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A: Note on a Stochastic Location Problem

—_—
-

J.B.G. Frenk
M. Labbé
S. Zhang

Econometric Institute, Erasmus University Rotterdam

Abstract

In this note we give a short and easy proof of the equivalence of Hakimi’s

one-median problem and the K-server-single-facility-loss median problem as

discussed by Chiu and Larson (cf. [1]). The proof makes only use of a
stochastic monotonicity result for birth and death processes and the
sensitivity of the M|G|K loss model.
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1. Model formulation and results

Consider the  K-server-single-facility-loss median  model (K-SFLM) as

discussed by Chiu and Larson (cf. [1],[2]) and define

p_ﬁ")( ):= number of customers being served at time ¢ by one of the

servers if the facility is located at xeF

where the set F ¢ R® denotes some feasible region. As argued in [1] the

queueing process underlying the K-SFLM location problem is a M |G | K loss-
model. For this queueing process it is well-known (cf. [3]) that for fixed

xeF g(tK)(x) converges in distribution to some random variable QO(OK)(x)

representing the number of customers being served in steady state if the
location is xeF. Moreover, the distribution of go(om(x) only depends on the
first moment m;(x) of the service time (Erlang’s Loss Formula). If the

facility is located at xeF the costfunction Z(x) takes the following form

(cf. [1])

Z(x) = Py(x)Q +(1~Pg(x))my(x)

Pg(x): = P{customer “arriving” in steady state at location x is lost}
my(x): = expected service time of arbitrary customer whenever facility

is located at x

Q:= cost per lost customer, 0>0.

The main result proved in [1] using lengthy calculations states that the
costfunction Z(x) is increasing in my(x). This implies that the I—SFLM
location problem is solved by determining that location xeF which minimizes
the expected service time my(x). Hence, in the special case where F denotes
some network N this boils down to finding the so-called Hakimi median (cf.

[5]) at one of the nodes of N.




The above result can be verified easily without any calculations by using a

well-known stochastic monotonicity result for birth and death processes.

Before proving this we need the following observations. By Little’s formula
(1-Pg(x)my(x) equals % S(QO(OK)(x)) with A the arrival rate of the Poisson

process. Moreover, by the PASTA property (Poisson Arrivals See Time
Averages)

Pr(x)=P{n F(x) = K}.
Hence by (1)

2(x) = 0P (%) = K} 43 £(n ()

Lemma 1.

Let x,x*eF. If ml(x)Sml(x*) we obtain Z(x)gZ(x*).

Proof.

In order to prove Z(x) is increasing in my(x) it is sufficient to verify

*
that f(go(om(x)) < S(D.O(OK)(x )) and P{II.O(OK)(X) =K} gP{Bo(oK)(x*) =K} whenever m;(x) <
my(x ).

By the sensitivity of the M |G|K loss system with respeét to only the first

moment my(x) this breaks down to prove the above inequalities for the

Markovian loss models ¥, =M |My|K and Yo=M|M,|K, ie. loss models with the

same Poisson arrival process and negative exponential service times with

parameters p,(x)= (ml(x))"l‘
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%k -1
for }, and p,(x )=(m1(x*)) ' for Y2. Denote by
(¥:) the number of customers in system Y; i¢=1,2, at time ¢, O<t<oo and

K .
by Bo(o )():,-), t=1,2 the corresponding limiting random variables.
Clearly these stochastic processes are birth and death processes on the
finite state space {0,1,...,K} with transition rates

q“+1~=/\, i=0,...,K—1,
Qii-y = ip4(x), i=1,...,K for Y1+ and

*
qii-l-l:)‘s ‘=0)"',K—11 Qii-1='#l(x )’

Since py(x)>p(x ) we obtain by a well-known stochastic monotonicity result

for birth and death processes (cf. [4,prop.4.2.10]) that for every t>0

0z <o (x,)
d




This implies by a limit procedure £n( )(): )<8n( )(Ez) and P{n(K)(E )=K}<
P{n(K)(Ez)_K} Hence the desired 1esult is proved.
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