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ABSTRACT

In Hylleberg, Engle, Granger and Yoo (1988) a method is proposed to test

for seasonal unit roots in the presence of other unit roots and seasonal

processes. This method is applied to quarterly time series. In the present

paper the application of the method is extended to time series consisting

of monthly observations. Tables with critical values for several test

statistics are provided. A small empirical power investigation is also

conducted.
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INTRODUCTION

In Hylleberg, Engle, Granger and Yoo ( 1988 ) (HEGY) a method is proposed to

test whether there are seasonal unit roots in the presence of other unit

roots and seasonal processes in a given time series. The method is

illustrated for and applied to time series consisting of quarterly

observations. In the present paper their approach is extended to time

series consisting of monthly observations.

In section 1, the HEGY method for monthly time series is briefly

described. Several test statistics are derived, of which tables with

critical values will be displayed in the appendix. The testing procedure is

also applied to an empirical monthly time series for illustrative purposes.

In section 2, a small power investigation is carried out. The final section

contains some concluding remarks.

. THE TESTING PROCEDURE

Consider three simple classes of monthly time series models for modeling

seasonality in a time series yt. The first is a purely deterministic

seasonal process, or

Yt = a() E aiDit

where the Dit are seasonal dummy variables. The second is a stationary

seasonal process, or

Yt = PYt-12 + Et ( 1.2 )

where I p I < 1, and where Et denotes a white noise process with E(e)=O,

E(e)=a2 and E(E3Et)=0 for This interpretation for Et will be used

throughout this paper. The third is an integrated seasonal process which

can be written as ( 1.2 ) with p = 1, or

Yt = Yt-12 + Et ( 1.3 )

( see also Engle, Granger and Hallman ( 1989 ) for several notational issues).

Using the familiar backward shift operator B, to be defined as Bkyta-yt_k,
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this ( 1.3 ) can be rewritten as

(1--B12)yt = et ( 1.4 )

The equation 1—B12=0 has 12 solutions lying on the unit circle which
becomes clear from noting that

1—B12 = (1-B)(1+B)(1-iB)(1+iB)

(1+(1/3+i)B12)(1+CV3-012)(1-(1/3+i)B12)(1-(V3-i)B 12)

( 1+(iV3+1 )B/2)( 1-(i1/3-1 )B/2)( 1-( W3+1 )B/2)( 1+( W3-1 )B/2)

( 1.5 )

where all terms other than ( 1-B ) correspond to seasonal unit roots. Collec-
ting two terms at a time in ( 1.5 ) yields

1-B12 = (1-B2)(1+B2)(1+1/3B+B2)(1-1/3B+B2)(1+B+B2)(1-B+B2)

= 1-B4) ( 1-B2+B4) ( 1+B2+B4) ( 1.6 )

which will be useful in the forthcoming test equation.
From ( 1.5 ) it can be seen that transforming the monthly time series

with a ( 1—B12) filter is appropriate only in the case of the simultaneous
presence of 12 unit roots. However, in case only one unit root is present
such that e.g. applying the ( 1—B) filter is sufficient to make the series
stationary and that seasonality can be modeled with the inclusion of
seasonal dummies as in ( 1.1 ), then transforming the series with ( 1—B12)
yields an overdifferenced series. This may cause serious trouble for the
construction of e.g. time series models because the ( partial) autocorre-
lation patterns may become hard to interpret. Furthermore, one may expect
estimation problems because of the introduction of moving average
polynomials with roots close to the unit circle. Underdifferenced series
may yield unit roots in their autoregressive parts, and so classical

arguments for time series containing neglected unit roots apply. In
summary, it is important to test for the presence of ( seasonal) unit roots

in monthly data.

The crucial proposition, which makes the testing procedure relatively

simple, is given in HEGY ( page 10/11). For completeness this proposition is
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given here again literally (for the proof the reader should consider HEGY).

Proposition:

Any (possibly infinite or rational) polynomial, (p(B), which is finite

valued at the distinct, non - zero, possibly complex points, 9k,. • p, can be

expressed in terms of elementary polynomials and a remainder as follows:

W(B) = EP AkzA(B)16k(B) + ZI(B)w** (B) (1.7)

where the Ak are a set of constants, co** (B) ' is a (possibly infinite or

rational) polynomial and

Sk(B) = 1 - (1190B ( 1.8)

ZI(B) = rek=i6k(1) ( 1.9)

An alternative form of (1.7), and which will be used in the sequel, is

co(B) =f Ak i(B)(1-6k(B)) 6k(B) + L(B)co*(B) (1.10)
k=1

where (p* (B) = (Jo" (B) + Pk. From (1.10) it can be seen that the polynomial

co(B) has unit roots at Ok if and only if the corresponding Ak equal zero.

Application of this proposition to the case where .. 14312,(B) = (and to

be decomposed as in (1.5)) gives

co(B) = A113401(B) + A2(-B)P2(B) + A3(i-B)ap3(B) + A4(-i-B)B(P3(B)

+ A5(-W3+0/2-B)Bc04(B) + A6H1/3-0/2-BVIP4(B)

+ A7((/3+0/2-B)/3(p5(B) + A8((1,/3-0/2-B)Bco5(B)

+ A9(-(10+1)/2-B)Mp6(B) + A10((iA/3-1)/2-B)Bc06(B)

+ An( (W3+1)/2-B)B407(B) + Al2(-(W3-1)/2-B)Bc07(B)

co*(B)co8(B)



where

(p1(B) =

(PO) =

(P3(B) =

(1)4(B) =

(o5(B) =

(MB) =

ç 7(B) =

(P8( B ) =

•
(1+B)(1+B2)(1+B4+B8)=0.-F E

j=1
(1-B)(1+B2)(1+B4+B8)

( 1-B2 )( 1+B4+B8)

( 1-B4 ) ( 1-1/3B+B2)( 1 +B2+B4 )

( 1-B4 ) ( 1 +1/3B+B2 ) ( 1 +B2+B4 )

( 1-B4 )( 1-B2+B4)( 1-B+B2)

( 1-B4 )( 1-B2+B4)( 1+B+B2 )

(1-B'2)

To get rid of the complex terms in ( 1.11 ), it is suitable to define

A2

A3

A4

= -71

= -72
= -(i73+74)/2

= -( -ig3+74 )/2

A5 = i7r5 - 1+iA/3 )/2 )76
A6 = -i7r5 - ( ( 1-W3)/2)76
A7 = - (( )/2 )78

A8 = i71-7 - ( ( 1 -i1/3 )/2 )78

A9 = iV379/3 - ( 1+( 1 /3 )iA/3 )/2 )7rio
A10 = -11/379/3 (( 1 -( 1 /3 )i%3 )/2 )7rio
Au = -i1/3711/3 - (( 1+( 1 /3 )ili3 )/2 )71-12

Al2 = i1/3711/3 ( 1 -( 1 /3 )i-V3 )/2 )712

Substituting ( 1.13) into ( 1.11 ) gives

(P(B) = -71,6401(B) + 72a,02(B) + (73+74B )B(„03(B ) + (75+76B)Bco4(B)

+ (77+78B)M,05(B) + (7r9+710B)Bc06(B) + (711+712B )Bco (B)

40*(B)co8(B)
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•

Assuming that the monthly data at hand are generated by the autoregression

c(B)31t = Et + Pt

the test equation for the presence of (seasonal) unit roots becomes

'10*(B)Y8,t = 72Y2,t-1 73Y3,t-1 74Y3,t-2 75Y4,t-i

76Y4,t-2 77Y5,t-1 783/5,t-2 793/6,t-i 7r1oY6,t-2

71.13/7,t-1 712Y7,t-2 + It 4- Et

(1.15)

(1.16)

where co* (B) is some polynomial function of B with all roots outside the

unit circle, and with

and

Yzt = Soz(B)Yt for i=1,8 (1.17)

Yit = Coi(B)Yt for i=2,...,7

where the coi are given in (1.12). The lit covers the deterministic part of

the time series, and might consist of a constant, seasonal dummies, or a

trend.

Applying OLS to (1.16), where the order of (p* (B ) is chosen in an

experimental way to whiten the residuals, gives estimates of the rr.

Because the 7ri are zero in case the corresponding roots are on the unit

circle, testing the significance of the estimated 7ri implies testing for
unit roots. There will be no seasonal unit roots if 72 through 7112 are

significantly different from zero. If 71=0, then the presence of root 1 can

not be rejected. In case all 7ri, i=1,..,12 are equal to zero, it is

appropriate to apply the (1-1312) filter, and if they are all unequal to

zero, one has encountered a stationary seasonal pattern and one can use

seasonal dummies.

Tables for the critical t values of the individual 7ri are given in the

appendix (part 1) for 5 types of pt. The can contain combinations of

trend, seasonal dummies, and a constant. The tables have been generated by

assuming a true data generating process as in (1.3), where et has been

drawn from the standard normal distribution. The number of replications is

5000. Note that the tests for 71-1 and 72 are one-sided because the

alternative hypothesis is as in (1.2) (see also the discussion in HEGY),

while the tests for the other 7ri are two-sided tests. From (1.13) it can be
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seen that e.g. roots i and -i are present only if 73 and 74 both equal
zero, and hence it might be more convenient to test them simultaneously.
Tables for F tests of 73=74=0 through 711=712=0 have also been generated
and are displayed in the second part of the appendix. Finally, a table for
the F test for the restriction 73=.•=712=0 is given, also to facilitate
inference in the forthcoming power experiments.

To illustrate the above described procedure for testing for seasonal
unit roots, it has been applied to 348 monthly new car registrations (in
logs) in the Netherlands for the period 1960.01 to 1988.12. For
completeness all 5 auxiliary regressions have been carried out, although
the one with trend, constant and seasonal dummies is most important (see
also the figure). The test results are displayed below in table 1.



A

TABLE 1

Testing for seasonal unit roots in monthly new car sales

1960.01-1988.12

Auxiliary regression(12)

t-statistics nc,nd,nt c,nd,nt c,nd,t c,d,nt c,d,t

71

72
73

74
7r5

2.065

-0.105

0.404

-2.144

-0.969

-0.685

1.186

-2.029

-1.509

-0.715

-0.513

-0.537

-3.900*

-0.114

0.441

-2.048

-0.030

-0.627

1.271

-1.981

-1.472

-0.628

-0.503

-0.508

-1.947 -3.161* -1.844

-0.122 -1.310 -1.311

0.431 1.248 1.239

-2.026 -4.721* -4.690*

-0.028 -1.103 -1.102

-0.623 -3.175 -3.166

1.266 3.063 3.052

-1.960 -4.541* -4.506*

-1.461 -3.378* -3.364*

-0.616 -0.564 -0.563

-0.504 -1.822* -1.817*

-0.512 0.480 0.471

F-statistics

73n7r4 2.298 2.100 2.054 11.329* 11.176*

75n76 0.613 0.605 0.601 8.003* 7.980*

77n78 2.760 2.386 2.320 12.550* 12.281*

79n710 1.156 1.090 1.007 5.728 5.681

711P712 0.599 0.554 0.561 1.885 1.881

Significant at the 5% level.

(1) The polynomial (p* (B) is (1-co1f3-(p2B9-c,o3B12) for all columns. The esti-

mated parameters (pi are all highly significant.

(2) The auxiliary regression can contain (no) constant (n(c)), (no) seaso-

nal dummies (n(s)) amd (no) trend (n(t)).
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From the results in the last column of table 1 it can be concluded that

7r=0 for i=1,2, 9, 10,11,12. This implies that the filter necessary to

transform the monthly new car registrations to provide stationarity equals

( 1-B6), because

( 1-B2)( 1+B+B2)( 1-B+B2) = 1-B6) ( 1.18 )

and that seasonal dummies are included in future models. Finally, note that

the polynomial in footnote 1 in table 1 gives some indication for the

eventual models to be built after transforming the yt.

2. EMPIRICAL POWER INVESTIGATION

The size of the test has now been established. It is however also of

interest to investigate the power of the testing procedure. Often, the

powers of tests for unit roots are not high, so such results can also be

expected in the present case. Attention will be given to the comparison of

the five types of auxiliary regressions, for they may give conflicting

results.

The roots of the polynomial 1-B12=0 all lie on the unit circle, and

hence are equidistant to the origin. However, the roots of 1-pB12=0 with

0<p<1 have distinct distances to the origin, i.e. those not lying on the

axes of the complex space are farther away. In table 2 the norms of the

roots for some values for p are displayed.

TABLE 2

Roots of the polynomial 1-pB12=0, 0<p<1 (lower half of first quadrant only)

roots norms

0.9 1.00881, 1.00881

0.8737 + 0.5044i 1.01771

0.5 1.05946, 1.05946

0.9175 + 0.5297i 1.12246

0.2 1.14352, 1.14352

0.9903 + 0.5717i 1.30766
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This implies that it might be expected that the power of the t tests on 71

and 72 (in fact also 73 and 74, but I will not consider these here) will be

less than the power of the F test on the other 7's. Furthermore, the choice

of p to be positive induces that the power of the t test for 72 will be

larger. The results, as displayed in table 3 and 4 for p equal to 0.9 and

0.5, respectively, confirm these expectations. In table 5 the results are

given in case a deterministic type of seasonality is present. The data

generating process is now

12

Yt = Ez=lazDzt + Et (2.1)

with the ozi through oz12 set equal to -1,1,2,3,5,6,8,6,4,2,1,-2, and where

et is again drawn from the standard normal distribution. The zero power for

71 in table 5 (first two rows) is caused by the occurence that the

regression line of two reasonably constant variables on each other is

forced through the origin. This implies that the estimated 71 is expected

to be zero.

TABLE 3

Empirical powers of test statistics for seasonal unit roots in

monthly data based on 1000 Monte Carlo replications.

DGP: Yt = 0-9Yt-12 + et, et "- N(0,1), size 0.05

Auxiliary T t:71 t:72
regression

nc,nd,nt 120 0.091 0.129

240 0.156 0.162

c,nd,nt 120 0.065 0.129

240 0.072 0.164

c,d,nt 120 0.067 0.051

240 0.076 0.063

c,nd,t 120 0.059 0.130

240 0.048 0.166

c,d,t 120 0.061 0.049

240 0.056 0.065

F:737-712

0.191

0.494

0.196

0.505

0.093

0.185

0.210

0.509

0.092

0.185
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TABLE 4

Empirical powers of test statistics for seasonal unit roots in

monthly data based on 1000 Monte Carlo replications.

DGP: yt = 50 v• t-12 - + e, E t r'j N(0,1), size 0.05

Auxiliary T t:72
regression

F:731.-712

nc,nd,nt 120 0.500 0.564 0.999

240 0.928 0.926 1.000

c,nd,nt 120 0.198 0.560 0.999

240 0.490 0.934 1.000

c,d,nt 120 0.207 0.213 0.809

240 0.523 0.515 1.000

c,nd,t 120 0.127 0.583 0.999

240 0.289 0.933 1.000

c,d,t 120 0.119 0.214 0.801

240 0.312 0.515 1.000

TABLE 5

Empirical powers of test statistics for seasonal unit roots in

monthly data based on 1000 Monte Carlo replications.

DGP: (2.1), size 0.05

Auxiliary
regression

t: t:r2 12

nc,nd,nt 120

240

c,nd,nt 120

240

c,d,nt 120

240

c,nd,t 120

240

c,d,t 120

240

0.000

0.000

0.508

0.985

0.823

0.997

0.252

0.842

0.581

0.984

0.595

0.976

0.652

0.984

0.831

1.000

0.664

0.984

0.828

1.000

0.999

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000
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From these power investigations several conclusions can be drawn. The first

is that it is difficult to distinguish between stationary and integrated

seasonality, or model (1.2) versus (1.3), even if the p in (1.2) equals

0.5. Fortunately, these difficulties mainly concern the test for the
presence of the first unit root. With respect to the detection of the
seasonal unit roots the test procedure does seem to have power. Secondly,
it can be seen that a clear recognition of the alternative hypothesis, i.e.
the lit, does have a significant impact on the power. Finally, the power of
the tests often increases rather rapidly with the number of observations.

3. CONCLUDING REMARKS

The procedure for testing for (seasonal) unit roots, as is developed in
Hylleberg, Engle, Granger and Yoo (1988), has been extended to time series
consisting of monthly observations. The method is applied to monthly new
car registrations. From this illustration it can be seen that a clear idea
of the alternative hypothesis, i.e. determistic seasonality or a trend, is
indispensable for conducting appropriate inference. This result also
emerges from some small power experiments, where, as expected, higher power
is ob- tamed in the cases where the alternative hypothesis is correctly
formula- ted. Additionally, from the same experiments it can be seen that
the test for a unit root at the zero frequency may lack power, but that the
tests for the eventual presence of seasonal unit roots often obtain high
power, notably in large samples.
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APPENDIX
CRITICAL VALUES FOR TESTING FOR SEASONAL UNIT ROOTS

PART ONE

Critical t-values based on 5000 Monte Carlo simulations

DGP: yt=yt_12+et, et-N(0,1)

Legenda: (n)c: (no) constant term in auxiliary regression

(n)d: (no) seasonal dummies

(n)t: (no) trend

T : number of observations

Table: 7r1 and r 2

Regression

711

T .01 .025 .05 .10 .01 .025 .05 .10

nc,nd,nt 120 -2.49 -2.20 -1.85 -1.51 -2.37 -2.03 -1.78 -1.46

240 -2.54 -2.20 -1.88 -1.56 -2.58 -2.22 -1.90 -1.58

c,nd,nt 120 -3.30 -2.99 -2.69 -2.40 -2.36 -2.02 -1.77 -1.46

240 -3.35 -3.05 -2.80 -2.49 -2.55 -2.23 -1.89 -1.58

c,nd,t 120 -3.82 -3.54 -3.26 -2.96 -2.35 -2.01 -1.76 -1.46

240 -3.85 -3.60 -3.35 -3.05 -2.54 -2.22 -1.89 -1.58

c,d,nt 120 -3.30 -2.93 -2.63 -2.35 -3.25 -2.93 -2.65 -2.40

240 -3.24 -3.02 -2.75 -2.45 -3.27 -3.03 -2.79 -2.49

c,d,t 120 -3.73 -3.47 -3.24 -2.92 -3.23 -2.91 -2.65 -2.39

' 240 -3.82 -3.53 -3.30 -3.02 -3.29 -3.03 -2.79 -2.49
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Table: 7r3

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,nd,t

c,d,nt

c,d,t

120 -2.35

240 -2.23

120 -2.33

240 -2.25

120 -2.29

240 -2.25

120 -2.45

240 -2.55

120 -2.41

240 -2.54

-1.96 -1.66 -1.26 1.31 1.67 1.94 2.24

-1.93 -1.64 -1.25 1.24 1.61 1.93 2.22

-1.95 -1.64 -1.25 1.29 1.65 1.92 2.22

-1.93 -1.64 -1.24 1.23 1.60 1.92 2.23

-1.93 -1.63 -1.24 1.27 1.63 1.92 2.20

-1.92 -1.63 -1.24 1.22 1.59 1.91 2.20

-2.11 -1.76 -1.39 1.37 1.74 2.11 2.54

-2.17 -1.83 -1.42 1.47 1.87 2.19 2.62

-2.05 -1.71 -1.36 1.36 1.72 2.10 2.52

-2.15 -1.82 -1.41 1.47 1.87 2.18 2.61

Table: 71-4

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,nd,t

c,d,nt

c,d,t

120 -2.49 -2.15 -1.80 -1.46 1.15 1.48 1.75 2.12
240 -2.48 -2.17 -1.87 -1.54 1.06 1.40 1.68 1.99

120 -2.48 -2.14 -1.81 -1.45 1.12 1.46 1.72 2.12
240 -2.47 -2.17 -1.87 -1.55 1.05 1.39 1.67 1.98

120 -2.45 -2.12 -1.81 -1.45 1.11 1.44 1.71 2.09
240 -2.46 -2.18 -1.87 -1.54 1.04 1.38 1.65 1.98

120 -3.65 -3.34 -3.12 -2.83 -0.73 -0.44 -0.14 0.12
240 -3.78 -3.51 -3.29 -2.97 -0.82 -0.49 -0.20 0.12

120 -3.64 -3.34 -3.12 -2.82 -0.74 -0.45 -0.15 0.11
240 -3.79 -3.51 -3.29 -2.97 -0.82 -0.49 -0.22 0.11
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Table: 7r5

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,nd,t

c„

120 -2.51 -2.14 -1.81 -1.43 1.11 1.48 1.79 2.18

240 -2.47 -2.13 -1.83 -1.47 1.04 1.40 1.71 2.11

120 -2.50 -2.13 -1.81 -1.43 1.10 1.46 1.77 2.11

240 -2.47 -2.13 -1.83 -1.47 1.03 1.39 1.70 2.10

120 -2.47 -2.12 -1.80 -1.42 1.09 1.44 1.73 2.20

240 -2.47 -2.12 -1.83 -1.47 1.02 1.37 1.69 2.08

120 -3.66 -3.29 -3.00 -2.71 -0.42 -0.05 0.25 0.61

240 -3.62 -3.33 -3.10 -2.77 -0.42 -0.09 0.21 0.54

c, 120 -3.65 -3.29 -2.99 -2.70 -0.43 -0.06 0.24 0.61

240 -3.61 -3.34 -3.09 -2.77 -0.43 -0.09 0.19 0.53

Table: r6

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt 120 -2.45 -2.08 -1.79 -1.42 1.10 1.47 1.79 2.18

240 -2.40 -2.11 -1.82 -1.51 1.04 1.41 1.76 2.12

c,nd,nt 120 -2.45 -2.07 -1.77 -1.42 1.09 1.46 1.77 2.15

240 -2.40 -2.10 -1.82 -1.51 1.04 1.41 1.75 2.10

c,nd,t 120 -2.43 -2.05 -1.76 -1.42 1.07 1.43 1.74 2.11

240 -2.41 -2.10 -1.81 -1.51 1.03 1.40 1.73 2.09

c,d,nt 120 -3.76 -3.39 -3.12 -2.85 -0.73 -0.42 -0.09 0.31

240 -3.76 -3.46 -3.21 -2.93 -0.79 -0.47 -0.18 0.19

c,d,t 120 -3.77 -3.38 -3.12 -2.84 -0.75 -0.44 -0.11 0.26

240 -3.75 -3.46 -3.21 -2.93 -0.79 -0.47 -0.19 0.17
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Table: 7r7

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt 120 -2.15 -1.82 -1.48 -1.11 1.45 1.78 2.08 2.44

240 -2.14 -1.76 -1.42 -1.03 1.52 1.88 2.22 2.53

c,nd,nt 120 -2.13 -1.80 -1.48 -1.09 1.44 1.77 2.05 2.40

240 -2.12 -1.76 -1.41 -1.02 1.50 1.87 2.21 2.53

c,nd,t 120 -2.16 -1.80 -1.46 -1.09 1.45 1.77 2.07 2.38

240 -2.11 -1.75 -1.42 -1.02 1.50 1.85 2.20 2.49

c,d,nt 120 -0.57 -0.27 0.05 0.41 2.68 3.00 3.31 3.67

240 -0.58 -0.22 0.07 0.44 2.81 3.14 3.41 3.72

c,d,t 120 -0.49 -0.18 0.12 0.47 2.66 2.98 3.28 3.59

240 -0.54 -0.17 0.11 0.46 2.81 3.12 3.39 3.71

Table: r8

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt 120 -2.42 -2.10 -1.85 -1.52 1.08 1.46 1.76 2.15

240 -2.52 -2.20 -1.89 -1.56 0.98 1.38 1.70 2.07

c,nd,nt 120 -2.44 -2.13 -1.84 -1.52 1.07 1.43 1.73 2.09

240 -2.54 -2.18 -1.90 -1.56 0.98 1.37 1.71 2.05

c,nd,t 120 -2.51 -2.15 -1.84 -1.53 1.07 1.42 1.77 2.07

240 -2.53 -2.17 -1.91 -1.56 0.98 1.37 1.71 2.04

c,d,nt 120 -3.73 -3.39 -3.14 -2.84 -0.72 -0.42 -0.18 0.20

240 -3.78 -3.50 -3.22 -2.94 -0.81 -0.48 -0.16 0.11

c,d,t 120 -3.74 -3.40 -3.15 -2.85 -0.71 -0.43 -0.17 0.21

240 -3.78 -3.50 -3.23 -2.95 -0.81 -0.48 -0.18 0.12
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Table: 7r9

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,n ,

c,d,nt

7

120 -2.38

240 -2.46

120 -2.35

240 -2.45

120 -2.35

240 -2.44

120 -3.19

240 -3.31

120 -3.21

240 -3.30

-1.99

-2.04

-1.98

-2.03

-1.97

-2.03

-2.87

-2.92

-2.86

-2.91

-1.68

-1.75

-1.68

-1.75

-1.66

-1.74

-2.54

-2.62

-2.54

-2.61

-1.32

-1.40

-1.31

-1.40

-1.30

-1.40

-2.20

-2.28

-2.19

-2.27

L18

1.15

1.16

1.14

1.15

1.14

0.44

0.38

0.43

0.38

1.53

1.49

1.51

1.47

1.49

1.46

0.82

0.78

0.81

0.77

1.84

1.80

1.80

1.79

1.79

1.77

1.13

1.13

1.12

1.13

2.21

2.16

2.18

2.14

2.16

2.12

1.51

1.57

1.46

1.54

Table: z-io

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,nd,t

c,d,nt

c,d,t

240 -3.87 -3.50 -3.25

120 -3.70 -3.36

240 -3.87 -3.52

-3.07

-3.25

120 -2.41 -2.02 -1.77 -1.46

240 -2.46 -2.20 -1.88 -1.55

120 -2.41 -2.01 -1.77 -1.46

240 -2.47 -2.20 -1.87 -1.55

120 -2.39 -2.01

240 -2.46 -2.20

-1.76

-1.87

-1.45

-1.55

120 -3.71 -3.37 -3.07 -2.79

-2.94

-2.79

-2.94

1.13

1.03

1.12

1.02

1.09

1.01

-0.71

-0.78

-0.72

-0.78

1.56

1.44

1.53

1.43

1.51

1.42

-0.39

-0.41

-0.40

-0.42

1.87

1.80

1.84

1.79

1.83

1.78

-0.07

-0.10

-0.09

-0.10

2.24

2.20

2.23

2.19

2.17

2.18

0.30

0.17

0.28

0.17
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Table: 7r11

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt

c,nd,nt

c,nd,t

120 -2.30 -1.85 -1.56 -1.21 1.38 1.75 2.03 2.41
240 -2.21 -1.79 -1.47 -1.16 1.42 1.76 2.06 2.38

120 -2.28 -1.82 -1.56 -1.19 1.36 1.72 2.00 2.40
240 -2.17 -1.79 -1.46 -1.15 1.42 1.75 2.06 2.37

120 -2.27 -1.84 -1.55 -1.17 1.34 1.71 1.98 2.38
240 -2.15 -1.77 -1.46 -1.14 1.40 1.74 2.04 2.35

,d,nt 120 -1.48 -1.11 -0.78 -0.43 2.19 2.56 2.83 3.22
240 -1.67 -1.21 -0.87 -0.44 2.28 2.62 2.92 3.29

c,d,t 120 -1.43 -1.08 -0.73 -0.39 2.19 2.55 2.80 3.18
240 -1.61 -1.19 -0.84 -0.42 2.29 2.61 2.91 3.26

Table: 7r12

Regression T .01 .025 .05 .10 .90 .95 .975 .99

nc,nd,nt 120 -2.49 -2.16 -1.85 -1.49 1.09 1.42 1.75 2.18
240 -2.48 -2.14 -1.85 -1.51 1.02 1.40 1.71 2.05

c,nd,nt 120 -2.47 -2.15 -1.83 -1.49 1.07 1.41 1.74 2.16
240 -2.47 -2.15 -1.84 -1.51 1.01 1.39 1.71 2.06

c,nd,t 120 -2.47 -2.15 -1.83 -1.50 1.04 1.39 1.72 2.11
240 -2.47 -2.14 -1.84 -1.50 0.99 1.39 1.69 2.05

c,d,nt 120 -3.71 -3.43 -3.16 -2.85 -0.73 -0.42 -0.14 0.25
240 -3.66 -3.44 -3.20 -2.90 -0.79 -0.50 -0.20 0.05

c,d,t 120 -3.75 -3.42 -3.16 -2.83 -0.73 -0.44 -0.17 0.25
240 -3.66 -3.45 -3.20 -2.91 -0.80 -0.50 -0.21 0.03
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PART TWO

Critical F-values based on 5000 Monte Carlo simulations

DGP: yt=yt_12+et, et-N(0,1)

Table: F-tests for r3=r4=0, r5=r6=0, 7=r8=0

73=74=0 75=76=0 77=78=0

Regression T .90 .95 .99 .90 .95 .99 .90 .95 .99

nc,nd,nt 120 2.37 3.04 4.71 2.38 3.09 4.69 2.31 2.98 4.66

240 2.33 2.94 4.50 2.32 2.96 4.34 2.40 3.11 4.92

c,nd,nt 120 2.32 3.00 4.68 2.32 3.04 4.59 2.27 2.97 4.67

240 2.31 2.93 4.51 2.30 2.93 4.33 2.41 3.12 4.91

c,nd,t 120 2.30 2.94 4.54 2.29 2.96 4.54 2.30 3.00 4.67

240 2.30 2.91 4.46 2.29 2.90 4.33 2.39 3.09 4.92

c,d,nt 120 4.83 5.62 7.86 4.89 5.86 8.07 4.94 5.86 8.24

240 5.33 6.36 8.46 5.16 6.05 8.01 5.29 6.23 8.42

c,d,t 120 4.81 5.63 7.74 4.86 5.84 8.03 4.94 5.90 8.27

240 5.35 6.31 8.38 5.15 6.05 7.98 5.30 6.22 8.18

Table: F-tests for r9=ir10=0) 7r11=7r12=0, 7r3=••=7r12=0

79=71o=0 711=-712=0 73=-=712=0

Regression T .90 .95 .99 .90 .95 .99 .90 .95 .99

nc,nd,nt 120 2.29 2.98 4.53 2.33 3.08 4.98 1.68 1.95 2.46

240 2.38 3.08 4.62 2.32 2.93 4.54 1.65 1.91 2.47

c,nd,nt 120 2.26 2.92 4.39 2.31 3.03 4.88 1.65 1.92 2.42

240 2.35 3.05 4.57 2.31 2.92 4.56 1.65 1.90 2.45

c,nd,t 120 2.21 2.86 4.39 2.27 3.00 4.85 1.62 1.89 2.39

240 2.34 3.02 4.54 2.30 2.91 4.54 1.64 1.88 2.43

c,d,nt

c,d,t

120 4.79 5.75 7.76 4.94 5.89 7.84 4.00 4.46 5.53

240 5.21 6.16 8.43 5.15 6.03 7.85 4.09 4.48 5.41

120 4.76 5.71 7.68 4.92 5.84 7.88 4.00 4.45 5.51

240 5.19 6.14 8.47 5.14 6.04 7.82 4.08 4.48 5.37
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11.5

FIGURE

Monthly new car registrations in the Netherlands, 1960.01-1988.12
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