
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


.5:7-44-7 4'2

INKM
^

AZT [

2 IT
,

SOME ADVANCES IN BAYESIAN ESTIMATION
METHODS USING MONTE CARLO INTEGRATION

H.K. VAN DIJK

REPORT 8704/A

/ ERASMUS UNIVERSITY ROTTERDAM - P.O. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS



SOME ADVANCES IN BAYESIAN ESTIMATION METHODS

USING MONTE CARLO INTEGRATION*

by

Herman K. van Dijk**

Abstract

In this paper some Monte Carlo integration methods are discussed that can

be used for the efficient computation of posterior moments and densities of

parameters of econometric and, more generally, statistical models. The methods

are based on the principle of importance sampling and are intended for the

evaluation of multi-dimensional integrals where the integrand is unimodal and

multivariate skew. That is, the integrand has different tail behavior in

different directions. Illustrative results are presented on the dynamic

behavior and the probability of explosion of a small scale macro-economic

model. This application involves nine-dimensional numerical integration.
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1. INTRODUCTION

TWO related problems in the development of Bayesian statistical methods

for econometric models are the specification of prior information and the

efficient computation of the corresponding posterior moments and densities. A

particularly difficult problem in this context is the conflict between two —

apparently reasonable — requirements on prior information, i.e., analytical

tractability and richness. An important advantage of the class of analytically

tractable priors is that the integrals defined in the implied posterior

moments can be evaluated analytically. In other words, the integrals are known

in terms of elementary functions. As a consequence the computations involved

are relatively simple. This is important in view of the problems that arise

when numerical integration methods have to be applied for the computation of

posterior moments in spaces with high dimensionality. An example of a class of

analytically tractable prior densities is the natural conjugate family [see

Raiffa and Schlaifer (1961)1. However, Rothenberg (1963, 1973, Section 6.4)

has pointed out that the natural conjugate family is not rich enough for an

important class of econometric models, namely, the class of simultaneous

equation models (SEM). Further, the structural parameters of the SEM are not

identified in case a natural conjugate prior is used and all structural

parameters are unrestricted.

In this paper we do not discuss the formal specification of prior

information but assume that a posterior density is available. Our objective is

to describe some methods that are computationally efficient and that are

flexible enough to allow for a rich set of possible prior densities for the

parameters of interest to economists. The price for increased flexibility of

the prior densities is that in several cases the integrals defined in the

posterior moments and densities of the parameters of econometric models have

to be computed by numerical integration methods. Examples include models where

the prior is uniform and the likelihood function is skew or where the prior

density is informative and skew. This occurs, for instance, in the structural

form of a SEM, in a linear regression model with serially correlated errors,

in disequilibrium models or, more generally, in nonlinear models where no

linear approximation is available [see, e.g., Bauwens (1984), van Dijk and

Kloek (1980, 1983, 1985, 1986), Boender and van Dijk (1987), and Kooiman, van

Dijk and Thurik (1985)].

Well known numerical integration methods are Cartesian product rules that



2

are based on Gaussian or Newton-Cotes quadrature formulas (see, e.g.,

Abramowitz and Stegun (1964)1. The application of such methods appears to be

hampered by the amount of computational work involved in dimensions greater

than five, say. Consider the example where use is made of a ten-point Gaussian

quadrature formula. In K dimensions one has to evaluate 10K points. When K is

greater than 5 or 6 the computational workload is heavy. Due to the advances

in modern computer technology the problem of the computational workload may

become less important. However, there will still exist a relative advantage in

efficient computation for the Monte Carlo methods discussed below. One may

argue that a two- or three-point Gaussian quadrature formula can be used

intead of a ten-point formula. In such cases one makes quite often use of the

Cartesian product rules in an iterative way in order to check the numerical

accuracy. That is, after the first round of numerical integration, one makes

use of 2K times the number of points in a second round, and so forth. So,

Cartesian product rules suffer from what is sometimes referred to as 'the

curse of dimensionality'.

In this paper we make use of Monte Carlo numerical integration methods in

order to compute the integrals defined in the posterior moments and the

marginal posterior densities mentioned above. The Monte Carlo approach i

concerned with experiments on pseudo-random numbers where use is made of a

computerl [see, e.g., Hammersley and Handscomb (1964)1. Numerical integration

is an important area of application of the Monte Carlo approach. Basically,

the integrals to be computed are interpreted as expectations of certain random

variables in the Monte Carlo approach and the numerical integration problem is

changed into a statistical estimation problem.

In econometrics, .the Monte Carlo integration approach has been used

traditionally for the investigation of properties of the finite sample

distributions of classical estimators in the context of a given model and a

given point in the parameter space. As a consequence, the results of such

Monte Carlo experiments are specific for one parameter point. A recent survey

of this application of the Monte Carlo approach, which contains several

suggestions for further research, has been given by Hendry (1984).

We make use of Monte Carlo integration in a different way than the

approach mentioned above. First, there is a conceptual difference. Monte Carlo

1. We note that there exist also physical devices that generate pseudo-random
numbers. However, modern use of Monte Carlo integration methods involves
usually a computer procedure for the generation of pseudo-random numbers.



applied in classical estimation implies integration over the data space

(drawing repeatedly samples of artificial economic data). Monte Carlo applied

in Bayesian estimation implies integration over the parameter space. Second,

in our case the values of the parameters of interest of an econometric model

are not known. Third, the present analysis is empirical in the sense that we

do not generate artificial economic data.

Our way of using Monte Carlo may be succinctly stated as follows. The

starting point is the specification of a so-called importance function. This

is a density function defined on the space of the structural parameters (or on

the space of a subset of these parameters in case part of the integration i

carried out analytically). There are two requirements on this importance

function. It should have convenient Monte Carlo properties in the sense that

it is relatively easy to generate pseudo-random drawings from a probability

distribution with a density function that is equal (or proportional) to the

importance function. In addition, the importance function should .be a good

approximation of the posterior density. One can describe the basic steps of

Monte Carlo integration as follows. A sample of random drawings of parameters

of interest e is drawn from the distribution mentioned above.' Each random
drawing and each function of the random drawing, where one is interested in,

are multiplied by the ratio of the posterior density and the importance

function. This ratio serves as a weight function. Then one computes posterior

moments and densities by means of simple formulas that are based on standard

sampling theory. For more details we refer to Section 3.

The important advantage of Monte Carlo is that a large number of

posterior moments can be estimated at a reasonable computational effort. For

instance, in a single Monte Carlo integration procedure one is able to compute

the posterior first-order moments, second-order moments, univariate marginal

densities and bivariate marginal densities of a vector of parameters of

interest and of a vector (or matrix) of nonlinear functions of the parameters

of interest. For some illustrative results using a nine-dimensional vector we

refer to Section 4. There are several indications that Monte Carlo is

computationally efficient in problems with many dimensions, say more than five

or six. The basic reason is that Monte Carlo is a sampling method and hence

the error goes to zero as N-1, where N is the number of sample points. This

rather informal statement is explained in Section 2.

1. We shall in most cases use the term random drawing instead of the more
accurate but tedious expression of pseudo-random drawing.
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The contents of this paper is organized as follows. In the next section

we discuss the basic computational steps that are part of most Monte Carlo

integration procedures by means of two simple examples. In Section 3 we

summarize some basic concepts of importance sampling. Illustrative results

using this method are presented in Section 4 for Klein's Model I, which

involves a nine-dimensional numerical integration problem. Section 5 contains

a description of an algorithm that is based on a combination of one-

dimensional Gaussian quadrature and importance sampling, which we have named

mixed integration. Some suggestions for further work are given in Section 6.

2. DIRECT SIMULATION AND SIMPLE REJECTION

In this section we discuss two elementary Monte Carlo (MC) integration

methods. Our purpose is to illustrate the sequence of computational steps of

most MC integration methods through simple examples. Further, we give a

listing of a computer program that is intended as an introduction to the more

complex computer programs for importance sampling and mixed integration.

The multivariate integrals that we consider may be described briefly as

follows. Let e be an ,-vector of parameters of interest and let g(0) be an

integrable function of 0. The posterior mean of g(e) is defined as

Eg(0) = I (e)p(o)de
P(o)de (2.1)

where p(e) is a kernel of a posterior density function. That is, p(e) is

proportional and not equal to a density function and the denominator of (2.1)

plays the role of integrating constant, similar to the role of nir in the case
of the normal distribution. Simple examples of g(e) are g(e) = e and g(e) =
08'. Note that g may be a vector or a matrix. We emphasize that g(e) may also

be a complicated nonlinear function of e such as the implied multipliers of

the structural parameters of a simultaneous equation model [see, e.g., van

Dijk and Kloek (1980) and Section 4]. There exist several other examples of

nontrivial nonlinear functions of 0. For an example in the statistical

literature we refer to Kass (1985), and for some examples in the econometric

literature we refer to van Dijk (1985), Zellner (1985), and Geweke (1986).

Consider the problem of the computation of the integrals in equation

(2.1) for the case where a computer procedure is available that enables one to

generate a sample of pseudo-random drawings from a distribution function F(0)
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with a density function equal (or proportional) to p(e). Let e(1), ..., 0(N)

denote the generated random sample. Given that g(e) has a certain regularity

property (i.e., g is measurable), it follows that g(e(1)), g(e(N)) is

also a random sample. Then we may approximate the posterior mean (1.1) by the

sample mean, which is defined as

- 1 (i)
g = E g(e

i=1
(2.2)

The computation of Eg(e) by means of this procedure is referred to in the

literature as direct simulation, since one is able to generate a random sample

directly from the distribution studied by making use of a computer procedure

that simulates a sequence of random numbers (otherwise stated, the computer

procedure generates a sequence of pseudo-random numbers). For more examples on

direct simulation and for references on computer procedures that generate

sequences of pseudo-random numbers for many families of distributions we refer

to, Hammers ley and Handscomb (1964, Chapter 3), Newman and Odell (1971),

Atkinson and Pearce (1976), Kinderman and Ramage (1976), Kinderman and Monahan

(1980), Rubinstein (1981, Chapter 3), Marsaglia (1984), Ripley (1983), Bauwens

(1984), and the references cited there.

A flow diagram for direct simulation is given in Figure 1. Note that we

make use of an arrow sign instead of an equality sign in Figure 1. For

instance, one interprets S(°) .4- 0 as: 'the value zero is assigned to the

variable SO)'. Apart from the computer procedure that generates e(i), the

basic computational steps are given as

(0) + o

(1) (1-1)
S +S + g(8(i)) (i = 1, N)

The symbol SO) stands for the initial zero-value of the sum of the sequence

of random variables g((1)), g(o(N)); S(i) denotes the i-th partial sum
,of this sequence, given as S(i) g(0

(1)
) + g(o 2) g(e(i)). Equation

(2.4) and Figure 1 illustrate that one does not have to store the large set of

(pseudo-) random numbers g(e
(1)

), g(e
(2)

), g(e(i)) in a computer as is

suggested by the formula for the i-th partial sum, but one can make repeatedly
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Figure 1. Flow diagram for direct simulation



use of a computer procedure that generates a pseudo-random number.

The accuracy of the approximation (2.2) may be studied by increasing the

size of the sample from N to 2N, 3N, ..., MN. The results can be printed at

each value of jN, with j = 1, ..., M. Given certain regularity conditions, the

Monte Carlo estimator g converges with probability one to Eg(6). Some examples

of this convergence process are presented below.

An other measure of numerical accuracy can also be derived from large

sample theory. Under certain regularity conditions it follows from central

limit theory that the estimator g, equation (2.2), is approximately normally

distributed with mean Eg(e) and variance a
2
/N, where a

2 
is given as

a
2 
= Eg

2(e) - [Eg(0)]2 (2.6

Under the assumption that the integrals in (2.6) exist, one may estimate a
2
 by

the sample variance

-2 1 2 (i) -2
a =; g (e g

(2.7)

-2Given an estimator a for a2, one can define a 95 percent confidence interval
g g)

for Eg(6) in the usual way as - 1.96; /iN, g + 1.96; /iN]. For an

introduction to the sampling theory results that we use, we refer to Mood,

Graybill and Boes (1974, Chapters 2 and 6) and for a more advanced treatment

we refer to Cram6r (1946, Chapters 25 and 27). An example of a sequence of

confidence intervals is presented below.

In order to illustrate the computational steps of an MC integration

method we consider the computation of a truncated five-dimensional standard

normal integral by means of MC.1 So, in this case we have L = 5, p(6) is equal

to a multivariate standard normal density function, and

g(e) = 1 if 6 < a (2.8)

= 0 elsewhere

where a is a five-dimensional vector of known constants. Direct simulation is

not a suitable integration method for this problem. An other Monte Carlo

integration method for this problem may be formulated as follows:

1. We note that in this case the value of the integral can be determined by
making use of the table of the standard normal integral. More comments are
given at the end of this section.
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Figure 2.

• A Fortran-77 program for the evaluation of a truncated
• multivariate normal integral.

• ndim the dimension of the multivariate normal integral,
• mround : the number of times that an intermediate result is

printed,
: the number of random drawings of the multivariate normal

distribution for each round,
• nacc : the number of accepted random drawings of the

multivariate normal distribution for each round,
• ncum : cumulative number of random drawings,
• nacum • • cumulative number of accepted random drawings.
• value : computed value of integral in each round

cumvalue : computed value of integral after jrounds

• THETA(ndim) : a random drawing of the multivariate normal
distribution,

• BOUND(ndim) : a vector with upper bounds for the elements of
THETA.

• GENERATE(THETA,ndim) : a procedure that returns in THETA a random
drawing taken from a ndim-dimensional
multivariate normal distibution,

• TEST(THETA,BOUND,ndim,tacc): a procedure that assigns the value
.true. to tacc if the values of vector THETA are
smaller then the upperbounds in vector BOUND,
else tacc becomes .false.

integer ndim,mround,n
parameter (ndim.5, mround.100, n.10000)

logical tacc
integer nacc,jround,i,ncum,nacum
real*8 THETA(ndim),BOUND(ndim),value,cumval,p,q,ub,lb

data BOUND/1.0d0,0.0d0,2.0d0,-1.0d0,-2.0d0/

p = 0.0014838428435809d0
q 1.0d0 - p

1001 format('0','The evaluated integral for round',i3,' is: ',f8.6,
& ' the cumulative value of the integral is: ',f8.6,', (',

f8.6,',',f8.6,')')
open(unit.6,file.'[e.ect.hkvdijklexamplel.resi,status=inew')

initial value of the pseudo-random number generator

call GO5CBF(100000*ndim)
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initial zero value of number of accepted rand
om drawings at round zero

nacum = 0

do jround = 1,mround

initial zero value of number of accepted ran
dom drawings for each round

nacc = 0

do i = 1,n
call GENERATE(THETA,ndim)

call TEST(THETA,BOUND,ndim,tacc)

if (tacc) nacc = nacc + 1

end do
value = dfloat(nacc) / dfloat(n)

nacum = nacum + nacc
ncum = jround * n
cumval = dfloat(nacum) / dfloat(ncum)

lb = p - 1.9599639177322388d0 * dsqrt(p * q 
/ dfloat(ncum))

ub = p + 1.9599639177322388d0 * 
dsqrt(p * q / dfloat(ncum))

write(6,1001) jround,value,cumval,lb,ub

end do

stop
end

subroutine GENERATE(THETA,ndim)

integer ndim,i
real*8 THETA(ndim)
do i ..1,ndim

THETA(i) = GO5DDF(0.0d0,1.0d0)

end do

return
end

subroutine TEST(THETA,BOUND,ndim,tacc)

logical tacc
integer ndim,i
real*8 THETA(ndim),BOUND(ndim)

tacc = .true.
do i = 1,ndim

if (THETA(i) .gt. BOUND(i)) then

tacc = .false.
return

end if
end do

return
end
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"Generate a vector of unrestricted normal random variables and test

whether such a vector satisfies the restrictions of (2.8). Suppose that N1

random drawings (out of a total of N drawings) satisfy the restrictions. Then
A

we estimate the value of the integral P by means of P = Ni/N."

This method of computing a multivariate integral is an example of a Monte

Carlo integration method known as simple rejection. [A standard example of

simple rejection is given in, e.g., Rubinstein (1981, pp. 115-116).] The

rejection step can be inserted in a simple way in the flow diagram of Figure 1

after the step where a random vector 0 is generated from F(0). A computer
program, written in Fortran-77 is listed in Figure 2 and the results

of some experiments are presented in Figures 3 and 4. The computer program

illustrates the basic computational steps of most Monte Carlo integration

procedures. That is, it starts with some statements that refer to initial

values, in particular, the initial value of a random number generator and

initial zero-values. [We make use of the normal random number generator from

Brent (1974), given as NAG-subroutine GO5DDF.] The central part of the program

refers to two so-called do loops. The inner loop, with the index i, refers to

the computational steps given in Figure 1 and equations (2.2)-(2.4). [Note

that in our program an estimate of the probability P in each round is denoted

by the term value and the number of successes is denoted by the term nacc.]

The outer loop refers to the number of times that intermediate results are

printed. Let the index j refer to the number of times that a sample of size N

is generated, with j = 1, M rj is labeled as jround in the program in

order to avoid possible confusion between the integers i and j]. Let P denote

the estimated value of the integral P after j samples of size N. The values
A.

P
j' 

j = 1, M, are related in a recursive way, i.e., we can write

where

A A
jP. = (i-l); 1 

. + 
N (j = 1, M)j-,j 

(2.9)

(2.10)

S(iN)- 5j-1)N
2.11)

and S(iN) is defined in equations (2.3)-(2.4). Note that for j=1, it follows

that (2.11) is equal to (2.5). Using (2.9) and (2.10), it is seen that Pi can

be computed in a recursive way as
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Equation (2.12) shows that convergence of P is guaranteed when j tends to

infinity since ((j-1)/j) < 1. Note, however, that 
N 

./j is not a constant but
,J

the realized value of a random variable. Even at a large value of j the

additional term S
N 

./j may throw the sequence temporarily off-track, but this
,J

event should have less and less effect as j increases.

Some examples of sequences P. and 
SN j 

are shown in Figures 3 and 4. In

Figure 3 the true value of the integral P
, 
is given as P = .49456, which stems

from taking the vector of constants a as a = 1.12; in Figure 4 the true value

of P is .001484 and the value of the vector a is given in the computer

program, listed in Figure 2. The sample size N is taken as N = 1,000 and as N

= 10,000. The results in Figure 3 indicate that the sequence P. fluctuates
J A

around P due to the random character of the sequence gN,j. Further P stays

well within the 95 per cent confidence interval when N = 1,000. When N is

increased to 10,000, it is seen that P is outside the 95 per cent confidence

interval for a number of consecutive times when j > 80. This reflects the slow

convergence process when j is large. We note that the scales on the vertical

axis in Figures 3 and 4 have been determined in each figure by the difference

between the largest and smallest numbers in order to show the variation in the

sequences. The sequences P in Figure 4 fluctuate much less around their true

value than the sequences of Figure 3. This is due to the fact that adding a

very small number to a sequence of numbers has only a minor effect, in
A

particular, when j is large. One may argue that the sequence P in Figure 4

mimics in certain intervals on the horizontal axis, to a certain extent, the

behavior of a linear difference equation with constant coefficients.

As an exercise one can determine the required size of the sample for a

preassigned level of numerical accuracy. Suppose one is satisfied with a two-

digit accuracy at a 95 per cent confidence level. That is, the required

confidence interval bounds are given as .001484 - .00005 and .001484 + .00005

.and we impose 1.96[P(1-P)/N]4 < .00005 [compare the comment after equation

(2.6)]. This implies that, roughly stated, N must be greater or equal to

20,000.

We end this section with a remark. Monte Carlo is not the most efficient

method for the evaluation of a truncated multivariate normal integral [see,

e.g., Quandt (1983, Section 8.3), and the references cited there]. We repeat
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that our main purpose in this section is to indicate the basic computational

steps of Monte Carlo integration and to illustrate the structure of a computer

program using Monte Carlo.

3. BASICS OF IMPORTANCE SAMPLING

The posterior kernels of the parameters of interest of several

econometric models have, to the best of our knowledge, no known Monte Carlo

properties. That is, it is not known how one can generate random drawings from

a distribution function with a density function equal (or proportional) to the

kernels mentioned above. A well known example of such an econometric model is

the linear simultaneous equation model where some of the structural parameters

are known exactly and where the prior information on the unrestricted

parameters is taken from a noninformative approach. Further examples are

dynamic regression models with serially correlated errors and disequilibrium

models [see the references cited in Section 1]. As a consequence, direct

simulation is not a suitable numerical integration method.

In such a case one can make use of the following simple solution.

Interpret the integral given in the numerator of (2.1) as the expectation of

the function g(e)p(e) with respect to the uniform distribution u(e), defined
on the region of integration S. So, the numerator of (M) can be rewritten as

Eu[g(8)p(8)]. Similarly, the integral in the denominator of (2.1) can be

rewritten as Eu[p(8)]. Next, a sample of uniform random drawings of the vector

8 is generated on the region of integration S. Let e(1), e(N) denote the

sequence of generated random drawings. Then, one can approximate (2.1) by

1
E g

(8(1))1303(i)

i=1g =

which can be written as

where

1
E POP))

i=1

_ N
= E g(e(i))p*(0))

i=1

= gem)
(i)E )

1=1

(3.1)

(3.2)

(3.3)
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Note that p*(0(i)) is an estimator of the value of the normalized density

function in the point e(i). The estimator (3.1) is a ratio of random

variables. Given certain regularity conditions, it follows that (3.1) [and

(3.2)] converges with probability one to (2.1) and that it is approximately

normally distributed. The accuracy of the approximation (3.1) depends on the

size N of the sample and on the variances of g(e)p(e) and p(e). These

variances were in the cases that we studied very large due to the large

variation of p(8). As a consequence, one needs a very large sample of random

drawings in order to achieve an acceptable level of numerical accuracy

[compare Section 2].

In order to improve on the approximation (3.1) [and (3.2)] one may

proceed as follows. Define

w( e) p(0) 
i(o)

(3.4)

where J(e), labelled importance function, is a density function on the region

of integration S. [So, p(8) = w.(8)i(e), with i(e) > 0 on S.] Then one can

replace p(0) in (2.1) by w(e)i(0). There are two requirements on i(e). First,

It should be a good approximation to p(e) and, second, one should be able to

generate a sample of random drawings from a distribution with density equal or

proportional to J(o). Let OM, ..., 0(N) be the generated sample. Then one

can approximate (2.1) by

E g(e(I)Me(I))
1=1

1

• 

E w(o)
i=1

which can be rewritten as

g= E g

i=1

where

w*

(ea)) =
(i)

E w(0
i=1

(3.5)

(3.6)

(3.7)



16

So, w*(e(i)) is the relative weight given to each random drawing g(8(1))

Obviously, if w*(e(i)) is approximately equal to unity everywhere on the

region S, it follows that one is (almost) back in the situation of direct

simulation [compare the estimators (2.2) and (3.7)1. More practically stated,

if the variance of w(8) is much smaller than the variance of p(e), one has

achieved a large increase in numerical accuracy at a given sample size

[compare (3.2) and (3.7)]. Details on the exact formulas that are needed to

compute posterior first- and second-order moments, univariate and bivariate

marginal posterior densities, and numerical error estimates are given in van

Dijk, Hop, and Louter (1986).

Next, we discuss briefly some proposals for the importance function J(o)

1. The (truncated) multivariate Student t density. If the surface of the

posterior kernel is reasonably well-behaved but there are some heay tails, one

can make use of the multivariate Student t density with the multivariate

normal as a limiting case if the sample is large [see, e.g., Zellner (1971,

Appendix B2]. As location and scale parameters of the multivariate Student t

density, one can take the posterior mode and minus the inverse of the Hessian

of the log posterior density, evaluated at the posterior mode. The mode can be

determined by numerical optimization methods and the Hessian by means of

numerical differentiation [see, e.g., van Dijk (1984)]. For details on

computer procedures that can be used to generate Student t random drawings we

refer to Bauwens (1984), Kinderman and Monahan (1980), van Dijk, Hop, and

Louter (1986), and the references cited there. In case the posterior mode is

on the boundary of the region of integration S, one has to make use of

constrained numerical optimization methods. Some proposals for this are

discussed in van Dijk and Kloek (1980).

2. Poly-t density functions. In case the posterior density is not well-

behaved, e.g., bimodal, one can make use of the poly-t class of density

functions. In particular, when the posterior density is also a member of this

class [see Bauwens (1984)]. More research is needed in order to determine the

usefulnes of this family of density functions.

3. Mixtures of normals or Student t densities. Mixtures are very flexible and,

therefore, suitable as importance function for irregularly shaped posterior

densities. A difficult problem is, however, the specification of the values of

the parameters of mixtures. A simple solution is given in van Dijk and Kloek

(1985). More research is needed on this topic.
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4. PRIOR AND POSTERIOR ANALYSIS OF KLEIN'S MODEL I 1

4.1. Model and prior information

In this section we apply the Monte Carlo approach to Klein's Model I,

which is a small simultaneous equation model based on annual data for the

United States economy for the period 1921 to 1941 [see Klein (1950)]. Given

our prior information, this model has nine structural parameters of interest

to economists, which implies that we compute nine-dimensional integrals

numerically.

The statistical model can be summarized as follows. Our starting point is

the well known linear simultaneous equation model (SEM)

YB + Zr = U* (4.1)

where Y is an Tx(G+G') matrix of observations on G+G' current endogenous

variables and Z an TxK matrix of observations on the K predetermined

variables. The rows of U* = (U 0) are assumed to be independently normally

distributed with mean zero and covariance matrix

L) (0)1 4.2)

where E ( a nonsingular GxG matrix) corresponds to the stochastic equations.

Further, current values of the disturbances are assumed to be independently

distributed from current and lagged values of the predetermined variables and

the data matrix (Y,Z) has full column rank.

The prior information on B, r, and E is specified as follows. The
elements of the parameter matrices B, r, and E are divided into three groups:
(i) Nuisance parameters (constant terms, denoted by the vector a, and the

covariance matrix E); (ii) Exactly known elements of B and r; (iii)

Unrestricted elements of B and r, denoted by the vector e. So we have

B = B(e), r = r(a, (4.3)

The prior specification with respect to the nuisance parameters is taken

1. This section is an extension of van Dijk and Kloek (1980).
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from a noninformative approach. The prior density of the constant terms a is

locally uniform and the prior density of E is proportional to I E 
1h
, where

h = — i(G+1) and G is the number of stochastic equations. We have opted for

this relatively low value of h so that the information contained in the

likelihood function determines the posterior. As a consequence, analytical

integration with respect to a and E is possible [see, e.g., van Dijk (1984,

Chapter 2)].

With respect to the prior specification of the exactly known parameters

we proceed as follows. Identification is treated in the traditional way [for

an alternative approach, see Kiefer (1981)1. As a result we have a number of

exactly known parameters (not only identifying zeros, but also normalizing

unities) which are substituted in the likelihood function. The exactly known

parameter values of B and r are implied by the specification of Klein's Model
I. The structural equations of Klein I read

= P eP +0W+a+ u
1

= P+ o P
5 —1

W
1 
= e

7
X÷OX

1 et+ a3—

W=W + 142

2 
+ u

2

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Consumption expenditure (C) is structurally dependent on profits (P), profits

lagged one year (P_1) and on total wages (W). Net investment expenditure (I)

depends on profits, profits lagged and on the capital stock at the beginning

of the year MO; note the minus sign before 06 in the investment equation.
Finally, private wage income (W1) depends on net private product at market

prices (X), the same variable lagged (X_1) and on a trend term (t). The model

is closed by four identities, which provide links with three exogenous

variables: the government wage bill (14'2), government nonwage expenditure,
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including the net foreign balance, (G) and business taxes (T). The model

counts seven jointly dependent variables (C, I, W1, X, P, K, W) and eight

predetermined variables (1, P_ 1, X_1, K_1, G, T, W2, t). All variables (except

1 and 0 are measured in constant dollars.

For a more detailed exposition of the model the reader is referred to

Klein (1950). Note however that the use of the symbols Y for net national

income and G for government nonwage expenditure is not uniform in the

literature on Klein's model I. We shall use Y (= X - T + W2) for net national

income. Klein (1950) uses G for government expenditure including wages (= G +

W2 in our notation). Other authors, e.g. Rothenberg (1973), use Y instead of X

for net private product. This notational point is relevant for the

interpretation of a number of reduced and final form multipliers.

Finally, we discuss in this subsection the prior information on the

parameters of interest 8. We shall specify a number of prior densities of 8

and demonstrate how Monte Carlo may be used to investigate the implied prior

information with respect to the reduced form parameters, the stability

characteristics of the model and the final form parameters (if these exist).

Our first and simplest prior for the vector e is uniform on the nine-

dimensional unit region' minus the region where 10311 < .01. The latter region

has been subtracted in order to guarantee that the implied prior moments of

the multipliers exist. The likelihood determines the posterior in the

truncated uniform region. It goes without saying that such a prior need not

reflect in all detail the betting odds one might be willing to accept.

Next we investigate the implications of our prior information for the

multipliers and dynamic characteristics of the model. We obtained the implied

prior means and standard deviations of these functions of e by drawing 6

vectors from the nine-dimensional standard uniform distribution. Each 8 vector

was checked with respect to the condition OH > .01. In case this condition

was not satisfied, the vector was rejected and replaced by a new vector. Each

experiment was stopped when 20,000 0 vectors satisfying the constraint were

obtained.2 For each e vector we computed the implied reduced form parameters

or short-run multipliers (SRM) and some other characteristics, to be discussed

below. These are used for the computation of the implied prior means and

s.

1 We use the term unit interval for the interval (0, 1) and the term unit
region for a Cartesian product of unit intervals.
2. We emphasize that this number is large so that the prior densities are

reasonably accurate. The Monte Carlo estimates for the posterior moments are

already reasonably accurate at 2000 random drawings.
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second-order moments and the implied univariate prior densities.

The reduced form equations form a system of linear difference equations.

The three roots of the characteristic polynomial of this system summarize the

dynamic properties of the system.If all roots are real, the system is

monotone. If there is one real root and a pair of conjugate complex roots, the

system is oscillatory. Further, if all roots are less than one in absolute

value, the system is damped. In case there is, at least, one root greater than

of equal to one, the system is explosive. [For more details, see Theil and

Boot (1962)1. There exist four possible states of the system: damped

oscillatory, damped monotone, explosive oscillatory and explosive monotone.

For each of these four states we computed the prior probabilities implied by

the specified structural prior density. In case the system is oscillating one

may compute the period of oscillation, and in case the system is damped one

may compute the final form parameters or long-run multipliers (LRM).

As a next step we modified our first prior in several ways by adding sets
of extra constraints. The set of constraints of prior 1 was maintained in all

stages. The sets of extra constraints, which were introduced partly one at a
time and partly in various combinations, will now be described:

1. The system is assumed to be stable. So we only accepted vectors 0
satisfying IDRTI < 1, where DRT is the dominant root of the characteristic
polynomial. In the present example this is of the third degree. The value of
the dominant root of this third degree polynomial may be computed by making
use of analytical formulas [see, e.g., Abramowitz and Stegun (1964, p.17)] or
by making use of numerical methods. We made use of a numerical method given by
the NAG-Library routine FO2AFF.

2. The long-run effects in the structural equations: el + 82 84 + 85'07 ± 08 are all assumed to be in the unit interval.
3. The SRM's are assumed to be less than five in absolute value and to

have the correct sign (positive for effects of W2 and G, negative for effects
of T).

4. The same set of constraints as mentioned in 3 was applied to the LRM's
(with an exception for the final form equation of K, where an upper bound of
ten was adopted).

5. The period of oscillation is assumed to be between three and ten

years. This is in accordance with the observed length of business cycles in

the period 1890-1920 [see Historical statistics of the U.S. (1975)1. Eight

different priors were obtained by combining the sets of extra constraints, 1
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to 5, in several ways. They are given as prior 1 (no sets of extra

constraints), prior 2 (1), prior 3 (2), prior 4 (1,2), prior 5 (2,3), prior 6

(1,2,3), prior 7 (1,2,3,4), prior 8 (1,2,3,4,5). [The numbers between ( )

refer to the sets of extra constraints.] We note that, due to space

limitations, we present only results based on priors 2 and 8. More details are

given in van Dijk (1984).

The posterior density of (8, a, E) is obtained by combining the

likelihood function of the SEM and the prior density by means of Bayes rule.

The marginal posterior density of the parameters of interest 0 reads in this

case,

gel Y2 Z) ge)10311T 1 rI(T"..1) 4.11)

where S is defined as S = U'NU, with U given below (4.1) and N given as

N = I — (1/T)11 1. For details on the derivation of (4.11) we refer to van Dijk

(1984) or van Dijk and Kloek (1977).

4.2. Prior and posterior results

In this subsection we present the prior and posterior means and standard

deviations of the nine structural parameters e (Table 1), the multipliers in
the reduced and final form equations for national income (Table 2), the period

of oscillation and the dominant root (Table 3), and we present the prior and

posterior probabilities of the four states of the system (Table 3). Further,

the marginal prior and posterior densities of the structural parameters are

shown in Figure 5, univariate and bivariate marginal prior and posterior

densities of the multipliers mentioned above are shown in Figures 6 and 7, and

the prior and posterior densities of the period of oscillation and the

dominant root are shown in Figure 8. We make use of a prime to denote a

posterior density, e.g., 2' denotes the marginal posterior density based on

prior 2. In all tables we give the Full Information Maximum Likelihood (FIML)

results (with asymptotic standard errors in Table 1) for comparison. In all

cases we confine ourselves to presenting the results based on priors 2 and 8

(except for the bivariate densities, where we confine ourselves to prior 2 due

to space limitations). The reason is that the differences between the results

for priors 1 through 7 for the structural parameters and SRM's and for priors

2, 4, 6 and 7 for the LRM's were very small. We shall discuss this point in



22

TABLE 1

MEANS AND STANDARD DEVIATIONS OF STRUCTURAL PARAMETERS

1 84 66 87 8 09

FIML -.23 .39 .80 -.80 1.05 .15 .23 .28 .23

(no prior) (.58) (.30) (.04) (.84) (.42) (.05) (.09) (.06) (.06)

Prior 2 .40 .42 .37 .41 .36 .50 .65 .33 .50

(.28) (.28) (.26) (.28) (.27) (.29) (.26) (.24) (.29)

Posterior 2' .12 .19 .79 .06 .64 .15 .34 .23 .19

(.08) (.08) (.04) (.06) (.10) .03) (.05) (.05) (.04)

Prior 8 .25 .33 .39 .27 .30 .55 .43 .27 .50

(.20) (.23) (.25) (.20) (.22) .26) (.24) .20) (.29)

Posterior 8' .24 .06 .72 .14 .56 .20 .37 .24 .19

.08) (.04) (.05) (.09) (.12) .05) (.04) (.04) .05)

more detail below. All results presented are based on N = 20,000. In contrast,

application of a ten-point Gaussian product rule of numerical integration

requires 109 function evaluations. As importance function we make use of a

truncated multivariate Student t density. For details we refer to van Dijk

(1984, Chapters 3 and 4) and to van Dijk and Kloek (1980).

We start to observe that the FIML estimates of 61 and 64 have wrong
signs. When analyzing this phenomenon it is found that three factors play a

role. First, the data reveal collinearity of P and P_1, which implies that the
fit of the investment equation, for example, does not deteriorate much if 04
decreases while 65 increases at the same time. Second, there is a positive

correlation between the residuals of the consumption and investment functions.

If the covariance matrix E is postulated to be a diagonal matrix the wrong

signs are not observed. FIML results based on a diagonal matrix E are

presented by Klein (1950). The hypothesis of a diagonal covariance matrix E
is, however, strongly rejected in a likelihood ratio test [x

2
(3) = 28.46].

Third, the Jacobian
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111311 = 11 —(o + )(1 — 07) — 636 (4.12)

is less than or equal to unity in the unit region but equals 1.60 in the FIML

point. Recall that a factor HBH
T 

occurs in the likelihood function and in the

marginal posterior density p(61 Y, Z), equation (4.11). We note that in 3SLS,

where the Jacobian factor is absent in the function to be minimized but the

nondiagonal elements of I are present, 64 has a wrong sign but only marginally
so (64 = —.013) [Theil (1971, p.517)]. If 64 is restricted to be zero, el gets
the correct sign and this hypothesis is not rejected in a likelihood ratio

test [x
2
(1) = 3.201 According to this diagnostic result there is no conflict

between the sample information and our prior information, which states that el
and 64 should be nonnegative. If we compare the FIML asymptotic standard
errors and the posterior standard deviations of the structural parameters

(Table 1) we see that this prior information plays a large role. This

conclusion is confirmed in Figure 5.

Once we have accepted the prior information that all elements of 8 are in

the unit region, the extra sets of constraints 1, 2, 3 and 4, introduced in

Subsection 4.1, turn out not to be restrictive. Given prior 1, the posterior

probability that the system is explosive is .021. Given prior 2, the long run

posterior effects 8
1 
+ 6

2' 
6
4 
+ 6

5 
and 6

7 
+

8 
in the structural equations'

are all in the unit interval (Table 1). In this respect we note that the

relevant covariances (not shown in order to save space) are all negative. All

SR1A's and LRM's (Table 2) amply satisfy the upper bound constraints. They also
satisfy the sign constraints, though some are close to zero. In these cases
the prior and posterior densities (Figures 6 and 7) turn out to be skew so
that the probability of wrong signs is extremely small. This explains why the

differences between the posteriors 2 to 7 are very small.
The only set of extra constraints which adds substantial information to

the sample is set 5, which says that the period of oscillation should be
between 3 and 10 years. It is seen in Tables 1 through 3 and in Figures 5, 6
and 8 that this set, introduced in prior 8, influences almost every parameter.
In particular, if 82 and 65 are relatively large (which corresponds to
negative or small positive values of 61 and 04) the lags become large and
this, in turn, implies long periods of oscillation (compare Tables 1 and 3)
and relatively small absolute values of most of the SRM's (Table 2).

So we have observed that the prior constraints on the period of
oscillation have rather large effects. The question arises whether this



25

TABLE 2

MEANS AND STANDARD DEVIATIONS OF MULTIPLIERS IN THE REDUCED AND FINAL FORM

EQUATIONS FOR NATIONAL INCOME

Short run effects on Y Long run effects on

(SRM's) (LRM's)

T G TW2

FIML

(no prior)

Prior 2

0.62 -0.36 1.50 1.96 -1.30 2.57

2.20 -2.83 1.99 3.12 -2.55 3.06

(1.57) (1.94) (1.45) (151.) (58.0) (134.)

Posterior 2' 1.65 -1.32 2.30 2.38 -1.73 2.87

(0.19) (0.20) (0.16) (0.14) (0.23) (0.16)

Prior 8 2.00 -2.14 1.85 2.01 -2.20 1.93

(0.71) (0.83) (0.73) (0.78) (0.74) (0.86)

Posterior 8' 2.06 -1.81 2.49 2.25 -1.6.7 2.63

(0.30) (0.34) (0.26) (0.13) (0.20) (0.16)



26

TABLE 3 _

MEANS AND STANDARD DEVIATIONS OF PERIOD OF OSCILLATION AND DOMINANT ROOT;

PROBABILITIES OF STATES

Period of

oscillation

(years)

DRT Damped Explosive

Oscillatory Monotone Oscillatory Monotone

FIML 34.83 .76 (not available)

(no prior)

Prior 2 5.22 .78 .96 .04

(4.74) (.17)

Posterior 2 15.06 .84 .9999 .0001

(2.90) (.08)

Prior 8 5.42 .72 .98 .02

(1.57) (.18)

Posterior 9.61 .77 .9927 .0073

(0.37) (.08)

0

0
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information is acceptable. The posterior mean and standard deviation of the

period of oscillation under prior 2 (Table 3) suggest that the hypothesis of a

ten year period is acceptable. Inspection of the prior and posterior densities

of the period of oscillation in Figure 8 reveals that for the case of prior 2

the information from the likelihood function has modified the prior

information substantially. The posterior probability that the period of

oscillation is less than or equal to ten years is less than .02. Further, the

effect of constraint 5 is clearly reflected in the posterior density 8'. These

results suggest rejection of the constraint 5.

We summarize the posterior results as follows. The prior restrictions

that el and 04 should be nonnegative have a large effect on the posterior

results. Given these prior restrictions, we have shown that only constraint 5

has a substantial, but undesired, effect on the posterior results, which

suggests rejection of this prior constraint.

When considering these results we were tempted to look for specification

errors. So far, Bayesian statistics lacks a well developed standard battery of

diagnostic checks as has been developed for instance in the context of time—

series analysis. A first set of diagnostic results is based on an analysis of

the expected values of the posterior residuals that are defined as

EU = Y EB + z Er (a,0) where the index s refers to the set of variables
s s s s

and parameters that occur in the stochastic equations of Klein's Model I.

Estimates of the posterior expected values of ul, u2 and u3 [equations (4.4)—

(4.6)1 are presented in Table 4, together with the residuals based on the FIML

estimates of the vector 0. Further, the posterior densities of two functions

of the posterior residuals are shown in Figure 9. That is, the serial

correlation coefficients

E u
jt
u

t=2 
jt-1

Pj =  

E u
t=2 

jt-1

j= 1,2,3 (4.13)

and the well—known statistic of Durbin and Watson have been chosen as two

diagnostic tools for the detection of correlation in the posterior residuals.

The results indicate that there are errors in the dynamic specification of the

consumption function. This finding is in accordance with results presented by

Kiefer (1971). So, instead of reducing the parameter space by making use of
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the sets of prior constraints 1-5, we have to enlarge the parameter space by

including, e.g., lagged consumption in equation (4.2). Preliminary results

obtained with an enlarged version of Klein's Model I confirm this. This will

be reported on in future work . We emphasize that one has to interpret these

diagnostic results with care. They indicate, however, that there exists a need

for diagnostic analysis on the correct specification of the information

contained in the prior density and in the likelihood function.

TABLE 4

FIML RESIDUALS AND MEAN VALUES OF POSTERIOR 2' RESIDUALS

ul U2 u3

FIML Post.2' FIML Post.2' FIML Post.2'

1921 -1.07 -0.37 -3.85 -1.50 -1.57 -1.04

1922 -1.02 -0.91 2.13 0.49 0.77 0.88

1923 -1.07 -1.54 2.19 1.11 2.44 2.04

1924 -0.02 -0.54 -0.00 -1.33 0.05 0.05

1925 0.47 -0.08 2.06 0.54 0.45 0.06

1926 0.90 0.69 2.19 1.38 0.44 -0.05
1927 1.60 1.23 2.31 1.13 -0.23 -0.56

1928 1.80 1.03 2.57 0.36 0.71 0.42
1929 0.01 -0.69 4.24 2.04 1.98 1.46

1930 -1.86 -0.34 -4.61 -1.32 -1.02 -0.73
1931 -2.31 -0.57 -5.81 -1.41 -1.23 -0.34

1932 -2.99 -0.59 -8.23 -1.77 -2.68 -1.14

1933 0.76 0.80 -0.08 0.97 -1.05 -0.01

1934 -0.43 0.10 -2.28 -0.45 -0.46 0.15
1935 -0.03 0.15 -0.82 -0.01 -0.46 -0.09

1936 2.62 1.92 3.48 1.89 -0.32 -0.59

1937 -0.65 -0.49 -0.33 -0.18 0.80 0.73

1938 -0.76 0.03 -5.21 -3.47 -1.93 -1.39
1939 2.17 1.30 2.76 0.51 0.41 -0.16

1940 1.73 0.90 2.75 0.21 -0.25 -1.04

1941 -0.87 -2.04 4.56 0.81 3.16 1.33
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5. MIXED INTEGRATION

Mixed integration, henceforth referred to as MIN, is a numerical

integration method for the evaluation of multivariate integrals where the

integrand is multivariate skew, that is, the integrand has different tail

behavior in different directions. Such integrands contrast with integrands

that have symmetric tail behaviour, e.g., the multivariate normal density

function and the multivariate Student-t density function. Some examples of

contours of multivariate skew functions are presented in Figure 10. The

distinctive feature of MIN is that it employs a mixture of one-dimensional

classical numerical quadrature and importance sampling. The method consists of

two main steps. First, one generates a point e(i) from a multivariate normal

distribution that has the posterior mode 00 as its center and minus the

inverse of the Hessian of the logposterior, evaluated at the posterior mode,

as its covariance matrix V. (We assume that e° has been estimated by a

preliminary optimization procedure.) A generated point e(i) defines a line
through e(i) and 00. As a second step of the MIN-method one performs one-
dimensional numerical integration along the line mentioned above, where the

integrand is the posterior kernel multiplied by a particular factor that is

specified below. One may argue that the MIN-technique conditions on skewness.

That is, generating lines, or, more precisely stated, generating directions,

by means of a multivariate normal sampling procedure occurs in a symmetric

way. Conditional upon a generated direction, one performs a one-dimensional

numerical integration step, which takes account of the possible skewness in

the integrand.

We summarize the main idea of mixed integration as follows. MIN is based

on a transformation of the random vector 0. That is, partition

and V-1 as

6 60 = (1;2),

where v and r are scalars. Define

V :=

P q)
q' r)

(5.1)



Figure 10. Examples of contours of multivariate skew functions
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--Then e is transformed into (n,p) where

d, P d if v > v

(5.4)

n := -u/d, p := -d if v

It is seen from (5.4) that the 2,-vector of parameters of interest e is changed
into a pair (n, p), where the (1-1)-vector n describes the direction of the

0vector e e and the scalar p describes the distance between e and the
posterior mode e0 in a metric that makes use of a covariance matrix V. That
is, the scalar p satisfies p

2 
= (0 — 00),v-1(e — 00) and a sign convention for

p is added in order to guarantee that the transformation of e into (n, p) is
one-to-one. Let T denote the transformation formulae (5.4) that carry 8 into

,(n, p). Then we can write 6 = T'1(, p). The actual transformation employed

involves a Jacobian determinant

1 I = 1P1-1 11J(n)1 (5.5)

where IJ(n)I is a determinant that depends only on n [compare van Dijk (1984)
and van Dijk, Kloek, and Boender (1985)1. If one applies this transformation

of variables to the case of the zero-th order moment of 6, one obtains the

following result.

where

fP(8)" = 4)01 4)02

-1
4'01 = [1.4-13 T-1(i10))1P1 1411J(n)I dnR

-1
4)02 = f[1-10-1 

L
(no))1P 1411J(n)I dnR

(5.6)

(5.7)

The set Q is the region of integration of n and It+ and R7 are, respectively,
the positive and negative real line, which are the regions of integration of

P.

As a next step we make use of an other feature of mixed integration. That

is, one can apply the transformation of the random vector 0 into the pair
(n,p) also to the case where 0 is normally distributed with mean 00 and
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covariance matrix V. The transformed density is proportional to f(p)IJ(n)I

where 1J(n)1 is the same determinant as given in (5.5). [For details on the

specific forms of f(p) and J(n), see van Dijk, Kloek and Boender (op.cit.).]

It follows that random drawings n(i) can be generated from a distribution with

a density function proportional to 1J(n)1 by simply generating random drawings 

ea) from a multivariate normal distribution with mean 0 and covariance

matrix V and then applying the transformation involved. So, given a sample of

random drawinq o(1), 0(N)) 
 on9Itains two subsamples, say

( , ni ) and (n2 , n2 ) with N1 + N2 = N. [Whether a random

drawing of n belongs to the first or second set depends on the inequality

conditions (5.4).]

In the actual computations we make use of the property that the

generation of directions occurs in a symmetric way. That is, if 0 ) - 00 is a
,

generated point, one can take 00 - (i) - 0)0  as a next generated point since

these two points are symmetric around 00 and they define opposite directions.

The effect of such a sampling scheme, which is called antithetic sampling, is

that each generated direction is used twice and that the one-dimensional

integrals in (I) and cp 
02 

are computed on the entire real line. Therefore, we
01 

need not distinguish in the actual computations between
01 

and 4)02, except

for the estimation of the numerical errors [see van Dijk and Hop (1987)1. So,

given a random sample 
e(1), 0 ,we have one set of generated(N)

directions n (1) n(N), and the left hand side of (5.6) is estimated by

where

1 E w (_ i))
4)0 cc 2N i=1 0"

+03

Wb(n(i)) = f p(T
-1
(n(i),p)lp

27111 
Idp

(5.8)

(5.9)

We divide in (5.8) by 2N since each generated direction na) is used twice.

Note that we make use of a proportionality constant since the random sample
(1) (N)
n , n stems from a distribution with a density proportional (and not

equal) to IJ(n)I and we have not written the proportionality constant in an

explicit way. Since we deal always with ratios of integrals these

proportionality constants cancel.

Next, we discuss the computation of the posterior first-order moments by

means of MIN, which illustrates the statement that MIN conditions on skewness.

We start with rewriting 0 in the following way. Let y be an auxiliary random
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variable, defined as

so that

:= 
e —

e = e
o

(5.10)

(5.11)

Since 80 may be interpreted as a vector of known constants, it follows from

(5.11) that

E0 = + Epy (5.12)

Equation (5.12) illustrates that the term Epy represents skewness. In the case

of symmetry, when Ee = 00, one has the property Epy = 0. The computation of
the posterior mean in case of skewness proceeds as follows. We write

EE) = (e)de
p(o)de (5.13)

A. mixed integration estimator for the integral in the numerator of equation

(5.13) can be derived by going through the same transformation of variables as

for the case of the denominator. By making use of results that are similar to

the ones given in equations (5.6)-(5.9) and (5.11) it follows that the vector

of integrals in the numerator of (5.13) can be approximated by

where

1 
- 

i1 

(i) ( (i))
Ssj cc 27 E Yj w1 1=

(j = 1, ...,

+00 i) st-1wl(n ii) f pp(eo py( )1 14

(5.14)

(5.15)

Note that the integrand in (5.15) is equal to the integrand of (5.9)

premultiplied by a factor p. A MIN-estimator for E0j, j =
be written as

= 0. +---(j = 1, ...,j

10

1, can now

(5.16)
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[compare (5.6)-(5.9) and (5.13)-(5.15)]. Note that we made use of a

proportionality sign in (5.8) and (5.14), but that we use an equality sign in

(5.16). Since the numerator and denominator in (5.16) have been estimated

using the same random sample, it follows that the numerical constants, which

were omitted in (5.8) and (5.14), cancel and one can make use of an equality

sign in (5.16). Second-order moments can be computed in a similar way as

first-order moments. However, for the case of second-order moments one makes

use of an integral w(n(i)) [compare (5.15)] that has as integrand the

function given in (5.9) premultiplied by a factor p2.

The structure of the computer program for mixed integration is shown in

the flow diagram in Figure 11. It is seen that random drawings e(j) are

generated from a normal distribution function. After the transformation of

variables, which carries e into (n, p), three one-dimensional integrals are
computed. Particular examples of the function h(n")) are given in (5.9) and

(5.15).

We emphasize that in our applications the region of integration is

bounded. As a consequence, the line integrals with respect to p are computed

on a bounded interval. The upper and lower bound of this interval may be

determined as follows. Given that a < 6 < b
'
. j = 1, ..., t, one can make
J 

use of (5.11) and write

0 0a. - 8. < py. < b. - e. (j = 1, ...,
J J J J

(5.17)

For each of the t-dimensions one can compute two values of p such that the

inequalities are binding constraints. That is, if yj > 0, then we define

(j = 1, ...,

0 0a. - e. b. - 6
P P

J J ** J 
• ' • = j 

Yj 
j 

Yi 
(5.18)

If yj < 0, then p
* 

and p
** 

are interchanged in (5.18). As a next step one
**

determines the _minimum value of (p
1 '' 

p ) and the maximum value of

(pi, ..., p). These extreme values are the limits of integration for the line

integrals.

Finally, we mention that mixed integration can also be used for the

computation of moments of nonlinear functions of 8, such as implied

multipliers of simultaneous equations models. The restriction of mixed

integration is that for each nonlinear function one has to compute a one-

dimensional integral with respect to p, given a generated direction n(i).
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Initial value for random number generator

(i)Generate from N

Transform e(i) into (1) (i), P

Integrate w.r. . p ( (i)
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M
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/ 
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N,j 5
(2jN)/(2iN)

Print results\

+

Figure 11. Flow diagram for mixed integration
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For an application of mixed integration which involves a thirty-dimensional

numerical integration problem we refer to van Dijk and Kloek (1986).

6. REMARKS

In this paper we have discussed some algorithms that can be used for the

computation of posterior moments and marginal posterior densities of a vector

of parameters 8 for the case where the posterior kernel of e is not a member
of known family of density functions. If the surface of the posterior kernel

is reasonably well-behaved one may make use of the method of importance

sampling with the (truncated) multivariate Student t density as importance

function. If the posterior surface is not well-behaved (but unimodal) one may

use the method of mixed integration. Given our experience this method is

flexible, robust, and parsimonious. That is, it is flexible since one follows

the posterior kernel exactly with the computed line integrals; it is robust in

the sense that it has handled several cases where the multivariate Student t

density failed as importance function; and it is parsimonious in the sense

that mixed integration uses the same number of parameters as a normal

importance function (i.e., location and scale parameters). Mixed integration

may not always be efficient in terms of CPU-time. A topic of further research

is the search for flexible functional forms that can serve as importance

function. Finite mixtures appear to be very flexible but they have also a

large number of parameters that have to be specified a priori. A simple

proposal in this area will be reported in a forthcominng paper. In order to

experiment with the algorithms mentioned in this paper, we have prepared a set

of standard programs [van Dijk and Hop (1987)]. The development of Bayesian

software is an active area of research.'

An other part of this paper was the application of Bayesian estimation

methods to a particular econometric model. The results cast some doubt on the

specification of the prior densities and on the specification of the

likelihood function. So, apart from the development of Bayesian estimation

procedures there is a need for procedures that evaluate the information in the

prior and the likelihood function.

1. Recently, Tierney and Kadane (1986) proposed a method for the computation
of posterior moments and densities that avoids numerical integration.
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