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The Posterior Distribution of Roots

in Multivariate Autoregressions

- Nonstationarity or near nonstationarity in time series has received
substantial attention from statisticians in recent years. There are at least

two reasons for this interest. First, the asymptotic sampling distributions
of estimators and test statistics is complicated by nonstationarity, and the

finite sampling distributions are complicated by near nonstationarity in
samples of the sizes typically used in macroeconomics; on the implications
for multiple time series see, for example, Solo (1984), Said and Dickey
(1985), and Sims, Stock, and Watson (1987). Second, equilibrium
relationships have been interpreted as restricting linear combinations of
time series to be stationary, thus placing restrictions on multiple, possibly
nonstationary time series, without specifying disequilibrium dynamics
(Davidson, et. al., 1978; Engle and Granger, 1987; Hylleberg and Mizon, 1988).
The second reason provides the motivation for an investigation of Bayesian
interpretation and treatment of nonstationarity and near nonstationarity.
Results from early stages of this investigation are reported here.

This project began with three objectives. The first was to illustrate
that Bayesian inference about the roots of a multiple time series can be
straightforward, indeed trivial, when that series is modelled as a Gaussian
autoregressive process of finite order. That objective is met here through
the application of an algorithm for Monte Carlo integration of the posterior
density described elsewhere (Geweke, 1988a) that facilitates extension of
the methods for univariate time series described in Geweke (1988b). The
second objective was to investigate the sensitivity of the posterior
distributions of the roots to alternative diffuse priors typically employed in
Bayesian approaches to multiple time series. Ultimately it is important to
employ substantive, informative priors in the economic interpretation of
multiple time series, but the formulation of such priors is challenging, and
diffuse reference priors will probably continue to be used in public
reporting even when such informative priors become practical. Broadly, the
results reported here indicate that prior robustness breaks down at about
the point at which conventional rules of thumb would suggest the model has
been overparameterized. The final objective of the project was to provide
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some indication of the sample sizes needed to discriminate among

alternative hypotheses about the stationarity of linear combinations of a

possibly nonstationary, multiple time series. The results suggest that the

sample sizes required are near the upper limit of those typically available

to macroeconomists.

The three main sections of this article address these three objectives,

respectively.

1. Ba esian inference about the roots of vector autore ressions

A Gaussian vector autoregression for an m-variate multiple time series

may be written

A(B)yt = et, et I IDN(a, I)

with

A(B) = EAsi39 Avj a I,

s=0

where B is the conventional back-operator. The mp roots of the

autoregression are those of the determinantal equation det[A(z-1)] = 0; an

algorithm for the determination of these roots is given by Robinson (1983,

pp. 160-164). Equivalently the roots are the eigenvalues of the mp x mp

matrix

1. -Ai -A2 -A3   Ap-i Ap

I 0 0   0 0 I

I 0 I 0   0 0 I

Lo o 0  

(Anderson, 1971, pp. 177-181). Note that in this formulation the explosive

roots are those whose modulus exceeds one; thus (yt) is stationary if and

only if all mp roots are inside the unit circle.

Given T + p successive observations on (yt) the log-likelihood function

for the last T observations conditional on the first p is



T+p
-{(T+0/2]logIII - (1/2) E[A(B)yt - al'I-1[A(B)yt - a] ( 1 )

t=p+

with r = 0, reflecting the Gaussian multivariate regression model for each

Yti If a standard conjugate prior is employed the log posterior density is of

the same form with r = r.n+1 (up to an additive constant), and the marginal
posterior densities of the parameters a, A(3), and I may be obtained

analytically (Zellner, 1971, pp. 224-233). If the prior is not standard
conjugate or there are functions of interest nonlinear in the parameters,
then with rare exception posterior moments cannot be determined
analytically; that is certainly the case for the amplitude of the roots of the
vector autoregression. However, in these cases Monte Carlo integration
provides good numerical approximations so longs as the prior density
remains diffuse.

To provide a concise summary of these methods, collect the parameters
of the model in a vector 0, and denote (1) with r = m+1 by p(0). As
described in Geweke (1988a, Appendix B) it is straightforward to draw a

pseudo-random sample COO ril_ i from a density proportional to this function.

Let •TI(0) denote the ratio of the prior density to that of the standard
conjugate prior and let g(e) be the function of interest. If n(0) is bounded
above then by the law of large numbers,

gn Eg(OOTT(Oi) Emei)
i=1 1=1

converges almost surely to E[g(0)], where the expectation is with respect to
the posterior density. Moreover, n 1/2(gn - E[g(o)]) = N(0, 02); expressions
for a2 and its consistent (in n) computable approximation are given in
Kloek and van Di jk (1978) and Geweke (1989), so the accuracy of the
numerical approximation can be appraised. As a byproduct of this procedure
graphs of numerical approximations to the posterior densities of functions
of interest may also be produced.

In this study, n = 2000, which provided two significant figures for
most functions of interest. Each Monte Carlo replication entailed
determination of the roots by means of the eigenvalues of 0, the
eigenvectors of 0 (for use in a subsequent project) and several hundred
derived functions of interest associated with several projects and the
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construction of graphs. The time required ranged from 20 seconds (1=20,
p=1, m=2) to 700 seconds (T=250, p=3, m=2) with a Vax 11/780.

This study concentrates on the largest root amplitudes, providing
numerical approximations to their posterior densities. It also concentrates
on the posterior probabilities that roots occur with amplitudes in ten
specified regions. These regions are indicated in Table I. Five (S5 - Si)
correspond to stationary roots defined by ranges of amplitudes.
Corresponding to a given amplitude, there is an associated halving time

log(.5)/logy, the length of time for a shock subjected to the exponential

decay if to reach half its initial value. These are provided in Table 1, and

were used as the basis for selecting the regions, in order to provide some
economic interpretation base on one year as the unit time interval: e.g.,
roots in 53 are stationary but reflect persistence of shocks through a period
as long as a business cycle. Similarly El - E5 correspond to explosive roots,
classified by doubling times log(2)/logy. Subsequently we report the

posterior expectations of the number of roots with amplitudes in each of

the ten regions.

2. Sensitivity to oriors

Six alternative prior densities, detailed in Table 2, were considered.
Prior A assigns a standard normal to each coefficient; prior .B does the same

except that the coefficient on the first lag of the left-side variable is -1,

corresponding to a random walk. Prior C is centered at 0, with a standard

error for the first lag that is smaller than that in prior A, and becomes

smaller with increasing lag. Prior D again assigns a mean of -1 to the first
lag of the left-side variable. Prior E provides a very diffuse, yet proper,
prior on the coefficients. Prior L is the standard conjugate prior. Priors B

and D are similar to those employed by Doan, Litterman, and Sims (1984),

while A, E, and L provide a progression to the standard conjugate prior

frequently employed in Bayesian treatments of autoregressions (e.g.,

Geweke, 1988b).
All of the results that follow employ bivariate autoregressions, with p

= 1 (one lag, two roots, nine parameters) or with p = 3 (three lags, six roots,

seventeen parameters). Table 3 indicates the prior expectation of the

number of roots with amplitudes in each of the, ten regions (by row in each
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panel) for each prior (by column) for the two parameterizations (the

respective panels). Except for prior L, which is trivial, all prior

expectations were computed by Monte Carlo integration, drawing directly

from the priors. Four observations may be made about the results in Table

3. (1) Corresponding to the diffusion of the priors, amplitudes are dispersed

across regions. (2) As prior variance increases (C to A to E to L, or D to B)

the implied prior distribution of amplitudes shifts upward. (3) Shifting the

prior mean of ail from 0 to -1 has only a modest and mixed tendency to

shift the prior distribution toward roots with greater amplitude. (4)

Scaling the prior standard error of the coefficients by .7s consistently

shifts the distribution toward smaller root amplitudes.

Posterior densities as a function of prior densities are examined

directly using an artificially generated process. The process is a bivariate

autoregression with p = 1, and
At = 01

L-1 oJ
The process is cointegrated (in the sense of Engle and Granger, 1987), with

the difference of the two constituent series stationary, while any other

independent linear combinations, and the process itself, are nonstationary.

The roots are 0 and 1. If the process is embedded in a higher-order

autoregression with A2 = . . . = Ap = 0, then there are 2p- I roots of 0 and

one of 1. A sample of size 360 was generated from yo = 6, using the NAG

normal random number generator GO5DDF and an initial seed of 12345. From

these samples four subsamples were created, from observations 111

through 130 (T = 20), 111 through 150 (T = 40), 1 1 1 through 210 CT = 100),

and 111 through 360 (T = 250).

Posterior densities of the largest and second-largest root amplitudes,

are provided in Figure 1. (In all panels, posteriors under priors E and F are

hardly distinguishable, and so there often appear to be five rather than six

lines.) The posterior densities from a first-order autoregression (p = 1)

show little sensitivity to the choice of prior for T = 20 (first row of Figure

1): differences are more pronounced for the smaller than for the larger root

amplitude, but still are not great. For the third-order autoregression the

effects of the prior standard error are clearly manifest in the posterior

densities of the first and second largest root amplitudes (second row of

Figure 1): posteriors under priors C and D are more concentrated than those
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under A and B, which are in turn somewhat more concentrated than those

under E and L. In view of the fact that this model has seventeen parameters

and 40 initial degrees of freedom this sensitivity is not surprising. When

the sample size is doubled (T = 40, last row of Figure 1) the sensitivity of

the posterior distributions to the choice of prior is small, with the only
notable effects being some remaining tendency for the posterior densities

of the second largest root amplitude to be more concentrated under priors C

and D.

Sensitivity of the posterior expectation of the number of roots in each

of the ten regions to the choice of prior is documented systematically in

Tables 4, 5, 6, and 7 for each of the four sample sizes respectively. For the

smaller sample sizes, the evidence in Tables 4 and 5 in consistent with that

in Figure 1. In the nine parameter model (Panels A) the only sensitivity to

the prior appears in the way the expected number of roots is allocated

among the small amplitude regions 55 and 54. Even this sensitivity rarely

reaches 10%. In a seventeen-parameter model sensitivity persists at T =

40, amounting to as much as 40%. For T 100, sensitivity to the prior has

disappeared for this model, in that there are no differences in posterior

expectations greater than 10%. In both panels A and B, there is evidence of

a substantial range -- including T = 40 and T = 100 for p = 1, .and T = 100 and

T = 250 for p = 3 -- in which sensitivity to the prior is negligible but

posterior densities have not yet attained asymptotic degeneracy.

In none of these examples, even when p = 3 and T = 20, is the

discrepancy among posterior expectations anywhere near as great as among

prior expectations: compare Table 3 with Table 4. The concern, sometimes

expressed as a verbal assertion, that posterior densities of root amplitudes

simply mirror the prior density, receives no support from these examples.

Instead, the results are consistent with a working hypothesis that when the

number of parameters is reasonable relative to initial degrees of freedom,

sensitivity to reasonably diffuse priors is low. This hypothesis can, and

should, be checked as part of responsible public reporting employing diffuse

priors.

3. Discrimination amonci processes



Discrimination among stationary, nonstationary but cointegrated, and

nonstationary and non-cointegrated processes is of concern to some

macroeconometricians. How realistic is this objective given

macroeconomic time series and no additional assumptions beyond those of a

Gaussian vector autoregression? If the posterior distribution of the
amplitudes of the roots are similar in the three cases, then prospects for

discrimination are not good. Hence it is of some interest to compare these
distributions in various sample sizes. Here we do so using a standard
conjugate prior using three artificially generated Gaussian time series.
Process WN is serially uncorrelated with variance I = I, or white noise;
process RW is a vector autoregression with p = I, Al = -I, and I = I, a

random walk; and process CI is the one employed in the investigation of
prior robustness described in Section 2. In all three cases artificial data
were generated as described previously.

As before, we compare the posterior densities of the ordered root
amplitudes, and the expected number of roots with amplitudes in each of ten
regions. The posterior densities are provided in Figures 2, 3, 4, and 5 for
the four respective sample sizes considered, T = 20, T = 40, T = 100, and T =
250. The results indicate a marked contrast between the nine parameter
model (p = 1) and the seventeen parameter model (p = 3).

When p = 1, the three cases are distinguished very well for T = 40, T =
100, and T = 250. The roots of the WN process are clearly smaller than
those of the RW process, and each pair is closer to each other than to those
of the other process. The roots of the CI process are clearly disentangled,
the smaller distributed much like the roots of WN and the larger much like
the roots of RW.

When p =3, it is not possible to distinguish among the three processes
when T = 20. When T = 40 there is still little discrimination, with the
posterior density of the three largest roots of WN shifted down only slightly
from those of RW. When T = 100 and T = 250 there is discrimination among
the three processes, although the amplitude of the second root of CI remains
quite high for T = 100.

These conclusions are reinforced in Tables 8 and 9. For T = 20 all three
models support a strongly serially correlated process in which a shock may
persist through most of the sample. For T = 40 there is still little to
distinguish even WN and RW, when p = 3.
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The need for large amounts of data to discriminate among the three
processes when p = 3 is sobering for two reasons. First, the cases studied
here are extreme, in that all roots are zero or one: an extraneous stationary
root with an amplitude of, say, .8 would presumably make it even more
difficult to tell one model from another. Second, in applications there is
often reason to believe that reasonable specification demands
parameterizat ions on the order of p = 3: Geweke (1986) argues from prior
theoretical considerations for exactly this specification in vector

autoregressions for annual macroeconomic time series. The side-by-side

comparison of the cases p = I and p = 3 indicates that difficulties arise

with the more profligately parameterized model because the distribution of

the largest of 4 or 5 identical amplitudes remains much higher than the

common value even in samples whose sizes are in the range of 40 to 100. it

is likely that incorporation of a prior that the small roots are of about the

same size or are all small would mitigate the problem. But priors like these

seem unfounded in macroeconomics -- indeed, it is the absence of such

knowledge, prior or data-based, that motivates the use of equilibrium

relationships without specifying disequilibrium dynamics in the first place.

The ability to distinguish among stationary, nonstationary, and

cointegrated processes is most likely to be improved through the use of
prior knowledge about those linear combinations that are apt to be

stationary or nonstationary. Information of this sort is delivered by simple

equilibrium models; it was not used here, nor is it used in approaches that

estimate cointegrating vectors. This possibility will be taken up in

subsequent research.
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Table 1: Classification of Amplitudes of Roots

Region Range of amplitudes Halving/doubling times
55 .00000- .50000 0.0- 1.0
54 .50000- .75786 1.0- 2.5
53 .75786- .9 i 700 2.5- 8.0
52 .91700- .97716 8.0- 30.0
51 .97716 - 1.00000 30.0 - co
E 1 1.00000 - 1.02337 30.0 - .0
E2 1.02337 - 1.09051 8.0 - 30.0
E3 1.09051 - 1.39151 2.5- 8.0
E4 1.39151 -2.00000 0.0- 1.0

Table 2: Prior Densities

Prior A: aijs N(0,1)

Prior B: aii1 N1(-1,1); aijs - N(0,1) otherwise

Prior C: aijs - N(0, .72s)

Prior D. ajj 1 - .72); aijs N(0,.72s) otherwise

Prior E: ails - N(0, 82)

Prior L: aijs - N(0, a2), a2 -4 c)°

In each case, coefficient distributions are mutually independent. The prior
density for 2 is indpendent of that for A(B) and is improper, proportional
to {det(E)}-(m+ 1)/2.
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Table 3: Prior Distribution of Roots

A: Bivariate autoregression, 1 lag

Prior expectation of number of roots under prior
Region

55 .48 .38 .75 .42 .05 .00
54 .31 .23 .41 .25 .02 .00
S3 .20 .14 .24 .15 .02 .00
32 .07 .04 .08 .05 .01 .00
S1 .02 .02 .03 .02 .00
E .03 .02 .03 .03 .00
E2 .07 .06 .07 .07 .01 .00
E3 .31 .26 .22 .33 .03 .00
E4 .35 .43 .15 .43 .07 .00
ES .17 .42 .02 .23 1.80 2.00

B. Bivariate autoregression, 3 lags

Prior expectation of number of roots under prior
Region

S5 .84 .92 1.54 1.87 .79 .00
54 .87 .96 1.61 1.55 .65 .00
S3 .67 .69 1.01 .67 .41 .00
52 .26 .27 .34 .22 .14 .00
51 .10 .12 .11 .09 .05 .00
E .12 .09 .10 .07 .05 .00
E2 .33 .30 .27 .18 .13 .00
E3 1.31 1.03 .69 .52 .52 .00
E4 .1.18 1.06 .29 .58 .59 .00
E5 .32 .56 .03 .25 2.66 6.00

*Jr the interval (0, .005).
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Table 4: Posterior Distribution of Roots, T = 20
Simple co-integrated process

A. Bivariate autoregression, I lag

Posterior expectation of number of roots under prior
Region A B C D E L

55 .88 .91 .89 .94 .86 .86
54 .28 .25 .27 .22 .29 .29
53 .67 .65 .68 .64 .66 .66
52 .12 .13 .12 .14 .13 .13
Si .02 .02 .02 .02 .02 .02
El .01 .01 .01 .01 .01 .01
E2 .02 .02 .01 .02 .02 .02
E3 * * * * * *
E4 * * * * * *
E5 * * * * * *

B. Bivariate autoregression, 3 lags

Posterior expectation of number of roots under prior
Region A B. C D E L

S5 1.27 1.34 1.85 1.99 1.13 1.13
54 2.37 2.35 2.46 2.40 2.21 2.21
S3 1.85 1.79 1.38 1.31 2.01 2.01
52 .30 .31 .21 .20 .34 .34
Si .07 .07 .04 .04 .09 .09
El .04 .04 .02 .02 .05 .05
E2 .07 .07 .03 .03 .11 .11
E3 .04 .03 .01 .01 .07 .07
E4 * * * * * *
ES * * * * * *

*In the interval (0, .005).
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Table 5: Posterior Distribution of Roots, T = 40
Simple co-integrated process

A. Bivariate autoregression, I lag

Posterior expectation of number of roots under prior
Region A B C D E L

55 .93 .95 .94 .97 .91 .91
S4 .19 .17 .18 .14 .20 .20
53 .76 .75 .76 .75 .75 .75
S2 .11 .11 .10 .12 .11 .11
Si .02 .02 .01 .02 .02 .02
El * .01 * .01 .01 .01
E2 * * * * * *
E3 * * * * * *

E4 * * * * * *

ES * * * * * *

B. Bivariate autoregression, 3 lags

Posterior expectation of number of roots under prior
Region A B C D E L

S5 1.62 1.63 1.98 1.96 1.55 1.55
S4 2.55 2.56 2.72 2.75 2.44 2.44
53 1.63 1.62 1.18 1.16 1.78 1.78
52 .15 .15 .10 .11 .17 .17
Si .02 .02 .01 .01 .03 .03
El .01 .01 .01 .01 .02 .02
E2 .01 .01 * * .01 .01
E3 * * * * .01 .01
E4 * * * * * *
ES * * * * * *

*In the interval (0, .005).
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Table 6: Posterior Deistribution of Roots, T = 100
Simple co-integrated process

, A: Bivariate autoregression, 1 lag

Posterior expectation of number of roots under prior
Region A a C D E L

55 1.00** 1.00** 1.00** 1.00** 1.00** 1.00.x-*
54 * * * * * *
53 * * * * * *
52 .21 .20 .21 .21 .20 .20
Si .41 .41 .42 .41 .41 .41
El .30 .30 .30 .30 .30 .30
E2 .08 .08 .08 .08 .08 .08
E3 * * * * * *
E4 * * * * * *
E5 * * * * * *

B. Bivariate autoregression, 3 lags

Posterior expectation of number of roots under prior
Region A B C D E L

55 3.21 3.21 3.35 3.36 3.18 3.18
54 1.78 1.78 1.64 1.64 1.81 1.81
53 .01 .01 .01 .01 .01 .01
52 .08 .08 .08 .08 .09 .09
S 1 .36 .36 .37 .37 .36 .36
El .44 .44 .45 .45 .43 .43
E2 .11 .11 .10 .10 .11 .11
E3 * * * * * *
E4 * * * * * *
E5 * * * * * *

*In the interval (0, .005).
**In the interval (.995, 1)
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Table 7: Posterior Distribution of Roots, T = 250
Simple co-integrated process

A. Bivariate autoregression, 1 lag

Posterior expectation of number of roots under prior
Region A B C D E L

55 1.00** 1.00** 1.00** 1.00** 1.00** 1.00**
54 * * * * * *
53 * * * * * *
52 * * * * * *
51 .83 .82 .83 .82 .83 .83
El .17 .18 .17 .18 .17 .17
E2 * * * * * *
E3 * * * * * *
E4 * * * * * *
ES * * * * * *

B. Bivariate autoregression, 3 lags

Posterior expectation of number of roots under prior
Region A B C D E L

55 4.39 4.39 4.42 4.42 4.39 4.39
S4 .61 .61 .58 .58 .61 .61
53 * * * * * *
52 * * * * * *
Si .83 .83 .83 .83 .83 .83
El .17 .17 .17 .17 .17 .17
E2 * * * * * *
E3 * * * * * *
E4 * * * * * *
ES * * * * * *

In the interval (0, .005).
In the interval (.995, 1)
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Table 8: Posterior Distribution of Roots, Smaller Samples
Standard conjugate prior

A. Bivariate autoregression, 1 lag

Sample size  1=20 T=40 
Process WN RW CI WN RW CI

Region
55 1.72 .25 .86 1.94 .05 .91
54 .24 .79 .29 .06 .77 .20
53 .03 .76 .66 * 1.04 .75
S2 * .12 .13 * .11 .11
Si * .03 .02 * .14 .02
El * .01 .01 * .11 .01
E2 * .03 .02 * . H *
E3 * .02 * * * *
E4 * * * * * *
E5 * * * * * *

B. Bivariate autoregression, 3 lags

Sample size  1=20 1=40 
Process WN RW CI WN RW CI

Region
55 .90 1.11 1.13 1.45 1.48 1.55
54 2.59 2.04 2.21 3.27 2.18 2.44
S3 1.85 1.92 2.01 1.17 1.55 1.78
52 .31 .48 .34 .09 .51 .17
51 .08 .12 .09 .01 .12 .03
El .07 .08 .05 .01 .06 .02
E2 .10 .14 .11 * .09 .01
E3 .10 .08 .07 * .01 .01
E4 * .01 * * * *
E5 * * * * * *

*In the interval (0, .005).
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Table ct. Posterior Distribution of Roots, Larger Samples
Standard conjugate prior

A. Bivariate autoregression, I lag

Sample size  1=100 1=250 

Process WN RW CI WN RW CI

Region
S5 2.00*** * 1.00** 2.00*** * 1.00**

54 * * * * * *

53 * .69 * * .02 *

52 * .57 .20 * .85 *

Si * .37 .41 * .92 .83

El * .27 .30 * .21 .17

E2 * .09 .08 * * *

E3 * * * * * *

E4 * * * * * *

ES * * * * * *

B. Bivariate autoregression, 3 lags

Sample size  T=100 T=250 

Process WN RW CI WN RW CI

Region
S5 1.96 3.40 3.18 4.21 3.95 4.39

S4 3.93 .79 1.81 1.79 .05 .61

S3 1.04 .62 .01 * .03 *

S2 * .33 .09 * .78 *
Si * .39 .36 * .99 .83

El * .37 .44 * .20 .17

E2 * .10 .11 * * *
E3 * * * * * *
E4 * * * * * *

ES * * * * * *

*In the interval (0, .005).
In the interval (.995, 1)

***In the interval (1.995, 2)
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Figure 1: Posterior Densities of Root Amplitudes of Co-integrate Process
under Alternative Priors



Figure 2: Posterior Distributions of Root Amplitudes of Three Processes
Standard Conjugate Prior, T=20



Figure 3: Posterior Distributions of Root Amplitudes of Three Processes
Standard Conjugate Prior, T=40



Figure 4: Posterior Distributions of Root Amplitudes of Three Processes
Standard Conjugate Prior, T=100



Figure 5: Posterior Distributions of Root Amplitudes of Three Processes
Standard Conjugate Prior, T=250
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