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We consider the following two stage location and allocation game involving

two competing firms. The firms first select the location of their facility

on a network. Then the firms optimally select the quantities each wishes to

supply to the markets which are located at the vertices of the network. The

criterion for optimality for each firm is maximizing its profit, which is

the total revenue minus the production and transportation costs. Under

reasonable assumptions regarding the revenue, the production cost and the

transportation cost functions, we show that there is a Nash equilibrium for

the quantities offered at the markets by each firm. Furthermore, if the

quantities supplied (at the equilibrium) by each firm at each market are

positive, .then there is also a Nash locational equilibrium, i.e. no firm

finds it advantageous to change its location.

* This work is supported by the National Science Foundation Grant

2CS-8700656.
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1. Introduction

In the competitive location problem, firms select their strategic variables

in order to maximize their own profit. Various pricing strategies have been

considered in spatial economics for the unit line segment. The problem

becomes much more complicated on a network; this explains why most of the

models proposed in Operations Research assume that the firms sell one

uniform product at a constant price. In such a case, consumers pay the

transportation costs and firms' strategic variables reduce to their

location. This problem has been studied on a network by, among others,

Dobson and Karmarkar (1988), Hakimi (1983, 1989), Hansen and Labbe (1988)

and Wendell and McKelvey (1981). When firms are paying the transportation

costs, then the firms are allowed to select a delivered price which depends

on the location of the consumers. Lederer and Thisse (1988) study such a

situation where firms are allowed to select their location and the price at

which they are willing to sell the product at each market. These authors

consider a two-stage game in which firms select their location at the first

stage and the price at the second stage, and show the existence of a sub-

game perfect Nash equilibrium. In their study, the demand at each point is

assumed to be constant.

Here we consider an alternative specification where the demand at each

point depends on the price level. Specifically, we study a two stage game

in which two firms select first their location and then the quantities they

will offer to each market. Because firms compete in quantities rather than

in price, the second stage is a Cournot game (see e.g. Friedman (1977)).

For simplicity, we assume that the unit price on each market is a linear

decreasing function of the total quantity offered at that market. Moreover,

we assume that firms produce at constant marginal production cost. This

implies that markets can be treated independently when the locations of the

firms are fixed. The markets are located at the nodes of a network N.(V,E).

For any pair of locations x1 and x2 on the network, the second stage of the

game, in which firms choose the quantities, is a non-zero-sum non

cooperative two-person game for which there exists a Nash equilibrium (see

Harker (1986) and Kuo and Hakimi (1988)). Furthermore, the linearity

assumption for the price implies that these equilibrium quantities are
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unique and can be explicitly determined. Then, replacing these quantities

in the profit functions of the two firms leads to functions which depend

only upon the locations x1 and x2 that firms choose in the first stage.

This yields a new non-zero-sum non cooperative two-person game. If there

exists a- Nash equilibrium pair of locations, this pair, together with the

corresponding equilibrium quantities is a subgame perfect Nash equilibrium.

Assuming that the transportation costs are concave in the distance,

the marginal production costs

and provided that for every

equilibrium quantities are

that

are concave along any edge of the network,

pair of possible locations x1 and x2, all the

positive, we show that there exists a subgame

perfect Nash equilibrium. Furthermore, the corresponding pair of equi-

librium locations always occurs at vertices of the network. For the case

where all markets are not always served by both firms, we provide examples

with no Nash equilibrium in location or with Nash equilibrium locations

which consist of. the interior points of edges..

This paper is organized as follows. The model is presented at the next

section. The second stage of the game is studied at Section 3.- The

existence of a subgame perfect Nash equilibrium is discussed at Section 4.

Some concluding remarks are presented in Section 5.

2. Model

Let N-,--(V,E) be a network with vertex set V and edge set E. At each vertex

vk e V is located a. market where a- given product is sold at unit price Pk.

This price is a linear decreasing function of the total quantity qk

offered at vk and is given by:

Pk( k) =
Aqk, if 0 :S•cekl 13k

0, otherwise

with (xi, > 0 and 13k 0.

(1)



Each edge ( vi, vi) EE has a positive length and is assumed to be rectifiable.

The distance between two points ( vertices or points along edges) x and y is

noted d(x,y) and is the length of a shortest path joining them.

Two firms locate at the network at points x1 and x2 respectively, produce

the product and ship it to the markets vk E V. The unit transportation cost

between firm i's location xi (i =1,2) and market vk E V is denoted T(d(xi,vk))

and is concave and increasing in the distance.

The marginal production cost, which is assumed to be independent from the

quantity produced, is denoted by C( xi ). Furthermore, it is a. concave

function along each edge of the network. This last assumption corresponds

to the following situation.

Firm i, i = 1,2, produces the product by using .1 inputs j=1,...,J. There are

Hj possible sources of input j in N, they are denoted by yih, h = 1,. , Hi.

The price of input j at yjh is given and denoted by pjh. The cost of trans-

porting -one unit of input j from yjh to xi is tj( d,yih,xi)), which is

assumed. to be increasing and concave in the distance d(yih,xi). Let -a3(i)

be the amount of input j used by firm i to produce one unit of the product.

Then, -the marginal production cost at xi is given by:

J

C(Xi) = E. n {p.m+ ti(d(yih,xi))1]aj(i),
j=1. h=1,

which, as a. weighted sum of minima of concave functions, is a concave

function of the distances d(yih,xi). Next, since each distance d(yih,xi) is

a concave function of xi as xi moves along an edge, C( xi ) is also concave.

The quantity offered by firm i, i = 1, 2, at market vk e V is denoted by qik,

let gi represent the vector of all quantities qik, vk E V. Moreover,

qk= qlk+ q2k.

We can now state the profits as a function of the locations and the

quantities.

4



and

1/1(x1,x2;a1,a2)= E [Pk(q0-71(d(xbvic))]gik-c(xl.) E q1k)
Vk E V vkeV

/12(xi7x2;ilb.g.2)=--- E. [Pk(q)-11(d(x2,vk))1q2k-c(x2) E. q2k•
ukeV vkeV

3. The second stage

Let x1 and x2 be a. pair of fixed locations for the firms. The

problem is a non-zero-sum non cooperative two-person game in

determine the quantity vectors that maximize their profit given

(3 ) . The solution is a Nash equilibrium, i.e. a pair of
* *

quantity vectors gi = (qik ; Vk E V), i = 1,2, such that* *
ii1(x1,x2;.a1,g.2).>_ffi(xi7x2;aba2),
and

* *
/72(x1, x2 ;.g.17 n.2) ?- 172(xi, x2 ;217 n2)

for any vector gj, i 1,2, of nonnegative quantities. In words,

that at equilibrium no firm has an incentive to change

allocation strategy.
•

(2)

(3)

second stage

which firms

by (2) and

nonnegative

this means

its market

Proposition, 1. Let ck(xi) = c(xi) 71( d(xi, vk)), for i = 1,2 and vk eV. Then there

exists a- unique pair of equilibrium quantities given by:

ql,k(Xl, x2

and

(Xk - Ck(Xj.)

2,ek

cek-2ck(xi) -1-ck(x

3#k

if ck(xi) 5_ minfak, 2ck(x2 - czkl,

if minfock, 2ck(x2) - cxkl 5_ ck(xi)

minfak, oak+ Ck(X2) 
2

0 otherwise;

5
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q2k(x1,x2)=

OZk - Ck( X2)

213k

cxk — 2ck( x2) + ck( )

3flk

if ck( x2) min a , 2ck

if minfcxk, 2ck( 1)—(xklck(x2)

minfeek, otk + Ck(Xi)
2

0 otherwise.

(5)

Proof: First, from equations ( 1), (2) and ( 3 ) , we observe that firms will

always produce quantities such that the resulting price Pk(k) is strictly

positive. Hence, we can restrict the set of feasible solutions to

Q={(aba2):qik 0 and 
2k • 
<0 a -I-a 1 ki /31 = 1,2, and vkeV}.

Then, the profit functions can be rewritten as follows:

111(x1,x2;g1,a2)= E (ak- Mqvc-1-q2k) - ck(xi))qa
Vkeif

and

//2(xi,x2;9.1,g2)= I tak- Mqvc+q2k)- ))qCk X2„ _2k•
tlkeV

Next, from these expressions, it is easy to see that each market vk can be

treated separately from the others. Furthermore, the contribution of each

market to these profits is a strictly concave function in the quantities.

This property together with the fact that Q is compact and convex implies

the existence and the uniqueness of the equilibrium in quantities.

Now consider the following two quadratic programs:

qik = arg max { — 13k(q1k+q2k)-ck(xi))qik},
qlk

and

q2k = arg max {( ock 13k(qik-Fq2k)- Ck(X2))q2kl.
q2k ?-° •

6



The solutions given by (4) and (5) satisfy simultaneously the Kuhn-Tucker
* *

conditions of these two programs and the condition aik 2k < _ _ +a k,8. a k, which is

relaxed in these two programs, is always satisfied.

0

4. The First Stage

For any pair xl, x2 EN of firms' locations, we can now replace the quantities

by expressions ( 4 ) and ( 5 ) in the profit functions and obtain functions

depending only on the locations.

In this way we obtain the game of the first stage, in which the profit

functions are:

112(x1, x2) =11i(x1,x2;9.1(xl, x2),22(x1, x2))

for i= 1, 2.

The solution of the total competitive process,

perfect Nash equilibrium, is then given by a

for the first stage game together with

second- stage game (see

locations

for the

solution concept).

corresponding

for

Formally, a-

quantities

each vk e V constitute
* *

Hi(xi, x2) x2),

and
* *

112(1'1, x2) 112(x1, x2),

for any x1E N and x2 EN.

* * *

qik(xi, x2)

which

pair

the

(6)

is called a sub game

of Nash equilibrium

equilibrium quantities

Selten (1975) for a discussion of this
* *

pair x1, x2 N of locations and the

and qik(xi, x2) given by (4) and (5)

a subgame perfect Nash equilibriium if and only if

To establish the existence of an equilibrium- at the first stage, we now

concentrate on the case where at the second stage, for every pair xl, x2 of

qik(xl, x2)locations, the equilibrium quantities

i = 1,2 and all vk e V with ak > 0.

7
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Looking at expressions ( 4 ) and (5), it can be seen that q2k(x1,x2)> 0 for

i = 1,2 and vk E V if and only if for every vk E V with ak> 0,

2 max ck(x) — min ck(x) <k .
X EN X E N

(7)

Intuitively, this means that for any location x EN, the total costs must be

sufficiently small so that it is always profitable to offer some quantity

at each market.

Under condition (7), we can rewrite the profit functions of the first

stage. Specifically, let V' = E V :ak> 01. We then have:

and

111(x1 2) = E. (ak-2ck(xj.)-1-ck(x2) )2/9/3k ,
Vk E V'

112(x13 x2 = E. oak — 2ck(x2)+Ck
V k E V'

) /913k

Lemma 2. Under condition 7), .H1( x1, x2) is convex -when x1 moves, along an

edge (vi, Vi) E E and II 2(xl,x2)

i)EE.

is . convex when x2 moves along an edge

Proof. We need only to •provide the proof for Hi( xi, x2). First, observe that

for each vk E V', ck(xl) = c(x1) -FT(d(xi,vk)) is concave along (vi, vi). Hence

(oak — 2ck( xi) ck(x2))
2
/913k is convex when x2 is fixed and xj, moves along

(vi, vi). Finally, under (7), 111(x1, x2) is given by (8), thus it is a sum of

convex functions.

Corollary 3. Under condition (7), each firm maximizes its profit at some

vertex of N, regardless where its competitor locates, i.e.

arg max //i( xi, X2) E V.
Xi EN
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Proof. This is a direct consequence of the convexity of 172(x1, x2) along an

edge.

We can now establish the existence of a subgame perfect Nash equilibrium

when the total costs are not too large with respect to the prices on the

markets.

Theorem 4. Under condition (7 there always exists a pair of equilibrium

locations for the first stage game. Furthermore, such an equilibrium

consists of a pair of vertices.

Proof. From Corollary 3, we can restrict the set of candidate locations to

the set V of vertices.

Given any starting location of a firm, we show that if each firm, in turn,

responds by relocating at a vertex that maximizes its profit, then this

process converges, in a finite number of iterations, to an equilibrium. By

contradiction, assume that there exists two subsets {v1,1,v1.,2, ,

and {v2,1, v2,2,. , v2,1,} of vertices (which represents the sequences of

choices of locations by firms 1 and 2 respectively with firm 1 being the

first player) such that

111(v1,2) V2,1) 111(v1,1) V2,1))

112(v1,2) 112,2)> 112(v1,2) 112,1),

111(v1,+1, v2,) 111(v1,i) 112,i);

1120/1,41) V2,41 112(v1,41) 712,i))

111(v1,1)11/2,p)> 111(v1, , v2, ),

2(v1,1)711,2)> 11 2(v1,1)112,p) ;

Le. the process cycles.

Adding up all these inequalities, we obtain:

9



E. 111(111,41) 2,1) E .11 2(v1,, 'V 2,i) > E v2,i) + E. H2(v1,i+1,
i=1 i=1 i=1 i=1

where v1,p+1 =

Replacing the the profits by their expressions (8) and ( 9), we have:

E. E.
i=1 vk eV'

Oak - 2ck(v1,i+1) ck(v2,i) )2

9flk i=1

eak - 2ck(v2,i) vi,i) )2

9/6k

(ak-2Ck(271,i) Ck(112,02 p (ak- 2Ck(V + Ck(th,i+i))

E. E.  + E. E.913k 9131ci=1 V k i=1 V k

By permuting the summations over i and tyk e V' and putting all terms in the

RHS, we get:

P 2E. E {(oek — 2ck(v41+0 ck(v2,i) (ak 2ck( v2,1) ) )
2

vkeV'9#k i=1 •

(ak - 2Ck(th,i) Ck(V2,i) )
2
- (CXk- 2Ck(V2,i)+Ck(v1,41))

2
} > 0 ,

or by developing:

E. —7—, E. (Ck(V1,41))2- E. (Ck(V1,i)
2
+204k [ E. ck(vi,i) — E. ck(vi.,i+id 1> 0 •Tp3PkVkEr 'i=1 i=1 Li .1 i=1

Finally, the fact that th,p+1 = sun implies that all the terms of the RHS

cancel and a- contradiction occurs.

Theorem 4 provides an easy method to find a- subgame perfect Nash equi-

librium for networks satisfying condition (7). Indeed, it suffices first to

compute the profit functions /71( vi, v1) and 172(v, vi) given by (8) and ( 9)

for each pair vi, vi of vertices. Then starting with the location of firm 1

10



at some vertex say v11, find the vertex, say v21, that maximizes the profit

of firm 2. Then, given firm 2's optimal vertex location v2i, find firm l's

optimal vertex location v12 by maximizing its profit, and so on. From

Theorem 4 this process converges in 0( I V12). Furthermore the computation of

//i( vk, vt.) can be performed in 0( I VI) for each pair vk, vt of vertices. Hence

this simple algorithm is completed 0(IV13) time.

When condition (7) is not satisfied, we cannot guarantee the existence of a

pair of Nash equilibrium in location, and furthermore in case of existence,

all such pairs may consist of interior points of edges. The following two

_ examples illustrate such situations.

Example 1. Consider the network of Figure 1, where ock =12 and f3k =1 for k= 2,4

and 6 and 0k=i3k= 0 for k= 1,3 and 5. Furthermore assume that T(d(x,vk)).

d(x,vk) for all xeN and vice', and C(x) = 12t(vi, x)/t(vi, vi) for

i=1,3,5 and j=2,4,6.

11

Figure 1. A network with no equilibrium locations:

First note that a. firm will never locate at a- point other than v1, ty3 or v5

because the total cost ck(x) = d(x,vk)+C(x) of all markets is always smaller

at one of these vertices than at any of the remaining ones. Indeed, let

x (vi, vi) and x vi with i= 1, 3 5 and j= 2, 4, 6.

11



Then for vk vi, we have:

ck(x) = d(x,vk)+12t(vi,x)/t(vi,vi)

> d( vi, vk)

= ck(vi) ;

and for vk = vi,

c3(x)

because t(vi, vj) 12

= ci(vi).

We can thus restrict the set of candidate locations to {v1, v3, v5}. Now,

using formulas (4) and (5) we have:

/Li( vs) = //2(v1.7v3) 11.1( v5, v3) = 1. 25

/12(v1, vs) = v3) = //2(v5, v3) =1,

vt = H2( ye, vk), k =1,3,5,  = 1, 3, 5 and

fli(vk, vk) = "2( k, Vk) = 5/9, k =1,3,5.

Hence, there is no .equilibrium in location.

Example 2. Consider the network of Figure 2 where cyi = oz2 = 21, cx3 = oz4 =23 and

' 13k =1, k = 1, 2, 3, 4. Moreover, let T(d(x,vk))=d(x, vk) and C(x) =0 for all xeN

and vk eV. Hence ck(x) = d(x,vk).

vi

2

V3

10 V2

•

12
V4

Figure 2. A network with a pair of equilibrium locations which consists- of

interior points.

12



a

Throughout this example, we denote by (vi, vj, y) the point x (vi, vj) such

that t( (vi, x) = y.

First looking at Table 1, which contains the values of the profits when

firms locate at vi, v2, v3, v4, (vi, v3,1) or (v2, v4,1), one remarks that no

pair of points at most one of which is a non-vertex point can . be a Nash

equilibrium. Now, we show that the pair (v1, v3, 1), (v2, v4, 1) constitute

such an equilibrium. Assume that firm 1 locates at (v1, v3,1). If firm 2's

location x2 is restricted to some edge (vi, vi), then from (5) and (6):

r12( 273, 1

/T2k( (Vb V3, 2

4

2)=E /T2k( (vi, v3,1), x2) with
k=1

d(X2, Vk) )2

4
if d(x2, vk) 5_ minfak, 2d( (v1, v3,1), vk) — ak}

(ak — 2d(x2, vk) + d( (vi, v3,1), vk))
2

9
if minfak, 2d( (v1, v3,1), vk) — ak} d(x2, vk)

minfak, (ak c/( (vi, v3,1), vk))/21

0, otherwise.

Each such /72k( (vi, v3,1), x2)) is thus along (vi, vj) a piecewise quadratic

function in the distance with breakpoints (i.e. points where the function

shape changes) defined by the following conditions.

d(x2, vk) = ak, or

d( x2, vk) = 2d( (vi, v3,1), vk) — cxk, or

d(x2, vk) = (ak + d( (vi, v3,1), vk))/2.

13
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Furthermore, because d(x2,vk) is concave along (vi, vi), each

T2k( (vi, v3, 1), x2) is convex along any subedge limited by two consecutive

breakpoints. Hence, in order to maximize 112( (v1, v3,1), x2) we can restrict

x2 to be in the set of vertices or breakpoints ( i.e. points satisfying

(10) ).

x2

V2 V3 V4 v3, 1) ( v2, v4, 1)

V1

V3

V4

(v1, v3,1)

( v2, v4, 1)

1127.4
L127. 4

1207.9
[207.9

1121.70.33.7j
1209.6
L207. 9 j

1119.01
L133.0 j

1207.3

L217.9

1207.9
L207. 9 j

1127.4
L127. 4 j

1209. 61
1.207. 9J

1121.7

L133.7 j

1207.3
1.217. 9

0.19.01
1.133. 0 j

1137.7

L121.7 j

1207.9
[209.6 j

1123.4
0.23. 4 j

1209.6

1.209. 6 j

1122.6

1.124,6 j

1221.1
1.219. 4 j

1207.9
L209. 6 j

1133.7

L121.7 j

1209.6
1.209. 6 j

1123.4

1.123. 4 j

1221.1
L219. 41

1122.
1,124.6 j

1133.0
1.119. 0 j

1217.9

1.207,3 j

1124.6

1.122. 6 j

1219.4

1.221. 1 j

1122.8

1.122,8 j

1221.0
1.221. 0 j

1217.9
1.207. 3 j

1133.0

1.119. 0 j

1219.4

L221.1 j

1124.6

1.122. 6 j

1221.0

1.221. 0 j

1122.8
1.122. 8 j

Table : [111 ( X1 X2

112(X19X2)
or x1 and x2E {14, v2, v3, v4, (1/17 V3 1)9 (V27 V4, 1)1*

Moreover the row in Table 1 which corresponds to x1 = (v1, v3, 1) indicates

that no vertex provides a. better profit. to firm 2 than (v2, v4, 1) does. It

remains to check that this is also the case for the breakpoints. The

necessary information is presented in Tables 2 and 3.

14
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V1 V2 V3 V4

ak 21 21 23 23

2d( (vi, v3, 1), vk) — ock —19 1 —21 1

(ock+d((vi,v3 1), vk))/2 11 6 12 17.5

Table 2. Values of d(x,vk) for x to be a. breakpoint ( cf. ( 11 ) ).

d(x2,vi d( X2, v2) d( X2, V3) d( X2, v4) r12((v1, V3, 1),x2)

(v1, v2, 9)

(v1, v4,10)

(v2, v3, 1)

(v2, v3, 2)

(v2, v4, 1)

(v3, v4, 9)

(v3, v4, 11)

9 1 11 3 195.7

10 3 12 1 196.6

11 1 10 3 195.2

11 2 9 4 172.1

11 1 13 1 221.0

11 5 9 3 151.2

12 3 11 1 196.6

Table 3. Distances- to the markets- and profit when firm 2 locates- at a

breakpoint.

5: Concluding Remarks

We have studied the competitive process of two firms which first locate and

then decide the quantities they offer on the markets, where the unit price

is a- linear decreasing function of the total quantity offered. Under the

assumption that the transportation costs plus the production costs are

never "too large" ( so that it is always profitable to offer a positive

quantity at each market) we have proved the existence of a subgame perfect

Nash equilibrium and shown that one can be find be looking at the vertices

of the network. When the above assumption is relaxed, we provide examples

showing that these properties do not hold anymore. Though these results

concern the case where firms are allowed to locate anywhere on the network

N, they also hold when firms have only a- finite set of possible locations.

This can be easily checked by looking at the proof of Theorem 4 and Example

1.

15
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It appears interesting to expand to the cases where one might allow more

than two firms to compete and/or firms to open several facilities. Finally,

throughout this paper, no special assumption has been made about the

network. Then, a natural question - is: can we obtain stronger results when

the network is a tree. We conjecture that the existence of a subgame

perfect Nash equilibrium is then always guaranteed.
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