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Abstract

We consider Bayesian statistical inference for univariate time
series models where one of the autoregressive roots is close to
or equals unity. Classical sampling theory for this type of
models is hampered by the vast differences between asymptotic
approximations in the stationary case and under the unit root
hypothesis. Because of this dichotomy one has to decide early on
in an empirical study whether a given time series is stationary
or not. The present paper shows that a Bayesian approach allows
for a smooth continuous transition between stationary and
integrated time series models. Empirical results are presented
for time series of annual real per capita GNP for 16 OECD
countries.
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1. INTRODUCTION.

Economic time series 1like real Gross National Product (GNP) have a
tendency to grow over time. One of the purposes of the analysis of such time
series is the decomposition into a trend and a cyclical component. If a
deterministic linear trend is extracted, the resulting cyclical component
typically has a first order autocorrelation that is close to unity. The
deviations from the trend tend to be long-lasting. An example of such a
stylized fact is shown in figure 1a for U.S. postwar data on real gross
national product. This motivated Nelson and Plosser [1982] to test formally
the hypothesis that macro economic time series show no tendency at all to
return to a linear trendline. They implemented this test as a test for a unit
root in an autoregressive model representation (see Fuller [1976]). Using
long time series for 14 major economic variables they were unable to reject
the unit root hypothesis.

The presence of a unit root however invalidates the extraction of a
deterministic trend. The first differencing induced by the unit root implies
that information on the level of the series is lost. Statistically, the

intercept in the autoregressive representation is no longer identified. In

the case of a unit root Beveridge and Nelson [1981] proposed a different

decomposition in trend and cycle, in which the trendline changes

stochastically over time. Figure 1b shows the two different trends. TS
denotes the linear trend derived from the Trend Stationary I(0) model; DS is
the stochastic trend from the Difference Stationary model. Empirically it

appears that a random walk with drift can account for almost all fluctuations

in a major macroeconomic time series like U.S. real GNP.

As a result figure 1c shows that the “DS" cyclical component has a much

smaller amplitude and shorter duration than the "TS" cycle. Blanchard and

Fischer [1989,Ch. 1] discuss the economic implications of alternative-
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trend/cycle decompositions. With a smooth deterministic trend (and the
associated long and large cycles) traditional (Keynesian) business cycle
theories are most relevant. Under the alternative trend and cycle are highly
correlated; all shocks have both transitory and permanent effects. Growth

models stressing supply factors like technology provide the more natural type

of economic theory.

The widely divergent implications of the "DS" and "TS" view of the world
have stimulated the econometric investigation of the unit root hypothesis.
Classical sampling theory has mostly taken the unit root as the statistical
null hypothesis.1 In the trend/cycle decomposition there is, however, no
clear null hypothesis. A priori both views of the world are equally likely.
Therefore a Bayesian approach seems more suitable for discriminating between
the competing hypotheses.

Some authors (Sims [1988], Christiano and Eichenbaum [1990]) have
questioned whether unit roots really matter. Many economic theories can be
formulated irrespective of the presence of unit roots. An example is the
discussion on the permanent income hypothesis. Also, some parameters of
interest are well defined irrespective of unit roots.

The long-run growth rate of real GNP is an example. For the data in

figure la the trends were estimated using an AR(3) model in levels (TS) and

an AR(2) in first diferences (DS):

Dt = 1.911 + 0.018t
(0.026) (0.001)

= Dy *+ 0.018 + 1.030 e,
(0.004)  (0.221)

1

See Fuller [1976], and the survey by Diebold and Nerlove [1988]. See
Cochrane [1988] and Campbell and Mankiw [1987].




Thg augmented Dickey-Fuller test on the unit root hypothesis gives %r = -2.7
which is not significant at the 10% level (see Fuller [1976, page 373). Hence
the "DS" model could very well have generated the data, in which case the
inference on the trend will be invalid. Although the point estimates of the
growth rate do not differ between (1) and (2), the asymptotic standard error
quadruples going from "TS" to "DS". If the unit root hypothesis is true, one
has to impose the unit root condition to obtain correct standard errors. The

“TS" model leads to spuriously low standard errors in that case. Clearly the

problem stems from the different asymptotic theories. Hence it is critical to

make the correct decision on the presence of a unit root before proceeding
with further inference on parameters of interest. No such discontinuities
would arise if finite sample distribution theory would be available.

Although there might in some cases be no direct economic interest in the
unit root hypothesis, still asymptotic econometric inference on parameters of
interest is widely different for stationary and integrated time series.’ A
general example is the linear regression model when some of the explanatory
variables are possibly integrated. Because of the dichotomy in asymptotic
approximations one has to decide early on in an empirical study whether a
given time series is stationary or not. A wrong decision can lead to serious
pretest bias. A Bayesian approach can avoid this dichotomy because it takes
account of the uncertainty on the critical autoregressive root. Through a
careful specification of the prior 1in  accordance with the time series
rebresentation Bayesian inference éllows for a smooth continuous transition
between a stationary and an integrated time series model.

Specifically, in this paper we will use a normal prior on the
uqconditional mean of the time series; the variance of this normal

distribution continuously increases as an autoregressive root approaches

? See, e.g., Durlauf and Phillips [1988].




unity. The posterior distribution of the autoregressive parameters also
allows for a Bayesian posterior odds test of the unit root hypothesis.

The organization of the paper is as follows. In section 2 we review some
of the issues in the representation of a time series model. We write an
autoregressive model in a form that is explicit in our parameters of
interest. In section 3 we specify our prior and derive the posterior
distribution for an AR(p) model with trend and constant term. We also discuss
a posterior odds test for the unit root hypothesis within this model. Section
4 contains empirical results for time series of annual real per capita GNP

for 16 OECD countries. Some final remarks are given in section 5.

2. MODEL REPRESENTATION.

In the statistical analysis we will consider autoregressive models around a

linéar trend,

a(L)(yt -8t - u) = £,

0

-»P) of «(z) lie outside the unit circle with the possible exception

In (1) «(L) = Zfzo aILl is a lag polynomial with a«, = 1. All roots Aj

(j=1,..

of a single unit root, Al = 1. The deterministic component of the series {yt}

is defined as Dt = p + 8t, which we will call the "trend". The errors €, are

. . . . 2
white noise with variance ¢°.

To isolate the parameter that determines the presence of a unit root we

decompose the lag polynomial as

(L) = «(1)L + a*(L)(1-L),




where o*(L) = zf;; a§L1 with a* = —2§=“4aj for i>0, and

Using (4) the model (3) can be written explicitly as

p-1
Ayt -3 = —a(yt_l - 38(t-1) - ) + ¥} “§(AYt~i -38) + ¢

t’
i=1

where we have used the shorthand « for «(1). The model

written in two forms that are linear in the parameters:

p-1
g = Bo * Byt * Bpg * LBpgMyy tep

Vi =Bp * Byt * g;“iyt—i t ey
1=

where the B’s are functions of the parameters u, 8, « and a? (i=1,...,p-1).
Equations (4) and (5) show that in the unit root case, « = 0, the trend term
cancels, meaning that in both (6a) and (6b) there is the additional
constriant Bl = 0. From (5) it is seen that u drops out if «=0. The parameter
S represents the "equilibrium" or “nétural" growth rate of the time series
{yt}. The parameter p can be interpreted as the intercept of the trendline
Dt =u o+ st.3 Since we consider «, p and. 8 as parameters of interest, we
prefer to work with representation (5) instead of representations (6a,b)
where BO and Bi afe unrestricted.

The choice of parameterization is critical in the Bayesian analysis with
uninformative priors. This is one primary difkerence between the analysis
preéented below and related work by DeJong and Whiteman [1989a,b], who use

the wunrestricted 1linear representation (6b). Although the likelihood

functions for the two models ((5) and (6b)) are identical, the prior on the

3 If there 1is no trend growth, & =0, parameter p denotes the

unconditional mean of a series.




parameters of interest differs in an essential way. A flat prior on the B’s
in (6b) implies an informative prior on the parameters in (5) and vice versa.
The second important difference between our approach and DeJong and Whiteman
concerns the treatment of the constant term; see section 3 below.

The decomposition of a given time series in a trend component and a
cyclical component is often the main purpose of time series analysis. But as
p does not appear in (5) when a=1, the intercept of the trendline can not be
estimated in that case. In fact, if the series contains a unit root the
intercept is not defined, and the deterministic trend Dt does not exist.

For series with a unit root (called I(1), integrated of order one), the

trend component is defined differently. Under the unit root hypothesis

representation (5) simplifies to
a*(L)(Ayt -38) =¢

t

Since the unit root has been extracted, the resulting polynomial o*(L) is

stationary and can be inverted, implying

by, = & + ¢(L)et S + ¢(1)et + ¢*(L)(1—L)et,

where ¢(L) = a*(L)™! = ZT_0¢1LI. and ¢*(L) = ZT=0¢EL1 with ¢§ = -y ¢

j=1e1’
stgchastic trend is defined as

Dy =38 +Dy ;) +¢lle,

If ¢(1) = 0, the trend is deterministic and coincides with the earlier




definition.*® The parameter 8 is well defined both under the I(0) as well as

the I(1) hypothesis.

3. PRIOR SPECIFICATION AND THE DERIVATION OF THE POSTERIOR DENSITY.
Given a sample of T observations on {yt} and p pre-sample observations we
write the AR(p) model in matrix notation. Define the following functions of

o, 8, and the data:

y(a,8) : a T-vector with t*" element (Ayt -8+ @y, _; ~ ad(t-1)),

2(3) : a (Tx(p-1)) matrix with t*" row (Ay,_,=8,....4y, 3),

_p+1_

X(«,8) = (ta i 2), with ¢ a T vector of ones.

In matrix notation (5) than becomes

where B’ = (u i a*’), and e is a T vector of independently and identically
distributed errors. Conditional on « and & the model is linear in o and o*.
Given the p pre-sample observations all rows of y and X are well defined
functions of « and 8. Note that X(«,$§) is of reduced column rank if «=0. The

likelihood function for this model reads

4 Alternative decompositions in trend and cycle exist. See for example Watson
[1986].
5

The implied range of ¢(1) shows the limitations of a 1low order
autoregressive representation. In an AR(1) the persistence measure ¢(1) can
take only two values: zero and unity. For low order AR models ¢(1) is either
zero, or it can take on values in an interval that is bounded away from zero.
The latter property follows from the stationarity conditions on o«*(L). For an
ARMA representation the range of ¢(1) is not restricted.




L(Y|a16’3y02p2) = (zn)_T/zo‘-Texp[_ 125181,
20

where y = (y_p+1,...,y0)' is the vector of pre-sample observations, and e is

defined in (10).

For most parameters we can use a non-informative uniform prior. Only «

and p require a careful prior specification. The complete prior is given as
flo) x o, flat prior on 1n ¢
fla) = (1-4)77, uniform prior on S = (0,4], 4s<1,

f(d,a*) « 1 uninformative flat prior,

2
flula,e) = 20707 (1-(1-0)®)  Zenp -2y 52,
20

normal prior of p conditional on a« and o.

The prior on o is specified to exclude explosive time series behaviour. The
upper bound A will be close to zero for time series with a near unit root.
The prior on («,a*) does not guarantee that the model is stationary. We will,
however, always consider data that are informative enough to ensure that the
posterior‘probability mass in the non-stationary region is negligible. The
uniform prior on o* greatly simplifies the derivations.

One would also like to be non-informative on p. But a uniform prior
defined on peR leads to an improper marginal posterior density for «. The
intuitive reason is that the data will contain almost no information on pu
when « is close to zero, so that the improper prior on p will not be revised
sufficiently to obtain a proper bivariate marginal density on («,u) that can

be integrated; see Schotman and Van Di jk [1990] for technical details.

The prior on p in (12) is more concentrated than the uniform density. It

is a proper density for all «eS. The prior is centered around Yor The

variance is a function of « and ¢, and increases as « tends to =zero.
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Approaching the limit «=0 the prior will become improper, consistent with the

specification of the time series model. Under the unit root one can nqt learn

about the unconditional mean of a time series (in devi#tion from a trend).®
The prior can be expressed as an additional observation generated by the

model

-1/2
2
| e

Yo = B+ [1 - (1-a) 0’

where 9 is assumed normally distributed n(O,wz). Therefore we write the

augmented linear model

V1- (1-a)? g 0’

L § Z

The posterior density p(a,6,3,0|data) can be written in a straightforward way

as

p(a,S,B,wzldata) « vV a(2-a) o T2 exp[-—la e’e]
: 20

To compute the posterior of the parameters of interest we integrate the

posterior density over the nuisance parameter ¢ using the integration formula

® The prior can be further sharpened by exploiting all pre-sample

observations. In that case the prior will also become dependent on & and «*.
The current prior is chosen for analytical convenience.
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00
- 1 ~,~ ~,~ =T/2
I o (T+1)exp(———5e’e)d0 = (e‘e)

0 20

Using (16) the marginal posterior of («,8,B) takes the form

p(«,3,B|data) « vV «(2-a) (&’8) T2

Conditional on o and & the posterior of B is of the Student-t type. The

marginal posterior of « and & can thus be obtained by straightforward

integration over B. To perform the integration step we write e‘e as an

explicit quadratic form in B.
e'e=Q+ (B-RBIX'XK(EB - B),

%%)7'%’y. Using the form of the

multivariate Student-t density the marginal posterior of («,8) becomes

pla,8|data) « vV a(2-a) |ili|'hQQ-“Fp+ﬂ/2

~

This density is not of any standard type, since Q and |X’%| depend in a
highly non-linear way on a« and & through the data functions y and X.
Our interest is in the limiting behaviour of the posterior when « tends

to zero. We will therefore write XX and Q more explicit as functions of a.

First we have that

«(2-0) + oCu’e Pa’z

a2’ L b ozz

from which it follows that




|i’i| = g|z'z|,

where q = a(2 - o + at’Mc) with M = I - 2(2°2)"'2’. The product of the two

Jacobians in (19) thus can be written as

172
Va(z-a) %% = |z'z|“’2[ @(2-a) ]

a(2-a) + a L Me

-1/2
= |Z'Z|_1/2[1 + [E%&]L’HL} ,

Since Z2 and therefore M only depend on & (22) has the well defined limit

-1/2

|2’2| as a»0. For the limiting behaviour of Q we need the partitioned

inverse

1/q g ~(/q)e'2(2°2) "t

~(w)(z2) 'z | @)t + WPz 2y 2w zz )

Expanding the quadratic form Q using this inverse one can obtain

2

2
y'My + a(z—a)yz - g ((Z—a)yo + L'My]

Using the definition of q this can be simplified to the weighted average of

two sums of squares

1

’ ’ ’ 2 2-a - ’ -
m[a((t ML)(y My) - (¢ MY) ) + m(y OCYOL) M(y (X_YOL)]

= le + (l—w)QZ, (24)




= (y - ayOL)’H(y - ayOL)

In (24) Ql can be interpreted as the residual sum of squares, as a function
of « and &, from the regression of y on a constant after partialling out Z.
It is a measure of the precision of determining the intercept of the trend.
Likewise Q2 is the sum of squared residuals of the regresion of y-ay,t on Z,
which for given « and 8 measures the precision by which the prior determines

the intercept of the trend. The weight w depends critically on «. If &0,

then w>0 and the sum of squares function Q is completely determined by QZ’

which itself tends to the sum of squared residuals of the regression of

(Ayt~6) on (p-1) lags. The latter is also the sum of squared residuals under
-the unit root hypothesis.

- Notice that ¢’Mc¢ = Tsz, where 52 is the residuai variance of a regression

of a constant on (p-1) lags of {Ayt}. Hence for all «>0 the weight function

w(a,8) = ((2-2)s°T + 1) tends to unity as the sample size T increases. The

posterior will then be dominated by Ql'

Posterior odds

The wunivariate marginal posterior of « is obtained after numerical

integration over &. This marginal posterior pla|data) is of particular
interest, as it can be used for a Bayesian test of the unit root hypothesis.

For the purpose of the test we will extend the domain of the random variable

« to include the endpoint «=0. Since the unit root hypothesis is a sharp
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null, we must assign a discrete prior probability to the event «=0. Then one
can perform this test using posterior odds K1 defined as (see Leamer [1978,

sec 4.3] or Zellner [1971, p. 297-298]):

_ _Pr(a=0|data)
1 Pr(0<a<a]data)

K

In (24) the stationarity hypothesis is represented as the probability that «
is in some interval (0,a] in the stationary region, that may be smaller than
the full interval (0, A] over which the posterior is defined. The denominator

a
is proportional to % I p(a|data)da. To derive the posterior probability of a
0

unit root we set up an AR(p-1) model with a constant growth rate 8§ for the
differenced series Ay. Using the same prior on (a*,8,0) as in (12) the
results in Schotman and Van Dijk [1990] imply that the numerator in (25) is

proportional to lim p(«|data) = p(oc=0]data).7 As shown above this limit is
o0

well defined. Further the constant of proportionality is the same as for the
denominator. We treat the wunit root hypothesis and the hypothesis of
stationarity in a symmetrical way and give both a prior probability of one
half. Then the posterior odds are equal to

p(a=0|data)

K
1

1 @
= J p(a|data)da
20

The length of the interval (0,a] is chosen in such a way that it contains 99%
of the posterior probability mass in the stationary region. This choice of a

avoids Jeffreys’ paradox by restricting attention to the domain of a where

7 Because i is unidentified under the hypothesis «a=0, we can take any proper
prior density on p.
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the posterior density is non—negligible.8 It implies that the unit root is

always compared to a local alternative with interval length of order 7712

4. EMPIQNNICAL RESULTS.

Bivariate marginal posterior densities of « and & have been computed for
annual data on the log of real per capita GNP (or GDP if GNP was unavailable)
in 16 OECD countries for the samole period 1948-1987. Results are summarised

in figures 2A to 17A. Tables 1 provides some summary statistics of the data.

Tables 2 and 3 give classical parameter estimates and posterior moments of

parameters of interest for comparison. All results have been obtained.with an
AR(3) model. The AR(3) specification is the simplest autoregressive model to
be characterised by a near nonstationary dominant real root, while also
allowing for cyclical behaviour due to complex roots.

The sixteen figures of bivariate posteriors are very similar. The mode
of («,8) is always attained for positive a and 8. The mode of & seems
independent of the value of «, since the ridge of conditional modes of & is
almost orthogonal to the §-axis. There is no full independence between a and
6, though. The conditional posterior of & given «=0 has much wider tails than
- the conditional posterior of & for any positive value of «; the variance of
the conditional distribution decreases as « gets larger. This is the effect
alluded to in the example in the introduction. In several cases the location

estimate of 8 is not affected by the unit root hypothesis, but the estimated

scale measures (standard deviations) differ.

8 The value of a directly enters the posterior odds ratio. If a is set at a
large value there will be a large interval where the posterior density
contains almost no mass. Hence the averaged posterior in the denominator of
~ the odds becomes small. On the other hand one should also avoid taking a too

close to zero. See Schotman and Van Dijk [1990] for more discussion. '
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The effect of the prior can be seen by comparing the posterior densities
'with the classical results in tzble 2. Consider, for example, the case of
.Sweden. The point estimate of & (under the hypothesis of stationarity) is
-5.3% with an extremely large estimate of its standard error. These estimates
are obtained as functions of the estimated parameters from the linear AR(3)
‘regression (6b): & = 31/11 - Zﬁlz&i). This estimate has very poor small
sample properties close to the unit root. The posterior density in figure
'12A, however, has all its mass concentrated on a small positively valued
region for 8. The asymptotic standard error in table 2 shows further that the
>regression model cannot cope with the non-linearity of the model. The
Bayesian posterior moments are more sensible and accurate.

Numerically integrating over & one obtains the marginal posterior
p(a|data) shown in figures 2B to 17B.° The wide conditional densities of &
close to the unit root can cause irregular behaviour of the univariate
marginal posterior of « close to o=0. A relatively clear case is the U.K..
Although the bivariate posterior of («,8) has a single mode in the interior
of the parameter region, the mérginal density p(«|data) attains its mode at
the boundary, and is approximately flat in the neighbourhood of «=0. The
shift of the mode of « towards the boundary also occurs for other countries.
This is another way to express the nonlinear dependence between « and &.

Enter£aining the unit root hypothesis as the null the classical
augmented Dickey-Fuller test does not reject the null hypothesis on the 10%
level forvany series, see table 3. By treating the null and the alternative
symmetrically the posterior odds illustrate the uncertainty with regard the
conclusion that the series really contain a unit root. The posterior

probabilities of the unit root are greater than or equal to 0.7 for eight

° For the figures a grid of 61x41 points was chosen for (e, 8). The numerical
integrations take a finer grid of 120x60 points. ‘
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countries. For these countries the posterior means of & agree with the sample
means and the classical point estimates under the null. The classical point
estimates of & under the stationary alternative are much less plausible. For
two countries (USA and NOR) the posterior probability of a unit root is less

than 0.5. The point estimates for & are in these cases very similar but the

standard deviations differ. In the remaining six cases the posterior odds

and the parameter estimates show that both models are equally likely.
Summarizing, the evidence does not favor a particular hypothesis except for a
few cases. However, mechanical application of the classical testing procedure
would lead to non-rejection of the unit root hypothesis in all cases. This
latter conclusion was also reached (with one exception) by Nelson and Plosser
for the time series of 14 major macro-economic variables of the USA. The
analysis presented in this paper casts serious doubts on such a strong
“conclusion.

Table 3 also reports estimates of the persistence ¢(1) which is computed
» from the AR(3) model after imposing the unit root condition. All estimates
‘are close to unity. This partly reflects the limitations of the estimated
ARI(2,1) model: ¢(1) must be larger than 0.25 due t§ the stationarity
conditions of an AR(2). The conditional posterior of ¢(1) under the unit root
hypothesis is shown for the case of the USA in Figure 18. It is fairly
concentrated around one and skew to the right. Since ¢(1) is a function of
~all parameters one has to make use of a particular numerical procedure to
compute its marginal posterior density. In our case we proceeded as follows.
The marginal posterior density of & is not of a known form which allows one
to generate random drawings from it in an easy way. Therefore, draw a uniform

random number in the interval [0, 1] and through a numerical inversion using

-the distribution function of &, generate a random drawing of &. Conditional

upon a given value of &, generate a value of the remaining parameters of the
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model from a conditional multivariate t distribution and compute finally a
value of ¢(1) as a function of all generated parameters. These steps are
repeated 8000 times and the set of 8000 drawings is used to plot the marginal
posterior of ¢(1). For illustrative purposes we confine ourselves to the
marginal posterior of ¢(1) for the USA. A more detailed analysis of the

posterior of ¢(1) is a matter of further research.

5. FINAL REMARKS.

The paper has provided a Bayesian analysis of autoregressive time series
around a linear trend, where one of the roots is close to or equal to unity.
The application to time series of real GNP has provided some first empirical
results. The analysis needs to be extended in several directions.

First, the sensitivity of the posterior odds test of the unit root
hypothesis with respect to the specification of the model, in particular the
presence of MA components, must be investigated. The inclusion of MA
parameters overcomes the restrictions on the persistence measure ¢(1) implied

by a low order AR model. If ¢(1) can take on values arbitrarily close to

zero, it will be possible to obtain a meaningful marginal posterior density.

The posterior density of ¢(1), conditional on the unit root hypothesis, forms
a natural complement to the posterior of p if the time series is stationary.
We anticipate a connection between these two posteriors. If the position of
the trend is very ill-determined by the data, a unit root is likely, and a
sharp estimate of ¢(1) will obtain. Conversely, if ¢(1) has a mode close to
zero, the trend is not shifting around much, and stationarity will be a
plausible hypothesis with a fixed intercept p. Another point of research is

the sensitivity with respect to a change in the fixed trendline.




19

Second, the empirical results have been obtained for relatively short
time series. With few observations the finite sample Bayesian results differ
much from the asymptotic classical results. [t is therefore of interest to
augment the dataset to longer time series, which for some countries are
readily available.

Third, one has to investigate the sensitivity with respect to the prior
specification. Our prior on («,a*) implies a prior on the roots A,

.»p). What is the effect on posterior odds and the marginal

~distributions of p and 8 if we specify a prior directly on the roots? A

related issue is the specification of a prior on ¢(1), treating persistence

as a parameter of interest.
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TABLE 1: GROWTH RATES OF REAL GNP/GDP PER CAPITA OF 16 OECD COUNTRIES

Country Period Mean .Standard deviation
(percentage)

United States 1948-87 1.88 2.68
USA (*)

Great Britain 1948-87 .16
GBR

Austria 1950-87
AUT

Belgium 1950-87
BEL (*)

Denmark 1950-87
DEN

Federal Republic 1950-87
of Germany: FRG

France 1950-87
FRA

Canada 1948-86
CAN (*)

Italy 1950-87
ITA

Netherlands 1950-87
NED (*)

" Norway 1950-87
. NOR

~ Sweden 1950-87
SWE :

Switserland 1948-86
SWI

" Japan 1952-86
JAP (*)

Ireland 1948-86
IRL

Australia 1949-87 2.14 2.29
AUS

D The data for * countries refer to Gross National Product (GNP). For the

other countries the data refer to Gross Domestic Product (GDP).




TABLE 2: ESTIMATED GROWTH RATES OF REAL GNP/GDP

.95
.03)

.82
.06)

.30
.59)

.99
.18)

. 88
.21)

.27
.45)

.99
.23)

.68
.08)

.63
.57)

.23
.17)

.23
.03)

13.27
(111.7)

3.03
(0.68)

8.72
(10.2)

7.00
(0.13)

1.45
(0.08)




Notes to TABLE 2:

1 ﬁ and 8 are estimated from the linear AR(3) regression reparameterized as

p-1
_ = — - _ - * -
Ayt S a(yt_l 8(t-1) - pn) + ig:oocl.(Ayt_l. 8) + €,

2) So is estimated from the ARI(2,1) regression model reparameterized as

2 _ __1__ _ w2
Yy = gy Bypog — 8)) - «jhTy, ; + e

3) Standard errors of parameters estimated from the autoregressive regression

model are in parentheses.
4) E(8) denotes the posterior mean of & under the alternative hypothesis.

Posterior standard deviation are given in parenthesis.
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' TABLE 3: UNIT ROOTS IN REAL GNP.

E(a) #(1)  Pr(a=0)

.26 .03 0.44
.14) .22)

.14 .80 .63
.10) .15)

.03 .55 .74
.03) .46)

.08 .85
.06) .72)

.06 .90
.05) .19)

.04 .41
.04) .39)

.07 .72
.05) .65)

.14 .88
.10) .18)

.05 .11
.04) .29)

.05 .17
.04) .29)

.32 .99
.18) .24)

.03 .25
.03) .30)

.05 .05
.04) .21)

.03 .24
.03) .93)

.08 .23
.06) .31)

.101 .86
.08) .18)




Notes to table 3:
« is estimated from the linear AR(3) regression reparameterized as

p-1
by, - & = -aly, ;, - 8(t-1) - u) + Loaj(dy, , - 38) +¢

t
i=0

#(1) is estimated from the ARI(2,1) regression model reparameterized as

2 _ 1 _ __xp2 +
A Y, = ETTT(Ayt—l 8) - a*A Vi *E

t

Standard errors of parameters estimated from the autoregressive regression
model are in parentheses.

%r is the augmented Dickey-Fuller test against a unit root, defined as
minus the regression t-statistic of «.

Pr(a=0) is the posterior probability of a unit root.

a is the length of the 99% confidence interval (0,a] for «. E(«) denotes

the posterior mean under the alternative hypothesis.
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- Figure 5A. Bivariate posterior of (o, 6): Belgium
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Figure 6A, Bivariate posterior of (a, G)ﬁ Denmark
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Figure 10A, Bivariate posterior of (a, 6): Netherlands
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model from a conditional multivariate t distribution and compute finally a

value of ¢(1) as a function of all generated parameters. These steps are
repeated 8000 times and the set of 8000 drawings is used to plot the marginal
posterior of ¢(1). For illustrative purposes we confine ourselves to the
marginal posterior of ¢(1) for the USA. A more detailed analysis of the

posterior of ¢(1) is a matter of further research.

S. FINAL REMARKS.

The paper has provided a Bayesian analysis of autoregressive time series
.around a linear trend, where one of the roots is close to or equal to unity.
‘The application to time series of real GNP has provided some first empirical'

results. The analysis needs to be exténded in several directions.

First, the sensitivity of the posterior odds test of the unit root
" hypothesis with respect to the specification of the model, in particular the
presence of MA components, must be investigated. The inclusion of MA

parameters overcomes the restrictions on the persistence measure ¢(1) implied

by a low order AR model. If ¢(1i can take on values arbitrarily close to

fzero, it will be possible to obtain a meaningful mérginal posterior density.
The posterior density of ¢(1), conditional on the unit root hypothesis, forms
a natural complement to the posteriqr of u if the time series is stationary.
We anticipate a connection/between these two posteriors. If the position of
~the trend is very ill-determined by the data, a unit root is likely, and a
sharp estimate of ¢(1) will obtain. Conversely, if ¢(1) has a mode close to
zero, the trend is not shifting around much, and stationarity will be a
plausible hypothesis with a fixed intercept p. Another point of research is

the sensitivity with respect to a change in the fixed trendline.




Second, the empirical results have been obtained for relatively short
time series. With few observations the finite sample Bayesian results differ
much {rom the asymptotic classical results. It is therefore of interest to

augment the dataset to longer time series, which for some countries are

readily available.

Third, one has to investigate the sensitivity with respect to the prior

specification. Our prior on («,a*) implies a prior on the roots A,
(j=1,...,p). What 1is the effect on posterior odds and the marginal
distributions of p and 8 if we specify a prior directly on the roots? A

related issue is the specification of a prior on ¢(1), treating persistence

as a parameter of interest.
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