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UPPER TRIANGULARIZATION OF MATRICES BY LOWER

TRIANGULAR SIMILARITIES

H. Bart P.S.M. Kop Jansen

ABSTRACT

This paper is concerned with the following questions. Given a square

matrix A, when does there exist an invertible lower triangular matrix L such

that L-1AL is upper triangular ? And if so, what can be said about the order

in which the eigenvalues of A may appear on the diagonal of t-1AL ? The

motivation for considering these questions comes from systems theory. In fact

they arise in the study of complete factorizations of rational matrix

functions. There is also an intimate connection with the problem of

complementary triangularization of pairs of matrices discussed in [4].



O. INTRODUCTION

Let A be an mxm (complex) matrix. As is well-known A can be brought into

upper triangular form by a similarity transformation. In other words, there

exists an invertible mxm matrix S such that S-1AS is upper triangular. Here we

are interested in the situation where S can be chosen to be lower triangular.

We then say that A admits upper triangularization by a lower triangular 

similarity.

First let us give some motivation for considering this property. Recall

from systems theory that a complete factorization of a rational nxn matrix

.function W(x) is a factorization of the form

(0.1) w(A) =
1

n A-a
1

•• • (i+ '_R),-- 
n

m 
m

where RI,...,Rm are nxn matrices of rank 1 and a certain minimality condition

is satisfied (no "pole/zero cancellations"). Such factorizations do not always

exist and if they do one cannot always choose the order of the poles

of W(A) at will.

The questions arising naturally in this context can be most efficiently

answered in terms of realizations. A realization of W(X) is an expression of

the form

(0.2) = In + C(XI-A)-1B,

where A is an mxm matrix, B is an mxn matrix and C is an nxm matrix. Systems

theory tells us that such a realization exists whenever W(X) is analytic at

co and W(.0) = I. It turns out that under certain additional assumptions



W(A) admits a complete factorization of the form (0.1) if and only if the

matrix ABC associated with the realization (0.2) admits upper

triangularization by a lower triangular similarity. For details (including a

brief review of the necessary background material from systems theory), see

Section 4.

Next, let us describe the contents of the other three sections

constituting the paper. We shall do this by stating (simplified versions of)

the main results and commenting on them. All the time A will be a square

complex mxm matrix.

THEOREM 0.1. If A is diagonable, then A admits upper, triangularizationilm

a lower triangular similarity.

This theorem is proved in Section 1. The argument is based on the

observation that A admits upper triangularization by a lower triangular

similarity if and only if there exists an (invertible) matrix S such that S

has non-vanishing leading principal minors and S-1AS is upper triangular.

Section 1 also contains an analysis of the 2x2 case.

THEOREM 0.2. Let A ... Z + b T, where Z is a lower triangular non

derogatory matrix, b is a cyclic vector for Z and c is a .cyclic vector for the

transpose ZT of Z. Then A admits upper triangularization IL a lower triangular
similarity.

This theorem is proved in Section 2. The general theme of Section 2 is

the relationship between the problem studied in the present paper and the

issue of simultaneous reduction to complementary triangular forms discussed in

[4]. It turns out that the conditions of Theorem 0.2 imply that A and Z admit



simultaneous reduction to complementary triangular forms. This means that

there exists an invertible matrix S such that S-1AS is upper triangular and

S-1ZS is lower triangular. Further analysis yields that S can be chosen to be

lower triangular (see Proposition 2.1).

It is illuminating to note that the problem of simultaneous reduction to

complementary triangular forms is also intimately connected to that of

complete factorization of a rational matrix function. As a matter of fact, the

two are practically equivalent. Indeed, if WOO is given by (0.2) and m is

taken as small as possible (i.e. the realization (0.2) is minimal),

then W(X) admits a complete factorization of the form (0.1) if and only if A

and A—BC admit simultaneous reduction to complementary triangular forms. For

further details, see [4].

THEOREM 0.3. If A is a first companion matrix, then A admits upper 

triangularization Lt. a lower triangular similarity.

A first companion matrix has the determining entries in the last row.

Second companion matrices are the transposes of first companion matrices So a

second companion matrix has the determining entries in the last column.

THEOREM 0.4. Let A be a second companion matrix. Then A admits upper,

triangularization by a lower triangular similarity if and only if A has at

most one eigenvalue zero (counted according to algebraic multiplicity).

These theorems are proved in Section 3 by explicitly defining lower

triangular similarities that bring the companion matrices in upper triangular

form. Two corollaries are given. They are based on the simple observation that

if A admits upper triangularization by a lower triangular similarity and if Z



is a lower triangular matrix, then A and Z admit simultaneous reduction to

complementary triangular forms.

The theorems stated above are concerned with the existence of a lower

triangular matrix L such that t-1AL is upper triangular. For Theorems 0.2-0.4

the information is completed by determining the order in which the eigenvalues

of A may appear on the diagonal of t-1AL. In connection with Theorem 0.1, an

example is given to show that in general this order cannot be chosen at will.

A few remarks about notation and terminology: All matrices to be

considered have complex entries. The nxn identity matrix is denoted by In, or

simply I. Whenever this is convenient, matrices are identified with linear

operators. The null space of a matrix (operator) M is denoted by Ker M. We use

MT for the transpose of M. The symbol I] stands for "end of proof" or "end of

example".

1. PRELIMINARIES AND FIRST RESULTS

Let A be an mxm matrix. We say that A admits upper triangularizationlm a

lower triangular similarity if there exists an invertible lower triangular

mxm matrix L such that L-1AL is upper triangular.

Given a matrix A with this property, one can build others. Indeed, if A

admits upper triangularization by a lower triangular similarity, then so does

(i) T lAT, where T is any invertible lower triangular mxm matrix,

(ii) p(A), where p is an arbitrary polynomial.

In (ii) one can also take an analytic function p defined on a neighbourhood of



the spectrum of A. If Al and A2 admit upper triangularization by a lower

triangular similarity, then so does

A

Of course this result can be extended to direct sums involving more than two

matrices.

Next we present a first characterization and some related material.

THEOREM 1.1. The mxm matrix A admits upper triangularization by a lower

triangular similarity if and only if there exists an invertible mxm matrix S

such that S has non-vanishing leading principal minors and S-1AS is upper,

triangular.

Proof. Suppose such an S exists. The assumption on the principal leading

minors of S implies that S can be factorized as S = LU, where L is an

invertible lower triangular matrix and U is an invertible upper triangular

matrix (cf. [12, Section 2.101). Now L-1AL = U(S-1AS)U-1 is upper triangular.

This proves the if part of the theorem. The only if part is a triviality: take

S = L, where L is an invertible lower triangular matrix such that L-1AL is

upper triangular. j]

Theorem . can be used to give a quick proof of Theorem 0.1.

Proof of Theorem 0.1. Let U be an invertible mxm matrix such that U 1- AU

is a diagonal matrix. By multiplying U from the right with an appropriate

permutation matrix II, one gets a matrix un with non-vanishing principal

leading minors. Put S = UH. Then S-1AS = 1f(uAu)n is again a diagonal



matrix. In particular S- AS is upper triangular. Now apply Theorem 1.1. [1

By the diagonal of a matrix K = lk 
i 1 

we mean the ordered m-tupleij 

(kill ...,kmm). If K is a triangular matrix, then the diagonal of K contains

the eigenvalues of K counted according to algebraic multiplicity. In

connection with Theorem 0.1, the following question comes up. Can one choose

the diagonal of L-1AL at will ? The following example shows that in general

• the answer is negative.

EXAMPLE 1.3. Let

1

Then A is diagonable and so Theorem 0.1 applies. In fact A can be brought even

into diagonal form by a lower triangular similarity. For instance, if

then L1 is lower triangular and

VS

1

The diagonal of L11AL1 is (0,1). It is easy to verify that there does not
exist an invertible lower triangular matrix L for which L- AL is upper

triangular with diagonal (1,0). E]

We conclude this section by considering the 2x2 case.



THEOREM 1.4. Let A be a 2x2 matrix, and write

[
a
11 

a
12

a
21 

a
22 [ 

all -a22

2a21

The following statements are equivalent:

(1)

]

2a12

- a

A admits upper triangularization 1.3E a lower triangular similarity,

(ii) A is diagonable or an 0 0,

(iii) rank H 1 or a12 A 0.

Proof. Put

a = 
a
II 
+

22
2

Then H = 2(A-al), and so A admits upper triangularization by a lower

triangular similarity if and only if the same is true for H.

The discriminant of the quadratic polynomial d t(XI-A) is equal to

-det H. Thus A has two different eigenvalues if and only if rank H = 2.

Clearly, A is a scalar multiple of the identity if and only if rank H = O. So

rank H A 1 implies that A is diagonable. This proves that (iii) implies (ii).

Assume (ii) is satisfied. If A is diagonable, then (i) holds by

Theorem 0.1. In the case when A is non-diagonable (hence rank H = 1) and

a12 0, we put

2a 
0

L = 12 

Ia
22
- a

1 
2a
12

Then L is lower triangular and invertible. A straightforward computation,

based on the identity det H = 0, yields



CHL
2812 'o 

0 0

It follows, that (i) is satisfied.

Finally, suppose rank H = 1 and a12 = 0. Then all = a22, and H has the

form

with a21 # 0. But then H is non-diagonable. Since H is lower triangular too,

we may conclude that H does not admit upper triangularization by a lower

triangular similarity. So (i) implies (iii). [1

2. THE CONNECTION WITH COMPLEMENTARY TRIANGULAR FORMS

In this section we make the connection with [4], where complementary
triangular forms of pairs of matrices are investigated. Recall that

two mxm matrices A and Z are said to admit simultaneous reduction to

complementary triangular forms if there exists an invertible mxm matrix S such
that S-1AS is upper triangular and 5-1ZS is lower triangular.

We shall need (part of) the following proposition. An mxm matrix Z is

called non-derogatory if all its eigenvalues have geometric multiplicity 1. In

other words, if rank(Z-cI) > m-1 for all complex 4.

PROPOSITION 2.1. Let Z be a lower triangular mxm matrix. The following 

two statements are equivalent:

(i) Z is non-derogatory,
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(ii) Every,  invertible mxm matrix S with the property that S-

triangular with the same diagonal as Z, is lower triangular.

S is lower

Proof. First we shall prove that (i) implies (ii). In fact we shall

establish a slightly more general result: Let Z, Y and S be mxm matrices and

assume that Z is non-derogatory, Y and Z are lower triangular with the same

diagonal, and ZS = SY. Then S is lower triangular. The argument is as follows.

Let e c C have all coordinates zero except for the last one, which is

equal to 1. Then Z(Se) = S(Ye) = uSe, where u is the last element on the

diagonal of Y. Our assumptions imply that u is the last element on the

diagonal of Z too. Clearly e is an eigenvector of Z corresponding to the

eigenvalue p. Since Z is non-derogatory, the eigenspace of Z corresponding to

the eigenvalue u has dimension 1. So Se is a scalar multiple of e. This means

that all entries in the last column of S vanish, except perhaps for the last

one.

Let Zo be the (m-1)x(m-1) matrix obtained from Z by striking out the last

column and the last row of Z. Define Yo and So in the same way. Then

SoYo =ZoSo' SinceZis lower triangular, we have that

rank(Z-I < 1 + rank(Z - Inr.1),m 0

Hence Zo is again non-derogatory. This part of the proof can now be finished

by an induction argument.

Next we show that (ii) implies (1). Suppose (i) is not satisfied. So the

(lower triangular) matrix Z has an eigenvalue c such that dim Ker(Z-0,m) > 2.

Without loss of generality, we may assume that = 0. So dim Ker Z > 2. Let

Zl, respectively Zna, be the matrix obtained from Z by striking out the first

row and the first column, respectively the last row and the last column, of Z.
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We may also assume that Ker ZI and Ker Zm are 1-dimensional. Indeed, one can

reach this situation by removing appropriate columns and rows from Z.

Under these circumstances the first column of Z depends linearly on the

other columns. Likewise, the last row of Z depends linearly on the other rows.

In particular the first and last element in the diagonal of Z are equal to O.

It is now easy to find an invertible lower triangular mxm matrix L such that

L-1ZL is lower triangular with the same diagonal as Z, while the entries in

the first row, the last row, the first column and the last column of L-1ZL are

all zero. Define the mxm matrix R by

1
0

1
0

and put S LR. Then S-1ZS is lower triangular with the same diagonal as

but S is not lower triangular. 11

We are now ready to give a second characterization of the property

studied in this paper. It involves an auxiliary lower triangular non-

derogatory matrix Z.

9

COROLLARY 2.2. Let A and Z be mxm matrices, and assume that Z is lower

triangular and non-derogatory. Then A admits upper trian&ularization /a a

lower triangular similarity if and only if there exists an invertible mxm

matrix S such that S-1AS is upper triangular, S-1ZS is lower triangular and

S-1ZS has the same diagonal as Z.
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In the particular case when Z has only one eigenvalue of algebraic

multiplicity m (for instance, Z is a single lower triangular mxm Jordan

block), one can drop the requirement that S-1ZS and Z have the same diagonal.

The if part of Corollary 2.2 is an immediate consequence of Proposition

2.1. We shall say something about the only if part at the end of the section.

THEOREM 2.3. Suppose A can be written as A = Z + R, where A is a lower

triangular mxm matrix, rank R = 1, and A and Z have no common eigenvalues.

Then, given an ordering a
1m 

of the eigenvalues of A, there exists an

C1AL invertible lower triangular mxm matrix L such that L AL is upper triangular

with diagonal (a_,...,a ).
1 m

Proof. Since rank R = 1, we have

rank(Z- Im) > -1 + rank(A-cIm CE

By assumption A and Z have no common eigenvalues. So Z is non-derogatory.

Let
'm 

be the eigenvalues of Z in the order in which they appear

on the diagonal of Z. According to [4, Theorem 7.2], there exists an

invertible mxm matrix L such that

Vie

L / AL =

a
l 

a
l1

a -c . a
111 1

2 
a
2'

..-
2 
. • • a

2
-c
2

. .

. . ,
•

0 0 . .0 am
Orn.
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and I.71ZL has diagonal (c '). In particular, L71AL is upper triangularm

with diagonal (a ) and L-1ZL has the same diagonal as Z. Now apply

Proposition 2.1. [1

Note that this proof contains additional information about the form that

AL can take.

Next we shall see that the hypotheses of Theorem 2.3 amount to the same

as those of Theorem 0.2. As a consequence,the conclusion of Theorem 2.3 also

holds under the hypotheses of Theorem 0.2. In this sense Theorem 2.3 is just a

refined version of Theorem 0.2. Recall that b is eicyclic vector of the

mxm matrix Z if b,Zb,...,tm-lb are linearly independent. The matrix Z has

cyclic vectors if and only if it is non-derogatory, and in that case the set

of cyclic vectors is open and dense in el.

PROPOSITION 2.4. Let A be an mxm matrix. The following statements are

equivalent:

(1) A can be written as A = Z + R, where A and Z have no common

eigenvalues and rank R =

(ii) A can be written as A = Z + bc1, where b is a cyclic vector for Zand

c is a cyclic vector for ZT.

Proof. Assume A can be written as in i). Choose vectors b and c in e

such that R = b T, and put

i• Ker

c
T

c Z

T m-1c Z
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Then M is an invariant subspace for Z (use the Cayley-Hamilton theorem). Since

A = Z + bcT, we have that M is an invariant subspace for A too. Clearly A and

Z coincide on M. So if M is non-trivial, A and Z have a common eigenvalue. By

assumption this is not the case. Hence M = (0). But this means that c is a

cyclic vector for zT. Applying the same reasoning to AT ZT and RT, one sees

that b is a cyclic vector for Z. This proves that (i) implies (ii).

Suppose that A can be written as in (ii). We need to show that Z and

A = Z + bcT have no common eigenvalues. One way to do this, is to assume

(without loss of generality) that Z has Jordan canonical form and to establish

that det(pIm-A) * 0 whenever p is an eigenvalue of Z. The details are quite

tedious, and will be omitted.

Another approach uses (some of) the elements from systems theory reviewed

in Section 4 below. Put

Then w

x) =
det(XI

det(XI

A) is a scalar rational function having the value 1 at co. Observe that

w(A) = det(XIm-A).det(XI-Z)

-
= det(XI -A)(XI 

m
-Z)

1
m 

-,
= det(I

m 
- bc

T 
(XIm-Z)

1 
)

-1
= det(1 - 

T 
(AIm-Z) )*

So w(X) = 1 - cT(XIm-Z)-1b, and this realization of w(X) is minimal because b

is a cyclic vector for Z and c is a cyclic vector for ZT. On the other hand,

the McMillan degree of w(X) is equal to m-k, where k is the number of common

zeros of the monic scalar polynomials det(XIm-A) and det(XIm-Z). Hence k = 0,

i.e., the matrices A and Z have no common eigenvalues. f]
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It is illuminating to consider the following special case. Let Z be a

diagonal mxm matrix with m different complex numbers on the diagonal. Then b

and c are cyclic vectors of Z = ZT if and only if all elements in b and c are

non-zero. This means that R = bcT is a rank one matrix having no zero entries.

As announced earlier, we conclude this section with some remarks about

the only if part of Corollary 2.2. The first is that this part of the

corollary is trivial and holds even without the requirement that Z is non-

derogatory. So we have the following result on simultaneous reduction to

complementary triangular forms. Let A and Z be mxm matrices, and assume that A

admits upper triangularization ja a lower triangular similarity and that Z is

lower triangular. Then there exists an invertible (lower triangular) mxm

matrix L such that L-1AL is upper triangular and L-1ZL is lower triangular

(with the same diagonal as Z). We shall use this simple observation in

Section 3.

The next remark is that the condition of lower triangularity imposed on Z

is not too restrictive. Indeed, if A and Z are arbitrary mxm matrices and T is

any invertible mxm matrix, then A and Z admit simultaneous reduction to

complementary triangular forms if and only if the same is true for T-1AT and

T-1ZT. By choosing T appropriately, one can always see to it that T-1ZT

becomes lower triangular.

3. COMPANION MATRICES

In this section we study upper triangularization by lower triangular

similarities of companion matrices. Recall that companion matrices are the

building blocks of what is often referred to as the first natural normal form

(cf. [6, Section VI.6) and [12, Section 7.6]).

First we consider a second companion mxm matrix A, i.e., A has the form



(3.1)

0 0 • • • 0-a0 
1 0 . . 0 -a1

-a
2

. . . , .

. . . . .

. . . . .
0 0 • • •

16

1 -a
m-1

where are complex numbers. The next two results are inspired by

the material contained in [4, Section 31.

LEMMA 3.1. Let A be a second companion mxm matrix as (3.1), and let

al,...,am be the eigenvalues of A. Define

(3.2)

and introduce

a al al . . • al
0 a

2 
a
2 

a
2

• • • a
m

1 mijk,i.i .21  stipulating that

ft
k1 j 1(3.3) s 
- 

= 
-

k=1

Then

(3.4) det S =

and

(3.5) AS = SX,

i.e., S intertwines A and X.

j+1
A-am

).

+m(m-1) 2 m-1
a
2
a
3
...a

m
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The matrix X is upper triangular with diagonal (a

triangular. The inverse S

s'. = (-
kJ

is given by

-k 
-1-p

k 
-1-p

m
ak ...am

pk+...+pm = k-j-1

...,a
m

m-k 
-1-q

k+1 
-1-qm

ak+1 ...am

clk+14--s+ m m k-j
clk+1"."qm

Of course S-1 is lower triangular too.

and S is lower

Proof. Express ao,...,a and the coefficients ski of the polynomials

(3.3) in a 
...' 

a and compute. (Or apply [4, Lemma 3.11 with the matrix Zm

appearing there equal to the lower triangular nilpotent mxm Jordan block). El

THEOREM 3.2. Let A be a second companion matrix as in (3.1). Assume there

exists an invertible lower triangular mxm matrix S such that SAS is upper 

triangular with diagonal (a
1
,... ). Then

(3.6) a * 0,

Conversely, suppose a
l'
...,a

m 
are the eigenvalues of A and (3.6) is satisfied.

Define the matrices iand S m 
[skjkm1 

2).17_ (3.2) and (3.3), respectively.

Then S is invertible, S is lower triangular and

(3.7) S 1AS =
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In particular S- AS is upper triangular with diagonal (al • • 1,13

The eigenvalues of A can be ordered in such a way that (3.6) is satisfied

if and only if A has at most one eigenvalue zero (counted according to

algebraic multiplicity). In terms of the elements of A, this means that either

ao 0 or al O. Condition (3.6) can be rephrased as follows: At most one

eigenvalue of A is zero, and a possible zero comes first. Theorem 3.2 is a

refined version of Theorem 0.4 from the Introduction.

Proof. Condition (3.6) is equivalent to requiring that the matrix

S = 
1

i
k
s . Tn. given by (3.3) is invertible. This follows from (3.4). If S is

L j 
1
Jk,J= 

invertible, (3.5) and (3.7) amount to the same. Therefore the second part of

the theorem is an immediate consequence of Lemma 3.1.

Assume S has the properties mentioned in the first part of the theorem.

If = 0 for some k > 2, there exists a non-zero row vector x = (x1 xml

satisfying xS-1AS = 0 and xj = 0, j = In particular xl = O. Clearly

xS-1 is a left eigenvector of A corresponding to the eigenvalue zero of A.

Since A is of second companion type, it follows that xS-1 is a scalar multiple

of [1 0 Oh Hence x is a scalar multiple of the first row of the lower

triangular matrix S. Combining this with xl = 0, one gets x = 0 contradicting

the fact that x is a non-zero vector. Hence (3.6) is satisfied. r]

First companion matrices are the transposes of second companion matrices.

So in the next theorem Z = AT, where A is as in (3.1).

THEOREM 3.3. Let Z be a first companion mxm matrix. Given an ordering

of the eigenvalues of Z, introduce the matrix T =
m - mI.tkjikj2



im  stipulating that

(3.8) • A-Ck-1).

19

Then.T is invertible, T is lower triangular and

-(3.9) TZT
1
 =

01,

1

C2
• • •
• • •
0 0 0
0 0 0 • .

1 • • •

In particular TZ1-1 is upper triangular with diagonal

-The inverse T 1 = [t1
j 
]
k 
m

1 
of T is given by

• • •

= k-j1 j

Of course T-1 is lower triangular with diagonal (1,...,1) too. Theorem 3.3 is

a refined version of Theorem 0.3 from the Introduction.

Proof. Express the entries in the last row of Z and the coefficients tkj

of the polynomials (3.8) in c ,...,cm and compute. ti

Combining Theorems 3.2 and 3.3 with the observation (concerning the first

part of Corollary 2.2) formulated in the last paragraph of Section 2,

immediately obtains the following results.

one
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COROLLARY 3.4. Let A be a second companion mxm matrix, and let Z be a

lower triangular mxm matrix. Suppose A has at most one eigenvalue zero

(counted according to algebraic multiplicity). Then, given an ordering

al,...,a of the eigenvalues of A satisfying (3.6), there exists an invertible 
m -

lower triangular mxm matrix S such that S-1AS is upper triangular with

diagonal (al,... ,am) and S-1ZS is lower triangular (with the same diagonal as

Z).

For S one can take the matrix defined by (3.3) in Lemma 3.1. In that case

S-1AS = W, where X is given by (3.2).

COROLLARY 3.5. Let A be an upper triangular mxm matrix, and let Z be a

second companion mxm matrix. Then, given an ordering ci,...,c of the
m

eipnvalues of Z, there exists an upper triangular mxm matrix S such that

S-1AS is upper triangular (with the same diagonal as A) and 5-1 S is lower 

triangular with diagonal 

For S one can take the transpose of the matrix T introduced in

Theorem 3.3 with a replaced by 
c. 

In that case S-1ZS is the transpose of the
J 

matrix appearing in the right hand side of (3.9).

We conclude this section with a remark about Corollary 3.4. The

particular case when Z = Zof where Zo is the lower triangular nilpotent mxm

Jordan block was discussed already in [4, Section 3, Case 21. It is

interesting to see what happens when, more generally, one takes for Z a lower

triangular mxm Toeplitz matrix,

•



(3.10)

21

z 0 0 • • 0
z
0

1
z
0 

0 . . . 0

z2 z1
z
0 

• • . 0

. . . .. . . .. . . .
z zz

m-1 m-2 
z • • . m-3 0

i.e. Z is a polynomial in Zo. Clearly, if Z is of the form (3.10),

Corollary 3.4 applies. The following converse result holds true. Let A be a

second companion mxm matrix and let Z be the lower triangular ,Toeplitz matrix 

given 1).../. (3.10). Assume there exists an invertible mxm matrix S such that

S-1AS is upper triangular with diagonal (a
1''

a
m
) and S-1ZS is lower 

triangular. If zi # 0, then (3.6) is satisfied. Indeed, Zo is of the form p(Z)

for some polynomial p. So our assumptions imply that A and Zo admit

simultaneous reduction to complementary triangular forms. Apply now the

results of [4, Section 3].

4. THE CONNECTION WITH COMPLETE FACTORIZATION

We begin bij reviewing some material from systems theory. The material is

concerned with rational nxn matrix functions. We shall always assume that

these functions are proper (i.e. analytic at co). The relevant references are

DO], [11], j91, [5], [7], 113], [2] and [3].

Let W(X) be a rational nxn matrix function. Then W(X) can be written in

the form

(4.1) 1400 + C(AI -A)n m

where A is an mxm matrix, 13 is an mxn matrix and C is an nxm matrix. The

identity (4.1) implies that



(4.2) WOO = I - C(AI-Z)
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where Z = A-BC (= itix in the notation of [2], [3], 8 and 11). Expressions of

the type (4.1) and (4.2) are called realizations.

The smallest possible (non-negative) integer in for which a given rational

nxn matrix function WOO admits a realization (4.1) is called the McMillan

degree of W(A) and is denoted by 6(W). It is equal to the total number of

poles of W(X) counted according to pole multiplicity. For a discussion of this

notion, see [2]. Note that WO = 0 if and only if W(A) is identically equal

to* I•

The realization (4.1) is called minimal if in = o(W). An equivalent

requirement is that

CA
(4.3) rank

and

(4.4) rank B AB ...

m

The matrices appearing in (4.3) and (4.4) have sizes mnxm and mxmn,

respectively. The minimality of (4.1) implies that of (4.2). In particular,

the McMillan degrees of WOO and WOO-1 are the same.

Minimal realizations are essentially unique: if (4.1) is a minimal -

realization of WM, then all possible minimal realizations of W(x) can be

obtained by replacing A, B and C by (respectively) S-1AS, 5-1B and CS, where S

is any invertible mxm matrix. This result is known as the state space 
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isomorphism theorem.

Suppose (4.1) is a minimal realization of WOO. Then the poles of W(A)

coincide with the eigenvalues of A. More precisely, the following results hold

true:

(i) is a pole of W(X) of pole multiplicity k if and only if A
o 
is an

eigenvalue of A of algebraic multiplicity k,

(ii) A is a pole of W(A) of order p if and only if X is a pole of

(XIm7A)-1 of order p.

A pole A of WOO is called geometrically simple if its pole multiplicity

happens to be equal to its pole order. Note that Ao is a geometrically simple

pole if and only if Ao is an eigenvalue of A of geometric multiplicity 1. So

all poles of W(A) are geometrically simple poles if and only if A is non-

derogatory. Scalar rational functions have geometrically simple poles only.

The McMillan degree is sublogarithmic in the following sense. If

W(A) = W (A). .W (A) is a factorization of W(A), then

6(W 6(W4).
j=1

Of special interest are factorizations for which equality holds (no "pole-zero

cancellations"). These are called minimal factorizations. There are rational

matrix functions that do not allow for any non-trivial minimal factorization

(cf. 15) or [1, Subsection 7.1]).

A rational nxn matrix function is called elementary if it has McMillan

degree 1. A scomplete factorization is a minimal factorization involving

elementary factors only. Thus a complete factorization is a factorization of

the form



(4.5) W(X
1

1+
n A

-al
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... (I + — 
1 
—R

n X-a m '

where m is the McMillan degree of W(X), ,...,a are the poles of W(X)

counted according to pole multiplicity and Rm are nxn matrices of

rank 1.

Two questions arise in this context. When does a given rational nxn

matrix function W(X) admit a complete factorization (4.5) ? And if it does,

what can be said about the order in which the poles a ,...,am may appear

i (4.5)

For the general case, an answer can be given in terms of realizations and

simultaneous reduction to complementary triangular forms: Let (4.1) be a

minimal realization of W(A). Then, given an ordering a
m 
of the poles of

W(X), there exists a complete factorization of W(X) of the form (4.5) if and

only if there exists an invertible mxm matrix S such that S-1AS is upper,

triangular with diagonal (al,...,a
m
) and S-1(A-BC)S is lower triangular. For

details, see [4, section 61.

Here we shall discuss the special situation (including the scalar case)

where W(X) has geometrically simple poles only. In terms of a minimal

realization (4.1) of W(X) this means that A is non-derogatory. This condition

is certainly satisfied when A has no multiple eigenvalues, i.e., each pole of

W(X) has pole multiplicity 1.

THEOREM 4.1. Let W(X) be a rational nxn matrix function with W(00)

and assume each pole of W(X) is geometrically simple. Let al,...,am k!12.

poles of W(X) counted according to pole multiplicity (12 m = o(W)), and let

W(X) = In + C( XIm-A)
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be a minimal realization of WOO such that A is lower triangular with diagonal

(a • • • ) • Then W(A) admits a complete factorization of the form

W(A) =
14.

n A-a
l

(i+ )n A-a
m 

mi

(with the spoles in the sgiven order) if and only, if A-BC admits supper 

triangularization .12.E a lower triangular similarity.

A realization of the type hypothesized in the theorem always exists.

Proof. The conclusion of the theorem holds if and only if there exists an

invertible mxm matrix S such that S-1(A-BC)S is lower triangular and S-1AS is

upper triangular with diagonal (a...,a
m
). An equivalent requirement is that

there exists an invertible mxm matrix L such that L-1 (A-BC)L is upper

triangular and L-1AL is lower triangular with diagonal (am,...,a1). By

hypothesis W(X) has geometrically simple poles only, i.e., A is non-

derogatory. Also A is assumed to be lower triangular with diagonal

(a ,...,a
1 
). Apply now Corollary 2.2 (with A replaced by A--BC and Z replacedm 

by A). []

As was already observed in the last but one paragraph of Section 2, the

only if part of Corollary 2.2 holds even without the condition that the matrix

Z appearing in the corollary is non-derogatory. Correspondingly, the if part 

of Theorem 4.1 is true without the assumption that W(A) has geometrically 

simple,  poles only.

A sufficient condition for W(A) to have geometrically simple poles only

is that each pole of W(X) has pole multiplicity 1. In terms of a minimal

realization (4.1) of W(x) this means that A has no multiple eigenvalues. In
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particular A is diagonable, which implies that W(X) does admit complete

factorization (see [2, Theorems 1.6 and 3.4]; cf. also [5], [13] and [1]). The

following example shows that in such a factorization the order of the poles

cannot always be chosen at will.

EXAMPLE 4.2. Let

w(A)

Then W(X) has 0 and 1 as poles. Both poles have pole multiplicity 1. Clearly

1

1

0

is a complete factorization of W(A). There does not exist a complete

factorization of W(X) of the form

X-1
1

)(I + 
X 
—R
2 
).

To see this write W(X) = I + C(XI-A) B with

1

Ii o'l E
0 0

1 1

and note that A-BC (being lower triangular and non-diagonable) does not admit

upper triangularization by a lower triangular similarity. [1
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