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ABSTRACT

In the present paper a case is made for the simultaneous treatment of

seasonality, outliers and nonlinearity in economic time series. It is

empirically shown that outlying observations may cause that a regularly

applied differencing procedure for monthly data induces a nonlinear time

series. A more appropriate handling of the eventual seasonality and

nonstationarity yields that linearity can not be rejected.
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1. INTRODUCTION

At present there is a vast amount of literature on seasonality, outliers

and (non-) linearity in economic time series. Examples are methods for

outlier detection in a linear model context (see for recent studies e.g.

Bruce and Martin, 1989 and Pam, 1990), and tests for linearity assuming

the absence of outlying observations such as e.g. in Chan and Tong (1986).

In case such methods, or nonlinear models, are applied to time series con-

sisting of seasonal observations, one usually initially transforms the ori-

ginal series to get rid of seasonal influences, see e.g. Maravall (1983).

So, in general, these issues are studied separately while assuming that the

others have been appropriately handled.

In the present paper however a case is made for the simultaneous

treatment of seasonality, outliers and linearity. More precisely, it is

argued that the incorrect transformation of a seasonal time series

containing some additive outliers can result in a time series which shows

sequences of outliers, and hence, for which a nonlinear model may be more

appropriate. To provide an illustration, consider the following simple

experiment. For an artificial time series of quarterly data from 1950.1

through 1990.IV observations are generated from the model

Yt = yt, + 2 + Di - 2D - 1.5D3 + et

where yo=0, et is drawn from a standard normal distribution, and D1, D2 and

D3 are seasonal dummies with a 1 in the corresponding quarter, and 0 in

other quarters. Furthermore, construct the series adds which consists of

zeroes, except in 1969.IV, 1970.1, 1979.IV and 1980.1 where the values are

6, -4, -15 and 9, repectively. When the series yst=h+addt is constructed,

it is obvious that this yss contains some additive outliers as can be seen



from figure 1.

insert figure 1

Note that such additive outliers are by no• means uncommon in economic time

series, where e.g. a strike at a registration office can induce that part

of the registrations have to be made up in the next period. An often

applied step in current quarterly time series model building is the

transformation of the series into A1,64yst, where Akxta--xt-xt_k. The plot of

this series is given in figure 2.

insert figure 2

Suppose one encounters the series zt.ApAost without any prior knowledge of

the transformation. Fitting a univariate autoregressive moving average

(ARMA) model to Zt would probably result in two patches of outliers.

Alternatively, anyone familiar with the literature on bilinear models, and

especially with the graphs of series generated by such models (see e.g.

Granger and Andersen, 1978 and Subba Rao and Gabr, 1984), would presumably

start fitting a

bubbles'. However,

process (1.1), a

bilinear model to to account for its 'temporary

in case one would have detected the underlying seasonal

simple linear model could have been fitted and the

additive outliers could have been spotted rather easily.

Of course, the major issue is to find the appropriate model for the

seasonal pattern. One strategy is to apply the techniques developed in

Hylleberg, Engle, Granger and Yoo (1990) (HEGY), which have been applied to

quarterly time series: In section 2, a brief account is given of an

extension of the HEGY method to monthly time series, which is applied to

2



two empirical monthly series. Recently, a 14612 transformed version of one

of these series has been successfully modeled with a bilinear model. In

section 3, a well-known test for linearity is discussed and applied to some

transformations of the two series. The final section contains some

concluding remarks.

2. TESTING FOR SEASONAL UNIT ROOTS

Consider three simple classes of monthly time series models for modeling

seasonality in a time series y . The first is a purely deterministic

seasonal process, or

Yt = 040 + it
i=1

where the Djt

( 2.1)

are seasonal dummy variables. The second is a stationary

seasonal process, Or

PYt-12 4" et (2.2)

where Ip < 1, and where et denotes a white noise process with E(et)=0,

E(e)=a2 and E(e3et)=0 for This interpretation for et will be used

throughout this paper. The third is an integrated seasonal process which

can be written as ( 2.2 ) with p = 1, or

Yt = Yt-12 et (2.3)

Using the familiar backward shift operator B, to be defined as Bkytl----yt-k,
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this (2.3) can be rewritten as

(1-B12)y = et (2.4)

The equation 1-B12=0 has 12 solutions lying on the unit circle which

becomes clear from noting that

1-B1-2 = (1-13)(1+B)(1-413)(1+iB)

(1+0/3+0B 12)(1+W3-01312)(1-(1/3+i)B12)(1-(1/3-0B12)

(1+(i1/3+1)B12)(1-(W3-1)B12)(1-(10+1)B12)(1+(i1/3-1)B 12)

(2.5)

where all terms other than (1-B) correspond to seasonal unit roots. Collec-

ting two terms at a time in (2.5) yields

1-B12 = (1-B2)(1+B2)(14-1/3B+82)(1-1/3B+82)(1+B+B2)(1-B+B2)

= (1-B4)(1-B2+B4)(1+B2+B4) (2.6)

The method, as it is developed in HEGY for quarterly time series,

makes it possible to test whether all roots are indeed on the unit circle.

The extension of the IIEGY method to monthly data is straightforward, so

only the final test equation will be presented. In Franses (1990) all

derivations are given in detail, as well as extensive tables with critical

values for several test statistics and some power investigations.

Testing for unit roots in monthly time series is equivalent to testing

the significance of the parameters in the auxiliary regression
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w*(B)x8,t 1r2x2,t-i + 7t3x3,t_i .+ 7r4x3,t_2 + 7r5x4,t_i

76X4, t-2 7r7X5, t-1 78X5 + 79X6 + 71-10X64-2

+ ri2x74-2 + Pt + Et (2.7)

where co*(B) is some polynomial function of B, with all roots outside the

unit circle, and et is white noise, and with

Xl, t =

X2, t =

X3, t =

X47 t ^

X5, t =

X6, t =

X7 , t =

X8, t =

( 1+B ) ( 14-B2 )(14-B44-B8 )Xt

-( 1-B )(1-1-B2 )( 14-844-B8 )Xt

( 1-B2)(1-1-841-B8 )Xt

1 1 .̀1/3B+2B2 A/3B3+2B4.-V'3B5+136 Xt

-( 1-B4)(141/3B4-2B2W3B3+2B441/3B54-B6 )Xt

-( 1-B4 )(1-B-03-B54-B6 )Xt

-( 1-B4)(1-1-B-B3i-B5-06 )Xt

( )xt

and• where itt covers the determistic part and might consist of a constant,

seasonal dummies, or a trend.

Applying ordinary least squares to (2.7), where the order of co (B) is

chosen in an experimental way to whiten the residuals, gives estimates of

the ri. Because the 7ri are zero in case the corresponding roots are on the

unit circle, testing the significance of the estimated ri implies testing

for unit roots. There will be no seasonal unit roots if 7r2 through 7r12 are

significantly different from zero. If r1=0, then the presence of root 1 can

not be rejected. In case all 7ri, are equal to zero, it is

appropriate to apply the ZA12 filter, and if they are all unequal to zero,
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one has encountered a stationary seasonal pattern and one can use seasonal

dummies. It should be noted that e.g. roots i and -i are present only if r3

and 74 both equal zero, and hence it might be convenient to test them

simultaneously in two-sided tests. Tables with critical values for the

t-tests for the 12 and the F tests of the restrictions r3=r4=0 through

711.71-12.0 and also r3.....r12 can be found in Franses (1990). Some critical

values which will be of relevance in the forthcoming examples are given in

the appendix.

The above method to test for seasonal unit roots is applied to two

empirical time series, both of which were measured in natural logarithms.

The first consists of 348 monthly observations from January 1960 to

December 1988 of new truck registrations, Inqt t, in the Netherlands. A

graph of this series is given in figure 3.

insert figure 3

From this plot it can be seen that there are several periods which might

contain outlying observations, such as e.g. 1975-1977.

The second series considered here consists of 396 monthly unemployment

figures for West Germany from January 1948 to December 1980, as they are

given in Subba Rao and Gabr (1984) (see figure 4).

insert figure 4

For this series lnut a rather deterministic seasonal pattern seems to be

present, and the period 1966-1969 seems to be the most likely to contain

some outlying observations.

The results of the testing for seasonal unit roots procedure are given
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in table 1.

insert table 1

For both cases, the itt in (2.7) contains a constant and seasonal dummies,

because most of their estimated parameters are highly significant. For

lnqtt a trend variable has also been included. Some other experience with

the test procedure indicated that its outcomes do not depend too critically

on the specification of co*(B) and on single observations in case of time

series as lengthy as those considered here. Furthermore, in Franses (1990)

it has been found that the power of the tests increases rather rapidly with

the number of observations, and that the F-test for 73....71-12.0 obtains

high power in most occasions. From table 1 it is obvious that seasonality

and nonstationarity in lnqtt is appropriately modeled by the transformation

Al and 11 seasonal dummies. For lnut the inference

complicated because

(7117 712)7

of the simultaneous insignificance

although some of them individually

Taking into account the significance of the F-test

is decided to model seasonality for lnut

is somewhat more

of (TT, r8) and

are highly significant.

for r3 through 7'12, it

as is done for the other variable.

Note that these models of seasonality correspond to (1.1), when it allowed

for et to follow a mixed ARMA process.

Finally, it is striking that the regularly applied A2 filter is not

found. This corresponds to the results in Osborn (1990) for several

quarterly UK macroeconomic variables, and also to those for monthly U.S.

data in Beaulieu and Miron (1990). In the latter paper the authors also

extend the IIEGY procedure to monthly data. Their test equation however is

more complicated than, and is essentially different from, that in (2.7)

because of distinct definitions of several of the parameters. Furthermore,
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for some parameters, the authors compute critical values for one sided

tests only, and they also do not consider the useful joint F test for the

presence of the complex unit roots.

3. TESTING FOR LINEARITY

The test for linearity used in the present paper has been developed in

Keenan (1985). It is a general linearity test in the sense that it is not

necessary to construct a specific nonlinear alternative model. This can be

a drawback, especially compared to tests which test against a certain

alternative, and which may possess higher power in some occasions. From

power studies such as in Chan and Tong (1986), Tsay (1986), Luukkonen et

a/. (1988) and Lee et al. (1989) it emerges that in large samples Keenan's

test often obtains reasonably high power in case bilinear models are the

data generating processess. Given the experiment in the introduction, it is

just this type of models which deserves OUT special attention here.

Furthermore, a conclusion of Lee et al. (1989) is that no single test is

uniformly superior to others. Combining this with its ease of

implementation, it is felt that the Keenan test is useful for OUT

illustration purposes.

In short, the test boils down to three auxiliary regressions. First,

an autoregressive model of order M is fitted to the original time series

yt, giving fitted values 9t and residuals Et. Then, 92t is regressed on 1,

Yt-i, ••, Yt-M, which gives the residuals tt. Finally, the iet is regressed

on tt, yielding the regression coefficient N. Denoting RSS, and RS,S' as

the sums of squared residuals for 'et and tt, respectively, the test

statistic equals

8
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P1,n-2M-2

1)(2) . RS. S . (n-2M-2)

RSS,- fg.RSS
(3.1)

which follows an F(1,n-2M-2) distribution under the null hypothesis of

linearity. From (3.1) one can observe that the Keenan test can be viewed as

a special case of the well-known RESET test. The choice of M does seem to

be of importance, especially when it is too small, for in that case low

powers and incorrect sizes may occur because the test will then also

respond to remaining autocorrelation in the residuals. Hence, in the

forthcoming applications M will be set equal to 12, 24 or 36, the choice of

which will be based on the usual checks of the first 48 autocorrelations.

One might argue that the Tsay (1986) test should preferably be used

because it is an expansion of the Keenan test, and, as expected, obtains

often higher power. However, the Tsay test involves a regression equation

containing M(M+1)/2 variables, i.e. e.g. 300 (!) in case M=24. Even in our

large sample case, this does not seem sensible.

The variables Alnqtt and Alnut are regressed on a constant and 11

seasonal dummies. The residuals of these regressions • are used for testing

for linearity, the results of which are displayed in table 2. In the same

table test results are given for the 1-12 transformed variables. Note

again that these transformations are common practice in current and

traditional seasonal ARMA model building, see e.g. Granger and

Newbold (1986).

insert table 2

From this table it can be seen that the general result is that,
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reasonable significance levels, linearity is accepted for the variables

where seasonality is correctly taken into account, and that linearity is
rejected for the incorrectly transformed variables. The result for lnut

confirms the apparent success of detecting the nonlinearity of, and fitting

a bilinear model to, A1i112/nut (see Subba Rao and Gabr, 1984). It should be

mentioned that the filter for lnut indicated by the F-test statistics for

pairs of ri in table 2 gives comparable P values. Hence, a linear time

series model may be appropriate for lnut when suitably transformed, after
which e.g. the procedure described in Pena (1990) can be applied to detect
eventual outliers.

To more clearly illustrate the test results, it might be instructive
to consider the graphs of Z iL i2Xt versus Aixt, where xt is lnqtt and lnut
in figure 5 and 6, respectively.

insert figures 5,6

From figure 5 one can see that the Alnqtt already looks like a variable

with no obvious pattern apart from seasonality, but that AiAlinqtt shows

some bubbling behaviour in the years with the suspected outliers. Moreover,

several outliers in 1987 and 1988 seem to have been introduced by the

latter filter. Finally, from figure 6 one can imagine that some outliers

will be present in Zillnut series, but their impact on the A142 transformed

series is really striking. The periods 1955 through 1960 and 1967-1968

probably play an important part in the success of the previously mentioned

bilinear model.

10



4. SOME CONCLUDING REMARKS

In the present paper it has been demonstrated that an appropriate

transformation of a monthly time series, necessary to account for the

eventual presence of seasonality and nonstationarity, can lead to the

acceptance of linearity. Furthermore, it is shown that incorrect filtering

of the data can result in rejection of linearity, which can cause

subsequent modeling to involve unnecessary, and computationally cumbersome,

steps, such as e.g. the fitting of bilinear models. Now, it would also be

interesting to investigate whether the success of fitting a bilinear model

to the residuals of the linear model for the approximately Ar612 trans-

formed variable in Maravall (1983) is also due to this transformation.

In case one however decides to fit a linear model, one would probably

encounter a large amount of outliers. This corresponds e.g. to the recent

findings of Bruce and Martin (1989), where patches of outliers emerged for

the Ap612 transformed variable in their example 6. In summary, it is

proposed to first test for the presence of seasonal unit roots with the

simple procedure described in section 2. Depending on the outcome of this

test, some outlier issues may also probably become more easy to handle.

Some additional comments are in order. The first is that it is of

course not true that an appropriate filter for monthly data automatically

implies linearity. Some experience with several other unemployment series

mostly supports the above findings, but also reveals that if a correctly
transformed variable shows some nonlinearity, then the A1L112 transformed

does too. Secondly, the Keenan test is not entirely beyond discussion, and

more research into its properties is needed. Furthermore, in case the test
statistic indicates the presence of nonlinearity it remains unclear exactly
which nonlinear model is most appropriate, although the available power

11



studies suggest that a bilinear model may do.

On the whole, however, it is felt that strong arguments are provided

for the simultaneous treatment of seasonal processes, outliers and

linearity. Future empirical, as well as theoretical, research may shed

additional light on how this treatment should proceed.
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APPENDIX

Some critical values for testing for seasonal unit roots in monthly data

Based on 5000 Monte Carlo simulations, DGP: y=y(-12)+e, c-N(0,1)

Number of observations is 240

Auxiliary regression

constant, dummies and trend constant, dummies and no trend

t-statistics 0.05 0.10 0.05 0.10

-3.30

-2.79

-3.02

-2.49

-2.75

-2.79

-2.45

-2.49

t-statistics 0.025 0.05 0.95 0.975 0.025 0.05 0.95 0.975

-2.15

-3.51

-3.34

-3.46

-0.17

-3.50

-2.91

-3.52

-1.19

-3.45

-1.82

-3.29

-3.09

-3.21

0.11

-3.23

-2.61

-3.25

-0.84

-3.20

1.87

-0.49

-0.09

-0.47

3.12

-0.48

0.77

-0.42

2.61

-0.50

2.18

-0.22

0.19

-0.19

3.39

-0.18

1.13

-0.10

2.91

-0.21

-2.17

-3.51

-3.33

-3.46

-0.22

-3.50

-2.92

-3.50

-1.21

-3.44

-1.83

-3.29

-3.10

-3.21

0.07

-3.22

-2.62

-3.25

-0.87

-3.20

1.87

-0.49

-0.09

-0.47

3.14

-0.48

0.78

-0.41

2.62

-0.50

2.19

-0.20

0.21

-0.18

3.41

-0.16

1.13

-0.10

2.92

-0.20

F-statistics 0.90 0.95 0.90 0.95

73)74

750.6

7'7)78

7977r10

r117712

737.•)71-12

5.35

5.15

5.30

5.19

5.14

4.08

6.31

6.05

6.22

6.14

6.04

4.48

5.33

5.16

5.29

5.21

5.15

4.09

6.36

6.05

6.23

6.16

6.03

4.48

Source: Franses (1990,pp.12-18). Note that the tests for 71 and 72 are one-sided tests, while the other tests are two-sided.
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TABLES

TABLE 1. Testing for seasonal unit roots

Variable

t-statistics Inqt(1) Inu(2)

-2.766

72 -3.232**

7r3 -0.727

-5.008**
7r5 -3.397**

76 -4.256**

3.852**
7r8 -6.372**
7r9 -2.320

-4.324**

1.920

712 -6.460**

-1.586

-4.186**

-2.137*

-3.245*

-4.639**

-4.374**

-0.529**

-0.547

-3.341**

-4.003**

-1.389**

-1.282

F-statistics

73774

75776

.77778

7977io

7111712

737••)712

12.806**

9.286**

29.587**

9.350**

22.502**

19.227**

7.332**

10.977**

2.129

9.036**

3.482

5.466**

** .
Significant at the 5% level
Significant at the 10% level(1) The auxiliary regression contains constant, trend and seasonal

dummies. The polynomial co*(B) is (1-n13), so the number of observationsequals 335.
(2)

The auxiliary re2gressioli contains constant and seasonal dummies. The,*(B) is (1.--colB-(p12B' -n3B ), and the number of observations equals 371.
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TABLE 2. Testing the null hypothesis of linearity with the Keenan test

Test statistic P
Correctly transformed variables

Alnqt

Alnu

12

24

0.093

0.479

Incorrectly transformed variables

AlAl2Ingt

AZ112/flu

24 7.566**

36 9.721**

**

Significant at the 5% level
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FIGURE 1

Artificial quarterly time series:

A random walk with deterministic seasonal and four additive outliers
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FIGURE 2

Artificial quarterly time series transformed with z11z 4 filter
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FIGURE 3

Monthly new truck registrations in the Netherlands, 1960.01-1988.12
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FIGURE 4

Monthly number of unemployed in West Germany, 1948.01-1980.12
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