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ESTIMATION OF CONTINUOUS MODELS ON THE BASIS OF SET-VALUED OBSERVATIONS

ABSTRACT

by B.M.S. van Praag and J.P. Hop.

In many empirical applications the phenomenon (Y,X) in which we are interested
aﬁd for which we assume a model Y=£(X;0)+ € , cannot be observed exactly.

Then we can only say that (Y,X) €A cR™? yhere A is a point set. Probit, Tobit
or discrete choice models are examples.

In those cases we say that the observations are set-valued and that the latent

phenomenon is observed through a filter . For the model Y=BX+e we present a

general ML-method for estimating B and E(ee') which bypasses the well-known

problem of the computation of multi-dimensional integrals.
Examples .are given for the case where we only observe max(Yl,Yz,Y3) or

max (Yl,...;YG).

February 15, 1987.




ESTIMATION OF CONTINUOUS MODELS ON THE BASIS OF SET-VALUED OBSERVATIONS.

1. INTRODUCTION.

One of the fascinating developments in econometrics, but also in other
empirical sciences, is the emergence of Probit-type estimation problems.
Basically, such problems arise if we have a latent model, say, Y'= B'§ + ¢!
with (Y,X)eRm+n a random vector, e~N(0,I), ; a matrix, the columns of which
are subvectors of X, where Y or X or both cannot always be exactly observed,
but where we have to be satisfied with non—-exact observations of the type
(Y,X) eAcR®™, where A is a point set in R™™, We call the observations set—
valued. In that case estimation of B and I becomes a problem.

The problem is not so much a philosophical problem as it is fairly easy to
construct the sample's likelihood that has to be maximized with respect to B
and . The problem is a computational one as, except for very small
dimensions, the likelihood requires the computation of multi-dimensional
integrals, that is sﬁill too ﬁuéh of an effort even for modern compuﬁers.
Maddala (1983) and Amemiya (1981,1985) ‘present surveys of the rapidly
increasing literature. Most models are ad hoc approaches to a specific

problem.

Gouriédroux et al. (1984) take a more general approach in introducing

generalized or simulated residuals, but they use this concept for test
construction only, and not for estimation purposes.

In this paper we shall try to develop a general approach to the estimation of
models on the basis of set-valued observations and to implement that approach
by a feasible computation method that does not break down on the integration
problem. In Section 2 we consider the common structure of some problems.

In Section 3 we derive two important theorems on consistency and efficiency of
the ML-method in case of set-valued observations. In Section 4 we outline our
computation method, while in Section 5 we consider a few examples on a large
simulated data set. Section 6 concludes. The theory is an asymptotic theory,
i.e., for large data sets only. At several points in this paper we interchange
limiting operations like integration and differentiation. When doing so, we
silently assume that the requirements for that procedure are satisfied. (see
e.g. Billingsley (1979), section 16). In order to economize on space we do not

spell out those standard conditions.




2. SET-VALUED OBSERVATIONS.

Let us assume a probability space (Rm'*'n,'f,P) wheref is the o~field of Borel
sets and P a probability measure. Consider now a partition A on Rm—i—n, i.e., it
consists of disjoint sets such that for any two sets A and A'eaholds

v - o _ porn
AnA $ and AGQA R
We denote the o—-field generated by the sets in (L by o(@) and we have o(Q) C(@.
 Notice that the sets in ({ are atoms of ¢ (Q), i.e., proper subsets of Ae(] are
no longer o(@)-measurable. The P_measure induced on o(Q) is denoted by E,.

Let Z = (Y,X) be a random vector and let E(Z|@) be the conditional expectation
of Z on o(@) , 1i.e.

(1) fZdP = [E(Z|@dP whenever Ceo(Q).
C C

(see Billingsley (1979), p.395), then we call Z = E(Z|®) the Q -filtered
observation of Z. :

E(Z|Q). is random and P-measurable on the subfield o(@). Finally we shall
consider random vectors ¢('Z) ; they are also P -measurable on ¢(@) but not

on (C. They are transformed (1-filtered observations.

The problems we have in mind are examples that reveal their common structure
when we use the concept of({-filtering.
Let us illustrate this setting by some examples.

a. The Probit model.

The latent vector is (Y,X) R, The partition (J consists of sets

A1={Y._<_0:X=X} and A2={Y>0,X=x}. Notice that the partition is an uncountable
class of sets.




Figure 1. Probit—partition.
Our observations are(l-filtered. In figure 1 the partition is sketched.
b. The Tobit-model.

The latent vector is {Y,X}eR
A1={Y50,X=x} and A2={Y=y,X=x} if Y>0.

40 The partition (L consists of sets

Tobit observations are (] - filtered. (L is sketched in Figure 2.

Figure 2. Tobit-partition.




c. The two—-equation Heckman—model (1976).

The observations are of the type (Yl,YZ,X)eR2+n.

If YISO, we do not know Y, and, if Y,>0, we observe Y,. We may think of Y; as
the response-willingness and Y, as the response itself, The partition consists
of the sets

A1={Y1$0,X=x} and A2={Y1>0,Y2=y2,X=x}.

After projection on the (YI,YZ)- space we sketch the Heckman partition in
figure 3.

Figure 3. The Heckman-partition.

d. The discrete choice-model (Domencich and McFadden (1975))
The latent vector is (Yl,Yz,X)eR2+n. Y, stands for the attractiveness of
commodity 1 and YZ is the attractiveness of commodity 2.

- If Y>¥) and Y;>0, we observe the purchase Y; of the first commodity;
if Y2>Y1 and ¥,>0, we observe the purchase of the second commodity.
If Y, and Y,<0, we observe that nothing is bought. The partition consisting of
three types of sets 1s sketched in Figure 4.




Figure 4. Discrete choice partition.

e. The disequilibrium model (Fair and Jaffee (1972)).

Let Y, stand for market demand and Y, for market supply. The market—-turnover

S = min(Yl,YZ) is observed or, if S{0, there is no transaction.

Y
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Figure 5. Disequilibrium—-market partition.




The ({-partition consists of sets of the type
{(YI,S)]YIZS}U{(S,Yz)]YZ}_S} 1f $>0 and the set {Y,<0}u{¥,< O}.

f. Exact observations.

Obviously in the case of exact observation we have a = ¢ .

In general the classCZ consists of the finest distinguisﬁiblé events. They
form the atoms of o(Q).

If a measure P on ‘€ depends on a parameter vector 8, it is obvious that
filtering of P(®) through Q_yields a measure %156) on o(c). Let us assume P(8)
is functionally specified to belong to a specific class, i.e. N(u,uz) on R,
then the crucial question for estimation purposes is whether the mapping

P(9) + nge) is one-to-one or not. If there is only one 6 that can generate

P (8), 6 may be identified fromd -filtered observations; if the mapping is not
one-to-one such an identification is impossible. So we define a filter Q to be -

an identification—-preserving filter (i.p.f.l’iff there is a one-one relation
between P(6) and %2(6).

We give two examples of filters that are not i.p.f.
a. Consider the case of (R,%¢,P(8)) with P(8) ~ N(u,cz)vthat is filtered

by the probit filter, i.e.,(l = {A[,A)} with A) = (—m,ojAz = (0,=).
J

Let P(4;) = pCu,0%) and P(A,y) = 1-p(y,02).

If p(u,oz) is known, it does not define two unkowns u and o2,

Hence,Cl is not an i.p.f. If 02 is known, it is i.p.f. with respect
to He

IfQ = {AI’AZ’A3} it is posible to determine p and 02 uniquely.
Assume that X is N(u,l), and that we observe |X|. The filter is
{xeR|x=+ &, @ >0}. Then u and (-y) will yield the same P (u). Hence
observing |X| instead of X we can find only |u|. Hence we know that
one of the "roots" y and (-u) is a "false root".

In what follows we consider only identification-preserving filters.




3. ML-ESTIMATION FROM SET-VALUED OBSERVATIONS.
Let us assume ZeR™'™® and let us assume Z has a mass density-function
£(z;8() . ‘Moreover let us assume we have a random sample {Zt}tz1 of

exact observations. We define the log-likelihood

A

(2) L(e) =1

T
z 1n £(Z_;0)
t= t

1
The ML-estimator 6 is the solution of the normal equation*)

9ln £(Z_;0)
SR,
L) ¢

T
3 2,1
(3 EE'L(G)— T tz

1

ft is-well—kgown that 6 is a céngistent estimator of the trﬁe eo, ;.e..
%im P(|6-60|>e) = 0 for all >0 (see e.g. Amemiya (1985), p.l1l16), if some
0 .
regularity conditions are fulfilled.
Consider now the population analogue of the likelihood (2)
(4) L(®) = E[1n £(Z;0)]
and the population analogue of thg normal equations (3)
3

(5) 35 L(8) = E[3n £(2;0)]

Then 8o is the solution of-%g L(8) = 0.

*) We do not explicitly use the fact that 6 is a p-vector, but (3) is actually
a set of p simultaneous equations.




Let us now consider how this changes if we have set-valued observations.

Let us consider first a countable patition CZ, with

(6) P(A;0) = ff(z;8)dz = E(IA;B)
A

.where the indicator function IA(Z) is one if ZeA and zero otherwise.

The sample is given by the sequence of mutually independent random events
T
{a.},o; with likelihood cglP(At;e)'

The log-likelihood is

T
z

) (o) =+

2 ) 1n P(At;e)

1

with expectation L61<e)'
The normal equations read

5 L.
_QELQ_(S)

1 )
= [(55 1n £(z;6))f(z;6)dz
1 P(At,e) [ 30

A

T
T
t=1

1

9
T E(sgln f(Z,e)IZGAt))

where E(.lZeAt) stands for the conditional expectation, given ZeA..
Writing for that conditional expectation W it is obvious that the sample

T T
{At}b=1 corresponds to a set of realizations {wt}t=1'
Actually (8) may be rewritten

(9) 21 () =% 5w (o)
EERe T o1t




‘

W(6) 1is a random P-vector that is %1—measurable. W 1is constant on the atoms
of o(Q), i.e., constant on Ac .

For the population analogues it implies that

(1) L8 = E 55 L,(0)] = £ (W(8))

where Ql stands for the expectation with respect to EB,.
As o(Q) <@ it follows from Th. 34.4 in Billingsley (p.398) that

3 . = F[O_ .
(11) EOEW) = Ea}E[Sain £(2;0) |2€All = E[gln £(2;0)]
Combining (5), (10) and (11) we have

3 _a
(12) T Lo () = 55 L(8) for all 6.

It follows that lim P[|3=L (8)- 2=1(8)[>e]=0 for all £>0..

It follows also that, if %1 and 6y are the unique solutions of the normal

0
9
equation systems

3 = 3_ -
75 LCl(e)-o and 3 L(8)=0,

then
(13) %Z’O=90.

If L(8) and Lafe) are continuous in 6 and the normal equations have a unique

solution, then lim P[|

8 -8 |>e]=0 for all e>0.
T-o0 a0 Ol 2

Let us now consider the case of a non-denumerable(l. The subsets of @ may be
labeled by means of a q-dimensional vector Z(A) which is constant on A, such

that there is a one-one-relationship hetween Aec@ and Z(A).




As Z is Ez-measurable, a P-measure on R? is induced such that

P[ZeB]=[E(2)dz
B

where £(z) is the density-function of Z.

If A is the pre-image of B under Z, we have P(ZeB)=P, A= P(A)= ff(z)dz-E(I )
for all Aec(@) .

In this case we may represent the sample by a sequence {A } or a sequence

{Z }t 1 of independent realizations of the random vector Z.

Tts log-likelihood is f.a(a) - 1n (Z, ;)
t=1

Using the same reasoning as in the discrete case we get

-~

.(IS)A -%g afé) =-% ( 1n £(Z; e)lz—z )

- The expectétion of the ({ -filtered version of the normal equations equals the

expected normal equations under exact observation

(16) E (& iq(e)]=%é-Lq(6) )

The ML-estimators have the same asymptotic expectation,

(17)
and they are stochastically converging, i.e.,

(18) lim P[IBQ.O 0])5] =0 for all >0

T+

Now let us compare the asymptotic variances, i.e., the variance of

/T(G 8y) or /T(qz 0 8 o) According to standard ML-theory (see e.g. Rao

(1973)) we have for a 1 ti a7 =
solution QQ,O of aeLQ(G) =0




9 I -1
(19) avar(e O) -(E(5g551Lal8g))
where we notice that the Hessian is symmetric and avar(.) stands for the
asymptotic covariance matrix.

There holds also under ML assumptions, that

2
3_ 1 - 31 31
E(35587 LQ(GO)) = 'J:.E[ae Lafeo)ae,Lq_(eo)].

Then, it is easy to show that

(2D var(sE-Ltl(G)) < var( L(e))

in the order of positive (semi-)definite matrices.

Consider a specific ﬁ%land the corresponding W =-%31n £(Z;39).

Notice that WeLis o(a)—meésurable while W.is ¥ —measurable.

The well-known variance decomposition gives
(22) var(W) = var(qz? + E (var(W(Zz)|zeA))

where var(W(Z)lZeA) is the conditional variance-covariance matrix of W(Z)
given ZeA. The first term is the "between'" and the second the "within"-
contribution.
It follows that var(%l? < var(W) and consequently

1

(23) var( IQ(S)) T var(W ) £ — var(W) = var(— L(e))

Combination of (23) with (19) and (20) yields
(24) avar (%2)0) 2 avar (90)

The result implies that the coarser the subfield o(qQ), generated by L is, the
more variance about the true value 60 the ML-estimator %2 0 will exhibit.
bl

Finally, let us remark that by using the standard Central Limit arguments it




may be shown that Qq 0 will be asymptotically normal.
]

In this section we actually came to a unified theory of ML-estimation for

exact and @ -filtered observations. In the next section we shall see that

this approach will be particularly helpful for practical estimation purposes.




4. OPERATIONALIZATION.
Let us return to expression (15). We are looking for roots of the equation

= iq(e)=o.
With respect to the existence or uniqueness of such roots, there is no
problem. As tﬁe ML~roots are asymptotically equal to those under exact
observation, it follows that we may consider the equivalent "exact
observation'-problem. If the latter yields a unique Ml-estimator, so does
the ({ -filtered version. Although there is philosophically no problem, there

is a practical problem. How can we calculate the conditional expectations

2
a 3 ~—~ .—a_ . ~=~
E(7g 1n £(250)|2=2) and E(zgzgv 1n £(Z50) [Z Z.)

in (15) or (19)?

Here we meet the formidable stumbling-block. Thoée conditiohal expectations
are integrals over sometimes weird sets Ae (] with AcRTD,

Let us consider a different way, where integrals are assessed by Monte Carlo
simulation and more precisely by "importance sampling" (see Van Dijk (1984)).
Let us look more closely at (8).

Let us assume we know the continuous density of Z on R0 and we try to
evaluate the integral

(25) E(g(Z) |ZeA) = (z)£(z)dz

1
P(A)£ g

where we assume for convenience P(A)>0.

Now both the direct evaluation of the integral (25) and of
(26) P(A)=[f(z)dz
A
is a problem: direct Monte-Carlo drawing from an arbitrary density f(z) is

mostly impossible. )
Assume for siﬁplicity of exposition that A is a bounded interval [a,b]cR.




Then we may draw k times from an homogeneous distribution H(a,b) on [a b]

yilelding k values Zl,...Zk and P(A) may be evaluated by

k

(27) P(A) = %- L £(z,)
1=1

Similarly we have

k

1
(28) . [ g(z)f(z)dz ~+ I g(2,)£(Z,)
A k 1=1 i i

and it follows in this case that

g<Zi)f(Zi)
1
(29) E(g(Z)|ZeA) =

k
z f(Z )

i=1

. : k , i
where {zi}i=l are k independent drawings from H(a,b).

In a similar way if A is a 2-dimensional bounded block in R2, we may draw the
2-vector Z from a two-dimensional uniform distribution on A and do the same

procedure. If g(Z) is a vector function, say g=(g1,...,gp), then we have

k k
(30) E(g,(2)|zeA) =~ 1 g, (2)£(2,)/ T £(2,)
1 TR S A S |

: k k
E(g_(2)|zeA) =~ 1 8,(2)E(2 )/ & £(2))
P 1=1 P i=1

We notice that the assumption P(A)>0 is irrelevant. For example, if f is a
continuous density in R% and A the line segment {Z =0,0522$l}, clearly A is a

1
null-set but nevertheless the conditional expectation of g(Z) on A may be

defined and it may still be evaluated by (29).

Actually A is not necessarily one bounded interval or a union of disjoint
intervals. Let for instance A;{(Zl,zz)[zlz+222=l}, i.e., the boundary of a
circle with radius 1, then we have a one-one correspondence between the points

on the boundary and the interval [0,27]. It follows that we can draw g from a




uniform distribution on [0,2w] and set Zl=cos(g), Zz=sin(g).

N

Figure 6. Drawing from the boundary of a circle.

B 2., 2
Similarly if A-{(zl,zz)lz1 +Z,

a rectangle with South-West corner (0,0) and North-East corner (1,27m).

<1}, we can draw from a uniform distribution on

Obviously there are sets A for which we cannot specify a uniform distribution.
For instance A = (0,»). Then we may specify an arbitrary drawing distribution
h(z) on A.

We have

£(2)
(31) g(z)f(z)dz=[g(z) h(z)dz

If we draw from a density h(z) on A we have

k k
(32)  E(g(2)|zer)~ T g(z)EZON Nz T £z w2y
i=1 i=1

In practice we take for h(z) if A is of the type (0,») an exponential density
and if A is of the type(-«,®) a normal density or products of those, if A is

topologically more-dimensional.




In a similar way me may evaluate.-
(33) var(g(2) |ZeA) = E(g(Z)-E(g(Z) |ZeA))?|zca) =
2 2
E(g7(2)|ZeA)-[E(g(2Z)|ZeA)]

Although any drawing density h(z) will do, nevertheless some are better than
others. Actually we should look for a tractable drawing density h(z) such that
£(z)/h(z)=1, i.e., that h(z) looks similar to £(z). (see Van Dijk (1984)).

In view of (27) and (28), expression (32) may be considered as the ratio of
two sample moments. It is well-known that under fairly general conditions such
functions stochastically converge to a normally distributed variable and that
their sample variance, if it is finite, is of the order 1/k. (see e.g. Cramdr
(1951)).

Hence (15) may be replaced by the approximation

(34) %s'i (8) =%_ W_(9)

t=1 ©

where each Wt has a variance-%vtz. Notice that ctz is a random variable as it

depends on A.. However, if we assume (almost surely) 03<M<°° for all ALY/, it is
obvious that (34) converges stochastically to (8) or (15), and hence its ML~
solution qZ,O to 83+ In this context we do not attempt to give formal proofs,
as they will employ the technical standard arguments and would take a lot of

space. Rather we like to consider some examples to see how the method works.




5. SOME EXAMPLES.

In this section we shall consider three examples of the general method
outlined above. Our playground will be three data sets of 2,000 observations
each that we have created by simulation.

First we specify the general setting:

Let us assume Z=(Y,X)eRm+n, where X are the exogenous and Y the endogenous

variables. We assume a law

11
Y' = B'X + ¢!

”
Where Y is an m-vector, B an n-vector of coefficients to be

” 1"
estimated, X a (nxm)- matrix the columns of which are subvectors of X or
constants, and ¢ a random m-vector.
We shall assume € to be N(0,I)-distributed, and we assume that X and ¢ are

mutually independent. It follows that the density of an observation is

£(y,%)= n(y'~B'x).g(x)

where n(.) stands for the normal density.

Our objective will be to estimate B and I by (%250,%2’0) when the

observations are‘?.—filtered. In order to test the method we have to know B

and . Then we may compare the estimates with the true values.
So we begin to specify B, £ and the density g(x) and we create by Monte-Carlo

simulation a data set of 2,000 observations.
We take X to be N(ux,zx)-distributed.

l. Our first example will be the Tobit-mode of observation. Clearly, Tobit-
estimation is no problem, but it clarifies for a simple case how things
work.

We assume p,=(0,0,0)' and a symmetric matrix




We specify m=1 and Y, = —2X1t+3X2t+X3t+1, while € 1s N(0,1.5)=~distributed.
Under exact- observation the problem is easy. The log-likelihood is

2 -2
(35) LB,6) =7 [laa(r - B'X,30_))+In(g(x,))] ¥

T
= +-%-1n(oez) -t 5> L (Y ¢ B'Xt)2 + constant.
2ToE t=1

where Y, is a scalar and X, a 4-vector, when we include the constant.

As the last part does not dépend on B or 02 we have
£

T
) 1
= I X (Y'_ - B'X )’
TOSZ t=1 t t t

- T
3 -2, _1 2 2
——5~ L(Byo_ °) =35= I [o7- (Y' -B'X )°]
a(082) € 2T e=1 € t t

Let us define Y' - B'X, = u', where u', is just the t™h residual. So we may
rewrite (36) and (37) as

3

8(0e

T
L=35 (o

2 t=1 €

%
) Although Yi is a scalar we sometimes write Y't in the formulae in view of

the generalization to m-vectors Y hereafter.




the exact case those equations are easily solved for BO and 0820,
H]

OLS-regression we found the estimation result
Y = -2.01 X; + 2.93 X, + 1.05 X3 + 1.00 c§=1.53 R2=.85

(.03) (.04) (.04) (.03)
the case of Tobit-observation an ({ -filter is applied. (See figure 2).

If Yt>0 we may exactly observe (Yt,xt).
If Y.<0 we know only that the observation is on the vertical half-line Al‘
In the case of non-exact observation we replace the separate terms for those

observations in (36a) by

1
(38) —— X.E(u |Y.<0)
Toe

and in (37a) by

Consider for instance

0

2

(40) E(YtlYtgp)= L [y exp(--—li(y'-B'Xt) )dy
of 21 -w 20

This is a rather complicated function in B. It follows that if in (36) we have
to replace some "exact observation" terms by conditional expectations we
cannot find an explicit solution like in the OLS-case, but (36) has to be
solved by iteration until a satisfactory solution has been found.




The iteration process is now structured as follows:

1. Start with an initial guess for B and oi .

2. Calculate the conditional expectations in (38) and (39) in a way to
be described below.
Calculate the values of (36), (37) and check whether they are nearly
zero in terms of a tolerance limit. If so, the equation system has
been solved.
If not, we calculate the first-order derivative of (36) with respect
to B in order to find the second step in the Newton-Raphson process.
After having made (36) equal to zero for B(l)we calculate the
residuals u'(1)= Y'- B'(I)X and ‘82 as

o2= &
e T &

T
ZIE[uil)u't(l)) lYteAt]

where At is either a point Y.eR or the interval [—w 0].
6.  Start again with the new estimates.

We notice that this process is not completely straightforward as we do not
2

change B and ¢~ simultaneously, but solve (38) for B(l) given 0(0) , then

~(0) “(1)

correct c into c

and restart the search for B( ) and so on. However,
this procedure of successive search may be generalized to m>1l, while
simultaneous minimization in more dimensions would give difficulties with
respect to the positive~definiteness of Ze.

Let us now consider the calculations in detail.

If Y, <0 it implies that € < - B'Xt. Consider now the conditional
distribution function of €ee It is given by

€
1 5 / n(T;O,OZ)dT if e<-B'X
' € = t
(42) N(-B'X,30,07) ==
F(ele <-B'X,)= €

if e>-B'Xt

In this case we do not need importance sampling as we can draw directly from

the distribution. We draw an n from a uniform distribution on [0,1] and




calculate the corresponding € from the inverse of (42), i.e., we solve
F(e|.)=n (see Figure 7).

Figure 7. Drawing from a truncated normal distibution.

The corresponding drawing for Y‘ﬁ is (B'Xt+e'). Let us assume we have k

drawings {Yti}izl for one Xes then we may define the corresponding residuals

Uy and

k

1
(43) XtE(ut]YtSO)= " Xt iiluti

' 1 2
(44) E(utuélYtSO) ~-E-i . (utiuéi)

Notice that (43) and (44) are simultaneously assessed.

In practice k may be taken rather small, say k=4, if T is large.

So (36) and (37) may be evaluated.

In case of a non-exact observation differentiation of (38) with respect to B

yilelds a (4x4)-matrix, consisting of two parts.




The latter part is- —lf XtXE. The first part is ignoring the

To
€

factor (1/Tai)

0 yeexp(- ——(1 5 y-B'Xt)z)
2 -x & L 20 d
(45) 550 [ (Y [T 0] = % =, ZexOB — y
t=" = oY2n

-1 3P
= xtE(YtIYtSO).(————————[P(YtSO)] 55+

1 2
0 yeexp(- — (y—B'Xt)
1 29 d
<o % L g Jdy.

o/ 21 -

We notice that .

! 3P(Y,<0)  3ln B(Y,<0)
[B(Y <0) ] 3B" 3B"

Applying (8) and (36) we have

9ln P(YtSO) 1
3BT - 7 E(u' Y .<ox;

g
[

The first part of (45) may be written

1
(47) - X =3 E(utlYtSO)E(Y'tIYtSO)Xt':
€




In a similar way the second part of (45) may be written as

L ' '
X, 2 ECu, Y' |Y,<O)X}

€

_ Combination gives now the (nxn)-matrix

aZLCL 1 T 1 T
= - ] '
3B3B' ) [ (X X)) == 2 X var(u, ¥ ,<0))x!]
o t=1 o_ t=1

In the case of exact observation u, and Y, are exactly observed, and
consequently the second term vanishes as the covariance of two non-random
variables is zero.

Using this iterative procedure for which we require in this case 4 adjustments
of oi and about 6 iterations per fixed qz,_i.e,,AZS iterations in total we
end up with the estimates of B and of ci. The latter ;s found by solving (39)
for oi yielding A ‘

~2

(50) .= E((Yt—B'Xt)ZlYtSO). _

1
T o1

In Table 1 we present the results ‘of OLS;regression on exact observations with
standard deviations, the corresponding results of classical Tobit-estimation
and the estimation results according to our procedure. In the last case we

assess the standard deviations of B by taking the negative inverse of (49).

An R? is easily defined as

2
lE((yt- B'X,)"|Y,<0)

(ad
30 3

2 2
l[E(YtlYtSO)—{E(YtIYtSO)} 1




Notice that also for the computation of the denominator we need an estimate of

B and 02.

Actually R2, thus defined, is identical to the RZ advocated by Gouriéroux et
al. (1984).

2
Notice that -G%E%ET

T
-1_ 2,1 -1
) "= A tilxtxt'),

is the covariance matrix under exact observation.

TABLE 1. COMPARISON OF ESTIMATION RESULTS (N=2000)

By By By B3

oLs' 1) 1.00 -2.01 2.93
(st.error) ( .03) ( .03) ( .04)

Classical Tobit .98 © -2.00 2.98
' ( J04) .  ( .04) ( .06)

New Tobit 2) 1.01 -1.98 2.93
( .03) ( .04)  ( .05)

1) Estimated on the complete Y-vector.

2) The program took 1 minutes and 26 seconds on a VAX 8650 for 4 rounds and a

total of 25 iterations. For a usual mainframe the time has to be multiplied by
a factor between 1/15 and 1/20.

Obviously, as said before, the Tobit-case is not a spectacular case, as the
classical method is just as powerful. However, it is apparent how this method
may be generalized to more difficult cases. Actually the observations may be

filtered by any partition on R. We may replaceY <0 by Y, eA, including
exact observation if At is a point.

Let us now turn to a more-dimensional example.

More specifically, we assume that we study a random phenomenom (Y,X)eRm+n- We
do observe X exactly but we are only able to observe one Y-component per

observation, viz., the greatest of the m Y-components,




It behaves according to the system

"
Y' = B'X + ¢

where Y is an m—vector, X a column-vector of length ny chosen from X,

" m ' m
X 1s a matrix of dimension ( % ni) x m, B' a row-vector of length % n

i=1 : i=1 1

and € a random error-vector of length m that is N(O,Ze)-distributed.

The parameters B and Ie have to be estimated. :

Figure 8. A partition according to maxima.




From Figure 8. it is clear for m=2 that (YI’Y2)€A1 if Y, is observed and in A,
if Y, is observed.
If we have Y, €Ay, X =%, 1t follows that the residual Yt'-B'Xt =u.' is
N(O,Ze) -distributed. Let us now define the
A = ml=1_'" X
set A& {u eR7|u' =¥ ¢ B'X,,YeA }. The set X is A translated over a vector

B'Xt. Then the conditional density of u, given that it is in Xt and Xe=x, 1s

» C.n(u;0,z ) if u €A
(51) £(3)= © £F
0 if utkAt

where C is a normalization constant. Notice that in the case considered in

Figure 8. either Ylt or Y,, is exactly known. So in (51) either u

known.

or u is

1t 2t

\

Let us now assume a drawing distribution h(z) on A that has support A
or a set BDA .

Then we may evaluate by means of (32) the m-vector -

kA
I u f(u )h (ui)

' ' i=1
(52) E(utlYteAt)n n

-1
£ £(u,)h " L(u.)
=1 17 1

and similarly we find for the conditional second-order moments

k
Tu u' f(ui)h (u )

(53) E(u,ul |¥,eh, ) kl

T £(u,)h
=] 1

)

"
From (52) we may derive E(YtlYteAt) = E(utlY €A )+ B'Xt'

Then the combination of (52) and (53) yields the conditional covariance matrix
of u, and hence of p

Notice that in (52) and (53) the unknown constant C cancels out,.




Consider now the normal equations in this filtered case. We have the
straightforward generalization of (36) and (37) yielding

T o -1 "o
- 1 =
illxtzs E(Y, |¥,eA )-(X I_"X[)B] = 0

3L (B,Zzl) )
GH Tt T

- ' X =
[Ze E(utut luteAt)] 0

By means of (52) and (53) we are able to solve (54) and (55) by
iteration.
We start with Zi°)=I and B(O)=O and solve (54) for Bo(l). Similarly to

(49) we may formulate the Hessian, needed for the Newton—Raphson process
11 11

as a (n x n)-matrix.

~ In the general éase.:he Hessian, as calculated in (49), changes into

23 .
3°L | T

a 1 " -1 "

- == - I X'+ rXc:
3B3B' ~ T L Z Ttte T t7 7t

1 =13,
(56) var(u |Y eA ) "X t]

€

After the first round we calculate 2(1) from (52) and repeat the
solution of (51) with respect to B(l), until the process has converged.
If it converges, we know that it will converge to the ML-solution for

the exact-—-observation case.

Finally we may calculate as a measure of goodness—of-fit

114 "
1 _R! =legr _pt '
1E((Yt B'X )z (YL -B'X)) ¥ eA)

-1 - =]1=
(ECyiz "y, |Y ea) - (X' )]

(g
[ I | U e B

cr
[

- 1 T
Y =-f_t§1E(Yt|YteAt)




This procedure has been performed on a simulated data set with N=2000.
We assume m=3 and ni=4 for 1=1,2,3 with X0=1 for all t.
We assume for (XI’XZ’X3) '

0

u 0 | and £x=

x=
0

0
E(e) = 0 | and E(sa')=z€=

0

finally
0

3,}

*) In our formulae we denote B=vec(B')..

The filter that we observe is the maximum of (Y,,Y,,Y4), i.e. we know
which of the three is maximal and what is its value.

Let us assume Y1=max(Y1,Y2,Y3)=yl. Then A1={Y1= yl,YZSyl,Y3$yl}

11]
The simulation is done as follows. We consider u£=Y't-B'xt' It is
trivariate normal N(O,Ze).

We have for the density

(58) n(ul,uz,u3)=n(u1).n(u2|u1).n(u3|ul,u2).

Those conditional densities are all normal; where we use the well-known




formulae for conditional expectations and variances for the normal

distribution; that is,

TRV

Let (XI’XZ) be normal with expectation(ul,uz) and g=
21 22

then

_ -1, _
E(X) [Ry=x))=u) + Z1pTp0 (x5Hy)

and

e -1
var(X) |Xy=x,)=2;) = 55,7 Iy;

Using the formulae (58) and (52) we draw Y successively. We start

"
-w-ith_ult which in this case equals the first component of Y'E_B'Xt’ then
we draw Uy, from a normal distribution truncated on_(—m,ult) where the

expectation and variance are calculated given u, =u, .

1 "1t

Then we draw Ugps given (ult’uZt) in the same way from the truncated

denéity n(u3|u e

1e°V2¢t
The process converges in about 22 I-adjustments with per stage about 10
iterations with respect to B. For each observation we draw on average 10
times.

Notice that we actually increase the number of drawings per observation
after each stage to improve the accuracy. For one iteration we need 2kN
(this case maximally 40000) random drawings. We re-utilize the same
sequence of random drawings in subsequent stages, which implies that the
drawing of the random numbers on [0,1] can be done once before the

iteration process starts,

Notice that in this case h(z) = n(z), implying that in (28)
£(z)h~1(z)=1.

So also here in fact we do not use importance sampling.




In Table 2 we present the estimation results for successive rounds and

in the last part we give for comparison the estimation results based on

the exact observations.

We see that the procedure ylelds very satisfactory results.

As a last example‘we tried a six—-equation model where we observe the
largest of (YI,YZ,Y3,Y4,Y5,Y6), The matrix I_ was taken to be diagonal.

" The results are presented in Table 3,




TABLE 2. ESTIMATION RESULTS OF A THREE DIMENSIONAL EXAMPLE

By B, B3

round 1
lst.equation
2nd. equation

3rd.equation

lst. equation
2nd. equation

3rd. equation

round 15
1st. equation.
2nd. equation

3rd. equation

round 22 (final)

lst. equation 2.13

(st.error) ( .03)

2nd. equation 1.15
( .06)

3rd. equation -.06
( .07)

Pseudo R? = ,81

Exact observations

lst. equation 2.02
( .02)

2nd. equation 1.02
( .03)

3rd. equation | .03
( .03)

Pseudo R2 = .82

Remark: the program ran for 1 hour 20 minutes on a VAX 8650, for 22

rounds with on average 10 iterations per round.




TABLE 3. ESTIMATION RESULTS OF A SIX DIMENSIONAL EXAMPLE

By B, B4 Ee(diag)

lst equation 1.14 (1) -1.94 (-2) 2.89 ( 3) .94 (1| .97
(st. error) ( .04) ( .04) ( .05) ( .04) |
2nd equation -.37 (=% ) 1.08 ( 1) 1.45 ( 13) =-.84 (-1)| 1.01
(st.error) (.05) ( .05) ( .08) ( .06) |

3rd equation .61 (1/3) $92 (1) =1.24 (-1%) .45 ( §)| .87
(st.error) ( .04) ( .04) ( .05) ( .04) |

4th equation 16 (1/4) 2,04 (2) =.09 ( 0) 1.06 ( 1)| 1.04
(st.error) ( .05) ( .04) ¢ .07) ( .05) |

5th equation 1.06 ( 1) 1.03 (1) 1.94 (¢ 2) =.95(-1)]| .91
(st.error) ( .04) ( «04) ( .06) ( «04) |

6th equation 91 (1) =65 (-3 3.12 (3) -.02 ( 0)] 1.01
(st.error) ( .04) ( .05) ( .06) ( .05) | h

-Pseudo R2 = ,83

Remark: the program ran 1 hour and 20 minutes on a VAX8650, for 5 rounds with

on average 40 iterations per round. (Within branckets to the right of the
parameter its true values),




CONCLUSION.

In this paper we generalized the theory of ML-estimation on exact observations
to deal with estimation on filtered observations in such a way that we got a
feasible computer procedure. Obviously the method draws heavily on the newly
developed simulation technology. From some simulated data sets it is clear
that the method works on linear models with normal errors. However, the method
is not restricted to that situation. Theoretically, the model is also
applicable to non-linear models, non-normal errors and filtering

partitions CZ:t that vary over observations t=1,...,T. The only requirement is

that:CZt consists of P-measurable subsets of R®'R, Also we do not need the

dichotomy into variables X and Y, but a similar method may be used for

"

"
filtered observation of structural models, e.g.,of the typeY'= 'Y + B'X + ¢'.




35

N
i
.3

REFERENCES

Amemiya, T., (1981), "Qualitative Response Models: A Survey'", Journal of
Economic Literature 19, pp. 1483-1536.

Amemiya, T., (1985), Advanced Econometrics, Harvard University Press,
Cambridge (Mass.), U.S.A.

Billingsley, P., (1979), Probability and Measure, Wiley and Sons, New York.

Cramdr, H., (1951), Mathematical Methods of Statistics, Princeton University

Press, Princeton.

Domencich, T.A., and McFadden, D. (1975), Urban Travel Demand, North-Holland
Publishing Cy., Amsterdam.

Fair, R.C., and Jaffee, D.M., (1972) "Methods of Estimation for Markets in
Disequilibrium", Econometrica 49, pp. 497-514.

Gouridroux, C., Monfort, A., Renault, E., Trognon, A;, (1984), "Rasidus

Géneralisés ou Interprétations Lindaires de 1'Econométric Non—

Linéaire", forthcoming in Annals of Econometrics.

JeJe, (1976), "The Common Structure of Statistical Models of
Truncation, Sample Selection and Limited Dependent Variables and a
Simple Estimator For Such Models", Annals of Economic and Social
Measurement 5, pp. 475-492.

Maddala, G.S., (1983), Limited-Dependent and Qualitative Variables in

Econometrics, Cambridge University Press, England.

Rao, C.R., (1973) Linear Statistical Inference and its Applicationms, 24 ed.,
Wiley and Sons, New York.

Van Dijk, H.K. (1984), Posterior analysis of Econometric Models using Monte

Carlo Integration, Erasmus University, Rotterdam.









