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ABSTRACT

This paper is concerned with simultaneous reduction to triangular and

companion forms of pairs of matrices A, Z with rank( / — AZ) =1. Special

attention is paid to the case where A is a first and Z is a third companion

matrix. Two types of simultaneous triangularization problems are considered:

( ) the matrix A is to be transformed to upper triangular and Z to lower

triangular form, ( 2) both A and Z are to be transformed to the same (upper)

triangular form. The results on companions are made coordinate free by

characterizing the pairs A, Z for which there exists an invertible matrix S

such that S-1AS is of first and S-1ZS is of third companion type. One of

the main theorems reads as follows: If rank(/ — AZ) =1 and saC 1 for every

eigenvalue a of A and every eigenvalue of Z, then A and Z admit

simultaneous reduction to complementary triangular forms.

1. INTRODUCTION

Let A and Z be ( complex ) in x in matrices. We say that A and Z admit

simultaneous reduction to upper triangular forms if there exists an



-
invertible m x m matrix S such that S IAS and S

1 
ZS are upper triangular.

Already in 1896, Frobenius [F] investigated this property which, meanwhile,

is well understood. It can be characterized in different equivalent forms,

e.g. as semicommutativity of A and Z or as solvability of the Lie algebra

generated by A and Z. For details, see [M], [Li], [L2], and the references

given there (cf. also [Wo]).

Recently another kind of simultaneous triangularization has received

attention. We say that A and Z admit simultaneous reduction to

complementary triangular forms if there exists an invertible m x m matrix S

such that 84A5 is upper triangular and S-IZS is lower triangular. The

motivation for this type of reduction comes from systems theory. Indeed,

there is a close connection with the problem of complete factorization of

rational matrix functions. For more information, see [BH] and the

references given there.

For simultaneous reduction to complementary triangular forms no

comprehensive theory is yet available. For special classes of matrices,

such as upper triangular Toeplitz matrices, companion matrices, rank one

and Jordan matrices, results have been obtained in [BH], [BK], [BT1],

[BT2], [BT3], [BT4] and [Wi]. In several of these publications, attention

is paid to cases where A— Z has rank 1, and in this context there is a

relation with the problem of simultaneous reduction to first (or second)

companion forms.

In the present paper, we focus on the multiplicative version of the

rank one condition, i.e., we consider matrices A and Z for which

rank(/ — AZ) =1. Here simultaneous reduction to first and third (or second and

fourth) companion matrices enters the picture. For the convenience of the

reader we include the definition of these different types of companions.

An m x m matrix A is called a first companion matrix if it has the

form



A =

0 1 0

0 0 1 0

0 0 0 1

ao al am...2

where a0,. , am_i are complex numbers. An m x m second companion matrix is

the transpose of an m x m first companion matrix. An m x m matrix Z is

called a third companion matrix if it has the form

Z =

Z772.1 Z1 ZO

1 0 0 0

0 1 0 0

0 0 1 0

where z0,. , zm_i are comp!,x numbers. An m x in fourth companion matrix is
the transpose of an m x in third companion matrix.

Now let us describe the contents of the present paper. In order to
make the connection with the additive rank one case, we begin by
recalling some of the main results from [BM, EBT11 and [BT3].

THEOREM 1.1.A. [BH, Theorem 0.2]. Let A and Z be in x m matrices with
rank(A —Z) = 1. Suppose A and Z have no common eigenvalues. Then A and Z admit
simultaneous reduction to complementary triangular forms.

THEOREM 1.2.A. [BH, Theorem 0.3]. Let A and Z be m x m first companion
matrices. Then A and Z admit simultaneous reduction to complementary
triangular forms if and only if there exist orderings c,. , am of the
ezgenvalues of A and of the eigerzvalues of Z such that

3



1 < j < k <

If A and Z are In x in first companion matrices, then rank(A — Z) <1.

Note that [BH, Theorem 0.3] is concerned with second companion

matrices. The result for first companion matrices can be obtained by taking

transposes.

THEOREM 1.3.A. [BT3, Theorem 0.1]. Let A and Z be m x in first

companion matrices. Then A and Z admit simultaneous reduction to upper

triangular forms if and only if there exist orderings ozi, . . , ot. of the

eigenvalues of A and CD... ,Cm of the eigenvalues of Z such that

= C k, k =1,... ,m —1.

The result in [BT3] referred to above actually deals with simultaneous

reduction to upper triangular forms of sets (rather than pairs) of first

companion matrices. See also [BT3, Theorem 0.4].

THEOREM 1.4.A. [BT1, Theorem 0.1]. Let A and Z be in x 172 matrices. Then
-there exists an invertible m x 772 matrix S such that S 1AS and S
1 
ZS are

first companion matrices if and only if A— Z can be written as

A— Z = bcT ,

where b, c E Cm and b is a cyclic vector for A.

Recall that 1) € Cm is a cyclic vector for A if the vector b,Ab,...,Arn-lb

are linearly independent ( i.e, they form a basis for Cm). For a

generalization of Theorem 1.4.A to sets of matrices and block companions,

see [BT3]. Note that A— Z can be written as a dyadic product bc
T 

if and only

if rank(A — Z) <1. The point in Theorem 1.4.A is that b should be cyclic for

A. Finally, observe that Theorem 1.4.A can be used to make Theorems 1.2.A

and 1.3.A coordinate free ( cf. [13T1J and {BT3]).

4



Next, let us turn to the multiplicative analogues of the results cited

above.

THEOREM 1.1.M. Let A and Z be m x m matrices with rank(/ —AZ) =1.

Suppose aC 1 for every eigenvalue a of A and every eigenvalue of Z. Then

A and Z admit simultaneous reduction to complementary triangular forms.

If A is an m x m first companion matrix and Z is an m x m third

companion matrix, then rank(/ — AZ) <1.

THEOREM 1.2.M. Let A be an m x m first companion matrix and let Z be

an m x m third companion matrix. Then A and Z admit simultaneous reduction

to complementary triangular forms if and only if there exist orderings

O. . , am of the eigenvalues of A and , cm of the eigenvalues of Z

such that

aiCk 1, 1 < j < k < m.

THEOREM 1.3.M. Let A be an m x m first companion matrix and let Z be
an m x m third companion matrix. Then A and Z admit simultaneous reduction
to upper triangular forms if and only if there exist orderings c,. , am of
the eigenvalues of A and Ci, ,cm of the eigenvalues of Z such that

akCk = 11 k =1, . . . —1.

THEOREM 1.4.M. Let A and Z be m x m matrices. Then there exists an
invertible m x m matrix S such that S 1 AS is a first and S ZS is a third
companion matrix if and only if the matrix I — AZ can be written as

I — AZ =

where b, C E Cm and b is a cyclic vector for A.

Analogues of Theorems 1.2.M-1.4.M for second and fourth companion
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matrices ( instead of first and third) can be obtained by taking transposes.

Theorem 1.4.M may be used to make Theorems 1.2.M and 1.3.M coordinate

free. We leave the details to the reader (cf. [BT1] and [BT3] ). Theorem

1.1.M is a corollary to Theorems 1.2.M and 1.4.M. Indeed, the rank

condition means that I — AZ can be written in the form I— AZ = bcT . The key

observation is now that the condition on the eigenvalues implies that b is

cyclic for A. For details, see Section 4 which also contains the proof of

Theorem 1.4.M.

Theorems 1.2.M and 1.3.M are proved in Section 2 and 3, respectively.

The latter also contains a discussion •of the combinatorial condition on the

eigenvalues of A and Z appearing in Theorem 1.2.M.

Theorems 1.1.M, 1.2.M and 1.3.M are concerned with the existence of an

invertible matrix S such that S lAS and S 1ZS are triangular matrices. It

is possible to amplify the results by supplying information about the

orders in which the eigenvalues of A and Z may appear on the diagonals of
-1 -1

and S 1ZS, respectively. In fact, it iS s these refined versions that

are presented below.

The theorems marked with an M are multiplicative analogues of those

marked with an A. A discussion of the relationship between the two sets of

results is presented in Section 5. The main observation is that Theorem

1.1.M is a stronger result than Theorem 1.1.A. Section 5 also contains some

comments about possible generalizations.

A polynomial approach for simultaneous triangularization of companion

matrices is developed in [Wi].

We finish the Introduction with a few remarks about notation and

terminology. All matrices to be considered have complex entries. The n x n

identity matrix is denoted simply by I, the order of the matrix always

being clear from the context. The determinant and rank of a matrix H are

written as det H and rank H, respectively. The superscript T signals the

operation of taking the transpose of a matrix or vector. Whenever

convenient, matrices are identified with linear operators. The restriction

of a linear operator A to an invariant subspace M of A is denoted by A I Af.

The linear hull of a set of vectors v1,.. , vn in Cm is denoted by

span [v1, . . . , vn]. The symbol • stands for "end of proof".



2. SIMULTANEOUS UPPER TRIANGULAR FORMS OF COMPANION MATRICES

We begin with some remarks about the four different types of companion

matrices described in the Introduction. Let in be a positive integer, and

let R denote the in x in reversed identity matrix, i.e.,

R e j = ern+ 1_ j, j= 1, , m,

where el, , en, is the standard basis in Cm. Note that R is its own

inverse. An in x in third ( fourth) companion matrix is obtained from an in x in

first (second) companion matrix by pre- and postmultiplying with R. The

inverse of an invertible first companion matrix is a third companion

matrix. An analogous observation holds, of course, for second, third and

fourth companion matrices.

In the remainder of this section we discuss simultaneous reduction to

upper triangular forms of pairs of companion matrices. Necessary and

sufficient conditions for pairs of first (respectively, second) companion

matrices were given in [BT1] and [BT3]. Here we consider pairs involving a

first and a third companion matrix. Similar results hold for pairs

consisting of a second and fourth companion matrix.

The following lemma is a counterpart of [BT3, Lemma 1.1] and [BT1,

Lemma 2.3]. Whenever convenient, matrices will be identified with linear

operators.

LEMMA 2.1. Let A be an 771 X in first companion matrix, let Z be an in X 772

third companion matrix, and let M be a nontrivial invariant subspace for

both A and Z. Then the restriction Alm of A to 111 is invertible and

=

Proof. We begin by collecting some facts concerning companion

matrices. Let e1,. , em be the standard basis in Cm. For z in C and

k =0,...,m— 1, write

7



Each system

(2.1) Vk Zi

j=k+1

zj-i-k e3.

7 7 • • • 7nj •

where z1,. zp are distinct complex numbers and n1+ . + np in, is linearly

independent ( cf. [LT, Section 2.11, Exercise 22] ). So, if a nontrivial

subspace M of ez is spanned by a system of type (2.1), then this system is

uniquely determined by M (up to a reordering of z1. , zp and the

corresponding numbers n1,. , np).

Let H be any first companion in x m matrix. Then, in particular, H is

nonderogatory. If N is an invariant subspace of H contained in one single

generalized eigenspace Ker( z/ — H) of H, then N is completely determined by

its dimension n and the complex number z (which is, of course, an

eigenvalue of H of algebraic multiplicity at least n). Indeed, N is spanned

by the linearly independent vectors vo(z), , vn_1(z). This is clear from

[LT, Section 2.11, Exercise 22]. Hence, if N is any invariant subspace for

H, then there exist distinct complex numbers z1,. , zp and positive

integers ni, np such that N is spanned by the system (2.1), where each

zj is an eigenvalue of H of algebraic multiplicity at least nj. The vectors

in ( 2. 1) are completely determined by M, provided that N is nontrivial.

Combining the facts collected in the first two paragraphs, we obtain

the following observation. Let N be a nontrivial invariant subspace for H

and suppose the vectors vo(z), v,_(z) belong to N. Then z must be an

eigenvalue of H of algebraic multiplicity at least n.

For convenience, we put w(z) = Rvi(z). Here R is the in x in reversed

identity matrix. Recall that third companion matrices are related to first

companion matrices via the similarity transformation involving R. Hence the

vectors wo(z), , W 1(Z) play the same role for third companions as

vo(z), vni_i(z) do for first companions.

There is an interesting relationship between spans of the vectors



vj( z ) and spans of the vectors wi(--z-). Indeed, for z 0, and n = 1, . . . we

have

(2.2) span (z) ,...,vn_(z)] = span[wo(;), , w
zi

This can be proved by brute computation, but we prefer the following

"geometric" argument.

By Ci,.(z) we denote the m x in first companion matrix associated with

the polynomial (A - z )m. Thus Ci,m(z) is the unique m x m first companion

whose characteristic polynomial is (A - z) m. Since z 0, the matrix Ci,„,(z) is

invertible, and

(2.3) = c3,.(1z

where C3,m(;) is the m x in third companion matrix associated with the

polynomial (A - )m. Both Ci,m(z) and C3,,n( are unicellular. The unique

n-dimensional invariant subspace for Ci,m(z) is given by the left hand side

of (2.2) and the unique n-dimensional subspace for C3,m(1) is given by the

right hand side of (2.2). From ( 2.3 ) it is clear that Ci,m(z) and C3,m( )

have the same invariant subspaces, and it follows that (2.2) is satisfied.

After these preparations we can start the proof proper of Lemma 2.1.

By assumption, M is a nontrivial invariant subspace for the first companion

matrix A. Thus M is spanned by a system of linear independent vectors of

the form (2.1), where z1,. ,z are eigenvalues of A of algebraic

multiplicity at least n1, . . . , np, respectively. Since el is a cyclic vector

for the third companion matrix Z and M is a nontrivial invariant subspace

for Z, we have that eot M. Hence z3o0, j=1,...,p, and we see from (2.2) that

M is also spanned by the system of linear independent vectors

(2.4) k= 1, ... ,ni -1; j = 1, ... ,p.

Again by assumption, M is a nontrivial invariant subspace of the third

companion matrix Z. So - , . . . , - are eigenvalues of Z of algebraiczi Zp

multiplicity at least n1,. , np, respectively.

9



The action of A on the vectors (2.1) is as follows

Avo(zi) = zivo(zi), = 11 • • • Pl

Avk(z.i) = ivgzi) vk_1(zi), k=1,...,ni-1; j =1,...,p.

Thus the matrix representation A, of AIM with respect to the basis (2.1)

for M is given by

A, = J(ni;zi) e e J(np;zp).

Here J(n,z) stands for the upper triangular n x n Jordan block with

eigenvalue z and the symbol e signals the operation of taking direct sums.

Similarly, the matrix representation Zw of Z I m with respect to the basis

(2.4) for M is given by

[Zw = J ni,1 e) ••• e J [rip;!].
zizp

Clearly A, and Zw are invertible matrices or, what amounts to the same, A IM
and Z IM are invertible linear operators.

For j = 1,. , p, let S be the invertible ni x ni matrix such that

[vo(zi) . . . vn j_i(zi)] Si = o( -
1r

Iv ) • • •L Zi3 i

The existence of Si is guaranteed by (2.2). Put S = e e S. Then the
-

matrix representation of (ZIA!)
1
 with respect to the basis (2.1) for M is

given by SZw-1S-1. It remains to establish the equality SZ,,- S-1 = A.

Take j e {1,.. , p} and, with a slight abuse of notation, write S,z and n

instead of Si, zi and ni, respectively. We need to show that

(2.5) J(n,z) = SJ(n;!)-1S-1.

- 10 -



^Let vk(z) and wk(;) be the vectors obtained from, respectively, vk(z)

and wk(;) by omitting the last m n components. Put

= [(z) v(z)1 , IV= [17)

Then V and W are n x n matrices. The matrix V is upper triangular with ones

on the diagonal, hence V is invertible. Observe that VS = W. Since S and W

are invertible, W is invertible too. The identity (2.5) now transforms into

(2.6) VJ(n,z)V-1 WJ(n,)1V-1

Let Ci,n(z) be the n x n first companion matrix associated with the

polynomial (A - z)
n
. Then

Cl,n(Z z) = zvo(z),

n(z)vk(z) = zyk(z) vk_4(z),

and these expressions can be rewritten as

(2.7) ,n(z)V = VJ(z;n).

We also have

(2.8) ;1)11/ = II/J(1;n),

k = 1, . . . , n - 1,

where C3,n(-1) is the n x n third companion matrix associated with the

polynomial (A-;,1 )n To see why (2.8) is true, introduce C3, the m x m third
-n ncompanion matrix associated with the polynomial Am
 (A (A - -z) . We know that

1 1C3w0(;) =

C3wk( 1- ) = -Wk(-) + wk-i k=1,...,n.



Further, the matrix C3 admits a block decomposition of the type

C3,()
C3 =

0

J(m—n;0)T

From this (2.8) is clear.

With (2.7) and (2.8), the identity (2.6) reduces to C1,n(z)C3,n(;

But this is just (2.3) with in replaced by n.

The diagonal of a matrix K = (kii)Zi=i is the ordered m-tuple

(kn, ,kmm). The next result is a refined version of Theorem 1.3.M in the

Introduction.

THEOREM 2.2. Let A be an m x m first companion matrix and let Z be an

m X m third companion matrix. Let ai, , am be an ordering of the

eigenvalues of of A and let m be an ordering of the eigenvalues of

Z. Then there exists an invertible m x in matrix S such that S-1 AS and S-1ZS

are upper triangular with diagonals

respectively, if and only if

(2.9) akCk = 1, k =1, .

( 1, • • • am) and (CD • • •

Since companion matrices are nonderogatory, the matrix S (provided it

exists) is unique up to multiplication on the right with an invertible

diagonal matrix. The proof that we shall present below gives more

information than is needed to establish Theorem 2.2 as it stands. The extra

details are printed in italics.

Proof. We start with the only if part. Let el, , em be the standard

basis in C , and put N = span[ei, ,em_1]. Then N is an invariant subspace

for both S-1A5 and S-1ZS. Applying Lemma 2.1 to M = S[N], we obtain the

following result. Write Ao, respectively Z0, for the matrix obtained from

S EAS, respectively S-1 ZS , by omitting the last row and column. Then Ao is

invertible with inverse Z0. Note that Ao is upper triangular with diagonal

- 12 -



(cxi, , ) and Zo is upper triangular with diagonal , m_It

follows that (2.9) is satisfied.

Next we turn to the if part of Theorem 2.2. For j = 1,. , m — 1, let ri be

the number of t {1,. , j 1} such that at = c. Now let the first m —1 columns

of the m x m matrix S be given by

(2.10) Sei = vr •((xi), = 1, •••

Here we use the notation introduced in the proof of Lemma 2.1. The last

column Sern of S is taken independently of Sel, ,Sem_i, but otherwise

arbitrarly. Since the vectors (2.10) are linearly independent, the matrix S

is invertible. A straightfoward computation shows that S lAS is upper

triangular with diagonal (oei, . . . , a.). The matrix obtained from S AS by

omitting the last row and column resembles the upper triangular Jordan

form.

It remains to prove that S-1ZS is upper triangular with diagonal

For j = , m — 1, put Ni = span[ei, , eil and = S[Ni]. From
(2.2) and (2.9) it is clear that Mi is Z-invariant. But then Ni is
invariant for S 1ZS, hence S 1ZS is upper triangular. The statement about
the diagonal of 5-1Z5 follows from (2.9) and the only if part of the
theorem. •

3. SIMULTANEOUS COMPLEMENTARY TRIANGULAR FORMS OF COMPANION
MATRICES.

In this section we consider simultaneous reduction to complementary
triangular forms of companion matrices. Necessary and sufficient conditions
for pairs of second (respectively, first) companion matrices were given in
[BH]; see also [BT1] and [BT3]. Here we consider pairs involving a first and
a third companion matrix. Analogous results hold for pairs consisting of a
second and a fourth companion matrix.

We begin with an intertwining lemma similar to [BH, Lemma 3.1].

- 13 -



LEMMA 3.1. Let A be an m x rn first companion matrix and let Z be an

m x m third companion matrix. Let al, . . , am be the eigenvalues of A, and

let be the eigenvalues of Z. Define

A =

2 =

a 2 c2 - 1 C2( a3C3 - 1) C2C3(a4C4 ) •

0 a 2 a3C3 - 1 C3( a4C4 -1)

a3

C 0

a4C4 -

- 1 c2

a2( a 1 - 1 ) a 2 1

a23(li- 1 ) o3(o2C 2 - 1)

am-1

0

c2. • • Cm--(am Cm - 1)-

c3. • • Cm- ( am - 1)

C4. • • Cm-1( am - 1)

am Cm - 1

a2 • • • am-2 ( ceiCi - )a3. • • am - 2 ) • cm-1

am

°2 • • • Om - O 1 C1 cx3. • • am - 1( a2C2 -1) • Om-1Cm-1 - 1

in other words 74 = and 2 where

- 14 -
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CX3,

= 7.
eziL,3- 1,

z+1 •
L

ij =

j < i ,

=

j=i+1,

• -1), j > i +2,

0, j>i,

a
3•C -11

j • • • cei-

Also introduce T = (tii) j=i by stipulating that

Then

EtijAm -1 •••(A -1)(A-Ci+1).•
=

det T = II
1 < j<k<m
= =

and the intertwining relations

TA=71T, TZ =2T

are satisfied.

Proof. Analogous

twodiagonal matrices

jCk - 1)

that of [BH, Lemma 3.1]. Introduce the

- 15 -



1 0

0

E,34 =

1

Ec =

1

—0e2

1

2

1

0

C3

1

^

-am-1 1

• -C.
1

Consider ET, and apply an induction argument similar to the one employed

in the proof of [BH, Lemma 3.1]. This gives the formula for det T. Observe

that E2 and Ea71 are twodiagonal matrices. This can be used to verify that

E,TZ =E0,2T and EcTZ =Eck. I

We are now ready to prove Theorem 1.2.M from the Introduction. In fact

we shall establish the following more detailed result.

THEOREM 3.2. Let A be an m x m first companion matrix and let Z be

an m x m third companion matrix. Let oei,...,oen, be the eigenvalues of A, and

let (1,... ,C,,, be the eigenvalues of Z. Then there exists an invertible

m x m matrix S such that S-1AS is upper triangular with diagonal

,ot ) and S-1ZS is lower triangular with diagonal (C1,...,C.) if and

only if

.Ck 0 1, < j < k < m.

- 16 -



Since companion matrices are nonderogatory, the matrix S (provided it

exists) is unique up to multiplication on the right with an invertible

diagonal matrix.

Proof. For the only if part, use a straightforward modification of the

corresponding argument in the proof of [I3H, Theorem 3.2]. For the if part,

employ Lemma 3.1. Thus S (or rather its inverse T), S-1AS and S-1ZS are

obtained in an explicit way. •

Let A be an in x in first companion matrix and let Z be an in x in second

companion matrix. There are several cases in which one can verify that

there do exist orderings o,. , an, of the eigenvalues of A and Ci, , c„, of

the eigenvalues of Z such that

( 3.1 ) ajCk 1-1 1 <j < k < in.

In fact, the situation is rather similar to that in [BH, Section 3].

Let us give one example. Suppose A is an arbitrary in x in first
companion matrix and Z is the in x In nilpotent lower triangular Jordan block
( i.e., Z is the nilpotent in x in third companion matrix). Then, given an
ordering ozi, . . , oen, of the eigenvalues of A, there exists an invertible
( lower triangular) in x in matrix S such that S-1AS is upper triangular with
diagonal (ozi, . . . , ) and S-1ZS is lower triangular ( with zeros on the
diagonal). Additional details can be obtained from Lemma 3.1. These fit
nicely with [BK, Theorem 3.3].

We conclude this section with a remark concerning the (combinatorial)
ordering condition ( 3.1 ). Let A and Z be in x in matrices ( companions or
not). By T(A,Z), we mean ( the possibly empty) set of all nonzero
eigenvalues 7 of A such that 7--1 is an eigenvalue of Z. There exist
orderings oq, , ani of the eigenvalues of A and ci, c,„ of the
eigenvalues of Z such that ( 3.1 ) is satisfied if and only if there exists
an ordering 7-1, . . ,r3 of the ( different ) elements of T(A,Z) for which

- 17 -



p=1 p=q
E InA(Tp) + < n1+17

Tp =
q =1, ... ,s.

Here rnA(rp) denotes the algebraic multiplicity of rp as an eigenvalue of A

and rizz( ) denotes the algebraic multiplicity of -1 as an eigenvalue of Z.fp fp
The proof is similar to that of [BT3, Proposition 2.2].

4. SIMULTANEOUS COMPANION FORMS OF PAIRS OF MATRICES

The aim of this section is to prove Theorem 1.1.M and to show that our

previous results on pairs of companion matrices can be made coordinate

free. The latter is accomplished by proving Theorem 1.4.M.

Proof of Theorem, 1.4. M. The only if part of the theorem is obvious. So

we can concentrate on the if part.

Assume that I - AZ can be written as I - AZ = bc
T

7 where b, CE C and b is a

cyclic vector for A. Then [b Ab Ain-lb] is invertible with inverse V,

say. For j = 0,. -1, let vj be the (j + 1) - th row of V and put a3 = vjAmb.

Now introduce the invertible m x m Hankel matrix

H =

am_i 1

1 0

am_i1

am_i 1 0

0

and write S =V- H. Then S- AS is a first companion matrix ( with

- a0, • • • 7 -am_iin the last row). It remains to prove that 5-1ZS is of third

companion type.

Let e1,. em be the standard basis in Cm. Then S-1b=H-1Vb = eel =
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Hence, for j = 2, ...

T -1 -
AS)(S

1 
ZS) = e S

-1
bc
T
S) = 4.

Since S-1AS is a first companion matrix, we have that eTi_1S-1A9 = eTj. So,

for j = 2,... , in, the j-th row of S-1ZS is equal to ei_1. In other words,

S' ZS ZS is a third companion matrix. I

PROPOSITION 4.1. Let A and Z be in x in matrices with rank(/ - AZ) =1.

Suppose that for each complex A, the rank condition

rank[A/ A AZ - /] = m

is satisfied. Then there exists an invertible m x in matrix S such that

S-1AS is a first and S-1ZS is a third companion matrix.

An analogous result involving second and fourth companion matrices

can be obtained by taking transposes. The rank condition amounts to

requiring that the (linear) matrix polynomials Al - A and AZ - I are (left)

polynomially coprime (cf. [BH, Theorem 5.2] ). Proposition 4.1 is an

amplification of Theorem 1.4.M. There is an analogous amplification of

Theorem 1.4.A involving the 1-7kilk condition rank[A/ - A Al - Z] = in, A E C.

Proof. Write I - AZ = bcT with b, CE Cm. Take A E C, u E Cm, and assume that

UT (Ai — A) = 0, u b =0.

uT (Az Au z u u (Az = uT c =Then T T T 0T 
O. Since rank[A/ - A AZ - = m, it

follows that u =0. So rank[A/ - A b] = in, AEC. But then, by the Hautus test
from systems theory (see [H] ), the vector b is cyclic for A. Apply now
Theorem 1.4.M. I

THEOREM 4.2. Let A and Z be TTI x 172 matrices with rank( / - AZ) = 1. The

following statements are equivalent:

- 19 -



--There exist invertible in x m matrices S and T such that S
1 
AS,

S-1ZS, T-1 AT and ri ZT are first, third, second and fourth

companion matrices, respectively;

The matrix I — AZ can be written as I — AZ = bcT with b a cyclic

vector for A and c a cyclic vector for Z ;

(Hi) For each complex A, the rank condition

iv

rank [A/ — A AZ — I] = rank

is satisfied.

- A/ — A

AZ — I
= In

For every eigenvalue a of A and every eigenvalue of Z, the

product oC is not equal to 1;

Clearly ( i) and ( ii) are symmetric in A and Z ( for (i) use the

reversed identity matrix). As is well known, the matrices I — AZ and I — Z A

always have the same rank. From this we see that (iv) is symmetric in A and

Z too. The symmetry in (iii) is obvious from the fact that one can restrict

oneself to nonzero A. This also applies to Proposition 4.1.

Proof. Write / — AZ = bcT with b,c E Cm, and note that b and c are

essentially unique. The equivalence of (i) and (ii) is now immediate from

Theorem 1.4.M. Clearly (iv) implies ( iii), and we see from Proposition 4.1.

that (iii) implies (i). It remains to prove that (ii) implies (iv).

Let a and be eigenvalues of A and Z, respectively. Choose nonzero

vectors x and y in Cm such that xTA = axT and Zy = Cy. Since b is cyclic for A,

we have that

X
T 
b Ab . . . Am-1 b] # 0.
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Now x [b Ab . . . A
m-1 

b] = x
T 
b(1 c ... a

m-1
), hence x b 0. In an analogous

way, using that c is cyclic for ZT, one proves that cTy 0. But then

(1-o)X
T
y = x (I AZ))1 = (XT b)(CTy) 0 01

and it follows that oeC 1. •

Theorem 1.1.M is now an immediate corollary to Theorems 3.2 and 4.2. In

fact we have the following more detailed result.

COROLLARY 4.3. Let A and Z be in x In matrices with rank(i- AZ) =1.
Suppose oeC 01 for every eigenvalue a of A and every eigenvalue of Z. Let

am be the eigenvalues of A (in any order) and let Ci, ,C„, be the
eigenvalues of Z (in any order). Then there exists an invertible m x in

-1matrix S such that SAS is upper triangular with diagonal (al, ,cx.) and
S 1 Z S is lower triangular with diagonal ,C.).

Again the matrix S is unique up to multiplication on the right with an
invertible diagonal matrix. Combining the proofs of Theorems 1.4.M and 3.2,
(the inverse of) one of the matrices S having the desired properties can be
obtained in a rather explicit way. For this 5, we have that S-1AS.A.d and
S-1ZS = 2, where 71 and 2 are as in Theorem 2.4.

We conclude this section with a remark about cyclic vectors. Let A and
Z be in x in matrices and suppose rank(/ - AZ) =1. Then rank(/-ZA) =1 too, and we
can write

I - AZ = bcT, I - Z A = pqT,

with b, c, p,qECm essentially unique. Assume b is a cyclic vector for A. Then
there exists an invertible In x in matrix S such that S-1AS is a first and
-1
S ZS is a third companion. Let R be the In x in reversed identity matrix and
put T = SR. Then T' AT is a third and T-1ZT is a first companion matrix.
Hence p must be a cyclic vector for Z. Is there a simple relationship
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between b and p?

To answer this question, we introduce the vector

Po = (al/ + a2A + + a _iAm-2 Am-1) ,

where det(A/ —A) = Am +ani_iAm-1+... + ay\ +ao. Thus Po is the first column of the

matrix S constructed in the proof of Theorem 1.4.M. This matrix has the

property that S-1AS is of first and S-1ZS is of third companion type. But
--1then, with the exception of the first, all rows of I--(S ZS)(S AS) are

(s zs)(s As) = s, pq-i-i--iT5,,zero. Since I— it follows that p is a scalar

multiple of the first column of S. In other words, p is a scalar multiple

of po.

From the above, we may conclude that the vector po is a cyclic vector

for Z. In the case when A is invertible, this can also be seen as follows.

By the Cayley-Hamilton theorem, pa = — a0A-lb with ao o 0. Now A-1 —Z = A-lbcT with

A-lb cyclic for A-1 and Z. Hence pa is cyclic for Z.

5. REMARKS AND GENERALIZATIONS

First, let us return to the Introduction and discuss the relationship

between the two sets of theorems appearing there.

We begin by noting that under the additional assumption that A or Z is

invertible, the theorems marked with an M can be derived easily from those

marked with an A and vice versa. Indeed, if (for example) A is invertible,

then A—Z can be written as A(I—A-1Z) and I—AZ as A(A-1 —Z).

For Theorems 1.1.A and 1.1.M something extra can be said. The point is

that even when neither A nor Z is invertible, Theorem 1.1.A can be deduced

from Theorem 1.1.M. To see this, choose T such that A—TI is invertible. If

A and Z have no common eigenvalues, then (a — 7)-1(C-7) 1 for every

eigenvalue a of A and every eigenvalue of Z. Also

I—(A-7 )1 Z— =(A— )-1(A—Z),
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so I — (A-71)-1(Z —7I) has rank one. Applying Theorem 1.1.M to A — r/ and Z —71,

we now see that these matrices admit simultaneous reduction to

complementary triangular forms. But then the same is true for A and Z.

These considerations justify the conclusion that Theorem 1.1. M is a

stronger result than Theorem 1.1. A.

Next, let us discuss some possibilities for generalizing the results

obtained in this paper. Theorems 1.2.A and 1.3.A have been extended to sets

(rather than pairs) of matrices ( cf. [BT3} ). An analogous generalization

can be established for Theorem 1.2.M and 1.3.M. The results can be

completed by adding information about the order in which eigenvalues may

appear on the diagonals. Theorem 1.4.A admits an extension involving sets

of matrices and block companions (see [8T3] ). A similar generalization can

be obtained for Theorem 1.4.M. The details are left to the reader.

Finally, we note that the equivalence of (ii) and ( iii) in Theorem 4.2

can be placed in a wider context. Indeed, using the Hautus test as in the

proof of Proposition 4.1, one can establish the following result. Let A and
Z be m x rn matrices with rank(/ — AZ) = k. Write I — AZ = BCT , where B and C are
m x n matrices and rank C = k. Then

( 5. 1 ) rank [B AB . . . Am-1B] = m

if and only if for each complex A the condition

( 5. 2 ) rank [A/ A AZ —I]

is satisfied. The proof of the if part does not use the assumption that
rank C = k. The condition that ( 5.2 ) is satisfied for each complex A amounts
to requiring that the matrix polynomials Al — A and AZ— I are (left)

polynimially coprime. In systems theoretical terms, ( 5.1) can be rephrased
by saying that the pair (A, B) is controllable.

- 23 -



REFERENCES

[BH] Bart, H. and H. Hoogland: Complementary triangular forms of pairs of
matrices, realizations with prescribed main matrices, and complete
factorization of rational matrix functions, Linear Algebra Appl.
103: 193-228 (1988).

[BK] Bart, H. and P.S.M. Kop Jansen: Upper triangularization by lower
triangular similarities, Linear Algebra Appl. 103: 229-248 (1988).

[BT1] Bart, H. and G.Ph.A. Thijsse, Simultaneous companion and triangular
forms of pairs of matrices, Report 8807B, Econometric Inst., Erasmus
Univ., Rotterdam, 1988.

[BT2] Bart, H. and G.Ph.A. Thijsse, Complementary triangular forms of
upper triangular Toeplitz matrices, Operator Theory: Advances and
Applications 40: 133-149 (1989).

[BT3] Bart, H. and G.Ph.A. Thijsse, Simultaneous reduction to companion
and triangular forms of sets of matrices, Linear Multilinear Alg.,
to appear.

[BT4] Bart, H. and G.Ph.A. Thijsse, Complementary triangular forms of
nonderogatory, Jordan and rank one matrices, Report 9003B.
Econometric Inst., Erasmus Univ., Rotterdam, 1990.

[F] Frobenius, G., -Ober vertauschbare Matrizen, Sitz. -Ber. Akad. Wiss.
Berlin 26:601-614 (1896).

[H] Hautus, M.L.J., Controllability and observability conditions of
linear autonomous systems, Nederl. Akad. Wetensch., Proc., Ser. A72:
443 - 448 (1969).

[L1] Laffey, T.J., Simultaneous triangularization of matrices - Low rank
cases and the nonderogatory case, Linear Multilinear Alg. 6: 269-306
(1978).

[L2] Laf fey, T.J., Simultaneous reduction of sets of matrices under
similarity, Linear Algebra Appl., 84: 123-138 (1986).

[LT] Lancaster, P. and M. Tismenetsky, The Theory of Matrices, Second
Edition, Academic Press, Orlando, Fl., 1985.

[M] McCoy, N.H., On the characteristic roots of matrix polynomials,
Bull. Amer. Math. Soc. 42. 592-600 (1936).

[Wi] Wimmer, H.K., Pairs of companion matrices and their simultaneous
reduction to complementary triangular forms, to be submitted.

[WO] Worz-Busekros, A., Relationship between genetic algebras and
semicommutative matrices, Linear Algebra Appl. 39: 111-123 (1981).

- 24 -
•



,),6\versite,4s,

2. 0,-(%

61%KKE-




