weight function. The

ten drawings with the largest weight are registered in order to discover

whether the posterior results are heavily influenced by a few drawings with

an very large weight. If a few relative large drawings occur, is this an

indication that the importance function is a poor approximation to the

posterior. Further, the frequency distribution of ten-powers of the weights

is shown.

PARTIAL SUMS.

The weight function is used in a number of summation arrays.

POSTERIOR MOMENTS AND DENSITIES AFTER N DRAWINGS AND M ROUNDS.

After N accepted drawings the results are written to the print output

file. After completing M rounds results are written to the plot output file

also, until at the end of the subroutine the closing statement of the

800-loop is reached and control is returned to the main program.

NONLINEAR TRANSFORMATIONS OF PARAMETERS.

The computations in the program are done for g(0) = 0 and g(0) = 00'. If

one is interested in a nonlinear function, say g(0) = 1/0, a subsequent call

of the subroutine SISSUB is performed, after resetting the random number

generator. The program executes all calculations for a second time with g(0)

in stead of 0 and 00'.
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ROTATIONS WITH UPDATES OF THE IMPORTANCE MOMENTS.

After control is returned to the main program the input variable M is

checked whether an other call of the subroutine SISSUB is requested. If so,

the last results for the posterior mean and covariance matrix will be used as

moments for the importance function in the next call of SISSUB. Finally,

after M rotations, the mean and covariance matrix of the vector 8 are written

to a separate save file if requested.

ERROR MESSAGES.

On several places in the program checks are performed to prevent the

sampling process from running an extremely long CPU-time. If one of the

checks is positive, an error message is printed and control• is returned to

the main program through a parameter in the heading of the subroutine SISSUB.

The main program closes the open output files and terminates the program.

GRAPHICS GRID

The number of cells for the computation of the bivariate marginals is

the same for the printer output file and the plot output file, but the user
can freely modify the number of cells, if one wishes a plot output file with
a finer grid.
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4. MIXED INTEGRATION (MIXIN)

4.1 Basics of Mixed Integration

INTRODUCTION, MULTIVARIATE SKEWNESS.

Mixed integration, henceforth referred to as MIN, is a numerical

integration method for the evaluation of multivariate integrals where the

integrand is multivariate skew, that is, the integrand has different tail

behavior in different directions. Such integrands contrast with integrands

that have symmetric tail behavior, e.g., the multivariate normal density

function and the multivariate Student-t density function.

Figure 3. Examples of contours of multivariate skew functions.

TWO MAIN COMPUTATIONAL STEPS.

The distinctive feature of MIN is that it employs a mixture of one

dimensional classical numerical quadrature and importance sampling. The

method consists of the following two main steps:
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(1) Generate a point 0(i) from a multivariate normal distribution that

has the posterior mode 80 as its center and minus the inverse of the Hessian

of the logposterior, evaluated at the posterior mode, as its covariance

matrix V. (We assume that 0 has been estimated by a preliminary optimization

procedure). A generated point OW defines a line through OM and e
o
.

(2) Perform one dimensional numerical integration along the line

mentioned above, where the integrand is the posterior kernel multiplied by a

particular factor that is specified below.

These two steps are repeated a sufficiently large number of times.

CONDITIONAL AND MARGINAL STEP.

One may argue that the MIN-technique conditions on skewness. That is,

generating lines, or, more precisely stated, generating directions, by means

of a multivariate normal sampling procedure occurs in a symmetric way. This

is the marginal step in the computation. Given a generated direction, one

performs a one dimensional numerical integration step, which takes account of

the possible skewness in the integrand. Thus, classical numerical quadrature

occurs in the conditional step of the two-step integration procedure.

NOTE.

The background of mixed integration is sketched below. More details are

presented in Van Dijk, Kloek, and Boender (1985) and Van Dijk (1987). The

reader not interested in this background information can restrict attention

to some formulas and to the structure of the computer program that is given

in Section 4.2.

BACKGROUND, TRANSFORMATION OF VARIABLES.

MIN is based on a transformation of variables. Let 0 denote the

posterior mode, which has been estimated by a numerical optimization method.

The t-vector of parameters of interest 8 is changed into a pair (77 , p),

where the (t 1)-vector 77 is defined as 8 - with the last element

deleted. The vector 77 describes the direction of the vector - 0 . The

scalar p satisfies p
2 
= (0 - O°)'V 1(0 - 0

o
). It describes the distance

between 0 and the posterior mode 0
0 

in a metric that makes use of a

covariance matrix V [Where V is given as minus the inverse of the Hessian of

the natural logarithm of the posterior density evaluated at the posterior

mode]. A sign convention for p is added in order to guarantee that the

transformation of 0 into (7/ , p) is one-to-one. The advantage of the
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transformation employed is that the two computational steps sketched above

can be performed.

COMPUTATION OF ZERO-TH ORDER MOMENT.

We start with rewriting 0 in the following way. Let y be an auxiliary

random variable, defined as

(4.1):=

so that

90 py
(4.2)

As a next step we make use of a particular feature of mixed integration.

That is, it follows from the properties of the employed transformation of

variables that random drawings ri(i) can be generated by generating 0 drawings

from a multivariate normal distribution with mean and covariance V and

then applying the transformation involved. For details we refer Van Dijk,

Kloek, and Boender (1985) and Van Dijk (1987). In the actual computations we

make use of the property that the generation of directions occurs in a

symmetric way. That is, if 0(i) - 0° is a generated point, one can take
o (0 o
9 - - as a next generated point since these two points are

symmetric around 0
o
. The effect of such a sampling scheme, which is called

antithetic sampling, is that each generated point is used twice and that the

one dimensional integrals are computed on the entire real line. Given a

random sample q(1), ,77(N) we estimate f p(0)0 by

where

0( - W [TIM)
2N i=1 °

w 0 (77(0) f p coo + py(0) pt-i. d p

(4.3)

(4.4)

Due to the antithetic sampling method one divides by 2N in (4.3). Further, we

make use of a proportionality constant since the random sample
(1) ( N )

77 • • • )71 stems from a distribution with a density where the

normalizing constant is not written in an explicit way. Since we deal always

with ratios of integrals these proportionality constants cancel.
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COMPUTATION OF FIRST AND SECOND ORDER MOMENTS.

Since 00 may be interpreted as a vector of known constants, it follows

from (4.2) that

E0 = + Epy (4.5)

Equation (4.5) illustrates that the term Epy represents skewness. In the case

of symmetry, when E0 =0
o
, one has the property Epy = O. The computation of

the posterior mean in case of skewness proceeds as follows. We write

fPYP(19)d0
E9 = +  

fp(19)d0
(4.6)

A mixed integration estimator for the integral in the numerator of equation

(4.6) can be derived by going through the same transformation of variables as

for the case of the denominator. By making use of results that are similar to

the ones given in equation (4.3) - (4.4) it follows that the vector of

integrals in the numerator of (4.6) can be approximated by

where

1 N ( ( 0
cx wi[77 = 1, ... (4.7)

w (77(i)) = f PP C°0 PY(i)) Ip I dP (4.8)

Note that the integrand in (4.8) is equal to the integrand of (4.4)

premultiplied by a factor p. A MIN-estimator for Eesi, j = 1, ... ,t, can now

be written as

,0"O. = =
3 3 " 

(4.9)

00

Note that we made use of a proportionality sign in (4.3) and (4.7), but that

we use an equality sign in (4.9). Since the numerator and denominator in

(4.9) have been estimated using the same .random sample, it follows that the

numerical constants, which were omitted in (4.3) and (4.7), cancel and one

can make use of an equality sign in (4.9).

For the matrix of second order moments around the mean one can make use

of (4.2) and derive that

•



J. Peter Hop and Herman K. van Dijk 23

E(0 - - EBY = E(py - Epy)(py - Epy)

= Ep2yy' - EpyEpy'

The first term on the second line of (4.10) can be approximated by

where

kP2YjYk =

„ 
Y 
,( i) tv r,„(0)

Y3• k 2 L'i

E :1 wo(77(i))= 

w2Cri(i)) = p2 p Co° + PY (i)) I

= 1, ... )-e

(4.10)

) (4.11)

(4.12)

The integrand in (4.12) is equal to the integrand of (4.4) premultiplied by a

factor p2. The results, given in [(4.4), (4.8), (4.12)] indicate that for the

case of the first order and second order moments of an t-vector of parameters

0 one has to compute three one dimensional integrals for each generated

direction

NUMERICAL ERROR ESTIMATES OF POSTERIOR MEAN.

The computation of bi gives rise to two types of numerical integration

errors. One type of error is due to the application of a particular one

dimensional classical quadrature formula and the second type of error is a

sampling error due to the application of Monte Carlo integration. We shall

discuss the sampling error given that the classical numerical integration is

used in such a way that it's error has a much smaller effect on the value of

the integrals than the sampling error.

The sampling error in the MIN-estimate of the posterior mean can be
2

evaluated by making use of the formula for the variance cY ,j of the

posterior mean estimate, given in Section 3, equation (3.7). Instead of

equations (3.4) and (3.5), we make use of (4.7) and (4.3) respectively, that

is, we replace t in (3.7) by 0. As a next step we have to determine the

variances of Oi and 00 and the covariance between iii)j and #(1)0. However, we

cannot apply equations (3.8) - (3.10) directly to the case of MIN, because

the estimators 03 and 00 are computed by making use of antithetic sampling.

In principle, one could evaluate 00 by computing one dimensional

integrals separately on R
+ 

and R.-, using antithetic sampling. If we write

as



24 SISAM and MIXIN

cic 
t-1 Nr, r pro° py(i)) lp 1 I dpii)01  2N

-1R+
(4.15)

and 002 as the same expression over R, then IP() = 1Poi + (7)02 is an estimator

for fp(0)c19 and

var(00) = var(001) + va402) + 2cov(001 , i002) (4.16)

Since #001 and 002 are negatively correlated, it follows that one obtains a

reduction in the variance of ii)o. The gain in computational efficiency depends

on the size of the correlation between 03, and 002, which varies for each

particular problem. However, we cannot make use of (4.16) since we compute a

single one dimensional integral on the entire real line instead of two one

dimensional integrals on, respectively, the positive and negative real line.

The latter approach is computationally much less efficient. As a consequence

of our procedure we cannot evaluate the increase in computational efficiency

due to the use of antithetic sampling. We shall make use of

va^r(0) cl( 4N il:1 1--w° Lri
(4.17)

This estimator of var(00) overestimates, probably, the true variance. A

similar conclusion holds for the estimators for va4j) and cov(il)i ,

Details are left to the interested reader. We shall make use of the following

formulas

var(0.)

Coy

1 N (i) (i) 2 ^2

4N i=1
cx-[y

W1 (17 )] Oj

100) °C ilL%Y(i)wi C71(i)) wo C17(i)) /3.i1C3o

and substitute these in (3.7). As a consequence of our approach, one should

interpret the reported absolute and relative numerical errors as upper bounds

for the actual errors.

PARTIAL SUMS FOR POSTERIOR MOMENTS AND ERROR ESTIMATES.

Summarizing, for the MIN-estimates of the posterior first order and

second order moments we have to compute the following sums:
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(4.20)

k = ,t

and for a rough estimate of the numerical error of the posterior mean

estimate we have to compute, in addition to the sums reported in (4.20), the

following sums:

(4.21)

,t)

These sums are listed in the computer program. Note that the sample size is

2N instead of N. As a consequence, one obtains a reduction in the numerical

error estimates.

COMPUTATION OF POSTERIOR DENSITIES

The computation of marginal posterior densities using mixed integration

requires, in principle, the computation of K one dimensional integrals Pk,

(k =1, ... ,K), which have been defined in Section 3, equation (3.13). That
is, given a generated direction ri(i) one has to apply K times a one
dimensional numerical integration procedure. This is very cumbersome and in
most cases computationally rather expensive. We shall follow a pragmatic

approach that does not require the computation of any one dimensional

integral beyond the one that has been computed for the normalizing constant
[w0(n7), see equation (4.4)].

Let wi, ,w be be the weights of the Causs-Legendre quadrature that is
used as one dimensional numerical integration method. Then one can write

AI (ON a t —1 a *
W ( (i)71 ) „ zE 1P (61 PrizY I Pm lwrn (4.22)

[compare, e.g., Abramowitz and Stegun (1964, Table 25.4)]. For each term on

the right hand side of (4.22), we determine to which interval it belongs.

[compare the comment after equation (3.15)]. Additional details are presented

in the computer program. We note that the error in this short-cut procedure
is not known. That is, it is not known whether the approximation of the
integral in a particular interval [ k_i , ak] on a generated line by means of
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one or more terms given at the right hand side of (4.22) is as accurate as

the value of the integral on the entire real line. Our practical experience

with this short-cut procedure is very good.

BOUNDED REGIONS.

We emphasize that in our applications the region of integration is

bounded. As a consequence, the line integrals with respect to p are computed

on a bounded interval. The upper and lower bound of this interval may be

determined as follows. Given that aj <O < bi, j = 1, ... ,t, one can make

use of (4.2) and write

< pyj < bi -
o

, ••• (4.23)

For each of the t-dimensions one can compute two values of p such that the

inequalities are binding constraints. That is, if yj > 0 then we define

Yi
** b • - 0°
P3 =  7 

j

Yj
(j = 1, ...) (4.24)

If yj <0, then pi and pi are interchanged in (4.24). As a next step one

determines the minimum value of 
(p7*, 

,pi
** 
) and the maximum value of

(pi, ... ,p7). These extreme values are the limits of integration for the

line integrals. Practical details are presented in the computer program.

NONLINEAR FUNCTIONS OF PARAMETERS.

Mixed integration can also be used for the computation of moments of

nonlinear functions of 0, such as implied multipliers of simultaneous

equations models. The restriction of mixed integration is that for each

nonlinear function one has to compute a one dimensional integral with respect

to p, given a generated direction

4.2 Outline of Subroutine MIXSUB

A summary of the structure of the computer program MIXIN is presented in

the flow diagram given in Figure 4. MIXIN consists of a main program and a

collection of routines. In the main program the directives for the model

studied are read while the actual calculations are performed in the

subroutine MIXSUB. In the comment of MIXSUB the meaning of the formal
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parameters of the subroutine is explained. For convenience we review in this

subsection the structure of MIXSUB. The computational steps that are similar

to the ones in the program SISAM are only briefly mentioned.

INITIAL VALUES.

These are similar to the initial values of SISSUB.

INTERMEDIATE AND FINAL RESULTS: LOOPS 400 AND 800.

With reference to figure 4 the same remarks as in the subsection for

SISSUB, hold here too.

GENERATION OF RANDOM DIRECTIONS (OR LINES) AND TESTS FOR RESTRICTIONS.

Define lines by generating 9(0 from N(0°,V). A point 0(0 is generated

from a multivariate normal distribution that has the posterior mode 0
o
, or an

other location estimate, as its center and minus the inverse of the Hessian

matrix of the logposterior, evaluated at the mode, as its covariance matrix

V. (One may start, of course, with an other scaling matrix than the Hessian.)

In many cases 0
0
 has been estimated by a preliminary optimization procedure.

The result of this step is as follows. A generated point 9(° defines a

line through 9(° and 9 . We note that the program tests whether the
(i)generated point 0 is within the bounded region of integration. If this is

not the case, an other point is generated. In principle, this test is not

necessary for the generation of lines in the region of integration, but it

appears to give better results in practice for the cases that we studied.

Apparently more lines are generated in directions where the posterior has

substantial probability mass.

(i) 0(i)
Compute y = with p := [(9(°- )17-1(0(2)- 9

0
)]

The /-vector y(° is an auxiliary random vector; compare the discussion in

the preceding subsection. The scalar p measures the distance between OW and
00 

in a metric that makes use of V-1.

Deleting the index i, one can write 0 = 0
0
 + py. Clearly, if one

increases p from 0 to c)o one moves on the line that starts in 
00 and extends

through the point OW generated in the earlier step. One may also use p on

the interval from 0 to -co. The purpose of MIXSUB is to compute one

dimensional integrals on the lines described above.
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Figure 4. Flow diagram for mixed integration.
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COMPUTE UPPER AND LOWER BOUNDS (a, b) OF THE LINE THROUGH 90 AND OM.

This is explained in the preceding subsection.

COMPUTE ONE DIMENSIONAL LINE INTEGRALS.

As explained in the preceding subsection we are interested in the

following three line integrals

w
(
ci) = f P(0) PY(i))IP I p dP, (k = ,1,2)

For k = 0 one obtains an estimator for the integral f p(0)dt 9 . For k = 1 and

= 2 the computed line integrals can be used for the computation of the

posterior first and second order moments. We note that the ten drawings with

the largest integral value do not have such a clear cut interpretation as in

the case of SISAM. One can suppress the evaluation of these ten drawings

easily.

PARTIAL SUMS.

The partial sums for the computation of the posterior first and second

order moments and the error estimates are in the program MIXIN used in a

different way as in the case of SISAM. In MIXIN, one deals with three

different weights, 11)0, w1, w2, for the zero-th, first and second order

moments, respectively, while in SISAM one has the same weight for all values

of g(t9). For the case of MIXIN, we summarize the update of the partial sums

as follows

(jN) 
s
(jN-1

h(77(i))

where h(i) is the typical term in the three summations given in (4.20).

Note that in MIXIN the integrand in the line integral is the transformed

posterior density possibly multiplied by a factor in p. Given a certain

accuracy of the one dimensional integration procedure, the approximation

error in MIXIN depends on the efficient generation of lines. That is, it

increases the accuracy when lines are generated where the posterior density

has a substantial probability mass. In contrast, SISAM makes use of an

importance function which is an approximation to the posterior density.

Numerical accuracy depends on whether the importance function has its

probability mass concentrated in the same region where the posterior has its

probability mass.
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POSTERIOR MOMENTS AND DENSITIES AFTER N DRAWINGS AND M ROUNDS.

The same remarks as for SISSUB can be made here.

ROTATIONS wrni UPDATES OF THE IMPORTANCE MOMENTS.
The same remarks as for SISSUB hold, except one has to read MIXSUB and

random drawings are generated from the Normal distribution.

ERROR MESSAGES.

The error messages are the same as for SISSUB.

GRAPHICS GRID

The remarks on the graphics grid are the same as for SISSUB.
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5. EXAMPLE OF AN ECONOMETRIC MODEL: JOHNSTON'S MODEL

5.1 Model and Posterior Kernel 1.

In this subsection we briefly discuss Johnston's model [see J.J.

Johnston, 1963, Econometric methods, first edition, McGraw-Hill New York].

This model is a simple example of a macro-economic expenditure model and is

used for illustrative purposes only. In particular, the input, the output,

and the functioning of the programs SISAM and MIXIN is illustrated.

Johnston's model consists of two stochastic equations and one accounting

identity.

C = + /3111t lit

it = a2 + /32111 + y2/t_1 + vt (t = 1, ••• ,T)

Yt = Ct + It + Zt

(5.1)

where the variables are defined as

Ct: consumer expenditures in period t,

It: investment expenditures in period t,

Zt: exogenous expenditures in period t,

Yt: total expenditures in period t.

The parameters of interest are given as

#1: marginal propensity to consume out of total expenditures,

132: marginal propensity to invest out of total expenditures,

Y2: adjustment parameter.

The parameters al and a2 are not of particular interest (so-called nuisance

parameters). The set of equations (5.1) can be written in vector-matrix

notation as

' 1 0 -1' ,
-a1 --a2 (r

(C I Y) 0 1 -1 Y_1 Z) 0 -1,2 0 . u v 0 5.2)

,--Pi -132 1, 0 0 -1,

the 10x6 matrix D := (C I Y t 17.4 Z) consists of 10 observations on the three

endogenous variables Ct, It, and Yt and the three predetermined variables 1,

Yt,..1 and Z. The equation system (5.2) is an example of the well-known linear

simultaneous equation model (SEM); for details we refer to e.g., Judge et

al., (1988). The rows of (u v) are independently normally distributed with
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zero mean and nonsingular covariance matrix E. Further, we assume the

standard set of assumptions of the linear SEM. If we take the prior

information from a non-informative approach in particular we take

P(igi, #2, 72, E) iEr2 then one can derive that the marginal posterior

density of the parameters of interest can be written as

P(61, /62, 721D) OC 11 - fi - ITIu'Nul iT (5.3)

with T =10 annual observations. For details see Van Dijk (1984, chapter 2).

We note that in this case (5.3) can also be interpreted as the concentrated

likelihood function. The 2x2 matrix U'NU is given as

U'NU = ( 191),, - /32), - Y2i_iY(c - fliY, i - Y ) (5.4)

The data matrix (c, i, y, 2_1) measures variables as deviations from their

means. The subroutine PSTROR which computes the natural log of the right hand

side of (5.3) for specific values of Pi, /32, 72) has to be written in

FORTRAN and the declaration header is shown in the next subsection.

We end this section with a remark. The prior density of (,8i, /32, 72) is

uniform on the three dimensional space, defined as the Cartesian product of

the intervals [-2, .8], [-1.7, .25] and [-.4, 1]. The bounds of this

region have been chosen as rather wide in order to investigate the

performance of the MC integration routines. Of course, large negative values

of, for instance, (3 have no economic sense.

5.2 The user supplied routines PSTROR, RSTRCT and GTHETA

THE POSTERIOR ROUTINE (PSTROR)

To keep the programs SISAM and MIXIN applicable for all kinds of models,

one has to keep those parts that are typical for a particular model external

to the program. In this way the programs need not be altered every time one

uses them for a different model or for an other specification of the same

model.

The user has to provide a subroutine called PSTROR with the same number

and type of formal parameters as shown in listing 5.1 where the log-posterior

kernel value, denoted by FPOST, is calculated for the case of Johnston's

model. The programs call this routine twice. The first time in the main
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program, with ICALL = true, the second time in the subroutines SISSUB and

MIXSUB with ICALL = false for every not rejected drawing. (In the case of

MIXSUB the subroutine PSTROR is actually called twice in the integration

subroutine). The call from the main program is meant as an initial call in

order to read data and to make other necessary preparations for the

calculation of FPOST. When the subroutine is called from SISSUB and MIXSUB,

the actual calculation of FPOST takes place.

We note that in the example of Johnston's model a scale-value is used

(SCFAC) to prevent problems with the machine precision (overflow). The use of

this scaling factor has no effect on the final results.

After execution of the routine control is returned to SISSUB or MIXSUB.

Listing 5.1

SUBROUTINE PSTROR ( PARAM, ND IM, FPOST, IFCNT, ICALL)
LOGICAL ICALL

INTEGER NDIM, IFCNT

DOUBLE PRECISION PARAM (NDIM), FPOST

C LOG-POSTERIOR, JOHNSTON-MODEL.

• PARAM ( NDIM) : THE VECTOR WITH PARAMETER VALUES

• NDIM : THE NUMBER OF PARAMETERS
• FPOST : THE VALUE OF THE LOG-POSTERIOR-FUNCTION
• IFCNT COUNT OF THE NUMBER OF CALLS OF THIS ROUTINE
C ICALL : IF "TRUE" ( CALL FROM THE MAIN-PROGRAM) ONLY THE DATA ARE

READ AND SOME HELP VARIABLES ARE INITIATED,

IF "FALSE" ( CALL FROM SUBROUTINE) CALCULATION OF "FPOST"

IS DONE AND "IFCNT" IS INCREASED BY ONE

• For spatial reasons we omitted the body of the routine

RETURN

END

THE RESTRICTION ROUTINE (RSTRCF)

The same remark as made in the first sentence of the description of the

subroutine PSTROR holds for this routine also.

The routine has to be specified exactly as shown in Listing 5.2. In

general the user is free to fill in the body of the routine. In our example

of Johnston's model a test is performed on the Jacobian term. Specifically,
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after a random drawing is generated from a multivariate Student-t

distribution (SISSUB) or the multivariate Normal distribution (MIXSUB) and

after it is tested whether this drawing is in the region specified by the

upper and lower bounds the routine RSTRCT tests whether the Jacobian is less

than 0.01 for the given values of the parameters. If the tests holds the

random drawing is rejected.

After execution of this routine control is returned to SISSUB or MIXSUB.

Listing 5.2

SUBROUTINE RSTRCT (PARAM, ND IM , FAIL)

LOGICAL FAIL

INTEGER ND IM

DOUBLE PRECISION PARAM ( ND IM )

• JOHNSTON—MODEL, RESTRICTIONS ON PARAMETERS: TEST ON JACOBIAN .

• PARAM ( NDIM ) : THE VECTOR WITH PARAMETER—VALUES

• NDIM : THE NUMBER OF PARAMETERS

C FAIL : IF "TRUE" THE PARAMETERS MEET THE RESTRICTION ( S )

THE DRAWING WILL BE REJECTED,

IF "FALSE" THE PARAMETERS DO NOT MEET THE RESTRICTION ( S )

THE DRAWING WILL BE ACCEPTED

• For spatial reasons we omitted the body of the routine

RETURN

END

THE TRANSFORMATION ROUTINE (GTHETA)
3

This routine is meant to give the user the freedom to calculate means,

variances and correlations of some function g of the parameter vector 0.

Although the use of this routine is optional (see listing 6.1 in the next

section) one has to provide the declaration of the routine as in listing 5.3.

In the example of the Johnston's model this options is not selected. The

input vector PARAM(NDIM) is the parameter of an accepted drawing, FPOST is

the value of the log-posterior kernel, WEIGHT is the value of the weight of

this accepted drawing and GPARAM(MDIM) is the output vector of the

In the current operational versions of MIXIN this optional routine is not

yet implemented, but will be soon operational.
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transformation g(19).

After execution of this routine control returned to SISSUB or MIXSUB.

Listing 5.3

SUBROUTINE GTHETA ( PARAM, ND IM , FPOST , WEIGHT , GPARAM, MD IM )
INTEGER NDIM, MD IM
DOUBLE PRECISION FPOST , WEIGHT
DOUBLE PRECISION PARAM ( ND IM ) , GPARAM ( MDIM)

• JOHNSTON-MODEL, NO "G" OF "THETA"

• PARAM ( ND IM ) : THE VECTOR WITH PARAMETER-VALUES
• NDIM : THE NUMBER OF PARAMETERS OF "PARAM"
• FPOST : THE LOG-POSTERIOR-KERNEL-VALUE
• WEIGHT : THE VALUE OF THE WEIGHT
• GPARAM ( MDIM): THE VECTOR THE VALUES OF FUNCTION "G" OF "THETA"
• MD IM : THE NUMBER OF PARAMETERS OF "GPARAM"

• This option is not selected, so the body of the routine is left empty.

RETURN
END
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6 AN EXAMPLE OF INPUT AND OUTPUT OF SISAM

6.1. The Parameter File

This file provides the program SISAM with information on the model

studied; what input the program expects and what kind of output the program

yields. An example of the parameter file that corresponds with the model of

Section 5 is given below.

Listing 6.1

File: JSISAN1.PAR, input-directives for the program SISAM,

running the Johnston-model

JOHNSTON MODEL ! TITLE
3 DIMENSION OF THE VECTOR "THETA"
0 DIMENSION OF THE VECTOR "THETAG": =0 IF NO "G"

JSISAM.RES NAME OF THE PRINT-OUTPUT-FILE
JOHNSTON.INP NAME OF THE INPUT-FILE: "PMODE & HINV"
-2.00 -1.70 -0.40 LOWER BOUNDS FOR "THETA"
0.80 0.25 1.00 UPPER BOUNDS FOR "THETA"
1 AUXILIARY OUTPUT (0=NO, 1=YES)
1 UNIVARIATE MARGINALS (0=NO, 1=YES)
1 BIVARIATE MARGINALS (0=NO, 1=YES)
1 PLOT-FILE BIV.MAR.POSTERIOR (0=NO, 1=YES)
JSISAM.PLP NAME OF THE PLOT-FILE
0 PLOT-FILE BIV.MAR.IMPORTANCE (0=NO, 1=YES)
79 INITIAL VALUE OF RANDOM NUMBER GENERATOR
1 DEGREES OF FREEDOM OF STUDENT-T
2 NUMBER OF ROUNDS
20000 NUMBER OF DRAWINGS
2 NUMBER OF ROTATIONS
1 SAVE "MEANPO & COVPO" (0=NO, 1=YES)
JSISAM.SAV . NAME OF THE SAVE-FILE

If one starts the program in batch mode it will start reading this parameter

file. If one starts the program interactively, the user will be prompted for

every piece of input information separately. Most of the directives are self

explanatory. For convenience, we make a few remarks.

AUXILIARY OUTPUT:

If the auxiliary output option is switched on, the program will print a
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frequency distribution of the weights and, for the ten drawings with the

largest weights, the program will print the values of the importance

function, the posterior kernel, and the parameters.

PLOTS FOR BIVARIATE MARGINALS:

If the directive for bivariate marginals is switched on, additional

directives are required to control whether or not plot files should be

created for later use with an other program. Otherwise only line printer

plots will be written to the output print file. Only after the maximum number

of rounds is reached, data will be written to either plot files. If •more then

one rotation is requested the data of the plot file for the next rotation are

appended to the former in the respective files.

By default the parameter values are divided in 15 classes. So every plot

consists of 225 data lines in the plot file.

NUMBER OF DRAWINGS:

The number of drawings stands for the number of not rejected drawings.

That is drawings within the bounds and not meeting the restrictions specified

in routine RSTRCT (see Section 5)

NUMBER OF ROUNDS:

The number of times that intermediate results are printed. For instance,

with 2 rounds and 20.000 drawings, results are printed at 20.000 drawings and

40.000 drawings.

SAVE FILE:

After all rotations are performed, one can request to save the last

calculated moments of the vector 8 in a file specified by the user. This is

useful if one wants to rerun the program after inspection of the posterior

results.

6.2 The Input Data and Starting Values

The input file JOHNSTON.INP (see listing 6.1) is read in the main

program. It contains the mode, which is used as location estimate and the

scaling matrix for the multivariate Student-t density in the first rotation.

These starting values are usually obtained by maximization of the log
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posterior density (mode), and by computing minus the inverse of the log

posterior density evaluated at the mode (scaling matrix). (see the first page

of the output file in listing 6.2)

The file JOHNSTON.DAT contains the data with which the model is

estimated. This file is read once in the user supplied routine PSTROR at the

first call of that routine in the main program (ICALL = true).

6.3 The Output file

The file JSISAM.RES contains the output for the printer according to the

directives listed in the file JSISAM.PAR. Only the first page of the output

is listed in listing 6.2 and the final results of rotation two, round two.

The title of each page shows the title line of the parameter file and

the current rotation and round number. The subtitle shows information on the

number of drawings from the Student-t distribution and the number of calls of

the user supplied routine PSTROR.

As requested, the data of the bivariate marginal posterior densities are

sent to a separate output file called JSISAM.PLP. (see figure 5)

Postscript

Recently many new applications of Bayesian statistical analysis using Momte

Carlo integration have appeared in the literature. A necessarily incomplete

list of references includes the following authors: Bauwens and Richard

(1985), Boender and Van Dijk (1991), DeJong (1991), DeJong and Whiteman

(1989, 1990, 1991a, 1991b), Geweke (1986, 1988a, 1988b, 1988c, 1989a, 1989b),

Geweke, Marshall and Zarkin (1986), Kim and Maddala (1991), Oh and Berger

(1989), Richard and Steel (1988), Steel (1987), Van Dijk and Kloek (1983),

\Vest (1990), Zellner and Rossi (1984), Zellner, Bauwens and Van Dijk (1988).
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Listing 6.2

Print output file JSISAM.RES

******************************************************************************

--- SIMPLE IMPORTANCE SAMPLING --- (SISAM) DATE: 31-Oct-91 *
JOHNSTON MODEL ROTATION: 1 *

******************************************************************************

1 2 3

BOUNDS OF THE PARAMETERS

-2.0000 -1.7000 -0.4000

0.8000 0.2500 1.0000

IMPORTANCE MEANS AND STANDARDDEVIAT IONS

0.4579

0.1013

0.0893 0.3629

0.0354 0.1124

IMPORTANCE CORRELATION MATRIX

1 1.0000

0.8769

0.1738

1.0000

-0.1616 1.0000

IMPORTANCE COVARIANCE MATRIX

0.0103

0.0031 0.0013

0.6020 -0.0006 0.0126

EIGENVALUES OF MIN-INVERSE-HESSIAN-MATRIX
0.000145 0.010156 0.013850

INITIAL VALUE OF RANDOM NUMBER GENERATOR : 79

DEGREES OF FREEDOM FOR THE STUDENT-T DISTRIBUTION: 1
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******************************************************************************

*

* --- SIMPLE IMPORTANCE SAMPLING --- (SISAM) DATE: 31-Oct-91

* JOHNSTON MODEL ROTATION: 2

* ROUND: 2

******************************************************************************

NUMBER OF ACCEPTED RANDOM DRAWINGS 40000

NUMBER OF REJECTED RANDOM DRAWINGS 22792

NUMBER OF FUNCTION EVALUATIONS 80000

IMPORTANCE MEANS AND STANDARDDEVIATIONS (TRUNCATED)

-0.6653

0.6307

-0.3314

0.2590

0.3178

0.1780

IMPORTANCE CORRELATION MATRIX (TRUNCATED)

1 1.0000

2 0.8485 1.0000

3 0.0617 0.1785 1.0000

IMPORTANCE COVARIANCE MATRIX (TRUNCATED)

1 0.3977

2 0.1386 0.0671

3 0.0069 0.0082 0.0317

POSTERIOR MEAN AND STANDARDDEVIATION OF THE PARAMETER VECTOR "THETA"

-0.5993

0.7862

-0.3092

0.3289

0.3125

0.1465

POSTERIOR CORRELATION MATRIX OF THE PARAMETER VECTOR "THETA"

1 1.0000

2 0.9174 1.0000

3 0.1680 0.3088 1.0000

POSTERIOR COVARIANCE MATRIX OF THE PARAMETER VECTOR "THETA"

1 0.6181

2 0.2373 0.1082

3 0.0193 0.0149 0.0215

NUMERICAL ERROR ESTIMATES OF POSTERIOR MEAN

ERROR

0.010348 0.004266 0.001478

RELATIVE ERROR :

0.013163 0.012970 0.010088

CORREL. COEFF. :

0.158431 -0.127086 0.914430
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******************************************************************************

• --- SIMPLE IMPORTANCE SAMPLING --- (SISAM) DATE: 31-Oct-91 *

• JOHNSTON MODEL ROTATION: 2 *

ROUND: 2 *

******************************************************************************

NUMBER OF ACCEPTED RANDOM DRAWINGS 40000 DENOMINATOR:

NUMBER OF REJECTED RANDOM DRAWINGS 22792 MEAN = 0.151372E-04

NUMBER OF FUNCTION EVALUATIONS 80000 STD. DEV. = 0.281954E-04

FREQUENCIES OF "IPOW": (WEIGHT = 0.*****E+IPOW)

-24 -23 -22 -21 -20 -19 -18 -17

0 0 1 0 4 7 9 11

-16 -15 -14 -13 -12 -11 -10 -9

16 13 24 49 67 122 154 283

-8 -7 -6 -5 -4 -3 -2 -1

444 720 1604 18715 17144 613 0 0

TEN DRAWINGS WITH LARGEST WEIGHT

LN(IMP) LN( POS ) (THETA(I), I = 1,NDIM)

0.5527297E-03 -3.3737669 -10.8744084 0.46103 0.06702 0.53429

0.5460985E-03 -4.2693571 -11.7820682 0.51246 0.07082 0.62155

0.5386072E-03 -2.6889069 -10.2154309 0.51115 0.09543 0.44738

0.5366733E-03 -2.8858177 -10.4159388 0.44728 0.07270 0.48715

0.5352066E-03 -2.9134306 -10.4462884 0.51777 0.09146 0.47298

0.5312612E-03 -2.7768370 -10.3170938 0.47654 0.08802 0.47074

0.5143080E-03 -2.3700850 -9.9427733 0.45672 0.08229 0.41576

0.4986392E-03 -2.4400944 -10.0437222 0.48720 0.09674 0.41912

0.4985223E-03 -2.2482296 -9.8520918 0.46191 0.08886 0.38700

0.4862944E-03 -2.9264063 -10.5551026 0.42811 0.06546 0.49489
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******************************************************************************

• --- SIMPLE IMPORTANCE

* JOHNSTON MODEL
SAMPLING --- (SISAM) DATE: 31-Oct-91 *

ROTATION: 2 *

ROUND: 2*

******************************************************************************

MARGINAL POSTERIOR DENSITIES "P", AND
MARGINAL IMPORTANCE DENSITIES (TRUNCATED

(-2.00

(-1.81

(-1.63

(-1.44

(-1.25

(-1.07

(-0.88

(-0.69

(-0.51

(-0.32

(-0.13

( 0.05

( 0.24

( 0.43

( 0.61

(-0.40

(-0.31

(-0.21

(-0.12

(-0.03

( 0.07
( 0.16

( 0.25

( 0.35
( 0.44

( 0.53

( 0.63

( 0.72

( 0.81

( 0.91

-0.31)

-0.21)

-0.12)

-0.03)

0.07)

0.16)

0.25)

0.35)

0.44)
0.53)

0.63)

0.72)

0.81)

0.91)

1.00)

-1.81)

-1.63)

-1.44)

-1.25)
-1.07)

-0.88)

-0.69)

-0.51)

-0.32)

-0.13)

0.05)

0.24)

0.43)

0.61)

0.80)

PARAMETER 1

P

0.072

0.070

0.063

0.064

0.061

0.059

0.060

0.059

0.061

0.065

0.070

0.095

0.123

0.077

0.001

PARAMETER 3

0.001

0.001

0.004

0.011

0.032

0.081

0.187

0.272

0.239

0.115

0.041

0.010

0.004

0.002

0.000

0.034

0.041

0.052

0.066

0.082

0.096

0.113

0.113

0.104

0.089

0.068

0.055

0.041

0.028

0.017

0.003

0.006

0.009

0.017

0.033

0.072

0.165

0.279

0.225

0.102

0.045

0.021

0.012

0.007

0.004

(-1.70

(-1.57

(-1.44

(-1.31

(-1.18

(-1.05

(-0.92

(-0.79

(-0.66

(-0.53

(-0.40

(-0.27

(-0.14

(-0.01

( 0.12

-1.57)

-1.44)

-1.31)

-1.18)

-1.05)

-0.92)

-0.79)

-0.66)

-0.53)

-0.40)

-0.27)

-0.14)

-0.01)

0.12)

0.25)

PARAMETER 2

0.001

0.001

0.003

0.005

0.010

0.022

0.047

0.076

0.100

0.108

0.113

0.120

0.151

0.233

0.010

0.000

0.000

0.001

0.002

0.003

0.008

0.026

0.063

0.112

0.165

0.204

0.180

0.126

0.073

0.036
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******************************************************************************

• --- SIMPLE IMPORTANCE SAMPLING --- (SISAM) DATE: 31-Oct-91 *

* JOHNSTON MODEL ROTATION: 2 *

ROUND: 2 *

******************************************************************************

BIVARIATE MARGINAL POSTERIOR DENSITIES

VERT: 1 HOR: 2 VERT: 1 HOR: 3

0.80  0.80 

61
1*

44

15

32

1 3 1

1 2 2

1 2 1

1 2 2

1 1 2 1

1 2 1

1 1 2 1

1 1 2 1 1

1 2 2 1

-2.00  2.00

-1.70 0.25

0.25

-1.70

VERT: 2 HOR: 3

1 1 4 9 * 62

1 1 3 6 6 3 1

1 3 5 5 2 1

1 3 5 4 2 1

1 3 5 4 2

1 3 4 3 1

1 1 3 3 2. 1

1 2 2 1

1 1 1

-0.40 1.00

1 2 6 5 3 2
1 1 5 9 * 52

1 2 4 6 6 3 1
1 3 5 5 2 1

1 1 3 5 4 2 1
1 1 3 4 4 2 1
1 1 3 4 3 2
1 1 3 4 3 2
1 2 3 4 4 2 1
1 2 3 4 4 1 1
1 2 4 5 3 1 1
1 2 4 5 4 2
1 2 4 6 4 2 1
1 2 5 5 4 2

-0.40 1.00
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******************************************************************************

--- SIMPLE IMPORTANCE SAMPLING --- (SISAM) DATE: 31-Oct-91 *

* JOHNSTON MODEL ROTATION: 2

ROUND: 2

******************************************************************************

BIVARIATE MARGINAL DENSITIES OF IMPORTANCE FUNCTION (TRUNCATED)

VERT: 1 HOR: 2 VERT: 1 HOR: 3
0.80  0.80

11

-2.00

0.25

-1.70

1 2 2

2 3 1

1 4 3 1

1 3 6 2

2 7 5 1

1 4 9 2

2 * 5 1

1 5 * 2

2 8 5 1
1 4 6 2

2 5 3 1

1 3 4 1

1 3 2

1 2 2 1

-1.70 0.25

VERT: 2 HOR: 3

1 1 1 1 1

1 1 2 3 2 1
1 1 2 5 5 2 1 1
1 1 4 8 7 3 1 1
1 2 5 * 7 3 1
1 2 5 8 5 2 1
1 2 3 4 3 1 1
1 1 2 2 2 1

1 1 1

-0.40 1.00

2.00

1 1 1 1

1 1 2 2 1 1

1 1 3 3 1 1

1 1 2 3 3 2 1 1

1 3 5 5 2 1

1 1 4 7 6 3 1

1 2 4 8 7 3 1

1 2 5 * 7 3 1

1 2 5 * 7 3 1 1

1 2 4 8 6 2 1

1 2 4 6 5 2 1

1 2 3 5 3 2 1

1 1 3 3 3 1 1

1 1 2 3 2 1 1

1 1 2 2 1 1 1

-0.40 1.00
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Figure 5. Plot output from JSISAM.PLP.
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