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ABSTRACT

In this paper the focus is on two forecasting models for a monthly time

series. The first model requires that the variable is first order and

seasonally differenced. The second model considers the series only in its

first order differences, while seasonality is modeled with a constant and

seasonal dummies. A method to empirically distinguish between these two

models is presented. The relevance of this method is established by

simulation results, as well as empirical evidence, which show that,.

firstly, conventional autocorrelation checks are often not discriminative,

and, secondly, that considering the first model while the second is more

appropriate yields a deterioration of forecasting performance.

Helpful comments from Lourens Broersma, Teun Kloek and Erno Kuiper

are gratefully acknowledged. Copies of unpublished papers in the list of

references are available from the author.



1. INTRODUCTION AND SUMMARY

In this paper the focus is on two forecasting models for monthly time

series. The first is the well-known multiplicative seasonal model advocated

by Box and Jenkins (1970), which requires that the variable is transformed

to annual differences of the monthly growth rates. The second is an

autoregressive-moving average model for the variable in its first

differences, in which seasonality is modeled with a constant and 11

seasonal dummy variables. The primary motive of the, present study is the

observation that the forecasts for the number of airline passengers from

the first model, as it is applied in Box and Jenkins (1970), are all too

high. This might indicate that the model may be misspecified. In this paper

it will be argued, on the basis of simulation results as well as of

empirical evidence, that this can be caused by considering the first model

while the second would have been more appropriate. It will be shown that

the conventional autocorrelation checks are often not discriminative, but

that the method described in Franseg (1990), which is an extension of the

one in Hylleberg et al. (1990), allows to empirically distinguish between

the two models.

In section 2 the two competing forecasting models will be introduced,

and a small simulation experiment will illustrate the impact on forecasting

of using one model while the alternative is correct. In section 3 a brief

account is given of a method to test for seasonal unit roots in monthly

data, being a method to choose between the models. It will be applied to

three empirical series, one of which is the aforementioned airline data. In

section 4 both forecasting schemes will be used for the three series. From

an extensive forecasting performance evaluation it will emerge that indeed

the first model yields far worse results in case the second model is

appropriate. In section 5 some concluding remarks will be given.



2. TWO FORECASTING MODELS FOR MONTHLY TIME SERIES

Consider the following forecasting models for a monthly time series yt. The

first is the multiplicative seasonal model, to be denoted as MSBJ in the

sequel, which is advocated in Box and Jenkins (1970) and which is often

used in practice, or

4614612Yt r"-- et + 131et-1 192t-12 1336t-13 (1)

where Akyt (1-Bk)yt yryt-k, and where et is assumed to be a white

noise process with E(et).0, E(e)=a2 and E(e3et)=0 for sot. This interpre-

tation for et will be used throughout this paper. Arguments to be discussed

below may naturally apply to more complicated autoregressive-moving average

models for AliSi2yt, but (1) suffices for the present purposes.

The second model consists of an autoregressive-moving average moael

for the variable yt in first differences, a constant and 11 seasonal dummy

variables, or

(B)Ayt = + E aiDit + 0 (B)et
i =1

(2)

where Dit are seasonal dummies with a 1 in the corresponding month and a 0

in other months, with Du representing January, etc.. The Op(B) and eq(B)

are polynomials in the backward shift operator B, for which the usual

invertibility assumptions apply, see e.g. Granger and Newbold (1986). In

the sequel this model (2) with deterministic seasonality will be labeled

the FDSD model.

The MSBJ model is often used in forecasting exercises. A phenomenon

which is sometimes encountered in practice is that its forecasts may all be
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too low or too high, see e.g. the example of forecasting the number of

airline passengers in Box and Jenkins (1970), where all 36 monthly

forecasts are too high. This may suggest that model (1) is misspecified. A

cause for this may be that the appropriate model for yt is (2), and using

(1) results in overdifferencing and misspecification. Transforming a series

with the z11.612 filter assumes the presence of 13 roots on the unit circle

(see also (4) below), two of which are at the zero frequency. Hence, in

case only the A filter is sufficient to remove nonstationarity, the

incorrect assumption of the presence of the other roots implies

overdifferencing. The misspecification originates from treating

deterministic seasonality incorrectly as being stochastic. In Osborn ( 1990 )

it is empirically demonstrated that this type of misspecification often

occurs. In section 3 a procedure will be described to test for the presence

of unit roots in monthly data. Now, it will be shown with a small

experiment that using the MSBJ model while a. FDSD model is the data

generating process may indeed explain the observed empirical forecast error

patterns, although the usual autocorrelation checks often do not cause

alarm.

For an artificial sample, ranging from 1950.01 to 1970.12, observa-

tions on yt are generated from the model

11
Yt = Yt-1 ao E aiDit 0.3,61Yt-1 + et - 0.6e"1=1 (3)

where in case (a) the ao through an have been set equal to -1, -4, -3, -1,

2, 5, 7, 9, 4, 2, 1, -2, yielding a time series resembling the airline

data, and in case (b) the oes are -1, -1, 1, 2, 3, -5, 6, 8, -6, 4, 2, -2.

Furthermore, et is drawn from a standard norm' al distribution, and yo.0 and

yi=0. From this large sample the first 8 years are deleted to reduce
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starting-up effects, and the last 3 years will be used for out-of-sample

forecasting. To the remaining 120 observations the model (1) is fitted,

after which the residuals are checked for autocorrelation with the usual

portmanteau test statistic, see Box and Jenkins (1970) and Granger and

Newbold (1986). This exercise has been carried out for 100 replications,

where all calculations have been performed with TSP version 6.53 (1989).

The results for the autocorrelation tests are summarized in exhibit 1.

insert exhibit 1

Suppose that a 10% level of significance is used, and also that the

strategy is adopted that models where too much autocorrelation is left in

the residuals will not be used in a forecast evaluation for they are

already misspecified, then it can be seen that:, for cases (a) and (b) there

remain 69 and 64 replications for forecasting exercises, respectively. For

each of these repetitions forecasts for 36 months out-of-sample are

calculated and compared with the true observation. Denoting M as the

number of times that the true value exceeds the forecasted value, the

distributions of M are given in exhibit 2(a) and 2( b). In the ideal

situation, one would theoretically expect that M is symmetrically

distributed with mean 18 and with a standard deviation equal to 3. Or, it

would be expected that about 95% of the observations is within the interval

12 to 24.

insert exhibit 2

From exhibit 2 it is obvious that this situation is certainly not the case •

here. Furthermore, it can be seen that the forecasts can be too high or too
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low about equally well.

These simulation experiments strongly suggest that considering the

incorrect model can yield biased forecasts. Furthermore, it emerges that

the usual specification checks are often not discriminative enough to

reject this incorrect model. This calls for a method to empirically

distinguish between the MSBJ model and the FDSD model, which will be

briefly described in the next section.

3. TESTING FOR SEASONAL UNIT ROOTS

The differencing operator Al2 assumes the presence of 12 roots on the

unit circle, which becomes clear from noting that

1-B12 = (1-B)(1.+B)(1-iB)(1+iB)

(1+('/3+i)B12)(1+(1/3-0B /2)(1-( \/3+i)B /2)(1-CV3-08 /2)

(1+(i1/3+1)/3/2)(1-(A/3-1)/3/2)(1-(iV3+1)B/2)(1+(i1/3-1)B/2)

(4)

where all terms other than (1.--B) correspond to seasonal unit roots. In

Hylleberg et al. (1990) a method has been developed for testing for the

presence of seasonal unit roots in quarterly data. In Franses (1990), this

method has been extended to time series ' consisting of monthly observations.

To save space only the final test equation will be presented to ensure that

the reader can verify some of the claims made in this paper.

Testing for unit roots in monthly time series is equivalent to testing

the significance of the parameters in the auxiliary regression



W*(B)Y8,t = 7riYi,ti + 723/24-1 + 733'34-1 + 74Y34-2 75Y44-1

7r6Y4,t-2 + 773/54-1 + 78315472 + 70'64-1 + 1 1oY6,t-2

+ 7r1lY7,t-1 + 712Y74-2 + Pt + et (5)

where 9*(B) is some polynomial function of B for which the usual inver-

tibility assumption applies, and where

Yl, t

312,t

Y3, t

Y4,t

Ys,t

316, t

Y7,t

Yik,t

• (1+B)(1+B )(1+B4+B8)Yt

• -(1.-B)(1+B2)(1+B4+B8)Yt

• -(1-P2)(11-B4+88)Yt

= -(1-B4)(1-1/3n+82)(1+B2+B4)Yt

• -(1-B4)(11-1/3B+B2)(1+B2+B4)Yt

• -(1-B4)(1-B2+B4)(1.-B+B)Yt

-(1-B4)(1-B2+B4)(1+P+B2)Yt

• (1-B12)Yt

Furthermore, the /Lt in (5) covers the deterministic part and might consist

of a constant, seasonal dummies, dr a trend. This depends on the

hypothesized alternative to the null hypothesis of 12 unit roots.

Applying ordinary least squares to (5) gives estimates of the 7ri. In

case there ate (seasonal) unit roots, the corresponding iri are zero. Due to

the fact that pairs of complex unit roots are conjugates, it should be

noted that these roots are only present when pairs of 7r's are equal to zero

simultaneously, e.g. the roots i and -i are only present when 73 and 74 are

equal to zero, see Franses (1990) for detailed derivations. -There will be

no seasonal unit roots if 72 through 712 are significantly different from

zero. If 71=0, then the presence of root 1 can not be rejected. When 71=0,



ir2 through 712 are unequal to zero, and when, additionally, seasonality can

be modeled with seasonal dummies, a FDSD model as in (2) may emerge. In

case all ri, i=1,..,12 are equal to zero, it is appropriate to apply the

A2 filter, and hence the MSBJ model may be useful. Extensive tables with

critical values for t-tests of the separate r's, and for F tests of pairs

of r's, as well as for a joint F test of 7T3.....7T12 can be found in

Franses (1990). Some critical values which will be of relevance later in

this section are given in the appendix 1.

In Beaulieu and Miron (1990), the Hylleberg et a/. (1990) procedure is

also extended to monthly data, but their test equation differs from (5) and

is somewhat more complicated. Furthermore, ' the authors compute critical

values for one-sided tests only, and they also do not consider the useful

joint F test for the presence of the complex unit roots.

The method given in (5) to test for seasonal unit roots is applied to

the first nine years of the airline data, hip, as they are given in Box and

Jenkins (1970, p.304). Two other monthly series, which are an index for

industrial production and new car registrations, are also considered. The

observations are displayed in appendix 2. In the sequel, both series will

be measured in natural logarithms. Graphs of these lnip and lnqc are given

in exhibits 3 and 4.

insert exhibits 3 and 4

The last 36 observations are again not used, for they will be used for

forecast evaluation. From exhibits 3 and 4, and from the graph in Box and

Jenkins (1970, p.308) it is clear that the alternatives for nonstationary

stochastic seasonality, necessitating the use of a A2 filter, may be a

deterministic seasonal pattern and, additionally, a trend for lnp and lnip.
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The test results are displayed in exhibit 5.

insert exhibit 5

Simulation evidence in Franses (1990) shows that the power of the test

statistics may be low, except for the joint F test for all complex ri, and

hence that significance levels of 10%, or even higher, may be more

appropriate. Considering the results in exhibit 5, it seems that the

general result is that seasonality and nonstationarity in the three time

series, can be appropriately modeled with a FDSD model as in (2), although

the evidence for lnqc is not overwhelming. Anyhow, the regularly applied

A2 filter, not to mention the Ak1-12 filter, is certainly not appropriate.

This corresponds to the results in Beaulieu and Miron (1990), and also in

Osborn (1990) similar findings for quarterly data are reported.

4. FORECASTING

Now the type of seasonality and nonstationarity has been established,

several FDSD models for lnp, lnip and lnqc can be built. The models, which

have been found after a brief specification search, are given in exhibit 6,

together with their estimation results and some evaluation criteria. The

statistical package used is TSP version , 6.53 (1989), and the estimation

method is iterative least squares.

insert exhibit 6

From exhibit 6 it is obvious that the FDSD type of model gives a fairly
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good representation of the data for all three variables. Most parameters

for the seasonal dummies are highly significant, the adjusted coefficients

of determination are high, and the checks on autocorrelation do not provide

strong arguments to suspect misspecification.

The estimation and evaluation results of models of type (1), which

will be the competitors in the forecasting exercises below, are displayed

in exhibit 7.

insert exhibit 7

These models also show significant estimated parameters and no significant

residual autocorrelation. Hence on the basis of these criteria, the choice

for a MSBJ model might be defended.

To evaluate the FDSD and MSBJ models in exhibit 6 and 7 with respect

to their forecasting performance, forecasts for 36 months out-of-sample are

generated from 'each of these models. The values of several forecast

evaluation criteria are given in exhibit 8.

insert exhibit 8 :

The general result is that with respect to the criteria ME through RMSE the

FDSD model clearly outperforms the MSBJ model. Additionally, it is clear

that for lnip and lnqc the numbers of positive forecast errors M from using

a FDSD model are close to what might have been expected, while those when

using a MSBJ model are out of any reasonable range. These empirical results

seem to confirm the simulation evidence in section 2. For the airline

series the difference between the MSBJ and the FDSD model is not that

striking, although some forecasting improvement can be witnessed.
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5. CONCLUDING REMARKS

In this paper it has been shown that correctly taking account of the type

of seasonality and nonstationarity in monthly data can improve forecasting

performance. This is illustrated for the case where a moving average model

is fitted to a first order and seasonally differenced variable, while an

autoregressive-moving average model for the first order differenced

variable together with the inclusion of a constant and seasonal dummies

would have been more appropriate. A method to empirically choose between

these models is also given. Of course, these results may naturally be

extended to time series consisting of quarterly observations, and those

which contain deterministic trends instead of stochastic trends.

The major result of the present paper is that the recognition of the

presence, or better, of the absence of seasonal unit roots can have

important implications for forecasting and model building. Recent

additional arguments for not automatically doubly differencing a seasonal

variable can be found in Bodo and Signorini (1987), where econometric

models with seasonal dummies also yield better forecasts, and in Heuts and

Bronckers (1988), where doubly differencing the same production index as

above makes that this variable shows no correlation with other variables.
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APPENDIX 1: TABLES WITH CRITICAL VALUES

Some critical values for testing for seasonal unit roots in monthly data
Based on 5000 Monte Carlo simulations, DGP: y=y(-12)+c, c-N(0 1)

Number of observations is 120

Auxiliary regression

constant, dummies and trend constant, dummies and no trend

t-statistics 0.05 0.10

-3.24

-2.65

-2.92

-2.39

t-statistics 0.025 0.05 0.95 0.975

0.05 0.10

-2.63 -2.35

-2.65 -2.40

0.025 0.05 0.95 0.975

71-3

74
11-5

712

-2.05

-3.34

• -3.29

-3.38

-0.18

-3.40

-2.86

-3.36

-1.08

-3.42

-1.71

-3.12

-2.99

-3.12

0.12

-3.15

-2.54

-3.07

-0.73

-3.16

1.72

-0.45

-0.06

-0.44

2.98

-0.43

0.81

-0.40

2.55

-0.44

2.10

-0.15

0.24

-0.11 .

3.28'

-0.17

1.12:

-0.09

2.80:

-0.17

-2.11

-3.34

-3.29

-3.39

-0.27

-3.39

-2.87

-3.37

-1.11

-3.43

-1.76

-3.12

-3.00

-3.12

0.05

-3.14

-2.54

-3.07

-0.78

-3.16

1.74

-0.44

-0.05

-0.42

3.00

-0.42

0.82

-0.39

2.56

-0.42

2.11

-0.14

0.25

-0.09

3.31

-0.18

1.13

-0.07

2.83

-0.14

F-statistics 0.90 0.95 0.90 0.95

73)74

1135)7r6

1r7)7rs

7r977r10

711)1'12

737 • '77r12

4.81

4.86

4.94

4.76

4.92

4.00

5.63

5.84

5.90

5.71

5.84

4.45

4.83

4.89

4.94

4.79

4.94

4.00

5.62

5.86

5.86

5.75

5.89

4.46

Source: Franses (1990,pp.12-18). Note that the tests for 7r1 and r2 are one-
sided tests, while the other tests are two-sided.
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APPENDIX 2: DATA

Index of industrial production (The Netherlands, 1980=100)

Month 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Jan. 64 71 79 81 88 93 88 95 98 98
Feb. 67 74 80 83 92 98 93 98 100 102
Mar. 68 77 80 84 89 ; 98 95 98 100 101
Apr. 68 77 80 87 92 95 93 99 102 100
May 68 76 80 83 89 95 88 95 96 94
June 68 74 79 82 89 95 88 96 96 95
July 59 65 66 68 74 77 70 76 78 78
Aug. 63 69 74 77 82: 87 77 85 83 83
Sept. 68 74 80 83 91 94 87 98 95 95
Oct. 73 81 86 89 96 99 93 100 99 101
Nov. 78 83 86 92 99 101 100 103 102 106
Dec. 77, 81 83 92 98 95 102 111 110 116

Month 1979 1980 1981 1982 1983 1984 1985 1986 1987
•

Jan. 108 111 105 104 97 108 118 112 14.8
Feb. 109' 107 113 104 106 111 118 121 118
Mar. 106, 111 103 102. 102 110 115 112 118
Apr. 107 105 103 101 100 105 107 113 108
May 98 98 94 92 96 98 102 99 104
June 95 95 92 90 91 97 102 101 102
July 78 76 78 75 77 80 82 85 87
Aug. 83 81 78 75 77 85 87 88 87
Sept. 98 90 90 89 91 96 97 102 98
Oct. 104 101 101 94 97 102 106 108 109
Nov. 112. 111 105 98 105 108 120 114 118
Dec. 112 114 114 107 113 110 112 115 114

Source: OECD Main Economic Indicators.
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New car registrations (The Netherlands)

Month 1978 1979 1980 1981 1982 1983

Jan. 65624 61720 74619 51368 43477 57005

Feb. 39004 41875 39920 35811 32975 33851

Mar. 55928 75989 45404 44507 45435 57053

Apr. 51089 62938 45791 39362 45751 47870

May 53920 54831 42023 41392 40067 43041
June 73526 51197 38875 37099 39455 49482

July 35328 37123 30909 31839 31074 33993
Aug. 33756 34858 27308 21659 23562 26720
Sept. 43344 32165 29279 24936 28074 33377
Oct. 70418 45347 33437 28098 34313 35261
Nov. 48249 38598 26084 21765 28240 27193
Dec. 14400 15962 11184 8947 10680 11508

,Month 1984 1985 1986 1987 1988

Jan. 68662 62079 76975
Feb. 40007 39134 44701
Mar. 53149 58685 56175

Apr. 46193 53148 58748

May 50648 49239 56614

June 39593 44575 55460
July 28684 36319 40472

Aug. 27584 33753 35076

Sept. 30296 33331 46107

Oct. 37899 40673 46667

Nov. 29316 30695 30756
Dec. 9360 14089 11084

85519 8.9929

42154 33771

61224 52082

62051 47504

53501 42885

51869 45786

42020 32933

31038 28803

38041 35323

42331 34216

29119 28067

15436 9350

Source: Central Bureau of Statistics and RAI.
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EXHIBITS

Exhibit 1.

Number of times the null hypothesis of no autocorrelation is rejected

when a NSW model is fitted to observations generated by a FDSD model

(based on 100 simulations).

Test statistic(1)
Case Size BP( 12 ) BP(24)

(a) 0.05 26 17

0.10 31 22

(b) 0.05 26 13

0.10 36 17

(1) The Box-Pierce test statistic for autocorrelation of order 12 and 24.
Under the null it is . x2 distributed with 9 and 21 degrees of freedom, res-
pectively.
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Exhibit 2. Forecast performance evaluation (horizon=36)

of MSBJ model when a FDSD is the data generating process

(based on 69 and 64 simulations for case (a) and (b) respectively)

M is the number of times the true value exceeds the forecasted value
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Exhibit 3. Natural logarithms of industrial production index

(The Netherlands, 1969.01-1987.12, 1980=100)
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Exhibit 4. Natural logarithms of new car registrations

(The Netherlands, 1978.01-1988.12)
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Exhibit 5.

Testing for (seasonal) unit roots.

t-statistics

Variable

lnp(1) lnip(2)

72

7r3

74

irs

76

78

79

7io

7n.

712

-2.253

-2.984**

-2.715**

-2.329

-2.973

-3.881**

0.933

-2.086

-1.332

-3.626**

-1.331**

-2.085

-2.471

-3.360**

-2.053*:

-4.800**

-3.786**

-3.825**

-0.063*

-1.529

-2.338

-3.789**

-2.577**

-3.455**

lnqc(3)

-2.035

-2.638*

-3.537**

-2.943

-2.861

-3.292**

1.969

-3.454**

-1.383

-2.880

-0.265'

-3.221*

F-statistics

73)74

7s976

77,78

,7977io

7117712

737 • *71'12

7.028**

7.895**

4.940*

6.864**

7.206**

15.348**

14.318**

7.814**

5.424*

7..329**

22.461**

24.965**

11.951**

5.423*

10.698**

4.150

8.646**

16.083**

**

(1)

Significant at a

Significant at a

The auxiliary

mies, while go*(B) is

(2) The auxiliary

mies, while yo*(B) is

(3) The auxiliary

co,*(B) is 1 and the n

5% level.

10% level.

regression contains constant, trend and seasonal

(1-(p1B12) and the number of observations equals 84.

regression contains constant, trend and seasonal

1 and the number of observations equals 180.

regression contains constant and seasonal dummies,
umber of observations is 84.

18

dum-

dum-

while
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Exhibit 6.

Estimation results of models for Alnp,!nip and tiiinqc.

Dependent variable

Alnp Alnip Alnqc

Model variables(1)

C 0.097** (0.017) 0.018** (0.007) -0.851** (0.077)

-0.038 (0.032) -0.056** (0.012) 2.859** (0.184)

D2 -0.092** (0.023) 0.001 (0.010) -0.250 (0.473).
D3 0.051** (0.021) -0.0237* (0.010) 1.378** (0.077)
D4 -0.088** (0.032) -0.022** (0.010) 0.607** (0.163)
D5 -0.109** (0.019) -0.051** (0.011) 0.846** (0.072)
D6 0.032 (0.021) -0.026** (0.010) 0.847** (0.080)
D7 0.044 (0.031) -0.137** (0.017) 0.547** (0.084)
D8 -0.697** (0.029) 0.025** (0.010) 0.823** (0.063)
D9 -0.211** (0.021) 0.057** (0.012) 1.021** (0.065)
D10 -0.260** (0.017) 0.023** (0.010) 1.029** (0.108)

Du. -0.263** (0.017) 0.009 (0.010) 0.510** (0.132)
ARi -0.273** (0.099) 0.396 (0.248)

ARiz 0.388** (0.064)
MAi -0.401** (0.078) -0.815** (0.274)
MA4 -0.216** (9.079)

Evaluation criteria(2)

BP(12) 9.293 7.849 9.925
BP(24) 22.049 30.363 23.377
R2 0.887 0.894 0.957

**
Significant at a 5% level. Standard deviations in brackets.

(1) The model contains a constant C, 11 seasonal dummies, Di,..,bn, where
D1 corresponds to January, autoregressive terms at lag p, ARE, and moving
average terms at lag q, MA.q.
(2) The evaluation criteria are the Box-Pierce portmanteau test statistics,
calculated for m lags.. Under the null this BP(m) follows a x2 distribution
with m-r degrees of freedom, where r is the um of the number of autore-
gressive and moving average parameters. The R2 denotes the adjusted coef-
ficient of determination.
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Exhibit 7.

Estimation results of models for 40121np, 41412Inip and 4112lnqc.

Dependent variable

ZivelizinP A111121niP A/An/7W

Model variables(1)

MAi

MA12

MA13

-0.338**

-0.715**

0.322**

(0.104)

(0.104)

(0.104)

-0.436** (0.076)

-0.571** (0.078)

0.363** (0.078)

-0.337** (0.113)

-0.733** (0.103)

0.359** (0.103)

Evaluation criteria(2)

BP( 12 ) 6.606 8.813 9.661
BP(24) 15.325 20.185 15:848
R2 0.415 0.388 0.447

**
Significant at a 5% level. Standard deviations in brackets.

(1)
The model contains moving average terms at lag q,

(2) . The evaluation criteria are the Box-Pierce portmanteau test statistic,
calculated for m .lags. Under the null this 130(m) follows a x2 distribution
with m-r degrees of freedom, where r is the sum of the number of autore-
gressive and moving average parameters. The R2 denotes the -adjusted coef-
ficient of determination.
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Exhibit 8.

Evaluation of the 36 months out-of-sample forecasting performance

of models for the variables inp, lnip and Inv.

lnp lnip Inqc

MSBJ FDSD MSBJ FDSD MSBJ FDSD

Criterion(1)

ME -0.074 -0.064 0.042 0.022 -0.200 0.039
MAE 0.074 0.067 0.044 0.033 0.221 0.124
maxAE 0.179 0.196 0.109 0.112 0.607 0.346
minAE 0.003 0.000(2) 0.002 0.000(2) 0.009 0.017
MAPE 1.229 1.099 0.942 0.691 2.117 1.171
MSE 0.007 0.006 0.003 0.002 0.079 0.022
RMSE 0.081 0.079 0.051 0.044 0.280 0.148

Number of times the true value exceeds the forecasted value (M)

33 24 5 22

(1)
The underlined values indicate that for that criterion the correspon-

ding model obtains the lowest value. Define the forecast error as the true
value minus the forecasted value. The forecast evaluation criteria are the
mean error, ME, mean absolute error, MAE, maximum and minimum value of ab-
solute error, maxAE and minAE, mean average percentage error, MAPE, and
(root) mean squared error, (R)MSE.
(2) The rounded value is smaller 0.001.
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