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Abstract

In this paper I will try to describe how the theory of stochastic processes

and especially of stochastic differential equations has influenced option

pricing theory. In my view, this is one of the best examples of the

application of sophisticated mathematics to a purely economic, or financial,

problem. This is not only because of the fact that the theory describes the

economic phenomena very well, but merely since the main results are used in

every day practice by market makers. I will discuss the pricing of options on

stocks and bonds and mention some other examples.
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OPTION PRICING AND STOCHASTIC PROCESSES

by

Ton Vorst

1. Introduction

Stochastic processes and especially the theory of stochastic differential

equations have played a fundamental role in the theory of option pricing. In

general an option gives the holder or owner the right to buy or sell something

at his discretion before a certain prescribed date at a price, which has been

specified in advance. Black and Scholes (1973) were the first who derived the

equilibrium price of an option which gives the owner the right to buy a stock

before a certain date at a fixed price. They used a stochastic process to

model the price of the stock. It was Merton (1973), who, in his fundamental

paper on the theory of rational option pricing, made their arguments

mathematically more rigorous and made a more extensive use of the stochastic

theory. Although they all used the theory of stochastic processes, they didn't

use the theory in its full strength at that time. The theory was used to

derive a partial differential equation to describe the option price as a

function of the stock price and the time that remained till the date on which

the option would expire.

However to solve the partial differential equation it was transformed into the

heat equation of which the solution has been known in physics for a long time.

At that time, it seemed that the option price formula could only be derived

using physics. But this wasn't true. The theory of stochastic differential

equations was developed far enough to give a direct solution of the partial

differential equation in terms of the expected vlaue of a certain stochastic

variable, without any reference to physics or what so ever. The so called

Kolmogorov-backward equation gives this direct solution. Nowadays the result

of Kolmogorov is used as a standard method to describe solutions of partial

differential equations that appear in financial theory (see e.g. Cox,

Ingersoll and Ross (1985)).

The formula of Black and Scholes is not only widely accepted by academic

theorists, but also used as a black-box by market participants to calculate
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prices for options they want to sell or buy. By black-box we mean that the

derivation of the Black-Scholes formula is far to complicated for most market

participants to understand in all its details. Hence they only use the formula

or even a software program which requires some input variables and immediately

gives the Black-Scholes price.

Sometimes the Black-Scholes black-box has been used in cases where this is not

appropriate. Fortunately, the Black-Scholes formula cannot be used for all

kinds of options. Otherwise the subject would have lost academic interest.

However, in all cases one has to rely heavily on the theory of stochastic

processes.

Stochastic differential equations are not only used to price options but are

also applied in a more general way to describe optimal consumption and

investment decisions in a continuous time setting (see e.g. Merton (1989)).

However, it is remarkable that a theory which has been so succesfully applied

in parts of economics and finance has not been used on a larger scale in other

disciplines in the economic sciences. This is particularly striking since

other mathematical disciplines as catastrophe theory and chaos have attracted

a lot more attention, while they have never proved to be of any use in

describing any economic phenomena. For chaos there still might be some hope,

because it has only recently been introduced in economic theory. Catastrophe

theory, which was very much promoted in the seventies, didn't bring any new

insights. May be it are the names which attract the theorists and in that

respect the theory of stochastic differential equations doesn't seem to have a

big appeal.

The aim of this paper is .not to give a thorough introduction into the theory

of stochastic processes and stochastic differential equations, because this

would require a book of its own. Furthermore the books of Arnold (1971) and

Oksendal (1985) are excellent introductory texts. We will also not give an

extensive survey of the general theory of option pricing since the subject is

to detailed to be described in a text for a general audience. The main goal of

this paper will be to give a flavor of the results and theorems from the

theory of stochastic differential equations that are applied in option pricing

theory and how they influenced this theory. We will not prove any of these

theorems but only give references for their proofs. We hope to trigger the

interest of the reader to this mathematical theory, that is so beautifully

applied to a purely economoic problem.

This paper is organized as follows. In the next section we will derive the
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Black-Scholes formula which can be seen as the most pure application of

stochastic differential equations in option pricing theory. Further we will

stick our attention in this section to the pricing of options on stocks. In

section 3 we will discuss the pricing of options on bonds. This part of the

theory is far less developed than the preceeding part, due to the fact that

bonds mature after some finite time. In section 4 some other generalizations

of options will be described, while the last section concludes the paper.

2. Basic option pricing

In this section we derive the Black-Scholes formula for the price of a call

option on a stock. A call option is characterized by the stock on which it is

written, its maturity date T and its exercise price K. The holder of the call

option has the right to buy one share of stock before time T at the fixed

price K, the so called exercise price, from the issuer (or in option terms

writer) of the option. Hence at the maturity date T, the value of the option

is equal to

(2.1) max (S(T)-K,0),

where S(t) is the price of the stock at time t. It is clear that at time t=0,

the prices S(t), t>0, are unknown. It is common practice to assume that the

uncertain future prices S(t) can be described by a stochastic process.

Particulary it is assumed that the process S(t) is the solution of the

following stochastic differential equation.

(2.2) dS(t) = aS(t)dt + aS(t)dW(t),

where a and a are positive constants and W(t) is a Wiener process or Brownian

motion. As said before we will not go into the details of stochastic

differential equations, but only give some idea of the general theory. For a

good introduction one may study Arnold (1974), Oksendal (1985) or Malliaris

and Brock (1982). The last one has been written with applications from

economics and finance in mind.

Here we only try to give a flavor of the most important ideas of the theory.

A Wiener process is a stochastic process which has the following properties.



Ton Vorst

a. W(t) is a stochastic variable with values in R for every t>0.

b. For all 0<t1<t2<...<tn, the variable (W(ti),...,W(tn))Te ERn is multivariate

normally distributed with mean 0 e Rn and covariance matrix.

(2.3)

ti • • et ti

ti t2 • • •t2 t2

ti t2 • • •tn_i tn_i

ti t2 • • •tn,..„1 tn

c. Almost every realisation, i.e. time path, W: [0,00HR of the stochastic

process is continuous and nowhere differentiable.

It follows from (2.3) that Var(W(t)).t.

Now consider a more general stochastic process X(t), i.e. a process with

properties a and c and a continuous function s : IR
2
-->R. It (1944) has defined

a stochastic integral

(2.4) f s(7,X(r)dW(7)

which is a stochastic generalization of the standard Riemann integral

(2.5) s(7,X(7))&r.

Having defined a stochastic integral we can talk about stochastic differential

equations as follows. For given continuous functions f,a: O2
 
-adiR we say that

the stochastic process X(t) is a solution of the stochastic differential

equation.

(2.6) dX(t) = f(t,X(t))dt + cr(t,X(t)dW(t)

if and only if

•.O.
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(2.7) X(t) = X(0) + f(r,X(7)).:17. + cr(7,X(7))dW(7)

Under some general conditions on f and a one can show that a solution X(t) of

the stochastic differential equation (2.6) always exists and that the solution

X(t) has the following properties

,-•
(i) X(t) has the Markov-property, i.e. for t1<t2< . . . <tn<s and A cER,

(2.8) Pr(X(s) = Pr(X(s) E AIX(tn))

This means that the future of X only depends on the current state and not on

the past. Hence it makes sence to define the transition probability.

(2.9) P(t,x;s, ) = Pr[X(s) e A I X(t) = x] for t<s.

i.e. P(t,x;s,A) gives the conditional probability that X(s) e A given that

X(t)=x.

i) For every x E R and e> 0

(2.10) lim -i-1:-..t- f P(t,x,s,dy) = 0;
s4, t iy-x 1>e

(2.11) lim 
s-
1 .1 y-x)P(t x;s,dy) = f(t,x);

s4, t
I y-x15.e

(2.12) lim 
 I (y-x)2P(t,x,s,dy) = cr .

s4, t
I y-x I5.e

Equation (2.10) states that the probability of large changes in an infinite-

simal time interval is zero, while (2.11) implies that the expected change in

X._ over an infinitesimall time interval is given by f(t,x) times the length of

the interval and (2.12) gives the second moment of the change over an

infinitesimal interval. A process with properties (i), (ii) and (iii) is

called a diffusion proces. f(t,x) is called the drift of the process and
2
a (t,x) the diffusion coefficient.
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One of the main results in the theory of stochastic differential equations is

Ito's lemma. Let X(t) be a diffusion process which is a solution of the

stochastic differential equation (26).

ItO's lemma. Let u(t,x): [0,T] xIR R be a continuous function with

continuous first and second order partial derivatives ut, ux, uxx.

Define the stochastic proces Y(t) = u(t,X(t)). Then

(2.13) dY(t) = ut(t,X(t))dt + ux(t,X(t))dX(t) + 22-uxx(t,X(t))72(t,X(t))dt

We will illustrate Ito's lemma by an example whith X(t) = W(t).

W(t) evidentily is a solution of (2.6) if we take f=0 and a=1.

Define

(2.14) Y(t) = u(t,W(t)) = Y(0)exp{(a-22-a2)t + crW(t)},

where cy,a and Y(0) are constants.

Then it follows from Itô's lemma that

(2.15) dY(t) = t(t,W(t))dt + u(t,W(MdW(t) + iu,„„,(t,W(t))dt

= oz-la2)Y(t)dt + aY(t)dW(t) + la2Y(t)dt =
2 2

= otY(t)dt + aY(t)dW(t)

Hence Y(t) is the solution of the stochastic differential equation (2.2) and

we can take

(2.16) S(t) = S(0)exp((cx-ia2)t + aW(t))

Combining this with the properties of the Brownian motion, we see that S(t) is

lognormally distributed for each t and

(2.17) E(log S(t)/S(0)) = (otia2)t

(2.18) Var(log S(t)/S(0)) = a2Var W(t)) = a2t.

a is called the volatility of the stock.

Besides stocks we will also use riskless bonds in the derivation of the option
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pricing formula. We will assume that the riskless interest rate v is constant

over time, at least till the maturity date T of the option. Hence the increase

in value of a riskless investment can be described by the differential

equation.

(2.19) dB = rBdt,

where r = 1 + v.

In fact (2.19) can also be seen as a stochastic differential equation with

a=0.

In what follows we will assume that the stock doesn't pay dividend before the

maturity date of the option and ignore transaction cost and taxes. Furthermore

we will assume that all assets are perfectly divisible and that the markets

are frictionless. Since all other parameters, T, K, r, a, and a are constant

the only variables on which the option price depends are the stock price S and

the actual time t. Let C(t,S) denote the option price. From Ito's lemma it

follows that:

(2.20) dC = Ctdt- + CAS + 1C33a2S2dt = (Ct + CsoeS + IC33a2S2)dt + aSC",

where we have suppressed the variables on which the functions C, S and W

depend and Ct, C. and C„ are again first and second order partial

derivatives.

Consider at time t the portfolio P consisting of C. shares of stock and

borrowing the amount (SC.-C) against the riskless rate r. The initial value of

this portfolio is Cs.S-(SC.-C)=C exactly the same as the option price, while

the portfolio value follows the stochastic differential equation

(2.21) dP = CAS - (5C.-C)rdt = {aSC. + r(C-SQ]cit + aSdWC,

We see that the portfolio bears the same instantaneous risk as the option i.e.

(2.22) dP - dC = [r(C-SC,$) - ct jdt

doesn't have a stochastic term in its specification.

Hence the combination of P and C is riskless and requires no initial

investment. But then it should give a zero expected profit, because otherwise
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there would be riskless arbitrage opportunities. This means that the

righthandside of (2.22) must be zero:

(2.23) Ct + la2S2C33 r(SCs-C) = 0

This is the fundamental partial differential equation that every option obeys.

Remark that the portfolio P has to be adjusted continuously in order that it

bears the same risk as the option. This is the reason that it is often called

a self-financing dynamic duplicating portfolio.

We will now assume that the option can only be exercised, i.e. changed against

the stock for the exercise price K, at the maturity date T. This kind of

option is called a European option. In practice options can be exercised also

before the maturity date. These options are called American. The value of the

European call option is determined by the solution of (2.23) which satisfies

the boundary condition.

(2.24) C(T,S) = max(S(T)-K,0))

To solve the partial differential equation we first transform it.

Define

(2.25) F(t,S) = e T-tr C(t,S)

Then (2.23) and (2.24) can be rewritten for F as follows:

(2.26) Ft + i1C33cr2S2 + rSC, = 0

(2.27) F(T,S) = max (S(T)-K,13)

Now we can use an important result from the theory of stochastic processes

(Arnold 1974], pp.41-43). Let P(t,x;s,A) be the transition probability of a

diffusion process X(t) with continuous drift f(t,x) and continuous diffusion

coefficient a
2
(t,x). Furthermore if g(x) denotes a continuous function such

that

(2.28) u(t, = Et,xg(Xs) = g(y)P(t,x;s,dy)

•



Option Pricing and Stochastic Processes 9

•

for t<s, and s fixed, is continuous, as are its partial derivatives ux and uxx

then u satisfies Kolmogorov's backward equation:

(2.29) ut + fu x + i1a2uxx = 0

• with boundary condition

(2.30) lim u(t,x) = g(x)
s

Et,x is the conditional expectation given that X(t)=x. In our case we consider

the diffusion process given through the stochastic differential equation

(2.31) dS = rSdt + aSdW,

where we again suppressed the variable t as the argument of the functions. We

take s=T and g(S3) = max(S(T)-K,0).

Now Kolmogorov's backward equation states that if

(2.32) u(t,S) = Etog(S(T))

is continuous, as are its partial derivatives u, and

then u satisfies

(2.33) ut + rSus + i1a2s2u33 = 0

Uss, with respect to S,

which is exactly the partial differential equation (2.26). To determine (2.32)

we remark that it follows from the example by which we illustrated Ito's lemma
1 that log(S(T)/S(t)) is normally distributed with mean (r--2a
2 
)(T-t) and

variance a
2
(T-t). Using this, it is an elementary exercise in probability

theory to show that

(2.34) u(t,S) = Et,sg(S(T)) = (S(T)-K)f(S(T))dt =

S(T)>K

1 rn(S/K) +(r + -a
2 
)(T-t

Se
rer-O

N  2 

ai/TT

ln(S/K)+( r -1a2)(T-t )]

aVT:l

where f is the density function of the lognormal distribution described in the
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previous sentence and N is the standard cumulative normal distribution

function. It requires some tedious calculations to show that us and us, exist

and are continuous. Hence we know that u is the solution of (2.26) and (2.27).

Using (2.25) we deduce that

(2.35) C(S,t) = SN [dd- Ke-r(T-t)N[di-al/T-7-1]

with

(2.36) d1 = fln(S/K) + (r4(72)(T-t)}/aVT-t

This formula is the Black-Scholes formula for the price of a European call

option. We like to make a few remarks about this formula. Combining (2.25) and

(2.34) it follows that the option price is simply the discounted expected

value of max(S(T)-K,0). However S(T) no longer represents the price of the

stock, but it is the solution of the stochastic process (2.31) which can be

seen as describing the price of a stock which has the same variance as the

underlying stock but earns only the riskless rate r instead of the rate a of

the underlying stock.

Besides call options there also exist put options. The owner of a put option

has the right to sell a stock before time T at a fixed exercise price K. A put

option is not simply the negative of a call option because a call option will

only be exercised if the stock price exceeds K and a put option only if S is

below K. To price a European put option P, i.e. one that can only be exercised

at the maturity date T, we derive the partial differential equation for the

put price P.

(2.37) Pt + 12172S2Pss + r(SPs-P) = 0 0 « T, S> 0

This is the same equation as (2.23), because up to (2.23) we never used the

fact that we were pricing a call option. We only have another boundary

condition

(2.38) P(S,T) = max (K-S(T) 0).

One can use again Kolmogorov's backward equation to find the value of the put

option. However, there is an easier way around, which uses the fact that we
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already know the value of the call option. Consider two investors A and B. A

buys a stock and a put option on it, while B buys a call option on that stock

with the same exercise price K and maturity date T as the put option and

invests Ke-r(T-t) in riskless bonds. It is an easy exercise to show that the

portfolios of both investors have, independent of the final value of S, the

same value at the maturity date T. Hence also the initial investments for both

portfolios must be equal i.e.

(2.39) P + = C + Ke-r
T-t)

Hence the price P of the put option can be derived from the call value C, the

stock price S and the riskless interest rate r. Equation (2.39) is known as

the put-call parity.

Up to now we have only considered European options, i.e. options that can only

be exercised at the maturity date. In reality, however, options are never

European but always American and can always be exercised before the maturity

date. Hence the holder of the option has the extra right to decide when he

wants to exercise his option. This will also mean that American options will

always be more expensive than ceteris paribus, their European counterparts,

since these extra rights will have their price. Only if it is certain that it

is never optimal to exercise early the prices of both options will be the

same. The holder is confronted with an optimal stopping problem, where by

stopping in this case is meant that he exerises the option. General references

for optimal stopping theory are Shiryayev (1978) and Oksendahl (1985), while

Van Moerbeke (1973) considers problems which are very similar to the ones we

are confronted with here. It follows from the results of Van Moerbeke that if

the underlying stock pays no dividend before the maturity date of the option,

it is never optimal to exercise a call option early. There is also an easier

way to see this. Assume that the holder of the option at some moment thinks

that it is optimal to exercise the option. Instead of excercising the option

at that very moment he can decide to exercise the option at the maturity

date, whatever might happen. In both cases he will have the stock at the

maturity date. Only in the second case he has to pay the exercise price K

later than in the first case. Since we assume that interest rates are

positive, it is clear that the second strategy has to be prefered. Hence

instead of exercising, it is better to decide to exercise at the maturity date

and to hold the option. Furthermore by not revealing one's decision to the

•
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issuer of the option one still has the possibility not to exercise at the

maturity date. To put some more perspective on this argument, let us look at

the case of a put option. In case one exercises a put option early, one

receives the exercise price K before the maturity date instead of at the

maturity date. Depending on the interest rate this might by very profitable

since on can reinvest the amount K until the maturity date T and end up with a

sum which is more than K. However by early exercising one gives up ones right

to postpone the decision and to see what happens with the stock price. Hence

for a put option it is not immediately clear when it is optimal to exercise.

The put price P still satisfies the partial differential equation (2.37) and

the boundary condition (2.38), but furthermore it follows from optimal

stopping theory that for every t there exists a level S*(t) below which it is

optimal to exercise the put option and above which it is not optimal. This

level S*(t) is given by the following conditions:

(2.40) P(S*(t), t)) = K - S*(t)

(2.41) Ps(S*(t), t)) = -1

Condition (2.40) states that when it is just optimal to exercise, the value of

the put option is exactly the cashflow which results from exercising. Hence

for S(t) < S*(t) the value of the option is given by K-S(t) and for

S(t) > S*(t) the value is given by P(S(t),t). Condition (2.41) states that the

option value is differentiable with respect to S in the critical point S*(t).

Conditions (2.39) and (2.40) in fact replace the boundary condition P(0,t)=K

for the European put option which we didn't write down explicitly. The partial

differential equation (2.36) no longer holds for all S(t) > 0, but only for

S S*(t), where S*(t) has to be determined by simultaneously solving (2.37),

(2.38), (2.40) and (2.41). This is called a free boundary problem since the

partial differential equation doesn't have to be solved on a fixed domain but

on a domain of which the boundary has to be determined at the same time. There

isn't an analytic solution for this problem. To solve the system of equations

(2.37), (2.38), (2.40) and (2.41) one has to use numerical procedures.

If there are dividends before the maturity of the option it might also for the

holder of a call option be optimal to exercise early, since the dividends

accrue to the stockholder and not to the holder of the call option. However,

using the same argument as before one can show that it is only optimal for a

-
•

•
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-

call holder to exercise just before a dividend date. For the holder of a put

option dividends might be an incentive not to exercise the option. In the

literature there are several methods to value an option on a stock which pays

dividends before the maturity date. The compound option method as proposed by

Geske (1979) is one of the best-known methods.

3. Bond Options 

In the preeeding section we described the pricing of options on stocks. For

non-dividend paying stocks the Black-Scholes formula gives an analytic formula

for the price of a call option. Not only scientists agree on this formula but

also in practice market-participant use the Black-Scoles formula to calculate

their prices. They only need to have an estimate of the volatility of the

stock, since all other variables in the Black-Scholes formula are known from

the specification of the option (K and (T-t)) or are determined in other

markets (S and r).

However for options on bonds, there is less agreement about a correct formula

which can also be easily used by market-participants. In fact one might say

that the pricing of options on bonds is still an open problem. The main

problem with bonds is that they have a finite lifetime. Bonds are redeemed

after some time, the maturity date TB of the bond. For ease of exposition we

will consider a discount, or zero coupon, bond i.e. a bond which doesn't pay

coupons. The holder only receives the nominal value at the maturity date.

These bonds are called discount bonds because there are issued at a price far

below the nominal value to compensate the investor for not receiving interest

payments during the lifetime of the bond. At any time t before TB, the price

of the bond B(t) depends on the prevailing interest rates, while at TB the

price is the nominal, or face, value of the bond. We will scale the bond

prices such that its face value is 1, i.e. B(TB)=1. Now it will be clear that

we cannot use an equation like (2.2) to describe the bondprice process since

this equations leads to a stochastic bond price at every moment, and

especially at TB. This is in contradiction with the fact that the price is

known. Furthermore it follows from the solution of (2.2) as given in (2.17)

and (2.18) that the variance of the future prices increases over time, while

for a bond the variance decreases if one approaches maturity. In conclusion we

cannot rely on the Black-Scholes formula to price options on bonds, since the

•-•
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stochastic process describing stock prices cannot be used for bonds. A second

problem is that we assumed that there is a fixed interest rate r which is

independent of the stock price. However, bondprices are determined by interest

rates and hence are certainly not independent of the prevailing interest

rates.

The proposed methods to describe the pricing of bond options can be divided

into two groups, direct and indirect methods. Direct methods specify a

stochastic process for the bondprice and derive from this an option price

formula. Indirect methods first specify a stochastic process that describes

the interest rates over time, then deduce from these interest rates bond

prices and in the sequel determine option prices. We will not describe all

proposed methods, but only some which illustrate the use of the theory of

stochastic processes in option pricing.

A direct method for bond option pricing, which uses the theory of stochastic

processes in a very elegant way, has been proposed by Ball and Torous (1983).

They use the following stochastic differential equation to describe the price

of a bond that matures at TB and has face value 1:

(3.1) dB(t) = oz(B,t)B(t)dt -F aB(t)dW(t)

where

= 1(72  1
(3.2) o 2 crirt ln(B(t))z(B,t)

This stochastic differential equation differs by the one, which we used to

describe a stockprice, only in the drift term which is no longer constant. The

advantage of this specification can be seen most easily by using Itô's lemma

to find following the stochastic differential equation for Y(t) = ln(B(t))

(3.3) dY(t) = crlisro  Y(t)dt + adW(t)

From (3.3) we see that if Y(t) is positive the drift term is negative and vice

versa, if Y(t) is negative then the drift term is positive. Hence the process

has a tendency to zero, which becomes stronger if t gets closer to TB due to

the 1/(TB-t) factor. It can be proved (see Karlin and Taylor (1981)) that this

tendency is that strong that Y(TB)=0 with probability one. Hence
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B(TB) = eY(TB). 1, as is required for the bondprice. The process described in

(3.3) is known as a Brownian bridge process, and for every te(0,TB), Y(t) is

normally distributed with mean Y(0)((TB-t)/TB and variance ta
2
(1-t/TB) (see

e.g. Arnold pp. 131-132).

Having described the bond price dynamics we can try to proceed in the same way

as we did for stocks. However, since interest rates are related to bond prices

we can no longer assume that the interest rate r is fixed. Fortunately Merton

(1973) has proved that the Black-Scholes formula also holds for stochastic

interest rates. For bonds we proceed as follows. Let D(t) be the price of a

discount bond with face value 1, which matures at T, the maturity date of the

option. Hence T < TB. We assume that the D(t) can be described by

(3.4) dD(t) = (D,t)D(t)dt + criD(t) dWi(t)

where

1  (3-5) cei(D,t) la2
2 1 (1%.1 ln(D(t))

and W1(t) is another standard Brownian motion such that the correlation

between W1(t) and W(t) is pt.

Now, nothing stands in the way to apply the same arguments as we did for

options on stocks. This results in the following formula (see Ball and Torous

(1983)) for the price of an option on the bond with exercise price K:

(3.6) C(B,t) = BN(dd - KB N(dr-WT:T)

where

2

(3.7) d1 = {ln (B/K) - ln D + T-t 1/v1/T-7-T

2 2
(3.8) v = a + + 2pa

We see that (3.6) bears close similarity with the price for options on stocks

(2.35), with D replacing e
-r(T-t) 

and v replacing o.

To determine the price of a particular bond one needs an estimate of v.

Bergstrom (1976) describes methods for getting unbiased estimates for the
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parameters of the joint process (3.1) and (3.4). As with stocks (3.6) not only

gives the value of a European call option but also of an American since we

assumed that we had to do with a discount bound which doesn't pay any coupons.

For bonds with coupons one again has an optimal stopping problem.

The model of Ball and Torous is not unobjected for reasons to be explained

below. Since interest rates are always positive it follows that B(t) < 1 for

all t E (0,TB), otherwise one would earn a negative interest rate on the

discount bond. Hence Y(t) has to be negative for all t E (0,TB), with

probability one. However, as remarked earlier, Y(t) as given by (3.3) is

normally distributed with mean Y(0)(TB-t)/TB and variance ta2(1-t/TB) and so

there is a positive probability that Y(t) > 0.

This is the main objection against the Ball-Torous model. It allows for

negative interest rates with positive probability. As far as we know there

have never been introduced in the literature a stochastic process which

describes the bondprice dynamics and overcomes the objection against the

previous model. A suitable process also needs to fulfil the condition that

B(t) is less than D(t), where D(t) still is the price of the discount bond

which matures at T < TB. This also follows from the requirement of nonegative

interest rates, since if D(t) < B(t), it would be cheaper to buy the bond

which matures at T and keep its face value on a deposit without interest

payments (zero interest) from T till TB, than to buy the bond which matures at

TB. Hence the price of the last bond is to high and will decrease. If one

wants a model which describes different options on bonds with different

maturities one gets more of this kind of conditions. This is the reason why

e.g. Cox, Ingersoll and Ross (1985) and Courtadon (1982) introduced models for

pricing bond options which specify a stochastic process for the interest rates

and deduce from these simultaneously the prices of bonds and options. In this

way they can ensure that negative interest are not possible. These models are

examples of indirect methods.

Cox, Ingersoll and Ross (1985) use the following process to describe the

short-term interest rates.

(3.9) dr = k(0-r)dt + crArfdW,

where a, k, 0> 0 are constants and we have again suppresed the variable t in

the functions r and W. Given the sign of k this process has a tendency to go

to 0 and is for this reason called a mean-reverting process. 0 can be seen as
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the long term equilibrium interest rate. In order to ensure that the interest

rates are positive, it is enough to require that 20 > 
2
, because in that

case the stochastic process r(t) can never reach 0. (See e.g. Schuss (1982)

for conditions on the specification of a stochastic differential equation that

ensure that the process never crosses a certain boundary.) Using (3.9), Cox,

Ingersoll and Ross derive partial differential equations like (2.23) and

expressions involving expectations like (2.32) for bond and option prices.

However, the problem is that from these equations and expressions one cannot

derive analytic formulas like the Black-Scholes formula, and hence one doesn't

get an explicit formula for the price of an option on a bond. The only way to

derive this price is by using numerical procedures to solve the partial

differential equation. This is a disadvantage of most indirect methods.

We can say that there is not a single method that is acknowledged by both

practitioners and academists as the best one for the pricing of options on

bonds. This becomes even more disturbing if one realizes that options are not

only traded separately from bonds, but that a lot of bonds have an option

attached to them. Examples are callable bonds, where the issuer has the right

to redeem the bond before maturity by paying the face value to the holder of

the bond. Hence the holder of the bond has a straightforward bond, but at the

same time the issuer holds a call option on the bond with exercise price equal

to the face value.

4. Options on other instruments

There are not only traded options on stocks and bonds but also on other

financial instruments. Very popular are for example currency options. The

holder of such an option has the right to exchange a certain amount of one

currency against another currency at a fixed rate before the maturity date of

the option contract. Garman and Kolbhagen (1983) derive an analytic formula

for the price of a European currency option. The following duality for

currency options can be used to understand their result, which will be given

below, and at the same time it illustrates why the American feature of

currency options is important. A call option to exchange Yens against dollars

is the same as a put option to exchange dollars against Yens as long as both

options have the same maturity date and fixed exchange rate. Both options will

be exercised if and only if the dollar is cheaper measured in Yens than it is
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for the fixed exchange rate. If one views the Yen as a stock in dollar terms

and tries to use the Black-Scholes formula, the interest rate in the United

States will be a relevant variable. On the other hand for the put option the

interest rate in Japan will be relevant. Hence it might come as no surprise

that the price of a European currency call option is influenced by both

interest rates. The formula of Garman and Kolbhagen (1983) for a call option

to exchange Yens against dollars reads as follows

*
-(4.1) C (Tt)N(Se-r Ke (T-r' 'N(cl*I-aVTIF)

with

(4.2) di = fln(S/K) + (r-r*+-licr2)(T-t)Wal/TTIF

where K is the fixed exchange rate, stated in the option contract and S the

figuring exchange rate. a2 is the variance in the exchange rate, r the

interest rate in the United States and r* the interest rate in Japan. If we

compare this formula with the Black-Scholes formula we see that S is replaced
*

-r 
. (T-t)by Se The duality described above immeditely yields the fact that it

might be optimal to exercise a currency option earlier because it can also be

seen as a put option, for which we showed earlier that it might be optimal to

exercise early. Hence (4.1) holds only for European currency options.

Another kind of intensively traded options are index options. An index is a

weighted average of the prices of different stocks such as the Dow-Jones index

or the Standard & Poors 500 index. Of course an index isn't a tradeble

security as a stock or a bond. Hence, the holder of a call option on an index

cannot buy the index against the fixed exercise price but he is entitled to

the difference between the index and the exercise price, whenever this

difference is positive. This is an option with cash settlement, i.e. the owner

receives an amount of cash at the exercise date instead of a security. These

options can be used by holders of a portfolio of stocks to protect their

portfolio against a crash in the stock market.

Recently there have been introduced options which do not payoff the difference

between the price of a security and the exercise price, whenever this is

positive, but their final payoff is the difference between the average price

of the security over some time interval and the exercise price. For example,
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the AB Svensk Exportkredit issued Yen/dollar currency options which entitle

the owner of the option to the difference of the average Yen/dollar spot

exchange rate over the contract year and a fixed exchange rate, whenever this

is positive. Other examples of these kind of contracts are based on the

average oil price over a specific time interval, or the average gold price.

Often one meets these options as part of a bond contract. The venture capital

company Oranje Nassau issued bonds with a 6% coupon which entitle the holders

at the maturity date to the maximum of the face value and the average price of

10,5 barrels North See Oil over the last year of the bond contract. Hence

holders of the bond have a straightforward bond and an option on the average

oil price over the last contract year with an exercise price equal to the face

value of the bond. Reasons for using the average value after a year, instead

of the oil price on the last contract day are that Oranje Nassau is protected

against oilprice manipulation at this final day, and that the profits of

Oranje Nassau are heavily influenced by the oil price and in this way they

only have to pay a positive at the maturity date of the option if the oil

price is high during the last year of the contract, in which case they will

indeed have generated significant profits. Kemna and Vorst (1988) describe a

pricing model for options based on average asset values over a fixed time

interval. Also for this kind of option a partial differential equation like

(2.23) and an expectation formula like (2.32) can be derived, but there cannot

be found an analytic expression like the Black-Scholes formula. The reason is,

that if the asset price is described by (2.2), the future prices are

lognormally distributed and the average value of lognormally distributed

variables is no longer lognormally distributed. If one would have taken the

geometric average instead of the usual arithmetic average the average would

also have been lognormally distributed and a Black-Scholes formula could be

derived. Kemna and Vorst (1988) use a geometric average and Monte

Carlo-simulation to approximate the price of an average value option. There

also _ are firms that issued options based on geometric averages, but these

options are so called over-the-counter-options, i.e. they are not traded on an

exchange but directly sold by the issuer to some buyers.

Stulz (1982) describes the pricing of options on the minimum and maximum vlaue

of two assets, while Margrabe gives a model to price options that give the

right to exchange one asset for another. These kind of options are often part

of a futures contract. For example in commodity forward contracts two parties

agree that at the maturity date of the forward contract one of the parties

•
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sells a certain amount of the commodity to the other party at a fixed price.

Most of the time, the seller has the right to chose between several qualities

of the commodity. Hence he has the option to chose the quality. A good example

is the Treasury Bond Future contract. With this future contract the seller has

to sell a Treasury Bond to the other party at some fixed price. However the

seller can chose which bond he wants to sell. The only restriction is that the

bond still has at least 15 years to maturity. Hence he has the option to sell

the bond with the lowest value.

There are several other example of options. A good overview can be found in

Cox and Rubinstein (1985).

5. Conclusion

In this paper we have shown how the theory of stochastic processes has

influenced the theory of option pricing. Especially the problem of pricing

call options on non-dividend paying stocks has been resolved using the theory

of stochastic differential equations in such a way that both practitioners and

theorists agree on the solution. However in case of options on bonds there

still remains a lot of work to be done to get a pricing formula that is both

theoretically sound and easy to use. In the last section we showed that there

are not only options on stocks and bonds but there are a lot more options,

although most of them are not traded as such, but are part of a financial

contract. These options will be a fruitful area of future research.
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