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ABSTRACT

The new pure significance test for white noise proposed in the present

paper is based on the estimated R2 of ah ARMA model fitted to reeiduals. A

small empirical size and power investigation is carried out, and the latter

seems to indicate that this test meets its purpose more than the

portmanteau test.
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1. INTRODUCTION

Define a white noise process {et} as a sequence of uncorrelated variables

with zero mean and constant variance, i.e. E{et}=0, E{e}=a! and E{e3et}=0,

for Consider the class of linear models

,00
Yt = L u =0 guet-u

where {yt} is a discrete time series with zero mean, t=1,2,..,n, and g is a

linear function which transforms the white noise process into the series

yt. Define the backward shift operator B by B yt=yt_k, and with the use of

G(z) =00E guzu
U =0

and that Izi<1, where z might be complex valued, (1.1) can be written as

yt = G(B)et 
(1.2

This model however involves an infinite number of parameters, so to fit it
to data additional assumptions have to be made. One such assumption is that
G(z) can be approximated by a rational function of the form

G(z) = (1 + otiz + + cyqzq)/ (1 + 01z + + OpzP)

which reduces (1.2) to a mixed autoregressive moving average model of order
(p,q), or ARMA(p,q), to be denoted as

Op(B)yt = aq(B)et (1.3)

Suppose one fits (1.3) to real data and one obtains estimated residuals ut,

then it seems natural to check the assumption of white noise. Other
inadequacies, such as significant- correlation between ut and yt_i for some



•

i, and nonlinearity in the residuals, are also testable features. Most

tests however make use of a white noise error process assumption. Although

constant variance in ut should be tested too, the focus in this paper is on

testing the hypothesis of E{u3ut}=0 for

A well-known portmanteau statistic has been developed by Box and

Pierce [1970]. It is a pure significance test in the sense that there is no

explicit formulation of an alternative hypothesis (see for a survey Godfrey

and Tremayne [1988]). Denoting the r-th sample autocorrelation as

2rr(u) =E titut, /E tit
t=r+1 t=1

then the Box-Pierce test (BP) is defined as

In 2BP(m) = n.E
r=i

rr(u)

(1.4)

(1.5)

which is asymptotically x2(in-p-q) distributed if min is small and in is

moderately large, often taken to be 20 or 30. In Davies, Triggs and Newbold

[1977] it has been shown that the actual fitted sample distribution of BP

can differ from the predicted x2 distribution, and hence the BP has been

modified in Ljung and Box [1978] to the often applied portmanteau statistic

rn
-1 2LB(m) = n(n+2) E r(u)r=1 (n-r) r (1.6)

which has the same asymptotic distribution as the BP test statistic. Both

test statistics have been extensively used in practice, and also several

power investigations have been carried out (cf. Davies and Newbold [1977],

Clarke and Godolphin [1982], Hall and McAleer [1989]). From these studies

it emerged that both test statistics may lack power, although the LB test

is not always performing badly". Because of these results several new tests

have been proposed.
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Nested and nonnested hypothesis tests, as proposed in Godfrey 1979]

and McAleer et al. [1988] respectively, specify a specific alternative mo-
del of type (1.3) and test whether the residuals indicate a possible way to
modify the originally specified model. As expected, the empirical powers of
these tests can be higher than the portmanteau tests, although the sizes
vary across the different generating processes (hail and McAleer [1989]).
In some cases the Lagrange Multiplier (LM) test, advocated in e.g.. God-
frey [1979], can be calculated as n times the R2 of an auxiliary regres-
sion, which depends on the alternative hypothesis. Furthermore, it has been
demonstrated that often the LM test and the BP statistic are equivalent
(Newbold [1980]). A modification to the portmanteau test statistic has been
proposed by Godolphin [1980]. This test is however not easy to calculate,
although its power seems to be rather satisfying (see Clarke and
Godolphin [1982]).

Yet another approach is to fit ARMA(pu,qu) models to the residuals ut,
and see whether pu and/or qu are unequal to zero, and thus rejecting white
noise. In Pukkila and Krislmaiali [1988] several autoregressive order
determination criteria, such as the AIC and BIC, are used to test the
hypotheses that ut is generated by an AR(0) process versus an AR(k)
process. If the criteria are consistent, and the process ut follows a white
noise process, then the AR(0) Model should be chosen. The power of this
test seems to be promising, although further research might be needed.

The new pure significance test for white noise proposed in this paper
is based on the R2 of an ARMA model fitted to residuals, and it will be
given in the following section. In section 3, a small size and power inves-
tigation will be carried out. In section 4, conclusions and suggestions for
further research will be given.

3



2. A NEW TEST

Define the squared multiple correlation coefficient R2 as the proportion of
the variability of yt explained by a stationary invertible ARMA model as in
(1.3) as

R2 = 1 - Et4/EtYi

which is estimated by

P2 = E u2t/E Y2tt

where {ut} is the sequence of estimated residuals. In Ilosking [1979] it is
derived that this P2 is asymptotically distributed as

2 2 2 00 2
N{R gaday)E 

r =1 
Pr/n} (2.1)

where ay2.var(h), and Pr=E(Yth-r)1E(Y2t).

This expression gives an opportunity to construct a test for eventual
white noise properties of {ut}. In case {ut} is not white noise, there is
some information in past values of ut which might explain present ut, and
hence one can fit an ARMA(pu,qu) model to {ut} with pu and/or qu unequal to
zero. Defining the squared multiple correlation coefficients Ru2 and ku2 of
that model as

Ru2 = 1 - E e2t/E

and

P2 = - Et2t2 2/Eu t

where {2t} is the sequence of estimated residuals, it is clear that the
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estimated ku2 is asymptotically distributed as

Pu2 NIRu2, 4(a2c/41)E°3 Pr2(U)/71)
r =1

(2.2)

where cru2.var(ut), and pr(u).E(utut_r)/E(u2t). In case {ut} is white noise,

the proportion of the variability of ut .explained by the model would be

zero, so a natural null hypothesis is

1 — a2d4,= 0

Under this Ho the expression in (2.2) reduces to

00 2E pr(u)/n} (2.3)r=1

Estimating the pr(u) by rr(u) (see (1.4)), and replacing oo by rn, 2.3) gives
the test statistic

1 A2 2Q -2 71KuMTIE rr(U))
r= (2.4)

which has an asymptotic N(0,1) distribution.

Several features of this test Q immediately become clear, such as that
the denominator in (2.4) is the convential BP test statistic as in (1.5).
Secondly, in the BP test one only has to choose the in, but for Q an
additional choice of (pu,qu) has to be made. One can argue that this choice
should be such that the Pu2 is maximized. However, in the statistic Q the
numerator and the denominator are not independent, and this might seriously
bias the empirical distribution. So, it is decided to let empirical size
investigations determine an optimal combination of the free parameters in
(2.4). Note that the Q-test is one-sided test, so the 5% and 10% critical
values are 1.645 and 1.282, respectively.



3. SIZE AND POWER

In the following experiments pi, is taken to be 5 and qt, is set equal to 0.

The number of observations is restricted to 100 and 200, and all

experiments are based on 1000 replications. Consider first table 1, where

the empirical size of the test Q is calculated for some values of m, by

fitting AR(5 ) models to observations drawn from a N(0,1) distribution.

Table 1. Empirical size versus nominal size of 5% and 10%,

nominal size m=5 'm=8 m=10 m=20

0.05 100

200

0.10 100

200

.078 .028 .015 .001

.062 .023 .015 .002

.300 .172 .112 .021

.265 .141 .096 .024

From this table it can be seen that the empirical size often underestimates
the nominal size of 5% , but that for m=10 the nominal size of 10% is well
approximated. Hence, in the following power experiments the test Q is used

with p=5, qu=0 and m=10.

These power investigations have been done within the framework used in

Davies and Newbold [1977] and Clarke and Godolphin [1982], i.e. some

ARMA( 2,2 ) processes have been generated for yt, after which AR(1 ) or AR( 4 )

models have been fitted. The residuals of these misspecified models are

tested for serial dependence with the Q test above, and also with the LB

test to make direct comparison of .the powers possible.
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Table 2. Empirical power of the Q and LB test, n=100

Parameter values(2) A(3)
Series(1) 01 02 al 042

Q(4)

5% 10%

• LP)
5% 10%

0 0 0.2 -0.4 4 .004 .016 .087 .134
-0.3 0 -0.75 0 4 .003 .040 .095 .152

3 -0.9 0 0.25 0 1 .186 .428 .239 .340
4 0 0 0.6 0.4 1 .130 .417 .268 .366
5 -0.8 0 -0.2 -0.4 1 .207 .491 .251 .351
6 -0.8 0.4 0.8 0 4 .149 .356 .196 .301
8 -0.4 0 0.2 0.4 1 .347 .641 .397 .511
9 0 0 0.2 -0.4 1 .798 .929 .601 .720
10 0 0 0.9 0.8 1 .897 .970 .783 .870
11 -0.6 0 0.75 0 1 .997 1.00 .842 .911

(r) The number of the series corresponds to the models as displayed intable 1_ and 2 in Clarke and Godolphin [1982]. Series 7 has not been usedfor the practical problems they were confronted with (ibid,p.149).
(2) True model is

Yt + + 92Yt-2 = Et + 0416t-1 + 042et-2
with et - N(0,1), yo.0 and the first 50 observations are deleted.(3) An autoregressive model of order p is fitted to the observationsgenerated by the true model (see fOotnote 2).
(4) The Q-test is a one-sided test, so the 5% and 10% critical values aretaken to be 1.645 and 1.282, respectively. Bold values indicate that forthat case the power of Q exceeds or is equal to the power of LB.
(5) The LB test statistic is calculated for nt.20, because for this valuethe size of the test seems reasonable (cf. Clarke and Godolphin [19821).
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Table 3. Empirical power of the Q and LB test, n=200

Parameter values(2) A(3)
Series(1) 01 °2 041 Ot2

Q(4)

5% 10%

LB(5)
5% 10%

1 0 0 0.2 -OA 4 .003 .025 .126 .194
2 -0.3 0 -0.75 0 4 .014 .076 .127 .201
3 -0.9 0 0.25 0 1 .446 .746 .448 .568
4 0 0 0.6 0.4 1 .463 .738 .454 .592
5 -0.8 0 -0.2 -0.4 1 .530 .801 .450 .558
6 -0.8 0.4 0.8 0 4 .481 .735 .449 .578
8 -0.4 0 0.2 0.4 1 .787 .933 .703 .817
9 0 0 0.2 -0.4 1 .993 1.00 .926 .965
10 0 0 0.9 0.8 1 1.00 1.00 .999 1.00 .
11 -0.6 0 0.75 0 1 1.00 1.00 1.00 1.00

(1) The number of the series corresponds to the models as displayed intable 1-and 2 in Clarke and Godolphin [1982]. Series 7 has not been usedfor the practical problems they were confronted with (ibid,p.149).
(2) True model is

Yt 02Yt-2 = Et + a1et-1 C426t-2

with et ••••• N(0,1), yo.0 and the first 50 observations are deleted.
(3) An autoregressive model of order p is fitted to the observationsgenerated by the true model (see footnote 2).
(4) The Q-test is a one-sided test, so the 5% and 10% critical values aretaken to be 1.645 and 1.282, respectively. Bold values indicate that forthat case the power of Q exceeds or is equal to the power of LI3.
(5) The LB test statistic is calculated for rn.20, because for this valuethe size of the test seems reasonable (cf. Clarke and Godolphin [1982]).

•

8



!f_r

From these tables it can be seen that often the power of the Q test

exceeds or equals the power of the Ljung-Box test, especially in case

n=200. However, for series 1 and 2 the power is extremely small. Writing

the ARMA(2,2) models as autoregressive models and substituting the

parameter values for series 1 and 2, results in models which are very close

to AR(4) models, and hence low powers might not be unexpected.

4. DISCUSSION

The new pure significance test for white noise developed in this paper

seems to meet its purpose, i.e. in a small experiment it often behaves more

powerful than the well-known portmanteau statistic. Another feature of the

test is that only one additional model has to be fitted, and that

calculations can be done with most standard statistical programs.

Furthermore, the test seems to be applicable to all kinds of residual

processes, i.e. not only to those of univariate ARMA time series models. A

further research topic is to look for values of pit and qu, which give

reasonable size for in other than 10, and in which the test might be even

more powerful. Another topic is to compare the test in power experiments

with the approach advocated in Pukkila and Krishnaiah [1988].
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