
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


5 -r--7c 57/1

3

FEB 2 5 1968

ESTIMATION OF CONTINUOUS MODELS ON THE
BASIS OF SET-VALUED OBSERVATIONS

B.M.S. VAN PRAAG AND J.P. HOP

REPORT 8705/A

,t6e:ftiftAA1-9

ER,ASMUS UNIVERSITY ROTTERDAM,- P.O. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS



1

ESTIMATION OF CONTINUOUS MODELS ON THE BASIS OF SET-VALUED OBSERVATIONS

ABSTRACT

by B.M.S. van Praag and J.P. Hop.

In many empirical applications the phenomenon (Y,X) in which we are interested

and for which we assume a model Y=f(X;04- e , cannot be observed exactly.

Then we can only. say that (Y,X) eA clen+11 where A is a point set. Probit Tobit

or discrete choice models are examples.

In those cases we say that the observations are set-valued and that the latent

phenomenon is observed through a filter . For the model Y=BX-1-e we present a

general MIA-method for estimating B and E(eet) which bypasses the well-known

problem of the computation of multi-dimensional integrals.

Examples.are given for the case where we only observe max(Y1,Y2,Y ) or

max (Y1,...,Y6).

February 15, 1987.
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ESTIMATION OF CONTINUOUS MODELS ON THE BASIS OF SET-VALUED OBSERVATIONS.

1. INTRODUCTION.

One of the fascinating developments in econometrics, but also in other

empirical sciences, is the emergence of Probit-type estimation problems.

Basically, such problems arise if we have a latent model, say, Y'= B'X + E l
If

with (Y,X)ERm+n a random vector, e-N(0,E) X a matrix, the columns of which

are subvectors of X, where Y or X or both cannot always be exactly observed,

but where we have to be satisfied with non-exact observations of the type

(Y,X)Oice+n, where A is a point set in 01-1-n. We call the observations set-

valued. In that case estimation of B and E becomes a problem.

The problem is not so much a philosophical problem as it is fairly easy to

construct the sample's likelihood that has to be maximized with respect to B

and E. The problem is a computational one as, except for very small

dimensions, the likelihood requires the computation of multi-dimensional

integrals, that is still too much of an effort even for modern computers.

Maddala (1983) and Amemiya (1981,1985) present surveys of the rapidly

increasing literature. Most models are ad hoc approaches to a specific

problem.

Gouri6roux et al. (1984) take a more general approach in introducing

generalized or simulated residuals, but they use this concept for test

construction only, and not for estimation purposes.

In this paper we shall try to develop a general approach to the estimation of

models on the basis of set-valued observations and to implement that approach

by a feasible computation method that does not break down on the integration

problem. In Section 2 we consider the common structure of some problems.

In Section 3 we derive two important theorems on consistency and efficiency of

the ML-method in case of set-valued observations. In Section 4 we outline our

computation method, while in Section 5 we consider a few examples on a large

simulated data set. Section 6 concludes. The theory is an asymptotic theory,

i.e., for large data sets only. At several points in this paper we interchange

limiting operations like integration and differentiation. When doing so, we

silently assume that the requirements for that procedure are satisfied. (see

e.g. Billingsley (1979), section 16). In order to economize on space we do not

spell out those standard conditions.
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2. SET-VALUED OBSERVATIONS.

Let us assume a probability space (Rm+n,,P) where V is the a-field of Borel

sets and P a probability measure. Consider now a partition a on len+n, i.e., it
,

consists of disjoint sets such that for any two sets A and A ECLholds

AnAi = and L-/ A = en
Pica

We denote the a-field generated by the sets in a by a(CI) and we have a(Z)
Notice that the sets in (tare atoms of a (Q), i.e., proper subsets of AcQ are

no longer a(2)-'measurable. The P....measure induced on a(6) is denoted by Pa.

Let Z = (Y,X) be a random vector and let E(ZI12) be the conditional expectation

of Z on a(Q) , i.e.

(1) fZdP = fE(ZI(2)dP whenever Cca(P).

(see Billingsley (1979), p.395), then we call 2 = E(Z2) the a-filtered

observation of Z.

E(zpo. is random and P-measurable on the subfield 0.(2). Finally we shall

consider random vectors (1)(2) ; they are also P -measurable on a(2) but not

one. They are transformed CL-filtered observations.

The problems we have in mind are examples that reveal their common structure

when we use the concept of -filtering.

Let us illustrate this setting by some examples.

a. The Probit model.

The latent vector is (Y,X)eRl+n. The partition q consists of sets
A1 =IY<O,X=x1 and A2 

=IY>0,X=xl. Notice that the partition is an uncountable
- 

class of sets.
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Figure 1. Probit-partition.

Our observations area.-filtered. In figure 1 the partition is sketched.

b. The Tobit-model.

The latent vector is {Y,X}alfn. The partition aconsists of sets

A1={Y0 X=x} and A2={Y=y,X=x} if Y>0.

Tobit observations area- filtered. ais sketched in Figure 2.

. A
2

. A
2

1
I A1

Figure 2. Tobit-partition.



5

c. The two-equation Heckman-model (1976). 

The observations are of the type (Y1,Y2,X)ER2-1-n.

If Yi<O, we do not know Y2 and, if Y1>0, we observe Y,. We may think of Yl as

the response-willingness and Y2 as the response itself. The partition consists

of the sets

A1 =1Y1 <0 X=x1 and A2={Y1>0,Y2=y2,X=x}.-

After projection on the (YI,Y2)- space we sketch the Heckman partition in

figure 3.

-A2

....M.

Figure 3. The Heckman-partition.

— A2

d. The discrete choice-model (Domencich and McFadden (1975)) 

The latent vector is (YI,Y2,X)ER24-n. Y1 stands for the attractiveness of

commodity 1 and Y2 is the attractiveness of commodity 2.

If Y1>Y2 and Y1>0, we observe the purchase Y1 of the first commodity;

if Y2>Yi and Y2>0, we observe the purchase of the second commodity.

If Yl and Y2<0, we observe that nothing is bought. The partition consisting of

three types of sets is sketched in Figure 4.
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Figure 4. Discrete choice partition.

e. The disequilibrium model (Fair and Jaffee (1972)).

Y1

Let Yl stand for market demand and Y2 for market supply. The market-turnover

S = min(Y1,Y2) is observed or, if S<O, there is no transaction.

Figure 5. Disequilibrium-market partition.

•

MINM=NED .111.=11111



TheQ-partition consists of sets of the type

{(Yl' 
S)1Y

1 
>S}u{(S,Y

2 
)IY 

2- 
>S} if S>0 and the set {Y1 

<0}u{Y
2 
< 0}.

- - -

f. Exact observations.

Obviously in the case of exact observation we have CI =

In general the class Q consists of the finest distinguishible events. They
form the atoms of a(/).

If a measure P on depends on a parameter vector 8, it is obvious that

filtering of P(6) throughQ yields a measure P (8) on a(a). Let us assume P(8)

is functionally specified to belong to a specific class, i.e. N(u,a
2) on R,

then the crucial question for estimation purposes is whether the mapping

P(e) P (8) is one-to-one or not. If there is only one 8 that can generate
ct-

P (8), 6 may be identified frona-filtered observations; if the mapping is not

one-to-one such an identification is impossible. So we define a filter(Zto be

an identification-preserving filter (i.p.f.).,iff there is a one-one relation

between P(6) and P (8).
CZ

We give two examples of filters that are not i.p.f.

a. Consider the case of (R,(6,P(8)) with P(6) - N(u,a ) that is filtered

by the probit filter, i.e.,a. = 1A1,A21 with Al = (-0.,q1A2 = (0,c0).

Let P(Al) = p(u,a2) and P(A2) =

If p(u,a2) is known, it does not define two unkowns u and a2.

HencelZ is not an i.p.f. If a2 is known, it is i.p.f. with respect

to u.
If = 1A1,A2,A31 it is posible to determine u and a2 uniquely.

b. Assume that X is N(u,1), and that we observe IXI. The filter is
Ixalx=4.4l,ck >01. Then u and (-11) will yield the same P (u). Hence
observing IX' instead of X we can find only lul. Hence we know that
one of the "roots" u and (-u) is a "false root".

In what follows we consider only identification-preserving filters.



3. Mb-ESTIMATION FROM SET-VALUED OBSERVATIONS.

+nLet us assume URm and let us assume Z has a mass density-function

f(z, ).-Moreover let us assume we have a random sample 1

exact observations. We define the log-likelihood

(2) L(8) = E in f(Z ;8)
t=1

The ML-estimator 6 is the solution of the normal equation*)

A 1 
T 31n f(Za 

(3) —97 L(8)= --,f, E
;

98t=1
= 0.

lt=1 of

^
It is - well-known that 6 is a consistent estimator of the true 6 0,i.e..

A

lim P(18-8 1>e) = 0 for all 00 (see e.g. Amemiya (1985), .116), if some
T+.0

regularity conditions are fulfilled.

Consider now the population analogue of the likelihood (2)

(4) L(8) = E[ln f(Z;8)]

and the population analogue of the normal equations (3)

a a
(5) IiIT L(e) = E[-9-61n f(Z;0)]

Then 6 is the solution o TE-3. L(6) = 0.

*) We do not explicitly use the fact that 6 is a p-vector, but (3) is actually
a set of p simultaneous equations.
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Let us now consider how this changes if we have set-valued observations.

Let us consider first a countable patition g, with

(6) P(A;8) = ff(z,e)dz = E(IA;8)
A

where the indicator function IA(Z) is one if ZEA and zero otherwise.

The sample is given by the sequence of mutually independent random events

IA
- 
T
1 

with likelihood P(A .
'
8).

tt= t 
t=1

The log-likelihood is

(7) L (0) =-- E in P(A 
Ct 

.8)
t=1 

t'

with expectation L (8).

The normal equations read -

(8)

re- " =7r- E P(A -
'
e)t=1 t A

t

z;8)dz

1 

t1 
P(A r98c. in f(z;0))f(z,8)dz

.= t'
8) ' 

A
t

1 T a
= E E(--ln f(Z;8)1ZeAt))

t a

where E(.IZEAt) stands for the conditional expectation, given ZEAt.

Writing for that conditional expectation W it is obvious that the sample

lAt
1 T T 
jt.1 corresponds to a set of realizations 1Wtt=1

Actually (8) may be rewritten

(9) 
avp) = E W ( )

I t=1
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W(6) is a random P-vector that is P -measurable. W is constant on the atoms

of aW, i.e., constant on Aea.

For the population analogues it implies that

(10) a in\
De --lak = E

CZkejj = Ea(W(e))

where E stands for the expectation with respect to Pa.
Ct.

As a(q) it follows from Th. 34.4 in Billingsley (p.398) that

(11) E (W) = EctrE[iF n f(Z;6) IZEA]] = f(Z;6)]
GL

Combining (5), (10) and (11) we have

a _. a(12) -5-5- LQ(0) = -51T L(6) for all 6.

It follows that lim P[FLZ (6)- 24,(8)1>e]=0 for all c>0..
11+06' - HO. ae -'

It follows also that, if e
00 

and 60 are the unique solutions of the normal, 
equation systems

Lae Lct(6)=0 and ihT L(0=o,

then

(13) 21 0 60'

4016

If L(6) and L(0) are continuous in 6 and the normal equations have a unique

solution, then lim P[16 -8 I>e]=0 for all 00.
T4c0 66° °

Let us now consider the case of a non-denumerablea. The subsets of (2 may be

labeled by means of a q-dimensional vector 2(A) which is constant on A, such

that there is a one-one-relationship bqtween Acaand Z(A).
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As Y is Pa-measurable, a P-measure on 0 is induced such that

PacB]=g(')di

where ii(') is the density-function of 2.

If A is the pre-image of B under 2, we have P(ZEB)=WA)=P(A)=ff(z)dz=E(I )

for allAca(Q). 
A

In this case we may represent the sample by a sequence {A
t
} 
t=1 

or a sequence
T

IZtlt.1 of independent realizations of the random vector Z.

A 1Its log-likelihood is L (0) =7,T. E in Tat;8)
CI t=1

Using the same reasoning as in the discrete case we get

(15)
T a .

-5-we) = -,r- E E(-51n f(Z;6)IY=2)
t=1

3 - 1

The expectation of the ql-filtered version of the normal equations equals the

expected normal equations under exact observation

(16) Lect e)1= 173 L(es) s L(0)

The ML-estimators have the same asymptotic expectation,

(17)

and they are stochastically converging, .e.,

(18) lim PEI
T400

Now let

vT( 00—
(1973))

for all e>0

us compare the asymptotic variances,

8
0 
) or 

/TOot0 
- 8

0 
). According to s, 

awe have for a solution 0 of -L (42,o a0

i.e. the variance of

tandard ML-theory (see e.g. Rao

8)=0
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a - —
(19) avar(e

o
) = 

-(E(36' 
L 
. 
(e
0 
)) 1

96 Olt 

where we notice that the Hessian is symmetric and avar(.) stands for the

asymptotic covariance matrix.

There holds also under ML assumptions, that

2
((20) —E
3638' 

CL( e 
0
)) = T.E LAct_ce a -

Then, it is easy to show that

a -(21) var(ier (8)) var(-6-73 L(6))

in the order of positive (semi-)definite matrices.

Consider a specific W and the corresponding W =1-ln f(Z;(3).
CZ. 96

Notice that W is a(cz)-measurable While W is '6? -measurable.

The well-known variance decomposition gives

(22) var(Nr) = var(W ) E (var(W(Z)IZ A))

where var(W(Z)1ZcA) is the conditional variance-covariance matrix of W(Z)

given ZeA. The first term is the "between" and the second the "within"-

contribution.

It follows that var(W ) < var(14) and consequently
-

3 ^ 1 1 9 ^
(23) var(iu Itz.(0)) = y Var(Wct) < y var(W) = var(-5- L(6))

Combination of (23) with (19) and (20) yields

(24) avar (8 ,)> avar (80 )CI) LI al"' 

The result implies that the coarser the subfield a(q), generated by CZ is, the

more variance about the true value 80 the ML
-estimator 842,0 will exhibit.

Finally, let us remark that by using the standard Central Limit arguments it
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may be shown that (3 will be asymptotically normal.

In this section we actually came to a unified theory of MI.—estimation for

exact and a —filtered observations. In the next section we shall see that
this approach will be particularly helpful for practical estimation purposes.
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4. OPERATIONALIZATION.

Let us return to expression (15). We are looking for roots of the equation

a
ct(e)=O.

With respect to the existence or uniqueness of such roots, there is no

problem. As the ML-roots are asymptotically equal to those under exact

observation, it follows that we may consider the equivalent "exact

observation"-problem. If the latter yields a unique ML-estimator, so does

the q-filtered version. Although there is philosophically no problem, there

is a practical problem. How can we calculate the conditional expectations

fin 
2a f(Z;(3) 42'=.11

t
) and 

E(aeae' in f(Z;012=21t)

n (15) or (19)?

Here we meet the formidable stumbling-block. Those conditional expectations

are integrals over sometimes weird sets AECtwith Acelfn.

Let us consider a different way, where integrals are assessed by Monte Carlo

simulation and more precisely by "importance sampling" (see Van Dijk (1984)).

Let us look more closely at (8).

Let us assume we know the continuous density of Z on RP1+11 and we try to

evaluate the integral

(25)
A\ 1 rE(g(Z)IZetv g(z)f(z)dz= P(A)1

where we assume for convenience P(A)>0.

Now both the direct evaluation of the integral (25) and of

(26) P(A)=ff(z)dz
A

is a problem: direct Monte-Carlo drawing from an arbitrary density f(z) is

mostly impossible.

Assume for simplicity of exposition that A is a bounded interval [a b] R.
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Then we may draw k times from an homogeneous distribution H(a,b) on (a,b]

yielding k values Zi,...Zk and P(A) may be evaluated by

(27) P(A)

Similarly we have

(28) f ez)f
A

1
E f(Z)

i=1

E 
k 

g(Z)f(Z)
i=1

and it follows in this case that

(29) E(g(Z) Z A)

E g(Zi)f(Zi)
i=1 

E f(Z
i=1.. .

where 1Z I 
1 
are k independent drawings from H(a,b).

In a similar way if A is a 2-dimensional bounded block in R2, we may draw the

2-vector Z from a two-dimensional uniform distribution on A and do the same
procedure. If g(Z) is a vector function, say g=(gi,...,gp), then we have

k k
(30) E(g1(Z)1ZeA) E gi(Z)f(Zi)/ E f(Z)

. i=1 i=1

. k k
E(g (Z) ZcA) .= E g

p
(Z
i
)f(Z

i
)/ E f(Z)P 

i=1 i=1

We notice that the assumption P(A)>0 is irrelevant. For example, if f is a

continuous density inR.2 and A the line segment 1Z
1 
=0,0<Z <11, clearly A is a

-
null-set but nevertheless the conditional expectation of g(Z) on A may be

defined and it may still be evaluated by (29).

Actually A is not necessarily one bounded interval or a union of disjoint

intervals. Let for instance A=1(Z1,Z2)1Z12+Z22=11, i.e., the boundary of a

circle with radius 1, then we have a one-one correspondence between the points

on the boundary and the interval [0,2ni. It follows that we can draw E from a
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uniform distribution on [0,21T] and set Zi=cos(E), Z2=sin(E).

zi

Figure 6. Drawing from the boundary of a circle.

I
'

Similarly if A=I(Z
1 
,Z
2 
)IZ

1
2 
+2
2
2 
<11 we can draw from a uniform distribution on- 

a rectangle with South-West corner (0,0) and North-East corner (1,27).

Obviously there are sets A for which we cannot specify a uniform distribution.

For instance A = (0,03). Then we may specify an arbitrary drawing distribution

h(z) on A.

We have

f(z)(31) hfg(z)f(z)dz=fg(z) T.R7T )dz
A A

If we draw from a density h(z) on A we have

(32) E(g(Z)IZEA) E g Zdf(Z)h
-1
(Z4)/ E f(Z)h 1(Z)

1=1 i=1

In practice we take for h(z) if A is of the type (0,w) an exponential density

and if A is of the type(-00,03) a normal density or products of those, if A is

topologically more-dimensional.
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In a similar way me may evaluate-

(33) var(g(Z)1Z€A) = E(g(Z)-E(g(Z)IZcA)) IZEA) =

= E(g
2
(Z)I ZEA)-'[E(g(Z)I Z€A)12

Although any drawing density h(z) will do, nevertheless some are better than

others. Actually we should look for a tractable drawing density h(z) such that

f(z)/h(z)=1, i.e., that h(z) looks similar to f(z). (see Van Dijk (1984)).

In view of (27) and (28), expression (32) may be considered as the ratio of

two sample moments. It is well-known that under fairly general conditions such

functions stochastically converge to a normally distributed variable and that

their sample variance, if it is finite, is of the order 1/k. (see e.g. Cram4r

(1951)).

Hence (15) may be replaced by the approximation

(34)

A

a
TO' L (0) 7r.

T.
E Wt(8)t=1

1 2where each Wt has a variance —a Notice that a 
2 
is a random variable as itk t •
2depends on At. However, if we assume (almost surely) at01<co for all A4 it is

obvious that (34) converges stochastically to (8) or (15), and hence its MI"-

A

solution e to 00. In this context we do not attempt to give formal proofs,4,0 
as they will employ the technical standard arguments and would take a lot of

space. Rather we like to consider some examples to see how the method works.
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5. SOME EXAMPLES.

In this section we shall consider three examples of the general method

outlined above. Our playground will be three data sets of 2,000 observations

each that we have created by simulation.

First we specify the general setting:

Let us assume Z=(Y,X)Eltmfn, where X are the exogenous and Y the endogenous

variables. We assume a law

ft

= BtX + e'

ft

Where Y is an a-vector, B an n-vector of coefficients to be
ft ft

estimated, X a (nxm)- matrix the columns of which are subvectors of X or

constants, and e a random m-vector.

We shall assume e to be N(0,E)-distributed, and we assume that X and e are

mutually independent. It follows that the density of an observation is

”
f(y,x)= n(y'-Wx).g(x)

where n(.) stands for the normal density.

Our objective will be to estimate B and E by 
(B60' 

E ) when the
C cz,0

observations are Q-filtered. In order to test the method we have to know B

and E. Then we may compare the estimates with the true values.

So we begin to specify B, E and the density g(x) and we create by Monte-Carlo

simulation a data set of 2,000 observations.

We take X to be N(px,Ex)-distributed.

1. Our first example will be the Tobit-mode of observation. Clearly, Tobit-

estimation is no problem, but it clarifies for a simple case how things

work.

We assume px=(0,0,0)7 and a symmetric matrix

= 0

0.50

0.50

0.25 0.75

1••



19

We specify m=1 and Yt = It3X2tX3t—2X + + +1 -- — -2 
while et is N(0,1.5)—distributed.

Under exact• observation the problem is easy. The log—likelihood is

, (35) L B,a
-2 E [ln(n(V tT t=1

'X
t;
a2
e 
))+1n(g(X

t
))] 

*)

t
2Ta

2 
t=1

2
X
t 

+ constant.

where Y is a scalar and Xt a 4—vector, when we include the constant.

2 --As the last part does not depend on B or a
e 

we have

a ...
1(36) -- L03 a — 2) = E X (Y' — B'X

taB c 2 t ta t=1

(37)
a 

Z(B,a —21 =1— E [a2—
t
—B'X )

2
]—2

:Cae ) 
e ' 2T 

t=1 
e

Let us define Y't — B'Xt = u't where u't is just the tth residual. So we may
rewrite (36) and (37) as

- (36a)

(37a)

a
913 = 2 E

Ta
e 

t=1Xtut

a ... 1
  L = E (a

e
2

9(a
e
2 — utu')— 2T
) t=1

) Although Yt is a scalar we sometimes write Y't n the formulae in view of
the generalization to m—vectors Y hereafter.
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^ In the exact case those equations are easily solved for B and a2
e,O.

By OLS-regression we found the estimation result

Y = -2.01 X + 2.93 X + 1.05 X3 + 1.00

(.03) (.04) (.04) (.03)

2=1.53 R2a =1.53 R =.85

In the case of Tobit-observation an a -filter is applied. See figure 2).

If Yt>0 we may exactly observe (Yt,Xt).

If Yt<0 we know only that the observation is on the vertical half-line AI.
In the case of non-exact observation we replace the separate terms for those
observations in (36a) by

(38) 1

Ta
e
2

and in (37a) by

1 (39) 2 1
U
t
ti
t j- 

0]2T ae- 2T E

Consider for instance

(40) E(Yt <0)-
ai 27r

1
fy exp
-co

1 2
)dy

2a
2 t

This is a rather complicated function in B. It follows that if in (36) we have
to replace some "exact observation" terms by conditional expectations we
cannot find an explicit solution like in the OLS-case, but (36) has to be

solved by iteration until a satisfactory solution has been found.
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The iteration process is now structured as follows:

1. Start with an initial guess for B and

2. Calculate the conditional expectations in (38) and (39) in a way to

be described below.

3. Calculate the values of (36), (37) and check whether they are nearly

zero in terms of a tolerance limit. If so, the equation system has

been solved.

4. If not, we calculate the first-order derivative of (36) with respect

to B in order to find the second step in the Newton-Raphson process.

5. After having made (36) equal to zero for B
(1) 

we calculate the
(1) "residuals u'' -= Y'- B'(1)X

t 
and a 

2 
as

"2 1
T 

(1)11, (0\
(41) a =-- E E

e t t
t=1

where At is either a point Yta or the interval [-.0,01.

6. • Start again with the new estimates.

We notice that this process is not completely straightforward as we do not

change B and 
a2 

simultaneously, but solve (38) for B given a
(0)
e 

, then

correct a
e 

into a
e 

and restart the search for B and so on. However,

this procedure of successive search may be generalized to m>l, while

simultaneous minimization in more dimensions would give difficulties with

respect to the positive-definiteness of E.

Let us now consider the calculations in detail.

If Yt .9 it implies that et < - B'Xt. Consider now the conditional

distribution function of et. It is given by

(42)

1 
. . Lon(T;00

.2
)d-r if e<-10X- tIT(...Bfx'0,a

2
)

t e

1 if e> -B'Xt

In this case we do not need importance sampling as we can draw directly from

the distribution. We draw an n from a uniform distribution on [0,1] and
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calculate the corresponding e from the inverse of (42), .e., we solve

F(el.)=11 (see Figure 7).

1

0 -13 T X t

Figure 7. Drawing from a truncated normal distibution.

The corresponding drawing for (B'X+0). Let us assume we have k

drawings {y 1 k for one Xt's then we may define the corresponding residualsti i=1
uti and

1
(43) X

t E(ut 
IY
t- 
<0)., —X Eu

k 
i=1 

ti

and

(44) u u' 1
t t tg) m E (utiuti)

i=1

Notice that (43) and (44) are simultaneously assessed.

In practice k may be taken rather small, say k=4, if T is large.

So (36) and (37) may be evaluated.

In case of a non-exact observation differentiation of (38) with respect to B

yields a (4x4)-matrix, consisting of two parts.
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1The latter part is- X X'.
Ta
2 t t

factor (1/Ta2e)

(45) r 
9B 
a 
,LX 

E(yt

We notice that .

(46)

a<o)] = xt— t 3Bi

The first part is ignoring the

y.exp(-01 2a 
P(Yt<0)10,

ai271.

= X
t 
E(Y <0).(t t-

1

PcYt<

3P(Yt<O) 91n P(Yt<O)

[P(Y < ) 3B' 3B't-

Applying (8) and (36) we have

31n P(Yt<O)
1

E(1.03B'
a 
2

-1  3P

t:5.On 
+

Y <0)XYt

The first part of (45) may be written

(47) 1
Y <0)E(Y? <0)Xt

a
e
2 t- t

y.-exp(-
1

2a

xt

y-B'X
t
)

al27

dy

dy.

•

OWN.
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In a similar way the second part of (45) may be written as

1
(48) X

t 
— E(u Y'

t 
IY

2 t  t- t
a

Combination gives now the nxn)-matrix

2"
9 L T T
a 1 r 

(49) = ---1 L -E (X Xt') -I- -
1 
-F- E Xtvar(utlYtg))Xt']

9B9B'
Tae t=1 a t=1

C

In the case of exact observation u
t 
and Yt are exactly observed, and

consequently the second term vanishes as the covariance of two non-random

variables is zero.

Using this iterative procedure for which we require in this case 4 adjustments

of a
2 

and about 6 iterations per fixed a
2
, i.e., 25 iterations in total we

-e
end up with the estimates of B and of a

2
. The latter is found by solving (39)

for a
2 

yielding

"2 1
(50) a = — E E((Y

t
-B'X

te T
t=1

In Table 1 we present the results of OLS-regression on exact observations with

standard deviations, the corresponding results of classical Tobit-estimation

and the estimation results according to our procedure. In the last case we

assess the standard deviations of B by taking the negative inverse of (49).

An R2 is easily defined as

E E((Y

R
2
= 

t 
'X

t
)
2IY0)

t=1 

E [E(Y2IY <0)-{E(Y IY <0)}2]
t=1 

t t- t t-

• •
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Notice that also for the computation of the denominator we need an estimate of

B and a2.

Actually R2, thus defined, is identical to the R.2 advocated by Gouriaroux et

al. (1984).

Notice that 
r92

L1313') 
)-1. 0 1

e
(
T 

E X
t
X')-33

t=1

is the covariance matrix under exact observation.

TABLE 1. COMPARISON OF ESTIMATION RESULTS (N=2000) •

OLS' 1)

(st.error

BO B1 B2 B3
2 R2

1.00 -2.01 2.93 1.05 1.53 ' .85

.03) ( .03) ( .04) ( .04)

Classical Tobit .98

. ( .04)

-2.00 2.98 1.05 1.21 .83

.04) ( .06) ( .05)

New Tobit 2) 1.01 -1.98 2.93 1.04 1.45 .86

( .03) ( .04) ( .05) ( .05)

1) Estimated on the complete Y-vector.

2) The program took 1 minutes and 26 seconds on a VAX 8650 for 4 rounds and a
total of 25 iterations. For a usual mainframe the time has to be multiplied by

a factor between 1/15 and 1/20.

Obviously, as said before, the Tobit-case is not a spectacular case, as the
classical method is just as powerful. However, it is apparent how this method
may be generalized to more difficult cases. Actually the observations may be
filtered by any partition on R. We may replaceYt<0 by YteAt including
exact observation if At is a point.

Let us now turn to a more-dimensional example.

More specifically, we assume that we study a random phenomenon (Y,X)ce+n. We
do observe X exactly but we are only able to observe one Y-component per
observation, viz., the greatest of the m Y-components.
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It behaves according to the system

Yi = B'X + e"

where Y is an'm-vector, X a column-vector of length ni chosen from X,

^
n
i

X =

X,
1

0
•
•
•

0

X
2

X

in m
X is a matrix of dimension ( E n

i
) x in, B' a row-vector of length E n

i
= n

i=1 i=1

and e a random error-vector of length in that is NO,Ed-distributed.

The parameters B and Ec have to be estimated.

YI

Figure 8. A partition according to maxima.

•
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From Figure 8. it is clear for m=2 that (Y1,Y2)EAI if Yl is observed and in A2

iE Y2 is observed.

If we have YtEAt'Xt=xt' it follows that the residual Yt'-B'Xt = ut' is

N(0,Ee) -distributed. Let us now define the
It

set X
t
=lu

t
eimiu'

t
= Y'

t
-B'X

t
,YEA

t
1. The set 

74''t 
is At65 translated over a vector

ft

B'Xt. Then the conditional density of ut given that it is in ̂Alt and Xt=xt is

C.n(I;0,E ) if uteXt

0 if u
t

il.'
t

where C is a normalization constant. Notice that in the case considered in

Figure 8. either Yit or Y2t is exactly known. So in (51) either lilt or u2t is

known.

Let us now assume a drawing distribution h(z) on Xt that has support It

or a set BDX
e

Then we may evaluate by means of (32) the mi.-vector

(52)

E u f h
-1
(u 
)

i=1

E f(u )h 1(ui)
i=1

and similarly we find for the conditional second-order moments

E u u
i 
' f(u )h

-1
(u )i 

=(53) E(u u' Y EA )P,
i1 

tt tk 
-

E f(u)h
1

i=1

”
From (52) we may derive E(YtlYteAt) = E(utlYtEAt)f B'Xt.
Then the combination of (52) and (53) yields the conditional covariance matrix

of ut and hence of Ye
Notice that in (52) and (53) the unknown constant C cancels out.
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Consider now the normal equations in this filtered case. We have the

straightforward generalization of (36) and (37) yielding

(54)

(55)

(B,Ec) 1 T CilS c clE(NitiYt

aL 
-1

(B,Ec ) E [Es- E(utut'lutat)] =-1 - 2T t=19E
e

111 ...ill •

= 0
t c t

eft

0

By means of (52) and (53) we are able to solve (54) and (55) by

iteration.

We start with E(°)=I and B0)=0 and solve (54) for B0(1). Similarly to

(49) we may formulate the Hessian, needed for the Newton-Raphson process

as a (n x n)-matrix.

. In the 'general case. the Hessian, as calculated in (49), changes into

(56)

2^a La 
1 T ,,T ,,-1

  = 717 [- E XtEe X' t+ E XtEe- var(u_IY )E x' t]
t=1 t=1

9BBB' utte t

After the first round we calculate E(1) from (52) and repeat the
fixe

solution of (51) with respect to B1/4i), until the process has converged.

If it converges, we know that it will converge to the ML-solution for

the exact-observation case.

Finally we may calculate as a measure of goodness-of-fit

E EUY' -13'X)E

(57) R
2
=1 

t=1 

E [E(Y'E 1Y 1Y e
te t t

t=1

T
where = E E(Y

t 
IY eA

t
)

t=1

k Le
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This procedure has been performed on a simulated data set with N=2000.

We assume m=3 and n =4 for i=1,2,3 with X0=1 for all t.

We assume for (X1,X2,X3)

0 and E
x
=

0

E( e) =

finally

0

0

.111.11111

1

0 0.5

0.5 0.25 0.5._

and E(c0)=Z=

.M.11.11111

2

1

2

0
'4

) In our formulae we denote B=vec(g')..

.11.1111

1

0.5 2

1 1 . 5_

3

.5

0

3

The filter that we observe is the maximum of (Y11Y2'Y3)' i.e. we 
know

which of the three is maximal and what is its value.

Let us assume Y1=max(YI,Y2,Y3)=71. Then A1=lY1=

”
The simulation is done as follows. We consider u= Y' -B'X

t 
. It is

t t 
trivariate normal N(0,E).

We have for the density

(58) n(ul,u2,u3)=n(u1).n(u21u1).n(u31u1,u2).

Those conditional densities are all normal, where we use the well-known
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formulae for conditional expectations and variances for the normal

distribution; that is,

Let (X ,X ) be normal with expectation(u1,u2) and E=

then

E(Xi Z
2

and

-1
var(X IX =x )=E E1 2 2 11 12 22 21

11 12
E21 E22_

Using the formulae (58) and (52) we draw successively. We start

with u
it 

which in this case equals the first component of Y'-
t
-BrX

t' 
then

we draw u
2t 

from a normal distribution truncated on 
'
u 
t
) where the

expectation and variance are calculated given u1 =u1.

Then we draw u
3t, 

given (u
it

density n(u
3
luu

2t
).

n the same way from the truncated

The process converges in about 22 E-adjustments with per stage about 10

iterations with respect to B. For each observation we draw on average 10

times.

Notice that we actually increase the number of drawings per observation

after each stage to improve the accuracy. For one iteration we need 2kN

(this case maximally 40000) random drawings. We re-utilize the same

sequence of random drawings in subsequent stages, which implies that the

drawing of the random numbers on [0,1] can be dOne once before the

iteration process starts.

Notice that in this case h(z) implying that in (28)

f(z)h-1(z)El.

So also here in fact we do not use importance sampling.
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In Table 2 we present the estimation results for successive rounds and

in the last part we give for comparison the estimation results based on

the exact observations.

We see that the procedure yields very satisfactory results.

As a last example we tried a six—equation model where we observe the

largest of (Y1,Y2,Y3,Y4,Y5,Y6), The matrix Ee was taken to be diagonal.

The results are presented in Table 3.
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TABLE 2. ESTIMATION RESULTS OF A THREE DIMENSIONAL EXAMPLE

Bo B1 B2 B3

round 1

lst.equation 1.94 2.05 3.09 -1.04 .97

2nd. equation 1.17 1.09 -.72 .20 .09 1.35

3rd.equation -.16 .04 .70 -3.28 .02 .02 1.14

round 8

1st. equation 2.06 1.97 2.89 -.96 .92

2nd. equation .91 1.03 -.99 .33 .38 2.18

3rd. equation -.21 -.02 .68 -3.21 .16 .31 1.44

round 15

1st. equation. 2.10 . . 1.97 2.87 -.98 .92

2nd. equation 1.03 1.09 -.82.. .21 .53 2.15

3rd. equation -.08 .01 .68 .-3.07 .20 _.46 1.52

round 22 (final)

1st. equation 2.13 1.96 2.82 -0.97 .92

(st.error) ( .03) ( .05) ( .06) ( .07)

2nd. equation 1.15 1.10 -.70 .16 .61 2.04

( .06) ( .08) ( .10) ( .13)

3rd. equation -.06 .02 .68 -3.05 .21 .49 1.52

( .07) ( .08) ( .10) ( .13)

Pseudo R2 = .81

Exact observations

1st. equation 2.02 2.01 3.01 -1.01

( .02) ( .04) ( .04) ( .06)

2nd. equation 1.02 1.04 -.99 .04

( .03) ( .05) ( .06) ( .09)

3rd. equation .03 -.00 .50 -2.94

( .03) ( .05) ( .05) ( .07)

Pseudo R2 .82

.96

.50 2.02

.02 .96 1.42

.4

Remark: the program ran for 1 hour 20 minutes on a VAX 8650, for 22

rounds with on average 10 iterations per round.
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TABLE 3. ESTIMATION RESULTS OF A SIX DIMENSIONAL EXAMPLE

B2

1st equation 1.14 ( 1 ) -1.94 (-2) 2.89 ( 3 ) .94 ( 1)

(st. error) ( .04) ( .04) ( .05). ( .04)

2nd equation -.37 (-I ) 1.08 ( 1) 1.45 ( 11) -.84 (-1)

(st.error) (.05) ( .05) ( .08) ( .06)

3rd equation .61 (1/3) .92 ( 1) -1.24 (-11) .45 (

(st.error) ( .04) ( .04) ( .05) ( .04)

4th equation .16 (1/4) 2.04 ( 2) -.09 ( 0 ) 1.06 ( 1)

(st.error) ( .05) ( .04) ( .07) ( .05)

5th equation 1.06 ( 1 ) 1.03 ( 1) 1.94 ( 2 ) -.95 (-1)

(st.error) ( .04) ( .04) ( .06) ( .04)

6th equation .91 ( 1 ) -.65 (.-4) 3.12 ( 3 ) -.02 ( 0)

(st.error) ( .04) ( .05) ( .06) ( .05)

-Pseudo R2 = .83

Ee(diag)

.97 (1)

1.01 (1)

.87 (1)

1.04 (1)

.91 (1)

1.01 (1)

Remark: the program ran 1 hour and 20 minutes on a VAX8650, for 5 rounds with

on average 40 iterations per round. (Within branckets to the right of the

parameter its true values).
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CONCLUSION.

In this paper we generalized the theory of ML-estimation on exact observations

to deal with estimation on filtered observations in such a way that we got a

feasible computer procedure. Obviously the method draws heavily on the newly

developed simulation technology. From some simulated data sets it is clear

that the method works on linear models with normal errors. However, the method

is not restricted to that situation. Theoretically, the model is also

applicable to non-linear models, non-normal errors and filtering

partitions GZ that vary over observations t=1,...,T. The only requirement is

thata
t 

consists of F-measurable subsets of Also we do not need the

dichotomy into variables X and Y, but a similar method may be used for
If

filtered observation of structural models, e.g.,of the typeY'= r,y + B'X + c'

(1,
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