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SEASONALITY, NONSTATIONARITY AND
THE FORECASTING OF MONTHLY TIME SERIES"

by
Philip Hans FRANSES

Econometric Institute, Erasmus University Rotterdam,
P.0.Box 1738, NL-3000 DR Rotterdam, The Netherlands

ABSTRACT

In this paper the focus is on two forecasting models for a monthly time
series. The first model requires that the variable is first order and
seasonally differenced. The second model considers the series only in its
first order differences, while seasonality is modeled with a constant and
seasonal dummies. A method to empirically distinguish between these two
models is prese'nted. The relevance of this method 1is established by
simulation results, as well as empirical evidence, which show that,-
firstly, conventional autocorrelation checké are often not discriminative,

and, secondly, that considering the first: model while the second is more

appropriate yields a deterioration of forecasting performance.

*  Helpful comments from Lourens Broersma, Teun Kloek and Erno Kuiper
are gratefully acknowledged. Copies of unpublished papers in the list of

references are available from the author.




1. INTRODUCTION AND SUMMARY

In this paper the focus is on two forecasting models for monthly. time
series. The first is the well-known multiplicative seasonal model advocated
by Box and Jenkins (1970), which requires that the variable is transformed
to annual differences of the monthly growth rates. The second is an
autoregressive-moving average model for the variable in its first
differences, in which seasonality is modeled with a constant and 11
seasonal dummy variables. The primary motiveé of the. present study is the
observation that the forecasts for the ﬁumber of airline passengers from
the first model, as it is applied in Bokx and Jenkins (1970), are all too
high. This might indicate that the model may be misspecified. In this paper
it will be argued, on the basis of simulation results as well as of
empirical evidence, that this can be caused by considering the first model
while the second would have been more :a,ppropria.te. It will be shown that
the conventional autocorrelation checks are often mnot discriminative, but

that the method described in Franses (1990), {vhich is an extension of the

one in Hylleberg et al. (1990), allows to empirically distinguish between

the two models. ’ '

~'In section 2 the two competing 'forécastilzlg models will be introduced,
and a small simulation experiment will illustrate .thei impact on forecasting
of using one model while the alternative is correct. In section 3 a brief
account is given of a method to test for seasonal unit roots in monthly
data, being a method to choose between the models. It will be ‘a,pplied to
three empiricai series, one of which is the aforementioned airline data. In
section 4 both forecasting schemes will be used for the three series. From
an extensive forecasting performance evaluation it will emerge that indeed
the first model yields far worse results in case the second model is

appropriate. In section 5 some concluding remarks will be given.




2. TWO FORECASTING MODELS FOR MONTHLY TIME SERIES

Consider the following forecasting models for a monthly time series y,. The
first is the multiplicative seasonal model, to be denoted as MSBJ in the
sequel, which is advocated in Box and Jenkins (1970) and which is often

used in practice, or

AApy = € + Pr1Erg + PoEraz + BaEss (1)

where Ay, = (l-Bk)y, = Y-k, and where g, is assumed to be a white
noise process with E(g;)=0, E'(sf):a2 and E(es,)=0 for s#t. This interpre-
tation for &, will be used throughout this paper. Argumenté to be discussed
below may naturally apply to more complicated autoregressive-moving average
models for A;4;,y,, but (1) suffices for the present purposes.

The second model conmsists of an autoregressive-moving average model
for _the variable y, in first differences, a constant and 11 seasonal dummy

variables, or

¢p(B)Ayy: = o +i§iaiDit + 04(B)e, - (2)

where D;, are seasonal dummies with al m the corresponding month and a 0
in other months, with D, representing Jémuary, etc.. The ¢,(B) and 6,(B)
are polynomials in the backward shift operator B, for which the usual
invertibility ~assumptions apply, see e.g. Granger énd Newbold (1986). In
the sequel this model (2) with deterministic seasonality will be labeled
the FDSD model.

The MSBJ model is often. used in forecasting exercises. A phenomenon

which is sometimes encountered in practice is that its forecasts may all be




too low or too high, see e.g. the example of forecasting the number of
airline passengers in Box and Jenkins (1970), where all 36 monthly
forecasts are too high. This may suggest that' model (1) is misspecified. A
cause for this may be that the appropriate model for y, is (2), and using
(1) results in overdifferencing and misspecification. Transforming a series
with the A,A;, filter assumes the presence of 13 roots on the unit circle
(see also (4) below), two of which are ‘at the zero frequency. Hence, in
case only the A4A; filter is su.fficientf to remove nonstationarity, the
incorrect  assumption of the opresence of the other roots implies
overdifferencing. " The misspecification originates from treating
deterministic seasonality incorrectly as being stochastic. In Osborn (1990)
it is empirically demonstrated that this type of misspecification often
occurs. In section 3 a procedure will be described to test for the presence
of wunit roots in monthly data. Now, it will be' shown with ia. small
experiment that using the MSBJ model while a.FDSD model is the data
.generatihg 'proces.s may indeed explain the observed empirical forecast error
patterns, although the wusual autocorrelation gchecks -often do not cause

alarm.

For an artificial sample, ranging from 1950.01 to 1970.12, observa-

tions on y, are generated from the model

11
Ve = Y1 + O +i§1°‘iDit + 034y, + € - 0.6,; (3)

where in case (a) the o, through o;; have been set equal to -1, -4, -3, -1,

2, 5 7, 9, 4, 2, 1, -2, yielding a time. series resembling the airline
data, and in' case (b) the o’s are -1, -1, 1, 2, 3, -5, 6, 8, -6, 4, 2, -2.
Furthermore, ¢, is drawn from a standard normal distribution, and y,=0 and

y1=0. From this large sample the first 8 .years -are deleted to reduce




starting-up effects, and the last 3 years will be used for out-of-sample
forecasting. To the remaining 120 observations the model (1) is fitted,

after which the residuals are checked for autocorrelation with the usual

portmanteau test statistic,c, see Box and Jenkins (1970) and Granger and

Newbold (1986). This exercise has been carried out for 100 replications,
where all calculations have been performed with TSP version 6.53 (1989).

The results for the autocorrelation tests are summarized in exhibit 1.
insert exhibit 1

Suppose that a 10% level of significance is used, and also that the
strategy is adopted that models where too much autocorrelation is left in
the residualsl will not be wused in a forecé,st evaluation for they are
already misspecified, then it can be seen tha.tf for cases (a) and (b) there
remain 69 and 64 replications for forecasting exercises, respectively. For
each of these repetitions forecasts for 36 months  out-of-sample are
calculated a.nd compared with the true observationsj. Denoting M as the
number of times that the true value exceeds the forecasted value, the
distributions of M are given in exhibit 2(a) and 2(b). In the ideal
situation, one would theoretically expect that M is symmetrically
distributed with mean 18 and with a standard deviation equal to 3. Or, it
would be expected that about 95% of the observations is within the interval

12 to 24.
insert exhibit 2

From exhibit 2 it is obvious that this situation is certainly not the case

here. Furthermore, it can be seen that the forecasts can be too high or too




low about equally well.

These simulation experiments strongly ?uggest that considering the
incorrect model can yield biased forecasts. Furthermore, it emerges that
the wusual specification checks are often not discriminative enough to
reject this incorrect model. This calls for a method to empirically

distinguish between the MSBJ model and the FDSD model, which will be

briefly described in the next section.

3. TESTING FOR SEASONAL UNIT ROOTS

The differencing operator A,, assumes the presence of 12 roots on the

unit circle, which becomes clear from noting that

1-B'? = (1-B)(1+B)(1-iB)(1+iB)
(1+(Y3+i)B/2)(1+(V3—i)B/2)(1—(V§+i)B/2)(1—(V3-i)B/2)

(1+(iV3+1)B/2)(1-(iV3-1)B/2)(1-(iV3+1)B/2)(1+(iV3-1)B/2)

where all terms other than (1-B) correspond to seasonal unit roots. In
Hylleberg et al. (1990) a method has been developed for testing for the
presence of seasonal unit roots in quarterly data. In Franses (1990), this
method has been extended to time series' consisting of monthly observations.
To save space only the final test equation will be presented to ensure that

the reader can verify some of the claims made in this paper.

Testing for unit roots in monthly time series is equivalent to testing

the significance of the parameters in the auxiliary regression




. .
© (B)ys,: = TiY,e-1 + T2Y2,0-1 + M3V30-1 + TgY30-2 + MsYyq 0

* TeYa,e-2 + T1Ys,e-1 + MgYs,0-2 + MoY6,e-1 + M10Y6,t-2

+ Y71 + T1gV7 02 + U + € (5)

where ¢*(B) is some polynomial function of B for which the wusual inver-

tibility assumption applies, and where

yi,e = (1+4B)(1+B%)(1+B*+B%)y,

Va,e = —(1-B)(1+B%)(1+B*+B%)y,

Var =-(1-B*)(1+B*+B%)y,

vae = -(1-B*)(1-V3B+B?)(1+B*+B%)y,
Vs = -(1-B*)(1+V3B+B%)(1+B%B%)y,
Yo, =—(1-B*)(1-B*+B*)(1-B+B’)y,
1,0 = ~(1-B*)(1-B*+B*)(1+B+B")y,

vse = (1-B)y,

Furthermore, the g, in (5) covers the deterministic part and might consist
of a constant, seasonal dummies, Jr j a trend. This depends on the
hypothesized alternative to the null hypothesi’s of 12 unit roots.

Applying ordinary least squares to (5) gives estimates of the m;. In
case there are (seasonal) unit roots, the corrgsponding m; are zero. Due to
the fact that pairs of complex unit roots :a.re conjugates, it should be
noted that these roots are only present when i)airs of ms are equal to zero
simultaneously,- e.g. the roots 7 and -i are only prese;nt when 73 and m, are
equal to zero, see Franses (1990) for detailed derivations. ‘There will be
no seasonal unit roots if m, through m, are significantly different from

zero. If m=0, then the presence of root 1 can not be rejected. When =0,




7, through m,, are unequal to zero, and whele, additionally, seasonality can
be modeled with seasonal dummies, a FDSD moldel as in (2) may emerge. In
case all m;, i=1,..,12 are equal to zeré, it is appropriate to apply the
4,, filter, and hence the MSBJ model may be useful. Extensive tables with
critical values for t-tests of the separate #'s, and for F tests of pairs
of 7’s, as well as for a joint F test of my=..=m, can be found in
Franses (1990). Some critical values Which will be of relevance llater in
this section are given in the appendix 1.

In Beaulieu and Miron (1990), the Hylleberg et al. (1990) procedure is
also extended to monthly data, but their test ‘equation differs from (5) and
is somewhat more complicated. Furthermore, Ethe authors compute critical

values for one-sided tests only, and they also do not consider the useful

joint F test for the presence of the complex unit roots.

The method given in (5) to test for seasonal unit roots is applied to

the first nine years of the airline data, Inp, as they are given in Box and

Jenkins (1970, p.304). Two other monthly series, which are an index for
industrial production and new car registrations, are also considered. The
observations are displayed in appendix 2. In the sequel, both series will

be measured in natural logarithms. Graphs of these Inip and Ingc are given

in exhibits 3 and 4.

insert exhibits 3 and 4

The last 36 observations are again not . used, for they will be used for
forecast evaluation. From exhibits 3 and 4, and from the graph in Box and
Jenkins (1970, p.308) it is clear that :the alternatives for nonstationary
stochastic seasonality, necessitating the wuse of a A4,, filter, may be a

deterministic seasonal pattern and, additionally, a trend for Inp and Inip.




The test results are displayed in exhibit 5.
insert exhibit 5

Simulation evidence in Franses (1990) shows that the power of the test
statistics may be low, except for the joint | F test for all complex m;, and
hence that significance levels of 10%, or even higher, may be more
appropriate. Considering the results in exhibit 5, it seems that the
general result is that seasonality and nonstationarity in the three time
seriesj can be appropriately modeled with a FDSD model as in (2), although
the evidence for Ingc is not overwhelming. Anyhow, the regularly applied
4, filter, not to mention the A4, filter, is certainly not appropriate.
This corresponds to the results in Beaulieu and Miron (1990), and also in

Osborn (1990) similar findings for quarterly data are reported.

4. FORECASTING

Now the type of seasonality and nohstationarity has been established,
several FDSD models for Inp, Inip and Ingc can be built. The models, which
have been found after a brief specifica.tibn search, are given in exhibit 6,
together with their estimation results and ;ome evaluation criteria. The
statistical package used is TSP version : 6.53 (1989), and the estimation

method is iterative least squares.

insert exhibit 6

From exhibit 6 it is obvious that the FDSD type of model gives a fairly




good representation of the data for all three variables. Most parameters
for the seasonal dummies are highly significant, the adjusted coefficients
of determination are high, and the checks on autocorrelation do not provide
strong arguments to suspect misspecification.

The estimation and evaluation results of models of type (1), which

will be the competitors in the forecasting exercises below, are displayed

in exhibit 7.

insert exhibit 7 |

These models also show significant estimated parameters and no significant
residual autocorrelation. Hence on the basis of these criteria, the choice
for a MSBJ model might be defended.

To evaluate the FDSD and MSBJ models in e};hibit 6 and 7 with respect
to their forecasting perforrﬁance, forecasts for 36 months out-of-sample are

generated from each of these models. The values of several forecast

evaluation criteria are given in exhibit 8.

insert exhibit 8

The general result is that with respect to the criteria ME through RMSE the

FDSD modeli clearly outperforms the MSBJ model. Additionally, it is clear
that for Inip and Ingc the numbers of positive forecast errors M from using
a FDSD model are close to what might have been expected, while those when

using a MSBJ model are out of any reasonable range. These empirical results

seem to confirm the simulation evidence in section 2. For the airline

series the difference between the MSBJ and the FDSD model is not that

striking, a.lthqugh some forecasting improvement can be witnessed.




5. CONCLUDING REMARKS

In this paper it has been shown that correctly taking account of the type
of seasonality and nonstationarity in monthly data can improve forecasting
perfonﬂance. This is illustrated for the case where a moving average model
is fitted to a first order and seasonally differenced variable, while an

autoregressive-moving average model for the first order differenced

variable together with the inclusion of a constant and seasonal dummies

would have been more appropriate. A method to empirically choose between
these models is also given. Of course, these results may naturally be
extended to time series consisting of quarterly observations, and those
which contain deterministic trends instead of stochastic trends.

The major result of the present paper is that the recognition of the
presence, or better, of the absence of seasonal unit roots can have
important  implications  for  forecasting and model building.  Recent
additional arguments for not automatically d'oubly differenciné a.' seasonal
variable can be found in Bodo and Signorini (1987), where econometric
mode}s with seasonal dummies also yield better forecasts, and in Heuts and
Bronckers (1988), where doubly differencing the same production index as

above makes that this variable shows no correlation with other variables.




APPENDIX 1: TABLES WITH CRITICAL VALUES

Some critical values for testing for seasonal unit roots in monthly data
Based on 5000 Monte Carlo simulations, DGP: y=y(-12)+¢, e~N(0,1)

Number of observations is 120

Auxiliary regression

constant, dummies and trend constant, dummies and no trend

t-statistics 0.05 0.10 0.05 0.10

m 3.2 292 263 2.3
7 265  -239 265  -2.40

t-statistics 0.025 0.05 0.95 . 0.025 0.05 0.95 0.975

-2.05 -171 172 2. 211 -176 174 211
-3.34 -3.12 -0.45 -0. -3.34 -3.12 -0.44 -0.14
-3.29 -2.99 -0.06 0. =329 -3.00 -0.05 0.25
-3.38 -3.12 -0.44 -0 -3.39 -3.12 -0.42 -0.09
-0.18 0.12 298 3.98 -0.27 005 3.00 3.31
-3.40 -3.15 -0.43 -0. -3.39 -3.14 -042 -0.18
-2.86 -2.54 081 1.12 -2.87 -2.54 082 1.13
-3.36  -3.07 -0.40 -0. 1 =337 -3.07 -0.39 -0.07
-1.08 -0.73 255 280  -111 -0.78 256  2.83
342 -3.16 -0.44 -0.17 -3.43 -3.16 -0.42 -0.14

F-statistics 0.90 0.95 ' 0.90 0.95

Ty Ty | 4.81 5.63 4.83 5.62
s, 4.86 5.84 4.89 5.86
7, 4.94 5.90 f 4.94 5.86
ToTo . 4.76 5.71 4.79 5.75

T11,1s 4.92 5.84 4.94 5.89

330912 4.00 4.45 = 4.00 4.46

Source: Franses (1990,pp. 12-18). Note that the tests for m; and w, are one-
sided tests, while the other tests are two-sided.




APPENDIX 2: DATA

Index of industrial production (The Netherlands, 1980=100)

Month 1969 1970 1971 1972 1973 1974 1975 1976 1977

Jan. 64 71 79 81 88 93 88 95 98
Feb. 67 74 8 8 92 98 93 98
Mar. 68 77 8 84  8: 98 95 98
Apr. 68 77 8 8 92 95 93 99
May 68 76 8 8 8 95 88 95
June 68 74 79 8 8 95 88 96

July 59 65 66 68 74 77 70 76
Aug. 63 69 74 77 82 87 77 85
Sept. 68 74 80 83 91 94 87 98
Oct. 73 81 86 89 96 99 93

Nov. 78 83 86 92 99 )

Dec. 7 81 83 92 98 95

Month 1979

Jan. 108
Feb. 109
Mar. 106
Apr. 107
May 98 98 94 92
June 95 95 92 90
July 78 76 78 75
Aug. 83 81 78 75
Sept. 98 90 90 89
Oct. 104 101 101 94
Nov. 112 - 111 105 98
Dec. 112 114 114 107

Source: OECD Main Economic Indicators.




New car registrations (The Netherlands)

Month *© 1978 1979 1980 1981 1982

Jan. 65624 61720 74619 51368 43477
Feb. 39004 41875 39920 35811 32975
Mar. 55928 75989 45404 44507 45435
Apr. . 51089 62938 45791 39362 45751
May 53920 54831 42023 41392 40067
June 73526 51197 - 38875 37099 39455
35328 37123 30909 31839 31074
Aug. 33756 34858 27308 21659 23562
43344 32165 29279 24936 28074
70418 45347 33437 28098 - 34313
48249 38598 26084 21765 28240
14400 15962 11184 8947 10680

1984 1985 1986 1987 1988

68662 62079 76975 85519 89929
] 40007 39134 44701 42154 33771
Mar. 53149 58685 56175 61224 52082
Apr. 46193 53148 58748 62051 47504
May 50648 49239 56614 . 53501 42885
June 39593 44575 55460 51869 45786
July 28684 36319 40472 42020 32933
Aug. 27584 33753 35076 31038 28803
Sept. 30296 33331 46107 38041 35323
Oct. 37899 40673 46667 42331 34216
Nov. 29316 30695 30756 - 29119 28067
Dec. 9360 14089 11084 15436 9350

Source: Central Bureau of Statistics and RAL -




EXHIBITS

Exhibit 1.
Number of times the null hypothesis of no autocorrelation is rejected
when a MSBJ model is fitted to observations generated by a FDSD model

(based on 100 simulations).

Test statistic(l)
~__ Size BP(12) BP(24)

(a) 0.05 26 17

0.10 31 22
(b) 0.05 26 13

0.10 36 17

OF The Box-Pierce test statistic for autocorrelation of order 12 and 24.

Under the null it is.x® distributed with 9 and 21 degrees of freedom, res-
pectively. ;




Exhibit 2. Forecast performance evaluation (horizon=36)

of MSBJ model when a FDSD is the data generating process
(based on 69 and 64 simulations for case (a) and (b) respectively)

M is the number of times the true value exceeds the forecasted value




Exhibit 3. Natural logarithms of industrial production index
(The Netherlands, 1969.01-1987.12, 1980=100)
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78 79 80 81 8 83 84 8 8 87 88

____LNQC

Exhibit 4. Natural logarithms of new car registrations
(The Netherlands, 1978.01-1988.12)




Exhibit 5.

Testing for (seasonal) unit roots.

Variable

t-statistics i p(z)

-2.471
-3.360**
-2.053"
-4.800**
~3.786**
-3.825"*
-0.063*
-1.529
-2.338
-3.789™*
-2.577**
-3.455™*

F-statistics

T3,y 7.028%* 14.318**
Mg, Mg 7.895"* 7.814™"
7,y 4.940% 5.424*
TsM1o 6.864"* 7.329™*
T11,T12 7.206™* 22.461**
T3yeaTya 15.348™* 24.965"*

Significant at a 5% level. ‘
Significant at a 10% level.

) The auxiliary regression contains constant, trend and seasonal dum-
mies, while ¢*(B) is (1-¢,B'?) and the number of observations equals 84.

4 ~$1 q
2 The auxiliary regression contains constant, trend and seasonal dum-

mies, while ¢*(B) is 1 and the number of observations equals 180.
) The auxiliary regression contains constant and seasonal dummies, while

©*(B) is 1 and the number of observations is 84.




Exhibit 6.
Estimation results of models for A,lnp, Alnip and A,lngec.

Dependent variable

Ajlnp Ajlnip A,lngc

Model variables")

0.097**  (0.017) 0.018** -0.851**

-0.038 (0.032) -0.056™* 2.859™*
-0.092**  (0.023) 0.001 -0.250

0.051™*  (0.021) -0.023™* 1.378*"
-0.088™*  (0.032) -0.022** 0.607™*
-0.109"*  (0.019) -0.051** 0.846™*

0.032  (0.021) -0.026** 0.847**

0.044 (0.031) -0.137™* 0.547™*  (0.084)
-0.697™*  (0.029) 0.025** 0.823"*  (0.063)
-0.211"*  (0.021) 0.057** 1.021**  (0.065)
-0.260""  (0.017) 0.023** 1.029"*  (0.108)
-0.263""  (0.017) 0.009 0.510™  (0.132)
-0.273"*  (0.099) ‘ 0.396 (0.248)
0.388"*
-0.401** -0.815™"  (0.274)
-0.216™*

Evaluation criteria(®

BP(12) 9.203 7.849 -
BP(24) 22.049 30.363
R? 0.887 0.894

Ak

Significant at a 5% level. Standard deviations in brackets.
(1)

The model contains a constant C, 11 seasonal dummies, Dj,..,D,;, where

D, corresponds to January, autoregressive terms at lag p, AR, and moving

average terms at lag g, MA,.
) The evaluation criteria are the Box-Pierce portmanteau test statistics,

calculated fo;' m lags. Under the null this BP(m) follows a x° distribution
with m-r degrees of freedom, where r is the sum of the number of autore-

gressive and moving average parameters. The R® denotes the adjusted coef-
ficient of determination. '




Exhibit 7.

Estimation results of models for A4,4,,inp, AAlnip and A A,,lnge.

Dependent variable

A,4,,Inp A Alnip A, A,lnge

Model variables(”

MA, -0.338™*  (0.104) -0.436**  (0.076) -0.337"*  (0.113)
MA,,  -0.715"*  (0.104) -0.571*"  (0.078) -0.733™*  (0.103)
MA;; 0.322**  (0.104) 0.363"*  (0.078) 0.359"*  (0.103)

Evaluation criteria(®

BP(12) 6.606 8.813
BP(24) 15.325 . 20.185
R? 0.415 0.388

Significant at a 5% level. Standard deviations in brackets.
(1) ‘

The model contains moving average terms at lag g, MA,.
(2

- The evaluation criteria are the Box-Pierce portmanteau test statistic,
calculated for m .lags. Under the null this BP(m) follows a x> distribution
with m-r degrees of freedom, where r is the sum of the number of autore-

gressive and moving average parameters. The R? demnotes the ‘adjusted coef-
ficient of determination.




Exhibit 8.
Evaluation of the 36 months out-of-sample forecasting performance
of models for the variables Inp, Inip and Ingc.

Inp Inip Ingc

MSBJ FDSD MSBJ FDSD MSBJ FDSD

Criterion‘?

ME -0.074 . 0.042  0.022 -0.200
MAE 0.074 . 0.044 . 0.221
maxAE 0.179 . 0.109 . 0.607
minAE. 0.003 . 0.002 . 0.009.
MAPE 1.229 . 0.942 0. ' 2.117
MSE 0.007 . 0.003 0. 0.079
RMSE 0.081 . 0.051 0.044 0.280

Number of times the true value exceeds the forecasted value (M)

0 4 33 24 5 22

) The underlined values indicate that for that ecriterion the correspon-

ding model obtains the lowest value. Define the " forecast error as the true
value minus the forecasted value. The forecast evaluation criteria are the
mean error, ME, mean absolute error, MAFE, maximum and minimum value of ab-

solute error, maxAE -and minAE, mean average percentage error, MAPE, and

(root) mean squared error, (R)MSE.

@ The rounded value is smaller 0.001.
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