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IN ECONOMIC TIME SERIES
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Johan F. Kaashoek and Herman K. van Dijk

Abstract

The operationai significance of the Lyapunov exponent and the correlation

dimension for the measurement of chaos in economic time series of medium size

length (200 observations) is investigated. In particular, models that are a

mixture of a linear model, with a strong autoregressive component, and either

a chaotic model or a white noise model are investigated. The empirical time

series is the real exchange rate between Japan and the US. The results

indicate that the implementation of the Lyapunov exponent for time series of

200 observations is not without problems and that for the JP/US real exchange

rate an autoregressive model with white noise errors is more plausible than a

model with chaotic disturbances according to the correlation dimension.

However, the evidence in favor of the• stochastic model is not very strong and

a nonlinear component may be present in the data.
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I. Introduction

The observed cycles in the time series of several economic variables

appear not as periodic and regular as the cycles that are implied by

stochastic linear difference equations. In recent years several authors have
proposed that the dynamics of a set of economic variables can be described
by a set of nonlinear deterministic difference equations. It is nowadays

wellknown that such a nonlinear dynamic model may not tend to stationarity or
to a regular periodic behaviour as time tends to infinity; see, e.g., Devaney

(1986). The study of nonlinear dynamic systems, in particular chaotic

systems, has brought such terms as orbit, strange attractor, fractal

dimension, correlation dimension and Lyaponov exponent (to name only a few).
In this paper we describe these terms in an informal way and use the

correlation dimension and the Lyapunov exponent to investigate the
operational significance of the measurement of chaos in economic time series
of medium size length, say 200 observations. Due to the advances in computing
methods and machinery these measures are operational on long time series. Our
application refers to time series of the real exchange rate between the US
and Japan. Further, we make use of some simulated time series that are
generated from a linear autoregressive model with chaotic distutbances and
from one with white noise disturbances. We are interested in determining
whether some economic time series can be described as a chaotic process or as
a mixture of a linear autoregressive process and a chaotic one. This paper
adds some experimental results to Granger (1990) and Frank and Stengos
(1988). A more detailed analysis on the operational significance of simple
measures for the determination of chaos that includes more experimental
evidence will be reported in future work.

II. Orbit, strange attractor, chaos

Let x
t 

be a vector of observations on N economic variables at time t.
Examples are prices of agricultural and financial commodities and
macro-economic variables as gross national product and exchange rates. The
process that generates these variables is supposed to have started at t = 0
and the subsequent values x, x, x,... are obtained in a sequential way by

3

means of the difference equation

x t = F (x(-1 t = 1, 2 ,.... (1)

where F is a nonlinear function that maps x
t into x . Such a time series



process {x
t is defined as the forward orbit of x

o 
and is denoted as 0+(x0

'
where

+ (0 xo) = {x I x 
I
), t = 1,2,...., xo is given}t- (2

Of particular interest is the behaviour of the orbit when t tends to become
large. Simple examples of orbits are the time series {p, p, p, ...}, where
the starting value is p and equation (1) is such that p = F(p), and periodic
series {p, q, p, q, ...}, where p is the starting value and where q = F(p)
and p = F(q). Other, more realistic examples of orbits and orbits with a
nonperiodic character are presented in, e.g., Devaney (1986).

In practice one does not know the starting value x
o 

exactly. Consider then
a set of starting values close to x

o
. As a consequence one has a set of

orbits. This raises the following problem. Will the orbits with starting
values close together stay close together as time progresses and what will
happen asymptotically?

In this context one makes use of the term attractor. Suppose one has a set
A, a subset of the N-dimensional real space (since we are interested in N
economic variables), and an orbit 0+(x0). If the value x

t
, for all x

o 
near to

A, tends to A when t tends to infinity, then A is defined as an attracting
set. Suppose further that an orbit exists on the attracting set A that
completely fills the set A, then A is defined as an attractor.

One may conjecture that two orbits defined on an attractor with starting
values close together will stay together. However this need not be the case.
There exist attractors with orbits defined on them which start close
together. However, each of these orbits follow a completely different time
path and information from one orbit is totally irrelevant for the possible

prediction of the time path of the other orbit. Such attractors are called
strange attractors or chaotic attractors Or less prosaic aperiodic
attractors. A key feature of chaotic attractors is the sensitivity with
respect to the initial condition.' A well known example is the time path of
two orbits defined by the nonlinear equation x,

1 
= 4x(1 - x

t
) with startingt+ 

values, say, 0.10 and 0.10000001.

1
For a more formal definition of a chaotic attractor we refer to Devaney

(1986).
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III. MEASURING A CHAOTIC ATTRACTOR WITH THE LARGEST LYAPONOV

EXPONENT AND THE CORRELATION DIMENSION

The behaviour of neighbouring orbits is of interest for the

characterization of a chaotic attractor. Consider for convenience first the

case where x is a one-dimensional vector. Let 0+(x ) and 04-(y ) be two

orbits with starting values that are close together. Let d be the absolute

value of the difference between the point x and the point y. Using equation

(1), values of d t are obtained as

= I F(x) - Ry) I t = 1, 2, ..•• (3)

In order to study the behaviour of neighbouring orbits we make use of the

linear approximation of equation (1). Let d and d
t 
be small and denote the

derivative of the function F(.) by DF(.), then one can write the linear part

of a Taylor expansion of F(y) in the point xt_1 as

F(Y. F + DF(x )(y - x ) (4)

Take F(y ) as an approximation of F(y ) in (3), then the evolution of dt-i
in linear approximation can be written as

= 1DF(x t_dId t_1 t = 1, 2, 3, ... (5)

If the derivative DF(x ) is less than one in absolute value for all t thent-1
d

t 
< d and the orbit 0+(y

o
) will tend to the orbit 0+(x0) as t tends to

become large. Using (5) repeatedly, one can write

= DF(xt )L LDF(xt 2)1 ... 1 DF(x0) I do (6)

The ratio of d and d
o 

is the product of the derivatives of F along the
orbit of x . Define

d t
A(x) = lirn - In —

t d 
ot-.00

(7)

t -1lim E'ln I DF(x.) I
t-.00 1=0
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The left hand side of (7), A(x
o
), is. called the Lyapunov exponent.2 It is the

mean value of the logarithm of the absolute value of the derivative of the
nonlinear function F along the orbit O(x0) and it gives a measure of the
degree of attractiveness of an orbit. If the Lyapunov exponent is negative,
i.e. the mean value of in (d id ) is less than zero, then the orbit ist o
stable. If the Lyapunov is positive then the orbit is unstable and the
attractor is chaotic.

For an N-dimensional system one may use the definition of d t given in (3)
and interpret it as the Euclidean distance between two vectors x

t 
and. y

1
.

Given the N dimensions one has N Lyapunov exponents, just as the NxN matrix
of derivatives DRx 

1
) has N eigenvalues. Note that in the definition (7) not-

specific direction is used. However, on a chaotic attractor, where all orbits
are unstable, an arbitrarily chosen vector will become directed in the mean
most expanding direction. The algorithm for the computation of the largest
exponent, due to Wolfe et al (1985), is based on this idea and accordingly we
refer to equation (7) as the definition of the largest Lyapunov exponent.

A second way to measure a chaotic attractor is to make use of the notion
of dimension of a set. The algebraic notion of a dimension is defined as the
number of independent vectors necessary to describe a set. In such a case the
dimension is a positive integer. In order to describe briefly how the concept
of dimension is used in our context we consider, for convenience, a
one-dimensional pure random system and a deterministic chaotic system. Let
the random system be given as x = E, where e is a random variable thatt+1 t tis uniformly distributed in the interval [0, 1] and let the chaotic system be
given by the logistic map x14.1 =4x1(1 - xd. If we display time series from
both systems in one figure, then one will hardly see any difference between
them. However, if we display the generated series in a. scatter diagram, i.e.,
the graphs of (x , x) for both series, then the differences are obvious.t+1 t
In the case of the random system the whole square [0,1]x[0,1] will be filled
and the system is characterized by dimension two. In the case of the chaotic
sytem the points will lie on the graph of the function x1+1 = 4x1(1 - xt) and
the dimension is one. Suppose, as a further example, that we take the set of
points (x , x , x), in the pure stochasic system, then the whole cube is
filled while in the chaotic deterministic case on still gets • a one
dimensional graph. Summarizing, a pure stochastic system has as dimension the
number of variables that one considers; a chaotic system has an attractor
2
Under some general conditions the Lyapunov exponent is independent of theinitial value x

o
; see Brock (1986).
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with dimension less than the number of variables. The dimension of a chaotic
attractor may not be a natural number but a rational one, a fractal.

In order to measure the difference between a stochastic and a
deterministic system one may consider the dimension of the attractor. A
related concept is the notion of correlation dimension; see Grassberger and
Proccacia (1983) and Brock (1986). The intuitive idea is to measure the
distribution of points of some orbit on an attractor. Suppose 0+(x0) is
orbit defined on the attractor set A, a subset of RN. For each value x

ithe orbit we count the number of times that an other value x. lies in
3e-neighborhood of x., where e is an arbitrary positive number. That is, we:

check for each point x whether --1 x . x I < E for all j . 1,...,t. Fori : iconvenience, we make use of the mathematical notation with a Heaviside
function. Consider the function //(. ) with argument E - IX . - X I . Let I!(.) .: i0 if the argument e - lx• - x -I2 3 

is nonpositive and II(.) . 1 if the argument
is positive. Then the number of times that 1 x. - x I < e for each value of
x 
i 
, i . 0, 1, 2, ...can be denoted as Et //(e - 

iI x - x I ). Take the sum of
this quantity over x, i . 0, 1, 2,.. with i j and scale the result with:
t
2 
and define

=

Et Et 
II(ej=1

2

The correlation dimension D is defined as

D = 1 i msup
E-.13

1 im in C(e)

in e
( 8 )

an

on

an

The definition of the correlation dimension involves two limits. In practice,
one has a finite number of observations in economic time series, which we
denote , henceforth, by T. With respect to the order of magnitude of E we
note that one should experiment with different values and check the
stability of the results. A reasonable procedure is to compute the
correlation dimension from a regression of In CT(e) on a constant and ln(e );
see, e.g., Brock (1986).

Before one can apply the Lyapunov exponent and the correlation dimension,
one has to face a measurement problem. The orbit of a vector xo defines a
theoretical time path of this set of variables. In practice, one observes a
time series, denoted by at, t (Just like a stochastic process of a
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variable may be different from the measured time series.) In the literature
of nonlinear deterministic analysis one assumes that the observed series a

t
is related in an unknown deterministic way to the orbit 0+(x ). Then the
problem arises: can one reconstruct the attractor of the original system F
from the signal a

t
? If the time series a

t 
has a deterministic explanation,

then one can reconstruct the original attractor as follows. Define an
rn-dimensional vector a

t 
as

a =(a , a , a ••• a t =1-1 1-27 1-M+1

where M is called the embedding dimension. According to a theorem by Takens
(1981), if M is greater or equal to 2N + 1 with N the dimension of the
system, the original attractor is represented by the series ail

:
. Given that in

practice we do not know the dimension N of a theoretical system, how do we
choose a value of the embedding dimension M? A practical procedure is to
compute the correlation dimension and the Lyapunov exponent for different
values of M. For chaotic processes the correlation dimension stabilizes at
some value for sufficiently large embedding dimension; for stochastic
processes it will increase with the embedding dimension. Similarly, at a
proper embedding dimension the Lyapunov exponent stabilizes for chaotic
processes. We emphasize that the Lyapunov exponent is not defined for a
stochastic process since the derivative in x

t 
does not exist; see equation

(4). A priori one does not know whether a time series is stochastic or
chaotic and one may yet report the Lyapunov exponent but the results have to
be interpreted with care.

IV. Results

Our data series are monthly observations on the natural logarithm of
dollar/yen real exchange rate for the period December 1972 to June 1988. The
data are referred to as JPUS and are shown in Figure 1 ( top level). For more
details on the data we refer to Schotman and Van Dijk ( 1990 ) who fitted a
linear autoregressive model, of order one x = ax + e 

t 
and obtained as7

least squares estimate for the autoregressive parameter a a value of 0.982
(s.e. 0.014). This motivated us to consider some experiments where the data
are generated according to a linear autoregressive process of order one with
disturbances that are either white noise or generated according to the
logistic map 4e

t 
- e

t 
, which is chaotic. More specifically, consider

models A and B with

6
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t-1 t' e 
t 

N(0 ,o-2 ) t=1,2,3,...A: x =ax +e

B: x = cyx + (6 
t 
- 0.5), e = 4e (1 -

t-1
t=1,2,3,...

The series generated according to the logistic map has mean 0.5 and variance
0.125; see Holden (1987) and we took in model A for a

2 
the same variance. For

both models we generated a time series of 200 observations (x
o 

0, e
o 
= 0.2,

and ot = 0.95). The series are shown in the middle and the bottom of Figure 1

and are denoted by N95 and CI195, respectively.

In Figure 2 scatter diagrams of (x1, x11) t = 1,...,199 are shown on the
left hand side, while scatter diagrams of the residuals from a least squares

regression of x on x
t 

are shown on the right hand side. A graphicalt+i
analysis indicates that the data series of the real exchange rate are to some

extent comparable to the data series from both models A and B. The analysis

of the residuals casts, however, strong doubts on this. The residuals are

more in accordance with white noise than with chaotic disturbances.

A less superficial analysis involves the computation of the largest

Lyapunov exponent and the correlation dimension for embedding dimension 1 to

10. (For the simulated seies from model B the correct embedding dimension is
3.) The results are shown in Tables 1 and 2 and in Figure 3. Apart from the
three series mentioned before and the residuals of the series we added a pure
chaotic process and a pure white noise process. That is, we consider as two

separate cases the true disturbance processes of models A and B, denoted by N
and C//, respectively. Thus we have a total of 8 series.

We note that the results on the Lyapunov exponent are scaled by ln(2 )
since the theoretical value of this exponent is ln( 2 ) for the series CH, the

pure chaotic one. From the results, reported in the second column of Table 1,

one may conclude that the Lyapunov exponent can find a pure chaotic process

for time series with only 200 observations. For the pure white noise process

(see column denoted N) one finds at dimension one a large value of the

Lyapunov exponent, which tends to zero at a fast rate when the embedding

dimension becomes larger. The same holds for the columns C1195 and N95. It

appears that the Lyapunov exponent is not a useful measure in a mixed process

with only 200 observations (Maybe this result is due to the way the Lyapunov

exponent is computed. This is a topic outside the scope of the present
paper). If one compares the results of columns CI195R and 1\195R with those of

columns CII and N, it is seen that the use of the least squares regression

filter is helpful in discriminating between a. chaotic and a stochastic

8
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process. However, the results of columns C1195 and CH951Z are rather different.

This is contrary to Brock's (asymptotic) analysis; see Brock (1986). Whether

our results are only due to a small sample effect is a topic for further

research. The results of the columns JPUS and JPUSR indicate that the

Lyapunov decreases at relatively fast but different rates. This difference is

again contrary to Brock's asymptotic analysis. Finally we note that the

1Lyapunov exponent is always positive.

Table 1

Largest Lyapunov exponent

dim. CH

......

CH95R CH95 JPUSR JPUS N95 N95R N

1 0.98 1.55 2.46 4.31 1.21 3.19 5.19, 5.08
2 0.96 0.97 0.61 0.80 0.31 0.73 1.21 1.40
3 0.97 0.90 0.46 0.56 0.23 0.47 0.77 0.71
4 0.88 0.85 0.38 0.38 0.21 0.34 0.57 0.55
5 0.93 0.82 0.28 0.34 0.17 0.26 0.42 0.46
6 0.91 0.74 0.29 0.25 0.15 0.22 0.31 0.32
7 0.84 0.62 0.19 0.18 0.14 0.17 0.21 0.22
8 0.75 0.49 0.18 0.13 0.13 0.15 0.12 0.15
9 0.67 0.35 0.14 0.10 0.12 0.14 0.09 0.12
10 0.47 0.31 0.11 0.07 0.09 0.12 0.06 0.08

Table 2

Correlation dimension

dim. CH CH95R CH95 JPUSR JPUS N95 N95R N

1 0.83 0.77 0.79 0.92 0.88 0.89 0.90 0.87
2 0.90 0.84 1.18 1.61 1.37 1.64 1.64 1.67
3 0.93 0.89 1.62 2.17 1.72 2.14 2.40 2.40
4 0.88 1.00 1.96 2.57 1.91 2.61 3.04 3.01
5 0.8-3 1.09 2.33 2.88 2.15 3.05 3.69 3.65
6 0.77 1.17 2.67 3.18 2.26 3.23 4.03 4.28
7 0.65 1.15 2.96 3.39 2.34 3.51 4.49 4.66
8 0.61 1.08 3.18 3.53 2.44 3.81 5.12 4.94
9 0.52 0.93 3.35 .3.68 2.48 3.82 5.71 5.11
10 0.41 0.78 3.50 3.74 2.47 3.95 6.04 5.59

_
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