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Abstract

This paper surveys algorithms for the well-known problem of finding t
he

minimum cost assignment of jobs to agents so that each job is assigne
d

exactly once and agents are not overloaded. All approaches seem to be

based on branch and bound with bounds supplied through heuristics and

through relaxations of the primal problem formulation. From the survey

one can select building blocks for the design of one's own tailor-made

algorithm. The survey also reveals that although just about any

mathematical programming technique was tried on this problem, there 
is

still a lack of a representative set of test problems on which competing

enumeration algorithms can be compared, as well as a shortage of

effective heuristics.
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A SURVEY OF ALGORITHMS FOR THE GENERALIZED

ASSIGNMENT PROBLEM

1. INTRODUCTION

The generalized assignment problem (GAP) examines the minimum cost

assignment of n jobs to m agents such that each job is assigned to

exactly one agent subject to capacity restrictions on the agents.

The generalized assignment problem is an NP-hard combinatorial

optimization problem (Fisher, Jaikumar and Van Wassenhove (1986)). A lot

of research has been done over the last ten years to find effective

enumeration algorithms to solve problems of reasonable size to

optimality. The GAP has many real-life applications ,e.g., as a

subproblem in routing problems (Fisher and Jaikumar (1981)), in fixed-

charge plant location models in which customer requirements must be

satisfied by a single plant, resource scheduling, scheduling of project

networks, storage space allocation, in designing communications networks

with node capacity constraints (Grigoriadis, Tang and Woo (1974)),

scheduling of payments on accounts where 'lump sum' payments are

specified, assigning software development tasks to programmers, assigning

jobs to computers in computer networks (Balachandran (1972)), scheduling

variable length television commercials into time slots, etc. Ross and

Soland (1977) show how the p-median problem, the capacity constrained p-

median problem and the plant location problem can be modelled as GAPs.

The formulation of the problem is :

(GAP) min

s.t.

I I c-- x. -ii
i

I x.. = 1

x.. = 0 or 1

E I

E J



where cij is the cost of assigning job j to agent i, aij the capacity

absorption when job j is assigned to agent i, bi the available capacity

of agent i. The assignment variable xi j equals 1 if agent i is to

perform job j, 0 otherwise.

Most algorithms are based on branch and bound techniques and on

relaxation of the assignment or the knapsack constraints. Sometimes

valid inequalities are added to strengthen the bounds in a relaxation.

The methods mainly differ in the way the bounds are computed in the

branch and bound search. One can relax constraints (2), (3) or (4), use

Lagrangean relaxation or surrogate relaxation. Furthermore, multipliers

can be updated via the subgradient method or via a heuristic multiplier

adjustment method. For more information on different types of

relaxations we refer to Fisher (1981), (1985) and to Gavish and Pirkul

(1985a), (1985b).

The purpose of this paper is to present a review of the different kinds

of relaxations used to obtain bounds for the generalized assignment

problem on the one hand and to compare the strength of these bounds as

well as different branching strategies on the other hand (section 2 - 6).

Section 7 presents a summary and discusses how an effective algorithm

could be constructed. Section 8 discusses some extensions of the GAP

the 0-1 generalized assignment problem with nonlinear capacity

constraints (NLGAP) and the multiconstraint generalized assignment

problem (MCGAP). Finally, some conclusions are drawn in section 9.

2. LP-RELAXATION

The first relaxation we consider is the LP-relaxation obtained by

replacing constraints (4) by xij >O. The solution of the relaxed

problem will in general contain some jobs j for which xij +0 for

several i. In other words, job j is split between several agents. An

upper bound on the number of split jobs is given by Benders and van

Nunen (1983). The number of non-unique assignments is less than or equal

to the number of agents of which the capacity is fully utilized. When

the number of agents is small compared to the number of jobs, the



solution of the relaxed problem may be a good starting point for a

heuristic. The latter provides an upper bound while the LP-relaxation

obviously yields a lower bound. The LP-bound tends to be strong when the

number of jobs is large compared to the number of agents and when the

capacity constraints are rather loose.

In literature very little can be found on the performance of LP-based

approaches. Benders and van Nunen (1983) discuss the performance of a

heuristic based on the LP-solution that assigns the remaining split jobs.

In the practical problems (with number of jobs >> number of agents) that

were solved the heuristic led to solutions within 0.1% of the lower bound

and consequently within 0.1% of the optimal solution. When the same

procedure is applied to problem sets that are strongly capacitated and

with ratios of IJI/III equal to 3 or 4, reassigning the split jobs often

turns out to be infeasible and the gap between the optimal solution and

the LP-bound is much larger.

A drawback of the LP-formulation of the GAP is that it is degenerate. As

a result computation time tends to grow fast when dimensions get larger.

3. RELAXATIONS BASED ON DELETING CONSTRAINTS

The algorithm we consider next is discussed in Ross and Soland (1975).

The authors first delete constraints (2) :

(RS) min { E E cij xij (3), (4) 1 (5)
i

The solution to problem (RS) is obtained by assigning each job to

the least costly agent. This yields a lower bound. Then every

constraint (2) is checked for feasibility. In a second step minimum

penalties are computed for reassigning jobs from one agent to another

in order to satisfy the capacity restrictions. These penalties zi are



added to the lower bound

(PKi) min zi = E pj Yij
j EJi

s.t. E ai
jEJi

Yij =

Yi a di

or 1

where di = E aij xj5 - bi with x*ij denoting an optimal solution to

(5), pj the difference between the smallest and second smallest ci and

Ji = I

It should be observed that the same lower bound is obtained by setting

the Lagrangean multipliers corresponding to constraints (3) equal to the

second smallest cij and solving the knapsacks in that Lagrangean problem

as shown by Fisher,

Ross and Soland use

not using the least

resources available

selected from those

that

Jaikumar and Van Wassenhove (1986).

a binary branching strategy based on the penalty for

cost assignment for a job and on the remaining

to the agent. The separation variable xij is

with yij = 0 in the optimal solution to the (PKi) so

ti = max P5 / aij x ))} (9)

Martello and Toth (1981) use a similar procedure. They reformulate the

problem as a maximization problem and remove constraints (3) to dete
rmine

an upper bound :

(MT) max

with pij = max

(4) }

This results in Iii single knapsacks (Ki

value ui.

iE I,

with solution x*ij and solution



The branching strategy is as follows :

- if a job has not been assigned yet (E x

turn to every agent (i.e. Iii nodes are created).

- if a job has been assigned more than once (i.e. I x*i

q + 1 nodes are created.

= 0), it is assigned in

= q, q > 1),

5

The authors also try to improve upon the bound by computing a lower bound

on the penalty incurred to satisfy constraints (3). This improvement

step requires the computation of an upper bound on the solution value ui

by solving continuous versions of the single knapsack problems (Ki). The

jobs in the optimal solution to (10) which do not satisfy constraints (3)

are divided in two classes : Jo and Jl. Jo is the set of unassigned jobs

and J1 is the set of jobs assigned more than once.

Set vijo = min {Ili, (upper bound on (Ki) if x15=0)} for all iEI, jEJ0

and v1j1 = min fui, (upper bound on (Ki) if x15=1)} for all iEIi, jEJ1

where Ij=lsix5j=11

then lj =

{u1-Ivii i I} - max --Ivij
ieij

if j E J1

The improvement is equal to max {lj}. The job with the maximum penalty

is also the branching variable.

Martello and Toth (1981) also describe a greedy heuristic that

iteratively considers all unassigned jobs and determines the job with

maximum difference between the largest and second largest weight factor.

This job with maximum regret is then assigned to its maximum profit

agent. This step is repeated until all jobs are assigned. A second step

of the heuristic tries to improve upon the solution by simple interchange

arguments. Different weight factors can be used in step 1 : cost,

cost/capacity requirement etc. The advantage of the heuristic is that it



can be used in a reduction algorithm that attempts to reduce the problem

size by fixing variables to one or to zero.

Computational results are given for problem dimensions of maximum 5

agents and 20 jobs. The results of Ross-Soland and Martello-Toth are

compared (number of nodes in the tree, CPU-time). For the easy problems

the Ross and Soland algorithm performs better (running time) on average.

For the hard small problems the Martello and Toth algorithm outperforms

(running time and number of nodes) the Ross and Soland method (problems

tend to be hard when capacity constraints are tight or when there is a

correlation between objective function coefficients and capacity

requirements). For the larger problems (# agents between 5 and 20 and #

jobs between 50 and 200, i.e. IJI/III varies between 2.5 and 40) the

Martello-Toth heuristic solution is compared with the optimal solution as

given by the Ross-Soland algorithm. The average error of the heuristic

is less than 0.1%.

4. LAGRANGEAN RELAXATION

There are two natural Lagrangean relaxations for the generalized

assignment problem. The first is obtained by dualizing constraints (3).

This reduces the problem to Iii 0-1 knapsack problems. The second

relaxation is obtained by dualizing constraints (2). This yields IJI

generalized upper bound problems which are trivial to solve.

According to Geoffrion's (1974) integrality property, the Lagrangean

relaxation can do no better than the LP-relaxation when the Lagrangean

problem is naturally integer (i.e. when the integrality restrictions are

superfluous). It follows that the second Lagrangean relaxation in which

the subproblems are GUB problems is equivalent to the LP-relaxation. The

first relaxation, however, leads to 0-1 knapsack Lagrangean subproblems

whose solutions are not naturally integer. Hence the first relaxation

may yield bounds superior to the LP-relaxation.

A two-phase heuristic based on the second Lagrangean relaxation is

presented by Klastorin (1979). In a first phase a modified subgradient



7

approach is used in searching for the optimal dual solution. The

procedure is halted as soon as a primal feasible solution is found. In a

second phase a tree search is performed in the neighbourhood of the

initial solution in order to find a better primal solution.

Klastorin e s computational tests show that this procedure yields solutions

which deviate from the optimal solutions by 1 % on average. The second

phase does not appear to provide significant improvements to the solution

of the first phase and is computationally expensive.

A Lagrangean relaxation of the first type is explored in Fisher, Jaikumar

and Van Wassenhove (1986). They relax constraints (3) and set the

multipliers (pi, j=1,. .,n) equal to the second largest cij (maximization

problem). This yields the same initial bound as in Ross and Soland.

(FJV) max { 2 (
i

- Pj) xi; I (2), (4 12)

In a first step jobs are assigned to agents having c1j-pi>0, then an

assignment problem with jobs having c1j-p3=0 is solved (jobs are assigned

in order of decreasing cij). In a second step multipliers are adjusted

by a heuristic procedure in order to assign more jobs and to strengthen

the bound. Let 6ii be the smallest decrease in pi required for item j

to be included in an optimal solution of knapsack i with solution

value Zpi(p) :

= Zpi(p) - cij - max 2 (cih - pih
hEA{j)

s.t.

The job j' with the

Adjust

knapsack i' changes

2 ail, x*ih 5 b1 -
hEA{i}

xih = 0 or 1, EJ\ {j}

-*
ih

second smallest 15ii' and 2 x*ii i = 0 is chosen.

and let i' = arg min {dij }. Only the solution of

in the Lagrangean solution as a result of the change

in pi'. The procedure is repeated until no further improvements are

possible. The branch and bound algorithm selects the free variable

with the largest aij to branch on.



8

Results are given for 160 problems with up to 20 jobs and 5 agents. They

are compared with those from Ross-Soland and Martello-Toth. The FJV

algorithm is about an order of magnitude faster and generates branch and

bound trees with a factor of 50 fewer nodes. Larger problems have also

been solved. Fisher and Jaikumar (1981) use the method as a subroutine

in their vehicle routing algorithm.

Guignard and Rosenwein (1989) elaborate on the procedure of Fisher,

Jaikumar and Van Wassenhove (1986). Their algorithm is based upon a

Lagrangean dual ascent procedure which exploits violations of constraints

(3) not considered in Fisher et al. (1986). They thereby improve upon

the FJV bound. Guignard et al. also add a surrogate constraint

2 2 xij or 2 2 xij 5 Iii when constraints (3) are violated. The

surrogate constraint is then dualized into the objective function with

multiplier 8. The strengthened relaxation is given by :

(GR) min 1 22 (ci - wj + 8) xij (2), (4) } (16)

15

Their branching scheme is a combination of depth-first and breadth-first

branching. At the root node a subgradient optimization procedure is

implemented. As a result fewer nodes and less CPU time are required on

average (when compared to Fisher, Jaikumar and Van Wassenhove (1986)).

Branching is done on a job j' with multiple assignment. The job selected

is the one for which : j' = min max { aij I 2 x*ij > 1 and x*ij = 1 }.
ii i

For each branch a distinct xij' with x*ij' = 1 in the current solution

is fixed at 0. In total 2 x' branches are created and the node

considered corresponds to max fai
I }.

Wilcox (1989) uses a Lagrangean relaxation of constraints (3) and 
allows

multiple job assignments like Guignard and Rosenwein (1989). The

multipliers are not adjusted monotonically, but in a bidirectional 
way

(increase multipliers for unassigned jobs, decrease multipliers of 
jobs

assigned more than once). The adjustment is similar to the approach

followed by Martello and Toth when calculating penalties for 
violating

constraints (3). Wilcox defines a feasibility measure

f(x) = 2i 11-21xiji. First every job is inspected for a potential bound
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improvement, and failing that, jobs are examined for their potential to

decrease f(x) by the corresponding adjustment of x. This adjustment can

lead to finding a feasible (and hence optimal) solution.

Wilcox compares the binary branching rule of Ross and Soland to the

multiple branching rule used by Martello and Toth and concludes that the

latter yields better results since it exploits the special structure of

the multiple-choice constraints (3). He als tries to reduce the

dimensions of the problem by fixing variables to zero and one. In fact,

the branching rule is used in conjunction with the variable fixing

procedure in that the job to branch on is the one with the largest number

of fixed variables.

A three-phase heuristic is used to generate a feasible solution at the

top of the search tree. Phase 1 generates a feasible solution which is

searched for local improvements in phase 2. In phase 3 Balas and

Martin's pivot and complement heuristic (1980) is applied to further

improve upon the solution. The three-phase heuristic generates solutions

which deviate from the optimum by 1% on average.

Wilcox compares his approach to the one of Fisher, Jaikumar and Van

Wassenhove (1986) and concludes that his algorithm is faster (factor 2 to

10 and more for the more difficult problems) and generates smaller trees

(factor 10).

JOrnsten and Varbrand (1987) present two algorithms for the generalized

assignment problem. The bounds are generated through the solution of

Lagrangean and surrogate relaxations respectively with the addition and

subsequent relaxation of valid inequalities. Only the first method is

elaborated here, the second algorithm will be discussed in the next

section.

To strengthen the bound of the Lagrangean relaxation valid inequalities

of the same form as the knapsack constraints are added :

(E bkij
i

5 dk , k E K) (17)

Balas (1975) discusses how such inequalities can be generated. The

algorithm relaxes both the knapsack constraints and the valid
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inequalities. The formulation of the Lagrangean dual problem is as

follows :

max L (u,15) = min {2 2 cij
i

s.t. 2 x.. = 1

+ 2 ui 2 ai x-- -b1.).1 

+ 2 5k (2 2 bkij xij - dk)} (18)
k ii

xjj 0 or 1 i E I,

The solution procedure is as follows. Choose initial multipliers and

solve the problem using the subgradient method. If the duality gap is

closed, then stop. If not, generate a valid inequality, relax it and add

it to the extended Lagrangean. Then, go back and solve the subproblem

again. If the algorithm terminates without closing the duality gap

because it is no longer possible to generate a valid inequality, a branch

and bound approach can be used to carry on the solution procedure. The

bound obtained in this way is stronger than the one obtained by simply

relaxing constraints (2) in the original GAP formulation. The authors

give no comparison with other solution techniques except for their own

surrogate relaxation procedure. The test problems contain 4 agents and

25 jobs.

Another approach by Jornsten and Nasberg 1986) based on Lagrangean

decomposition is discussed in section 6.

5. SURROGATE RELAXATION

JOrnsten and Ndsberg (1986) discuss very briefly a surrogate relaxation

of constraints (2) in the original formulation. This yields a multiple

choice knapsack problem :

(SR) min { 2 2 cij xij I2 2 pi aij xi Sp bi, (3), (4)) (21)
1J 13
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The bounds obtained by this relaxation are at least as good as those

obtained by the LP-relaxation of the original problem (integrality

property) and those resulting from the Lagrangean relaxation of

constraints (2). In practice the bound is slightly inferior to the bound

obtained by a Lagrangean relaxation of constraints (3).

The second procedure of arnsten and Varbrand (1987) generates bounds

through the solution of a surrogate relaxation of the knapsack

constraints (2) and valid inequalities of the knapsack type (17). The

formulation is :

max S u,S) = min 2 E cij x1 (22)
i

s.t. E ui E xij aij + Sk 2E bkij xij 5 2 ui
k ij

(3) and (4).

• E 5k dk (23)

For the generation of the valid inequalities as well as the computation

of the surrogate multipliers we refer to the original paper (the

procedure is analogous to the one mentioned in section 4). The

Lagrangean procedure of Mrnsten and Varbrand discussed in the previous

section appears to be more efficient (stronger bound at root node, less

valid inequalities added) than the surrogate one. There is no comparison

with other solution techniques.
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6. LAGRANGEAN DECOMPOSITION '

Another approach is due to arnsten and Nasberg 1986). They reformulate

the problem as :

min a Z C15 Xii E E cij Yij (24)
i 1J

s.t. E a15 x• • < bj i E I (25)

j EJ (26)Yij =

xij yij iEI, j EJ (27)

xij, Yij = or 1 i E I, (28)

Note that a+p=1. Using a Lagrangean relaxation on constraints (27) the

problem decomposes into binary knapsack problems in the x variables and

semi assignment problems or GUBs in the y variables. The subgradient

method is used to compute multipliers. The two problem formulations are

as follows :

PX(p) min I 2 a Cij - pij) xij
i

s.t. E aij

E {OM i E I,

PY(p) min E ci
ii

s.t. Yij = 1

Yi E {0,1}

Pij Yij

i E I, j E

(29)

(30)

(31)

(32)

(33)

(34

The proposed bound is compared with traditional Lagrangean relaxations

and it is concluded (based on a rather small set of 10 test problems with

4 agents and 25 jobs) that it is stronger than the one obtained by



relaxing either constraints (3) or (2) in the original problem

formulation (GAP). The surrogate relaxation has not been considered in

conjunction with the Lagrangean decomposition approach.

scheme is given to solve the problem to optimality.

No enumeration

13

In addition to the relaxation scheme, feasible solutions (upper bounds)

are generated starting from assignments satisfying either the x variable

problem (PX(p)) or the y variable problem (PY(p)). Then an interchange

procedure is started to obtain feasibility for the whole problem. Once

this has been attained an improvement step is added. Starting from the y

variable problem appears to give the best results for the problem sizes

considered (4 agents and 25 jobs).

7. SUMMARY

From the discussion in the previous sections it can be concluded that an

effective algorithm should have at least the following four well-balanced

ingredients a primal heuristic, a bounding scheme, a variable-fixing

procedure and a branching rule. Wilcox (1989) was very careful in

selecting these four ingredients by building on experience gathered in

previous research. His experiments emphasize the importance of each

ingredient and show that the four components put together provide the

most effective algorithm to-date.

It is not a trivial task to compare the algorithms discussed in the

preceding sections on a computational basis since different authors have

used different computers, operating systems, programming languages and

compilers. They have also used differently generated data sets or random

number generators. Therefore, a standard data set which could be made

available to all researchers ( .g. on floppy disk) would be very useful

indeed. Such a data set would have to contain problems with varying

degree of difficulty (tightness of capacity constraints, correlation

between data, etc.) and of different size and shape (number of jobs and

agents and the ratio between the two).
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In spite of the lack of directly comparable computational results, we try

to give some indication on the relative performance of the different

algorithms in what follows. First, consider the Ross-Soland (RS),

Martello-Toth (MT), Fisher-Jaikumar-Van Wassenhove (FJV), Guignard-

Rosenwein (GR) and Wilcox (W) algorithms. Theoretically, the bounds

relate to each other as : W, GR FJV RS, MT, LP, where LP denotes the

bound obtained through LP-relaxation. In practice both GR and W improve

upon FJV which in turn dominates RS and MT. In terms of CPU-time and

number of nodes required, MT dominates RS, at least for the harder

problems. Algorithm W claims to be 10 times faster than FJV whereas GR

claims to be 1.5 times faster than FJV. In turn, FJV claims to require

an order of magnitude less CPU-time than RS and MT. When comparing

number of nodes W claims to require 10 times less than FJV, GR claims 1.5

less and FJV claims two orders of magnitude less nodes than RS and MT.

All these results are of course only rough approximations because of the

largely different experimental conditions under which these claims were

made. Note however that the results mentioned above are at least all

based on problem data generated by an identical procedure albeit perhaps

with different random generators. Problem sizes used by the authors in

their original papers varied from 5*20 (MT,FJV) to 5*40 (W) and

10*50 (GR).

JOrnsten and Wisberg (JN) and Jornsten and Varbrand (JV) use 4*25

problems to test the quality of their bounding procedures. They do,

however, fail to specify how the problems were generated. It is shown

that their bounds dominate the ones obtained by FJV and LP both in theory

and in practice. Nothing is said on CPU-times required to compute the

bounds or on their effectiveness in a branch and bound procedure.
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8. EXTENSIONS OF THE GAP PROBLEM

Mazzola (1989) introduces an important generalization which allows for

capacity interaction among tasks assigned to the same agent : the 0-1

generalized assignment problem with nonlinear capacity constraints

(NLGAP). The formulation is as follows :

(NLGAP) min 2E cij
i

s.t. 2 a--

2 X—i.]

(35)

+ kih n xil) 5 bi i E I (36)
1

xij = 0 or 1

(37)

j E J, i E I (38)

All coefficients are as defined above, except kih. This coefficient

models the capacity interaction between the variables xil and can be

positive, negative or zero.

Mazzola applies the results for general nonlinear 0-1 programming in

Balas and Mazzola (1984a) and (1984b) to replace the nonlinear

constraints by linear ones (the resulting linear 0-1 program is a GAP and

a valid relaxation of NLGAP). This now linear expression lfi satisfies

the following condition :

lfi < E aij xij + 2 kih (n xil) 5 bi
1

E I (39)

Now the common body of knowledge for solving GAP can be used. At every

node in the tree the corresponding subproblem has the structure of a

NLGAP. One can generate the GAP relaxation at every node (which is time

consuming but yields a stronger bound) or one can generate the relaxation

at the top node only and use it throughout the search tree. The

additional effort required to generate the relaxations at each node is

more than compensated for by the decrease in overall solution effort and

in the corresponding decrease in the number of nodes required.

Dimensions of the problems discussed are 5 agents, 20 jobs with up to

1000 (=h) 2- and 3-way (=1) interactions.
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Mazzola also describes a heuristic that uses a two-phase solution

approach in the spirit of Martello and Toth, i.e. construct a feasible

solution and then improve upon that solution by the use of interchanges

and shifts of jobs between agents.

Gavish and Pirkul (1985c) discuss the multiconstraint GAP. The

formulation is as follows :

(MCGAP) min 2 E c11 x--ij
ii

s.t. 2 x--1]

2 a k --- x-- <ij 

E {0,1}

k E K, i E J

where k indicates the type of resource used.

The authors discuss several relaxations of the problem. Relaxation of the

constraint set (42) yields GUBs (RL1); relaxation of the constraint set

(41) and all elements of set (42) except those where k=k* results in

single constraint binary knapsack problems (RL2); relaxation of

constraint set (41) leads to multiconstraint binary knapsack subproblems,

Gavish and Pirkul (1986d) (RL3) :

RL1 = min E cij xii +EZôik
ij i k

aiik Xij - bik 41),(43) (44)

RL2 = min T. 7- C15 Xii + E pi ( 2 xii - 1) + 2.6ik 2 a-ik - x-- - bik)
13 

j
1,k +k

2 aijk, Xij 5 bik,} (45)

RL3 = min { 2 cii xii + pj ( xij ) I (42), 43) } (46)
i

Comparing the different bounding schemes the third method appears to be

the stronger one while the second relaxation nearly always yields

stronger bounds than the first one.

The authors also discuss several heuristics. The first heuristic is

based on a regret basis first assign the task that would yield a high
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incremental cost if it were not assigned to the least costly agent). A

second heuristic uses the solution of the first relaxation. All jobs

have been assigned but some agents are overloaded, so the heuristic tries

to reallocate some of their load to agents with excess capacity. The

third heuristic is used in conjunction with the third relaxation. Some

jobs are assigned twice or more some are not assigned. A new problem

which has the same structure as the original one can be created by taking

those tasks which are unassigned or are assigned to multiple agents. The

rest of the jobs are permanently assigned to their agents as determined

by the third relaxation. The third heuristic generally generates better

solutions than the first two (the first and second show a similar

performance).

The branch and bound algorithm suggested uses the third relaxation (this

one yields tighter bounds). Also the third heuristic strategy based on

that relaxation determines feasible solutions which are found to be

optimal in many cases. The separation is accomplished by taking a task

and assigning it to every agent. The order in which tasks and agents are

considered is based on the penalties derived by setting variables xij

equal to 1 - xij* (with xij* the solution of the third relaxation). If

the penalty is larger than the gap between the lower bound and the best

primal solution, then in any optimal solution xij must be equal to

Computational results are given for problems with up to 10 agents, 100

jobs And 2 types of resources.

Note that in this approach the four ingredients of a good algorithm can

clearly be distinguished.

9. CONCLUSIONS

All different approaches discussed here are based on branch and bound

techniques and on relaxation of the primal formulation. The few

comparative results for optimal methods reported in literature are for

rather small problmes. Nothing is said on the importance of the

branching strategy (except by Wilcox (1989)). There are very few

heuristics (Klastorin, Martello and Toth, Benders and van Nunen, Jornsten

and Nasberg) and, to the best of our knowledge, no comparison was ever

made between them.

There seem to be no methods based on dual heuristics or generalized
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linear programming. Looking at the dual of the LP-relaxation, it appears

to be possible to obtain good dual solutions that can yield both a lower

and an upper bound (via a primal heuristic). Such an approach is similar

to the one suggested by Erlenkotter (1978) for the uncapacitated facility

location problem. The authors are currently exploring this avenue.

A heuristic based on a set partitioning approach has already shown to

give good results. This heuristic can be extended in order to give

optimal solutions using a branch and bound procedure linked with the

column generation procedure (Ribeiro, Minoux and Penna (1989))
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