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Testing nonnested linear hypotheses II:

Some invariant exact tests

J. Bouman

Abstract

In this paper we derive a number of invariant tests for the problem of

testing linear hypotheses.

The power functions of these tests are studied and it turns out to

depend on die value of r = rank(XlZ) (where X and Z are the given

regressor matrices) whether the tests have level a, are unbiased and

possess certain other desirable properties.

The required computations in order to use the tests in practice are

given.

We also derive large sample approximations to the critical values and

the p-values of the tests.
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1. Introduction

This study is the sequel to Bouman [1], where the problem of testinglinear hypotheses is reduced through invariance considerations.The purpose of this paper is to derive reasonable invariant exact testsby building on the above mentioned previous results.The problem of testing linear hypotheses has the following form:Let y be a n-vector of observations from a-multinormal distribution,

(1.1) n(p, a2I),

where p c Rn and a > 0 are unknown.
On the basis of y we want to test the hypotheses

(1.2) p = )(fi vs. H1. • p = Zy,

where X and Z are given nonstochastic regressor matrices of the ordernxk and nxt, respectively, and where 8 E Rk and y e RI are unknown.In order to make Ho and H1 mutually exclusive, we assume that under H1
the vector y e RI is such that Zy X8 for 8 e R.Further we assume that rank(X) = k < n and rank(Z) = L < n.If, in general, Al(A) denotes the linear (vector-) subspace (of Rn)spanned by the columnvectors of the nxm matrix A, the above problem canalso be stated as follows.
On the basis of the observable random vector y, the distribution ofwhich is assumed to be n(p, a2I) we want to test

(1.3) p e M(X) vs.Ho. H1 p e WZ)VgX).

In general, hypotheses Ho and HI are said to be nested when everyparameter point under Ho(Hi) is a limit point of H1(H0). If this is notthe case the hypotheses are called nonnested or separate. When Ho and H1
have no common limit points we speak of strictly separate hypotheses.For our problem this means that the hypotheses are nested if and only ifM(X) c M(Z) or /11(Z) c M(X), which occurs if and only if



=ND

p = dim(KX) n A(Z)) = min(k,

In the nested case Mr(Z) c M(X) it seems more realistic to test

Ho' u e M(X)\14(Z) vs. H1: u

instead of (1.3) since M(Z)\M(X) is the empty set when M(Z) C M(X).

Note that in our problem the hypotheses cannot be strictly separate

since the points belonging to the set

{(p, a), a> 0)

are always common limit points of Ho and H1.

As said before this paper is concerned with the derivation of invariant

exact tests for the problem of testing linear hypotheses.

In Section 2 some of the main results of Bouman [1] are presented. In

Section 3 we construct a whole class of invariant tests. The

distribution function of the general test statistic is derived in

Section 4. Section 5 is concerned with the question whether the tests

posses certain desirable properties, such as having level a and being

unbiased. In Section 6 we consider three specific tests and the

distribution functions of the corresponding test statistics are derived

in Section 7.

The computation of the test statistics from the data (y, X, Z) and the

computation of the power functions in terms of the parameters 8, y and a

are considered in Section 8.

Section 9 is concerned with the interpretation of the tests.

When n is large, the critical values and p-values of the tests can

easily be approximated as is shown in Section 10.

The required computations are given in Section 11 and a summary of the

results is presented in Section 12.

In this paper only a small number of references is made. For more

general literature on the topic of testing linear hypotheses we refer to

Bouman [1]. Finally, in the Appendices (A) - (D) a number of special

results are derived.



2. The transformed problem and reduction through invariance

Before applying invariance considerations to our testing problem it is

convenient to transform the original problem into a problem with a more

simple structure.

As we saw in the preceding section, we assume that the vector of

observations y has a n(u, a2I) distribution and we want to test

(2.1) H0' u e M(X) vs. H1:• Ii E mczAm(x).

Now it is shown in Bouman [1] that this problem can be transformed into

a more simple problem through the linear transformation w = 11'37, where

the nonsingular nxn matrix R has the following structure

(2.2) [R:R:R:R
4 
] (n),

1 2 • 3 • 
Ot (k-p) (p) (m)

where p = dim(M(X) n M(Z)) and in = n+p-k-1.

The columnvectors of the submatrices Ri form an orthonormal basis for

the following linear subspaces Vi:

M(X) n (m(x) + M(Z))

(2.3)
2 

m(z) n (m(x) + M(Z))

= m(x) n m(z)

_L
= m(x) fl A(z)

where, in general, M(A) denotes the orthogonal complement (with respect

to 0) of the linear subspace M(A) and where + denotes the sum of 2

linear subspaces.

The above subspaces satisfy:
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(2.4)

dim(Vi) = k-p

dim(V2) = k-p

dim(V3) = p

dim(V4) = m

V n V. = f0}, i * ji 3

Vi -0 V2 43 V3 13 V =

where 0 is the null vector and where the symbol 4) denotes the direct sum

of 2 linear subspaces.

From w = Rty and y n(p, a21) it easily follows that

(2.5) w n( p , cr2R' .

If 6 = Rtp, wi = Rly, 0 = Rip, i = 1, 2,

see that wt =

have

(2.6)

n = R'R =

it is not difficult to

w'2 1.7,3 e' = (e1 0 0 e') and that we always
4

[ I D 0 0
D' I 0 0
0 0 I 0 '
0 0 0 I

where D = R'R
1 2.

Moreover it can be shown that 01 - 0 if and only if p c Al(X) and also

e2 = 0 if and only if p ciV(Z).

Hence, it is seen from (2.1), (2.5) and (2.6) that the original problem

(2.1) is equivalent to the following transformed problem:

On the basis of the vector of observations w which has a n(0, a

distribution, we want to test

(2.7) H0*• 61 vs. H1• 61 * 0' 2 - - 0.* 

It should be observed that there exists a whole class of matrices R of

the above type which give rise to a transformed problem of the form



described above. Since for our purposes it does not matter which

particular matrix R from this class is chosen, we extend the above model

to the situation where R is supposed to be an unknown matrix. However we

always know that D = R1R2 where the columnvectors of Ri and R2 form an

orthonormal basis for the subspaces V1 and V2, respectively.

Now it is not difficult to verify that the transformed problem remains

invariant under the following group of transformations of the sample

space (the space of w) onto itself:

(2.8) G: w g(w) = cHw + a,

for all c e R1, c * 0, all vectors a' = (0'

and all orthogonal matrices H of the form

(2.9)

H1 0 0 0

o H2 0 0

0 0 H
3 

0

0 0 0 H

0') with a3

where 111 is an orthogonal (L-p)x(i-p) matrix, H2 is an orthogonal

(k-p)x(k-p) matrix, H3 is an orthogonal pxp matrix and H4 is an

orthogonal mxm matrix.

The transformations (2.8) can be interpreted as Changes of the

coordinate system in which the data (w) are expressed. When a problem is

independent of the particular coordinate system chosen, it is natural to

restrict attention to tests which satisfy the same property, since

otherwise the acceptance or rejection of the hypothesis under

consideration would depend on the choice of the coordinates, which is

quite arbitrary and has no bearing on the problem.

That is, we restrict attention to tests (functions of w) which are

invariant with respect to (2.8):

(2.10) gg(w)) gw) for all g e G and w e Rn,

where • is a critical function,i.e., gw) is a statistic and

0 < gw) < 1 for all w e Rn.*)

*) For any value of w a test or critical function • specifies the
probability of rejecting Ho when the sample outcome w is observed.
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Now a test 4) is invariant under G (i.e., satisfies (2.10)) if and only

if 4) is a function of a maximal invariant statistic T = t(w), i.e., (w)

= gt(w)), where 11) is a critical function.

A statistic T = t(w) is maximal invariant if and only if

a) t(g(w)) = t(w) for all g G and w E On.

b) t(w) = t(w) implies that w, = g(w) for some g

It follows that the class of invariant tests can be represented by gT),

where cp is a critical function and T = t(w) is a maximal invariant.

As is shown in Bouman [1], when

= t
1
(w) =

(2.11)

1 1

w4w4

%Ow
2 2

= t (w) = w,w
4 4

the statistic

(2.12) T = t(w) = (t 1(w), t (w)) = (T1, T,)

is maximal invariant under G.

The above discussion shows that the principle of invariance reduces the

sample space Rn (the space of w) to the space of T, which is a subspace

of R2 since TI > 0 and Tq > 0.

Usually, invariance not only reduces the sample space but also the

parameter space since, as is typically the case, the probability

distribution of the maximal invariant depends only on a function of the

parameters. In order to see this for our problem we consider the

probability distribution of T.

We shall use the fact that T is invariant under the transformations

g G: w + g(w) = cHw + a, with c, a and H as indicated above (see (2.8)

and (2.9)).

Now it can be proved, see Bouman [1], that for any D there exists an

orthogonal matrix of the type H, say



K 0 0 0

0 K 0 0

0 0 K
3 

0

0 0 0 K
4

with arbitrary orthogonal submatrices K3 and K4 and orthogonal

submatrices K1 and K2 depending on D such that

(2.13) KiDig = C,

where the (t-p) x (k-ip)matrix C has the form

(2.14) C

0 Vi

• 
1 (m

1 • •

0

(k-r)

• • • 111.1".P.14".1(mm)

• • •

Here pl, p2, ..., pm are the M different eigenvalues with 0 < pi < 1 and

multiplicities ml, m2, ..., mm of the kxk matrix (X'X)-1 X'Z(Z'ZY-1Z'X

(or equivalently, of the ixt matrix (Z'Z)-1Z1X(X X)-1X1Z) and r is

defined by r = p + E m
j°

j=1
It can easily be seen that r = rank(X'Z), 0 < p < r < min(k, and that

the hypotheses in (2.1) or (2.7) are nested if and only if

p = min(k, I).
1 

Let c — a = --
1
Kb with b' = (0' 0' 0' 0') and H = K, then

= g(w) = cHw + a 
1
K(w-b) or equivalently u (u'

1 
u' u') with

a  3 4

1
K w

1a

u2 
1
K2w2

a

K
3 
(w
3 
- 

3
)

a 

1 v

U4 Se 77 a'AWle
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Since T is invariant under G we have

(2.15)

u u
1 1

u'u
4 4

u2u2

u.0
4 4

and from w n(6, a2

(2.16)

where

(2.17)

1
K 6

1

1
6
2 
= — K

2
6
2a

it follows that

r = K(a2Q)(1- K
G

0')

= =
[ 

I COO
C' I 0 0
0 0 I 0 •
0 0 0 I

This shows that the probability distribution of T depends on the unknown

parameters through 61 and 62. Note that the hypotheses in terms of 6

become

(2.18) HO: = 0 vs. H1: * ,= O.

When the subvectors u11 u2' 61 and 6 are partitioned as follows

U1

(t-r)
10 u20
u
11 

(m
1) 

u
21

•
•

1M
•ab

•
•
•

•
•
•

u2m

•
•
•

( m )
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‘111.

it can be seen from (2.16), (2.17) and (2.14) that u10' u20' (u11, u21),
(ulm, u2m) and u4 are mutually stochastically independent and have

the following probability distributions

ulo — (610

A
u20 

- ( 
%-2 '(k-

u .

u .

u4 ~ n(0,

Next we define

(2.19)

(2.20)

U = u 
ii 

.0 
ii

= U .11 .
j 23 23

= u'u1 1

= U
2 
U
2

15
13
.

j...

Then it easily follows that

U1

4
(2.21)

m.)

671
(n.) I(n1 me,

j , 2, •• • , M



with U1 =EU.U=EU2j 
and also that

j=0 1
j' 2 

j=0

U10, U20, (Ull, U21), ***, (U1M U2m), U4 are mutually independent.

The above results enable us to characterize the probability distribution

of T.

The latter distribution is uniquely determined by the distribution

function F(ti, t2) as well as by the characteristic function gti, t2),

which are defined by

F(ti, t2) = P(T, < 2 t2)

it1T1 + it T*(t t.,) = E(

where i denotes the imaginary unit.

Since in our case it is more easy to find Vti, t2) than F(ti, t2) we

shall characterize the probability distribution of T by *(ti, 2).

We get

t9) = E(e
it T +it2T2 ) = E{E(eit1T11-it T2

it U /U +it U /U
= E{E(e 

1 1 4 2 2 4 I
U4))

03 it
1 
U
1 

it
2 
U
2 
/u

= f E(e
0

4))

u) f(u)du,

where f(u) denotes the probability density function of the random

variable U4.

From (2.19) it follows that U4 =

(2.22) ) U> 0

2„
X km) and this shows that:

Further we know that (UI, U2) and U4 are independent which implies that

it
1
U
1
/u + it

2
U
2
/u

E(e
itlU i/u + it2U2/u

4 
= E(e
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and therefore we have

(2.23) gti f E(e
0

it U t
It remains to find E(e

(UI, U2).

From the mutual independence of (U10, 2

it follows that

itiU +It
E(e

Mi
= E( II e

j=0

where

(2.24) Ti

) = E(

+1
f(u)du.

, i.e., the characteristic function of

), (U11, 2

it E U .+it E
13 2 2j

j=0 j=0

), •••, (Ulm, U2M)

.+it U . M it U +it U ,
23
) 

1
= E e 3) = E

j=0 j=0 1

•
t2) = E(eit 1U1S+it2U2j

j = 0, 1, ..., M.

Since (2.19) implies that U10 =
2

20 20 20 ' 
v20), 

10 0 10 
6' 620, andU = u' u x (k-r, where v = 6' 6 and v

20 
. 

since U10 and U20 are independent we get

(2.25) 1 -2it
l

X
2

-r' v10),ulOul0 - (L

L-r
it v

1 10 
exp{ 

1-2it }
1
(1 2it )

k-r
it v

2 r  2 201
exp, 

I-2it2J

When (u1j, u2j) have the joint probability distribution as given in

(2.19), it is shown in Appendix A that the joint characteristic function

of U
lj 

= 
u'j 

u
lj 

and U
2j 

= u'.0
2j 

is of the following form
l 23 

(2.26) (ti, 2it
1 
- 2it - 4(1 - 

j
)
t 2

2

(it i + 2t t )v . + (it
2 
+ 2t

1
t
2
)v

2j),
12 13 

exp{
1 - 2it

1 
- 2it

2 
- 4(1-p

j
)t

1
t
2



j = 1, 2, ..., M, where vli = 6! and v
2j 

= 6
2j
' 

62j 
•

j 
Hence, (2.23) can be written as

co m

(2.27) (t1, t2) = f 11 f(u)du,
0 j=0

where f(u) and Tj(ti, t2) are as given in (2.22) and (2.25), (2.26),

respectively.

Since the characteristic function Igt t2) of T depends on the

parameters through

(2.28) v = v(6) = (v1,

where v1 v = - 10) v11) "' v10)

(2.29)

V = 6'6
ii lj lj

v = 6'6
2j 2j 2j,

(1720' 1721, 
v2m) and

j = 0, 1, ..., M, it follows that the probability distribution of T has

the same property.

In other words invariance reduces the parameter space to the space of v.

It should be noted from (2.29) that we always have v > 0.

Further it is een from (2.18) that we can write the hypotheses in terms

of v as follows

(2.39) Ho: vi = 0 vs. H : v * 0, v2 = O.

The above discussion shows that the principle of invariance reduces the

testing problem (2.7) to the problem of testing (2.30) on the basis of

the observation T = (T1, T2), which is known to have the characteristic

function I(t1, t2).

If we define

(2.31)

{viv = (V1, \72 > 0)

ol = {vIv = (v1, v2), vl > 0, v * 0, v2 =



the hypotheses 2.30) of the reduced problem can be rewritten as

(2.32) HO: v e wo vs. : v W •

Note that the point v = 0 (which belongs to (4) forms the boundary

between Ho and H1 and that v = 0 if and only if the original parameter

point (p, a) in (2.1) satisfies p e M(X) n Mr(Z) and a> 0.

Having reduced the problem through invariance considerations we now try

to find the "best" test among the invariant tests, or equivalently, we

shall try to find the "best" test for the reduced problem.

This problem will be considered in the next section and as a measure of

quality of a test we shall use the power function of the test. In our

case, when .(T) is an invariant test, the power function of the test is

defined by

(2.33) n(4), Ev(4)(T))

Note that, since any test or critical function • specifies the

conditional probability of rejecting Ho given that T = t, i.e.,

we have

gt) = (H is rejectedIT =

IT(4) v) = Ev(gT)) = Ev(P(Ho is rejectedIT))

= Pv(H0 is rejected).

Since the rejection of Ho is a wrong decision for v e 00 and a correct

decision when v e wi' it is therefore desirable to find a test which

makes w(4), v) small for v e wo and large for v c

At the end of this section we consider the special case where the linear

hypotheses are nested.

This situation occurs if M(X) c Mr(Z) or Al(Z) C M(X), or equivalently, if

p = min(k, L). We have 3 subcases:

a) M(X) = AZ), or equivalently, p = k = t

b) MOO c Al(Z) and M(X) /11(Z), which corresponds to p k <

c) M(Z) c M(X) and Mr(X) Mr(Z), which is equivalent to p = L < k.



-16-

Obviously, case a) is trivial. It is easily seen that w, 0 and Q become

equal to

w' 104), O' = (8'3 0'), n =

It follows that there are no maximal invariants and the only invariant

functions are the constant functions.

In case b) we get:

= (wi

and the hypotheses (2.7) become

H,:

100 I
O t ot),n= 010
3

0 0 I

= 0 vs. H1: 01 * 0,

which are obviously nested hypotheses.

As a maximal invariant we obtain

T = t
1 
(w) = T =

4 4

win

and v becomes

v = v = 610 10 10'

Hence the spaces wo and wi in the reduced problem take the form

Wo = {VIV = V10 = 01, W1 = {VIV = V10 > 0).

Since in the case c) it is seen that M(Z)\M(X) is the empty set, we have

to modify the original hypotheses in (2.1). It is natural to take

(2.34) Ho: p c A100\/4(Z) vs. H1-• p Eit(Z).

For the transformed problem we get

2 4 2

I 0 0
w' = (w ) Er = (et et ot), a= o I o 

3' 

 ]

0 0 I



-.17—

and the hypotheses (2.7) now become see 2.34))

Ho: * 0 vs. H1: 82 = 09

which are again nested hypotheses.

The maximal invariant takes the form

t (w) = T2 =

and for v we obtain

w'w
2 2
w'w
4 4

9v = v2 = 1720 
. 6 

2 2

which shows that wo and w can be written as

wo = {v1 = {v1 = v20 = O}.
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3. .C-class tests
a

A test 4)* would be a uniformly best test for the reduced problem if for

any other test we have:

71(4)*, v) < 71(4), v for all v wo

n(4)*, v) > 71(4), v) for all v w

However, it is well known that, not only for our problem, but in

general, such a uniformly best test does not exist.

The usual procudure then is to restrict attention to the subclass of

level a tests. A test (I) is said to have level a if the size of the test

is equal to a preassigned significance level a, i.e.,

(3.1)

sup 71(4), v) = a.

0

Now we try to find a best test within this restricted class.

A level a test 4)* is uniformly most powerful (UMP) for the reduced

problem if for any other level a test (1) we have

(3.2) 7r(4)*, v) > n(4) v) for all v

If there exists a UMP level a test e for the reduced problem (2.32) in

terms of T, we can use the fact that T = t(w) and define the test 0

through

Then the test 0 is a UMP invariant level a test for the original

problem (2.7) in terms of w.

It is not difficult to show, see Bouman [1], that in the case of nested

linear hypotheses (p = min(k, 0) there exists a UMP invariant level a

test for the problem. This test turns out to be the classical F test.

Whether or not there exists a UMP invariant level a test for the

nonnested case (p < min(k, t)) is an open problem.

In order to find a reasonable test for the nonnested case we shall

narrow the class of tests still further.
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First of all we always require that the tests have level a, i.e.,

(i) sup 71.(4), v) = a.

0

That is, we restrict attention to tests cp, whose probability of a type I

error is at most equal to a preassigned level a. Tests with this

property are often called exact tests.

Another useful criterion is unbiasedness.

A test 4) is said to be unbiased if

(ii) sup n(4), v) < inf 71.(1), v).

0 1

This is a reasonable requirement, since if a test is biased, at least

for some parameter points under H1 the probability of accepting Ho is

larger than at some parameter points under Ho.

In general, when Ho and H1 have common boundary points, a test is called

a-similar if the power function has the value a at all these boundary

points.

Since in our case v = 0 is the only common boundary point of wo and

a test is a-similar if

(3.3) wop,

When the power function n(4), v) of a test 4) is continuous in v the

conditions (i) and (ii) imply property (3.3). In other words, in that

case any unbiased level a test is a-similar.

This can be seen as follows. Since 0 e wo, we have sup (p, v) > n(4, 0).

If n(4), v) is continuous in v it follows that 0

inf 71(4), v) = inf w(4),

1 w
1

where w is the closure of w
1 
, i.e., w = w u M. From 0 e w we get

1 1 1
inf Ir(p, v) = inf n(cp v) < n(4), 0) and therefore

w
1

(3.4) inf - w(cp, v) < n(4), 0) < sup 1T(4), v).

1 0



Suppose that that 4) satisfies (i) and (ii), then we have

(3.5) a = sup 71(4), v) < inf n(cp, v).
w
0 

w
1

If we combine (3.4) and (3.5) we obtain

sup 71(4), v) = inf 71(4), v) = (4), 0) = a,
w
0 

w
1

which shows the stated property.

So in our search for unbiased level a tests we can restrict attention to

the class of a-similar tests, provided that the power functions are

continuous.

From the practical point of view it is important to consider tests with

computable power functions, since the value of the power function at

parameter points of interest gives us an idea about the quality, of the

test.

We therefore require that

(iii) 71(4), v) = Ev(4)(T)) is numerically computable for any

V E Wo UWi.

Tests with this property will shortly be called computable tests.

At this point it should be observed that imposing the restrictions (i),

(ii) and (iii) does not automatically yield a satisfactory test. There

are several tests which satisfy these requirements, but as we shall see

below some of them do not make much sense. In other words not every

computable, a-similar test which satisfies (i) and (ii) is a good test.

For instance, consider the test .(T) E a. This is a purely randomized

test which rejects Ho with probability a regardless of the observation

T = (T1, T2).

It will be clear that in general this is not a good test. However, since

71(4), v) = a for all v c wo u wi, it is seen that the test is computable.

Moreover, from 11.04), 0) = a it follows that the test is a-similar.

Obviously we have

a = sup w(4), v < inf w(4),
U)0
 

w
1
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which shows that the test is unbiased with level a. In other words the

a-similar test .(T) E a satisfies the properties (i), (ii) and (iii).

In the trivial case of nested models, i.e., when p = k = t

MX) = A(Z)), this test is UMP, but in all other situations the test

O(T) E a is a bad test.

As a second example consider the test

(3.6) .(T) = 1 if T m c1
— 1

0 = 0 if T m < c1 t-p

where c1 is chosen in such a way that w(+, 0) = a and where 
we assume

that t > p, since otherwise the test is not defined.

Note that this is a purely nonrandomized test which rejects Ho if

By construction the test is a-similar and we shall show that it also

satisfies the properties (i), (ii) and (iii).

From Section 2 see (2.15), we know that

ulul
(3.7) T

1 u4u4

and from (2.16) and (2.17) it can be concluded that 
u'1u1 

and u'u
4 

are
4 

independent random variables with the following distributions

(3.8)

where

(3.9) E v
lj
.

j=0

Hence, it follows that T 
i
m

has a noncentral F distribution with t-p
1 -p

and in degrees of freedom and noncentrality parameter dl, i.e.,

(3.10) F(t-p, m, d1).
1 t-p



-22-

Since under Ho: v e wo we have vli = 0, j =

that d1 = 0 under Ho and this shows that

(3.11) T
1 

F(t-p, m) under H
t-p

P M, it is seen

i.e., under Ho the random variable T
1 tp 

has a central F distribution

with t-p and in degrees of freedom.

The power function of 4) becomes

(3.12) 1r(4), = Ev(4)(T)) = Pv(Ti t_p c

= 1 - G(ci; t-p, in,

for any v e wo U wi, where G(x; rl, r2, A) is the distribution function

of the F(ri, r2, A) distribution.

Since v = 0 implies that d1 = 0, it follows that r(4), 0) = a is

equivalent to

G(c L-p, in, 0) =

which shows that the critical value cl can be found from the table of

the F(t-p, m) distribution. Once cl is known we can compute r(4), v) in

(3.12) for any v e wo u wi from tables of the F(t-p, in, d1) distribution.

Hence, the test 0 is computable.

Further it is easily seen from the fact that d1 = 0 under Ho that

11(4), 1-G( c1; t-p = a for all v e wo.

Next consider H1: v e wi. Then we have vli > 0, j = 0, 1, M and at

least one vli > 0. This implies that d1 > 0 under H1.

Now it can be shown, see Lehmann [7], p. 316, that G(x; rl, r2, A) is a

strictly decreasing function of A > 0 for any x. It follows that

1-G(c1; t-p, in, d1) is strictly increasing in d1 > 0 and therefore we

have

(3.14) r(4), v) = 1-G(c1; t-p, in, d1) > a for all v w
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From 3.13) and (3.14) it is easily seen that

a = sup n(ch, v) < inf 71.(4), v),

w0 
w
1

which shows that 4, is unbiased with level a.

Hence, the a-similar test 4, as defined in (3.6) satisfies the properties

(i), (ii) and (iii).

It is not difficult to verify that this test is UMP for the nested case

with /4(C) c Mr(Z) and M(X) KZ), i.e., when p = k < L. For the other

(nonnested) situations it seems to be a reasonable test, especially

since it has the desirable properties that under H1:

and

w(4), v) > a for all v cwi

Ir(cp 1 if at least one of the vlj's co.

The latter property is equivalent to

lim w(4), v) = 1,
d
1
+03

since d1 co if and only if at least one of the vij 's co. 

Note that d = E v can be considered as a measure of distance of .a1 ij
j=0

point v E wi to Ho.

On the other hand, in the nonnested cases (i.e., when p < min k, 0) the

above test has the drawback that under Ho

and

v) a for ally wo

w(09 v) -F.* 0 if at least one of the v2j's co.

In a way, this is what could be expected, since the test completely

ignores the information contained in the variable T2.
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As a final example we consider the test

(3.15)

m
.(T) = 1 if T

k-p cZ

= 0 if T
kp2'

provided that k > p, where c2 is chosen in such a way that w(0, 0) = a.

Again this is a purely nonrandomized test with critical region
m

T
2 k-p c2.
Obviously, the test is a-similar.

In the same way as before it follows from the results of Section 2 that

(3.16) T
2 k-p 

F(k-p, m,

where

(3.17) d = 66 = E v
0 2 2 23

j=0

Note that d0 can be considered as a measure of the distance of a point

v E wo to H1. Under Ho we have v2i > 0, j = 0, 1, ..., M and it is seen

that do > 0 under Ho. Since under H1 we have v2i = 0 i = 0, 1,

it follows that d = 0 under H1 and this shows that

(3.18) 
T2 

m
k 

F(k-p, m) under H1.
-p

The power function of cp becomes

(3.19) w(4), v) = Ev((T)) = Pv(T2 l'cmp < c2)

= G(c2; k-p, m, do),

for any v coo u 031.

Now v = 0 implies that do = 0 and it is seen that n(4, = a is

equivalent to

G(c2; k-p, m, 0) = a,
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showing that the critical value c2 can be found from the table of the

F(k-p, m) distribution.

When c2 is known we can compute w(4), v) in (3.19) for any v wo u (01

from the tables of the F(k-p, in, d0) distribution. Hence, the test • is
computable.

Since G(c2; -p, in, d) is strictly decreasing in

seen that

> 0, it is easily

(3.20) n(4), v) = G(c2; k-p, in, ) < a for all v c wo.

Further, the fact that under H implies that

(3.21) T(4), v) = G(c2; k-p, in, 0) = a for all v e w .

Together with n(4), = a it follows from (3.20) and (3.21) that

a = sup 7(4), v) < inf n(4),
w 
0 431

i.e., the test is unbiased with level a.

Hence, we have shown that the a-similar test 4) as defined in 3.15)

satisfies the properties (i), (ii) and (iii).

This test turns out to be UMP for the nested case with M(Z) C M(X) and

M(X) *1V(Z), i.e., when p = L < k.

Although the test has the desirable properties that under Ho

and

1701), v) < a for all v w0\{0}

lim 11'(1), v)
d +03
0

it is not very attractive for the nonnested situations, since under H1

T(4), v) = a for all v e wi

w(4), ) ++ 1 if d co.

and
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Here it should be noted that the test 0 as given in 3.15) ignores the

information contained in Tl.

In order to exclude tests as considered in the above examples for the

problem of testing nonnested linear hypotheses, we impose the following

additional requirement

(iv) 1T(4), + 0 if d + co and (cps, v) 1 if d1 + co.

Such a test will be called usable.

We recall that d
0 
= E v

2j 
and d

1 
= E v1i and that d0 can be thought

j=0 j=0
of the distance of a point v e wo o wi and d1 as the distance of a

point v e wi to wo.

Further we have

v e wo if and only if d0 >0, d1 = 0

v e wi if and only if d = 0, d1 > 0

(3.22) v = 0 if and only if do = 0, dl

d0 +co if and only if at least one v2i + co

dl + co if and only 
if at least one vli +

Another desirable property for a-similar tests is

(v) w(+, v) < a for all v e woV0) and 0, v) > a for all v E

Such tests will be called strictly discriminating.

Now it is not difficult to see that property (v) implies the properties

(i) and (ii) for a-similar tests with continuous power function.

The above discussion makes it clear that the "best" we can do in the

given situation is to concentrate on a-similar tests which are

computable and usable (i.e., satisfy (iii) and (iv)) and then verify

whether these tests are strictly discriminating (i.e., satisfy (v)).

For many tests it turns out to be rather difficult to find out whether

or not property (v) is satisfied.
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Often the following stronger property can be more easily handled:

(vi) For v wo the function w(0, v) is strictly decreasing in each

of the variables v2i (j = 0, 1, ..., 11) and for v wi the

function n(cp, v) is strictly increasing in each of the

variables vlj 09 19 0009 M).

Obviously, for a-similar tests property (vi) implies the properties

(iv) and (v).

In order to find a-similar tests which are computable and usable we

shall investigate the behavior of the observation T = (T1, T2) under the

hypotheses Ho and H1, respectively.

In general, if X is a random variable with probability distribution Pe

where 0 denotes a parameter, we say that X is stochastically strictly

increasing in 0 if P8 (X > x) is a strictly increasing function of e for

any x.

Thus, if X is stochastically increasing in 0, X tends to have larger

values as 0 increases.

As we saw above T1 and T2 have the following probability distributions:

F(t-p, m,T
1 t-p

T
2 
k
-p 

F(k-p, m,

We also saw that, if G(x; rl, r2, A) is the distribution function of a

F(ri, r2, A) distribution, G(x; rl, r2, A) is strictly decreasing in

A > 0 for any value of x.

This shows that Tl is stochastically strictly increasing in d1 and T2 is

stochastically strictly increasing in do.

In view of (3.22) this means that under Ho the random variable Tl tends

to be small, whereas Tl tends to have larger values under H1 as di

increases. On the other hand, T2 tends to be small under H1, but under

Ho the random variable T2 tends to have larger values as do increases.
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Schematically, we have:

Table : Behavior of T = (T T2)

Ho H1
,

T1 small large
r ,
T2

,

large small

Since a test (I) is given by specifying the probability gt) that Ho is

rejected for every possible outcome t of Ts it is natural to select

tests with large values of gt) when Tl is large and T2 is small, and

with small values of gt) when Tl is small and T is large.

From the practical point of view it is desirable to have nonrandomized

tests and we therefore consider tests of the type given by

(3.23) .(T) = 1 if S
a + b T

2 2
a + b

1
T
1

a + b T
2 2 2 

= 0 if S=
a +bT 

>c
s

1 22

where al > 0, a2 > Os bl > 0 and b2 > O.

That is, we consider tests with critical region S < c and it is easily

seen from the above scheme that the test statistic S tends to be large

under Ho and small under H1.

With respect to (3.23) we make the following remarks.

In the first place we note that (3.23) specifies a whole class of tests,

since with every choice of al, a2, bl, b2 and c there corresponds a

test.

Secondly, the reason for defining S as the ratio of two linear functions

is that this choice yields computable tests.

In the third place it should be noted that we do not consider tests with

b1 = 0 or b2 = Os because this would mean that we ignore the information

contained in T1 or T2 (or both).
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The restrictions 1)1 > 0 and b2 > 0 imply that in specifying tests of the

type (3.23), we can take without loss of generality bl = b2 = 1.

This follows from the fact that the event

with a1 > 0,

a + b
2 2
a
l 
+ b

1
T —

> 0, b , > 0 and b > 0 is equivalent to

*
a
2 

T
2

S 

with a* > 0,
1 —

a
l 

T
1

2 
> 0
' 

where
-- 

1)1
S
*

b ' 
a
1

2

a2 *
a
2 b and c

2

Hence we can redefine (3.23) as

a + T
(3.24) 4)(T) 1 if S =  2 

2 
< ca

l 
+T

 
—

2 
+ T

2 = 0 if S = c,
a
1 
+ T

1

where al > 0, aq > O.

That is, we consider tests with critical region S < c where the test

statistic S is defined by

(3.25)
a
2 
+ T

2
a
1
+ T

1
'

with a1 >O, a2 O.

When p = k we take a2 > 0, whereas al > 0 in case p = since otherwise

S is not defined.

Let Fv(s) be the distribution function of the test statistic S, i.e.

F(s) = Pv(S < s), then it follows from (3.24) that the power function

n((1), v) of 4) becomes



(3.26) 71.(1), v) = Ev(.(T)) = Pv(S < c) = Fv(c).

This means that the properties of the power function can be derived from

the distribution function of the test statistic S.

In the next section we shall show that for arbitrary al > 0 and a2 > 0

the distribution function F(s) satisfies the following properties:

(a) F(s) 0 if do co and F(s) -4 1 if d1 for all 6>0.

(b) Fv(s) is continuous in v for 
any s > 0.

(c) F (s) is numerically computable for all v and all s > 0.

(d) Fv(s) is continuous in s > 0 for 
any v.

At this point we recall that we were looking for a-similar tests with

the property of being computable and usable.

We shall now show that all tests belonging to the following class meet

the above requirements.

For any a (0 < a < 1) we define the class of tests Ca b

(3.27) Ca 

al + t,
= I. = 1 if 

a
1 
+ t

1 
< c, 4(t) = 0 elsewhere,

where c satisfies F
0 
(c) = a; a > 0, >0

where t = (t1, t2) with t1 > 0, t2 > 0.

Note that for any fixed value of a there corresponds a test Ca with

every choice of al and a2. This can be seen as follows. From (d) we see

that F0(s) is continuous in s > 0 for any (al, a2), which implies the

existence of a value of c > 0 satisfying F0(c) = a.

When (I) c ca the power function of • becomes

a + T
2(3.28) 7r(4), v) = E (.(T)) = r  2

+ 
T1

= P (S < c) = F (c), v c wo u w
v,

where c is chosen in such a way that F0(c) = a.

Therefore it follows at once from (b) that ¶(cp, v) is continuous in V.

Next we shall show that for any a the tests (1) Ca are a-similar,

computable and usable.
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Since c satisfies F (c) = a, it is seen from (3.28) that (0, 0) = F0(c)

= a for any Ca, which shows that the tests 4) E Ca are a-similar.

Further it follows from (c) •that F0(s) is computable for all s > O. This

enables us to compute a value of c which satisfies F0(c) = a. Once c is

known, according to property (c) we can compute it(4), v) = F (c) for all

v c wo u wi. That is, any 4) c Ca is computable.

Finally, it is seen from (a) that n(4), v) = F(c) + 0 if d + a, and

¶(q), v) = F(c) + 1 if d , which shows that any 4) c Ca is usable.

Having constructed for any a a class of a-similar tests with continuous

power function and satisfying the properties (iii) and (iv), the

question arises whether this class contains tests which satisfy the

property (v) (and consequently also (i) and (ii)).

However, before we shall investigate this question, it remains to prove

that the distribution function F
v
(s) of the general test statistic S

satisfies the poperties (a) - (d). This will be done in the next

section.
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4. The distribution function of the general test statistic

In this section we consider the distribution function F(s) of the

general test statistic S as defined in (3.25) of the preceding section.

We first write S in the following form

(4.1)
a
2 
+ T

2 
a
2 
+ 

U2/U4 
a
2 
+ 121112 u4u4

al + TI al + Ul/U4 al + ului/ultu4'

where use has been made of (2.15), (2.10) and (2.21) of Section 2.

From Section 2, see (2.16) and (2.17), we also know that the vector u,

defined by u' = (ul u u' 
2 

ut
4
), satisfies 

3 

(4.2) ü n(6, r),

where 6' = (61 q 0' 0') with 6 and 6 unknown and where r is a

known matrix (see (2.17)).

Let z n(0, ) where z' = (z1 z'
2

zt), then the distribution of z
4

does not depend on 6. Now if u = z + 6, it follows that u n(6, r).

That is, u in (4.1) and (4.2) can be written as u = z + 6 with

z n(0, r).
This shows that S can be written as

(4.3) s (z)
a
1 
+ (z

1 
+ 61)'(z1

 
+

1 4 4

a2 + (z
2 
+ 

62)t(z2 
+ 6 )/z4z4

with z n(0 r).

We note that, since the distribution of T = (Ti, T2) depends on 6

through v = v(6) = (v1, v2) as •defined in (2.28) and (2.29), it follows

from (4.1) that also Fv(s) only depends on 6 through v = v(o) (v1 v2) •

Further we recall that do = E v = 66 and d
1 
= E v = 6'

1
6

2j 2 2 lj 1.j=0 j=0
We shall now prove the properties (a) - (d) of the foregoing section for

arbitrary fixed values of ai > 0, a2 > 0.

(a)

Proof:

F(s) -0. 0 if do wand F(s) + 1 if di co for all s>0.

First consider Ho. Then do > 0 and di = 0 or, equivalently,. 6i = 0 and

from (4.3) we get



S = s (z)
a2 + (z + 62)'(z

1 + ziz
1
iz4z4

'z
4

Since d = 66
2 
it follows that d if and only if at least one2 

element of the vector 62 + + 02.
Now the random vector z has a n(0, r) distribution which is independent
of 6. So for every realization of z it is seen that (z2 + 62)1(z2 + 62)
+ co if at least one element of 62 + + 02. Hence if do + co then s6(z)
for every realization of z. This implies that S + 00 with probability 1
if do + o, which in turn shows that Fv(s) Pv(S < s) + 0 for all s ifd + 03.0
In the second place consider Hi. Now d0 = 0 and d1 *0 or equivalently,
* 0 and 62 = 0.1 

From (4.3) we have:

s (
a
2 
+

2 2 4 4 
+ (z1 + 61)'(z1 + 61)

In this case it follows from d1 = 6161 that d1 + co if and only if atleast one element of 61 + + co— •
Again for every realization of z it is seen that (z1
if at least one element of 6 + + co1 — •
Therefore, if d1 + it follows that so(z) + 0 for every realization ofz. This implies that S + 0 with probability 1 if d1 + 03, which showsthat Fv(s) = Ev(S < s) + 0 for s < 0 and Fv(s) = Pv(S < s) + 1 for
s > 0, if d1 + co and this completes the proof of (a).

(b) Fv(s) is continuous in v for any s > 0.

4. 
‘1.• 
A )t(z

1 -11- 6i)

Proof:

From v = v(6) = (v1, v2) it follows that v + v* if and only if 6 +for some 6* which satisfies v* = v(6). Now for any realization of therandom vector z it is seen from (4.3) that

lim s6(z) = so (z).
6+6* 

Therefore, if S* = sts*(z), it follows that

lim S = S* with probability 1.
6+6*
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The latter result implies that

lim F (s) = F (s),
v 

v+v 
v
*

for all s where F (s) is continuous.v*

Under (d) we shall prove that F( s) is continuous in s > 0 for any v.

Hence F (s) is continuous in s > 0 and this shows thatv*

lim F (s) = F (s) for any s > 0,
v 

v+ v* 
v

which completes the proof of (b).

(c)

Proof:

Fv(s) is computable for all v and all s > 0.

From (4.1) we get

(4.4)
+ T a + U /U U + a

2 2 2 4 2
 a2

 
U4

S =
a1 + T

1 
a1 + U

1 
/U
4 

U1 + a
1 
U 9
4

where U1, U2 and U4 are as 
given in (2.20) of Section 2.

Since al > 0, a2 > 0, Pv(U1 > 0) = Pv(U2 > 0) = Pv(U4 > 0) = 1 it

follows that P (S > 0) = 1 and consequently F(s) = Pv(S < s) = 0 for

S < 0. Thus we can restrict attention to the points s > 0.

The event S < s is equivalent to

U + a U
2 2 4 

< s,
U + a U --
1 1 4

and since the latter event is equivalent to

—s U1 + U2 + (— s + a2) U < 0,

it follows that

(4.5) S < s if and only if Qs < 0,

where the random variable Qs is defined by



(4.6 Q = -s U1 + U2 S + a2) U4, s > 0.

From (4.5) we have Pv(S < s) = Q < 0) and if G( x,

it is seen that

(4.7) F(s) =

for v c wo wi and s > 0.

In order to compute G(0,

function tpv(t, s) of Qs.

We get from (4.6)

(4.8) *v(t, s = E

Pv(Qs < x)

we shall first derive the characteristic

i(- )tUi+itU2+i(-ais+a )tU4)
e -) = EC

= E
)tUl 

)E(e
titU i(-ais+a2)tU4

•

where i denotes the imaginary unit and where use has been made of the

independence of (UI, U2) and U4, see Section 2.

The first term at the right-hand side of (4.8) is the characteristic

function of (U1, U2) developed at the point (-st, t), whereas the second

term is the characteristic function of U4 at the point (-a1s+a2)t.

Now we know from Section 2 that U4 - x2(m) and therefore we have

(4.9)
g-al s+a0UA

E(e ') = (1-2ii(s)t)

where X(s) is defined by

(4.10) A(s) = -a 1s +

We also know from Section 2 that

it U +it U
(4.11) E(e 

1 1 2 2) n
1j=0

.1•11 amnia,

where Ti(ti, t2), j = 0, 1, M are as given in (2.25) and (2.26).

Substitution of (4.9) and (4.11) (with t1 = -St and t2 = t) into (4.8)

yields:



(4.12) * (t, n T -st, 1-2iX(s)t)
j=0

From (2.25) we get

(4.13) -st, (1-2i(-

Since, in general,

(1-2it)
ite 

exp{1_2it

2,- -svi0
2 

exp{it 
1-2i(-s)tj

(1-2it)
V20

exp{it 
1-2itl.

is the characteristic function of a x ( , e)distribution, and since the

characteristic function of the sum of 2 independent random variables is

equal to the product of the characteristic functions, it follows that

(4.13) is the characteristic function of

-sV10(s)

where V10 (s) and V20 (s) are independent random variables with the

following distributions

(4.14)

(s X

-r v10)

-r, v20).

In a similar way from 2.26) we have

(4.15)

m.

T (-st, = (1-2i(1-s)t + 4s(1-p )t2) 
2

(1+2ist)v
2j 

s(1-2it)v
lj

exp{it 2 }'
1-2i(1-s)t + 4s(1-p )t

for j = 1, 2, ..., M, where pi and mi are given numbers, see Section 2.

The terms at the right-hand side of (4.15) can be factorized as follows.

(4.16) 1-2i(1-s)t + 4s(1-p)t (1-21X1 (s)t)(1-21.A2j( )t
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where

(4.17)

X
lj
(s) = 4(1-s) -4 (1-)2 + 45(1-p )

X2j pj

j = 1, 2, ..., M.

We also have

(4.18)

where

(4.19)

and

(4.20)

2j
(1+2ist)v - s(1-2it)v .

lj 
X .13(s) T

13 
.(S) 

23
.(S) T_j(s) 

.   
2 1-2iX .(s)t 1-2iX2i(s)t '

1-2i(1-s)t + 4 (1-pj)t-

T
lj
(S) = C (S)V d (s)v

ij 2j lj lj

(s) = c (s)v . + d (s)v2j 2j 2j lj

1j(
s) =

X1. (s) + s

- 
X2j 

(s)]
lj lj 

X .(s) + s
c
2 
(s) - 

2j 
X
2j 2j 
(s)[X .(s) - A

1 
s)]

-s[X .(s) - 1]
lj

d
1 
(s) =  

Xlj .(s)[Xlj A2j
(s) - (s)]

-s[X (s) - 1]
2jd

2j
( ) =  

X2i(s)iX2i(s) - Ali(s)P

j = 1, 2, ..., M.

Substitution of (4.16) and (4.18) into (4.15) yields
m.

- X
lj
(s)T

lj
(s)

(4.21) %i'(-st, = (1 - 21X1
j
(s)t) 

2
expat

1 - 2iX
1j
(s)t}

A2 (s)T2 (s)2 
— 

2j 
2ix .(s)t) exp{it 1 2ix (s)t), 

404010, MO

2j
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Using the same argument as before it is seen that (4.21) is the

characteristic function of

j(s)Vii(s) + A2j(s)V .(s)

where the random variables

following distributions

li()

(4.22)

.(s) and V .(s) are independent and has the

— X
2
(mi, Tii ))

.(s))

for j = 1, 2 ... M.

If we define po = 0 we can extend (4.17) to the case j = 0. This yields

A10(s) =-. s and X20(s) = 1. By doing 
the same for (4.19) and (4.20) we

obtain c10(s) = 0, c20(s) = 1, d10(s) = 1, d20(s) = 0 and consequently

T10(s) v10 and T2,,u = -(s) v20'
Hence, if we define Tali and m23 for j = 0, 1, ... M as

(4.23)

m10 =

= k—rm20

mlj = m2
= = 1,

it is seen from 4.13), 4.14) and (4.21), 4.22) that

,m1j 

(4.24) T. —st, = — 2iA (s)t) 
2 

A (s)t1 .
13 
(s)

lj 

3 
exp{it 2ix tot)

lj` '

for

1

_ 
In

.T . 
3
()

23
(s)

(1 — 2iX
2 
( 

A
2 

)t) exp{it ),
1 — 

2iA23 
.( )t

M, is the characteristic function of

(s)v j(s) + x (s)v2 (s),



where the independent random variables V (s) and V (s) are distributed

as follows

(4.25)

j= 0,

1j(s) -

2j(s) X2(rn2j2

1, ..., N.

Tu(s))

With respect to the coefficients Ali(s) and A (s) it should be noted

that

(4.26)

Xii(s) < 0, X2j(s) > 0

Alj(s) x2(s) = 1-s

=13 23

for j = 0, 1, ..., M.

Further it is easily verified from (4.20) that

c1 (s) > 0, c2 (s) > 0, du(s) > 0 and d2 (s) > 0

for j =

Let us now return to the characteristic function 11)v(t s) of the random
variable Qs in (4.12).

Since the characteristic function of a sum of mutually independent
random variables is equal to the product of the characteristic functions
it follows from the above results that Qs can be written as

(4.27) = E [X
lj 
(s)V

13 
.(s) + 

2j 
(s)V

2 
(s)] + A(s)V(s),

j=0

where the random variables Vio(s), Vii(s), V(s), V20(s)
V2m(s), V(s) are mutually independent and where

Vii(s) Tii(s))

(4.28) V2i(s) X2(m2p T2j(s))

V(s) X2(m)*

.0, • • •



-40--

It also follows that *17(t, becomes

(4.29) *v(t, s) = I n 
2 

2iX s)t) (1 - 2iX 
2

2j

in

(s)t) ]
j=0 

ii 

- M (s)T
lj 
.(s) A

2j 
(s)T .(s)

2 3 
(1 - 2iX(s)t) exp(it E 

j  + 1.

j=0
1 - 2iX

1j 
.(s)t 1 - 2iX

2j
(s)t

Note ipv(t, ) is completely known for every choice of al > 0,

v wo u (41 and s > 0.

As is shown is Appendix B, see (B.25), for a random variable of the type

considered in (4.27) with characteristic function (4.29), we have the

following inversion formula

(4.30) f {Im(pv(t, s)e-itx)/t}dt,G
v
(x,

0 

where in general, Im( ) denotes the imaginary part of the complex number

z, i.e., Im(z) = (z - z)/(2i) and where Gv(x, s) is the distribution

function of Qs.

The value of the integrand t = 0 is given by

def.
-itx

Im(* (t,s)e
itx

Vtit0 = 
= s e = E(Q5) -x.

t+0

With the aid of (4.7) it follows from (4.30) that

(4.31)

CO

1
Fv(s) = qv(0, s) =-2- - f 

0 
am(4117(t, s))/t}dt,

for any a > 0, a2 > 0, v e wo u wi and s > 0.

Also,

im(*v(t, s))/to = E(Qs),

where it is not difficult to verify that

(4.32) E(Qs) = E EA (s)(m 
lj 
+ T .(S)) + A2 (s)(m2j 

+ T
2j
(s))] + X(s)m 

lj
j=0

= -s(t-p+di) + (k-p+do) + (-als + a2)m.



-41-

We recall that

E v
2j, 

E v and m = nfp-k-L.
j=0 j=0

It should also be noted that Ipv(t has a simple form at the point

v = 0 since for v = 0 we get Tii(s) = 1.2i(s) = 0, j = 0, 1, ..., M. This

yields

_ mlj 2j

[ II (1-2i (s)t) (1-2iX (s)t)
2

Xlj 
2 
 2j

j=0

•IIIINO

1 -2iX(s)t) .

Now the function Im(*v(t, s)) can be determined and as is shown in

(B.26) of Appendix B, the formula (4.31) can be written in the following

way

co sin e (u, s)
l f(4.33) Fv( ) = Pv(0, 
=-l  v 
„ du,

N 0 U S)

where y( u, ev(u, are given by

m. 
.1112j m

M 
lj  

2 4 4
(4.34) y u, s) [ n (1 + 

Xj 
2 (s) ) (1 + X2

2j 
(s) (1 + X ( )u

2
)
Ti

v l 
j=0

and

(4.35)

(s)X.(s)u
1 1 li  2 23 

j=0 1 + X
lj 
(s)u 1 + A2 (s)u

2
exp{I

2 2

M (s)X
2 
(s)u

2

. 1
2 / [1111

j=0
arctg(Xii(s)u) + m2 arctg(X2 (s)u)

T14(s)X14(s)u T,)4(s)A2j(s)u.
+ J  L-J 

2 'I
1 + Al(s)u

2 
1 

2 2 
+ X2i(s)u

+ in arctg( X( s)u) .
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The value of the integrand at u = 0 is given by

sin Ev(u, s)

U yv(u, s)
u=0

= -2- E(Qs

where E(Qs) is as given in (4.32).

For any al > 0, a2 > 0, v c wo u wi and s > 0 we can compute Fv(s)

through numerical integration of the right-hand side of (4.33).

The computerprogram FQUAD computes Fv(s) to any desired degree of

accuracy. This program is developed by Louter and can be found in Koerts

and Abrahamse [6]. The above method of computing the distribution

function of S (or Qs) is usually called Imhof's method and for more

details on this numerical integration we refer to Appendix B. This

completes the proof of (c).

Before we shall prove property (d), we make the following additional

remarks.

In the first place we note that the computations are much simpler when

v = 0. In this case we have

(4.36)

where

(4.37)

Fo( )
co sin c

0 
(u s)

f u yo(u, s
0

du,

mlj m2j 

[ H (1 + 
Alj 
2 
(s)u2 ) (1 + X

2j
(s)u2 4 

1(1 +
2
(s) 

2 44 

j=0

1 
— E m arctg( X .( + arctg ( X s
2 . j 
j=0

++m arctg( X( s)u

For the value of the integrand at u = 0 we get

sin e
0 
(u
' 

s)

U yo(u, s)
u=0

=1-[-s(2..-p) + (k-p) + (-a 1s + a )m].

)1

In the second place, for the applications it is important to see that

0 <M < min(k,
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Now, usually k and L are small and this shows that, in most cases, M and

therefore also the number of terms in (4.33), (4.34) and (4.35) will be small.

(d) F( s) is continuous in s > 0 for any v.

Proof:

Consider the random variable Q as defined in (4:6). With the aid of (2.20),

(2.16) and (2.17) of Section 2 we can rewrite Qs in the following way

(4.38) Qs= qs

where u = (u

-su'u
1 1

u'u + (-a s + a )u'u
2 2 4 4'

u u') and u n(6,
3 4

Consider an arbitrary s* > 0 and let Qs* = qs*(u).

For every 6 and every realization of the random vector u it follows from

(4.38) that

lim q5(u) = q (u),
s+s*

which shows that Qs Qs with probability 1.

If v = v(o), the latter property implies that

lim G (x, =
S+s*

for all x where Gv(x s*) is continuous.

Now it is shown in Appendix B (see (B.17)) that Gv(x, s) is continuous in all

x (for any v and any s > 0). It follows that Gv(x, s*) is continuous in x = 0

and therefore we have

lim G(0, s) Gv(0 s*).
S+S

Since Fv(s) = Gv(0 s) (see 4.7)) we obtain

lim F(s) = F(S)
s+s*

for any v, which proves the desired result

At the end of this section we recall from Section 3 that a particular Ccrclass

test is specified by first fixing a value of a and then chosing a test 4) c Ca

by fixing al > 0 and a2 > 0.
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This test has critical region S < c, where c has to be taken in such a way

that F0(c) = a.

So it follows from (4.36) that we have to solve the equation (i.e., find the

value of c which satisfies)

co sin co(u, c)
1

yo(u, c) 
 du =a.w 

u 
0

It will be clear that this requires an iteration procedure, where within each

iteration we have to perform a numerical integration.

Since in general the critical values c cannot be tabulated it seems preferable

to compute the p-value (critical level) of the test, instead of the critical

value.

The p-value is defined by

(4.39)
1 7 sin c

0 
(u, S)

n u A„,
u
(u, S) 

du,
0 

where S is the test statistic.

Obviously, in order to compute F0(S) no iteration procedure is required.

The procedure where Ho is rejected when S < c with c satisfying F0(c) = a is

precisely equivalent to the procedure where Ho is rejected when F0(S) < a.

That is, the p-value F0(S) can be thought of as a standardized test statistic

which for v = 0 has a uniform distribution over the interval (0, 1).
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5. Properties of the Cci-class tests

In Section 3 we saw that every test 4) E Ca is a-similar and has the

properties (iii) and (iv) (i.e., it is computable and usable). It is

important to note that (I) possesses these properties for any problem of

testing linear hypotheses, that is regardless of the particular

regressor matrices X and Z.

Now the question arises whether • has level a or is unbiased, and, if

•the answer is yes, whether 0 is strictly discriminating. In other words,

we may ask whether E Ca satisfies the properties (i), (ii) and (v) as

formulated in Section 3.

The answer to this question turns out to depend on the specific testing

problem, that is, it depends on the particular matrices X and Z.

To be more specific, we shall see below that when the quantity

r rank(X'Z) satisfies certain conditions, every test cp E Ca possesses

the properties (i), (ii) and (v) for any value of a.

As we saw in Section 3, when the a-similar test (1) has a continuous power

function, property (v) implies the properties (i) and (11). Since the

power function of any E Ca is continuous in v it suffices to verify

whether 4) satisfies property (v).

Now, as was already noticed before the following stronger property

(which implies (v) for any (I) E Ca) is often more easy to verify:

(vi) For v E w the function n(cp, v) is strictly decreasing in each0
of the variables v2j (j = 0, 1, ED and for v wi the

function ¶(cp, v) is strictly increasing in each of the

variables v (j , ,lj = 0 1 M).

We shall investigate how the power function w(0, v) depends on the

parameters v20, v21, v2m under Ho and on the parameters v10, v11,

vim under H1.

In order to do this we shall derive the partial derivatives

Bw(4), v)
av '
2j

for v E w and0

• • • , M
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an(cP,
a vii = 0, 11 004p,

for v w 1'
We know from Section 3 that a test 0 EC has the following power

function

(5.1) v) = Fv(c), v wo u wl,

where Fv(s) is the distribution function of the general test statistic S

(as defined in (3.25)) and where c satisfies F0(c) = a.

Moreover, in Section 4 we have shown that

(5.2) =

where G (x9 s) is the distribution function of the auxiliary 
random

v 
variable Qs (as defined in (4.6) or (4.27)); and also that (see (4.30))

(5.3) G
v
(x, s) = 1 - -If (ImOp

v 
(t, s)e-itx)/t}dt,

w 0 

where 11,17(t, s) is the characteristic function of Qs as given in (4.29).

The above results show that the partial derivatives of n(+, v) with

respect to v2i and vli = 0, 1, N) can be found from (5.3), since

(5.4)

j = 0, 1,

an(  3G(0, c)cp, v) v 
av2i av2i

aG (o, c)aw(4), v) 
av .
lj

a
lj

For this reason, from (5.3) we shall first derive expressions for

aGv(x, aG(x, s)
and  

av
2j lj

for j = 0, 1, M, any x (-00 < x < co) and any s > 0.

We start with v cwo. As is shown in Appendix C we may differentiate the

right-hand side of (5.3) under the integral and this yields, see (C.25).

(5.5)
aGv(x, s)

v
(x, s)

av
20
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for -co < x < co, all s > 0, all v e wo and any al > 0, a2 > 0, where

gO(x' s) is the probability density function of the random variable,v
(10,5 as defined in (C.18), (C.19) and (C.20) of Appendix C.

Since go,v(x, s) is a probability density function it follows that

g0 (x, s) > 0 for -03 < x < co.

However we shall show that in this case we have gO(x' s) > 0 for,v
-co < x < co.

In order to see this, we observe that 10u,5 ,.. is a sum of mutually-
independent random variables. Except for trivial cases this sum contains

at least one random variable, say W1, with probability density function

(5.6)

f ( ) > 0, x > 0

f (x) = 0, x < 0

and at least one random variable W2 with probability density function

f (x) > 0, x < 0

f (x) = 0, x > 0.

That is, Q0,5 can be written as

(5.7)

(5.8) Q0,s

where W1, W2 and W3 are mutually independent and where W3 has an

arbitrary density function f3(x).

Let W = Wi + W2, then the probability density f(x) of W is the

convolution of the densities fl(x) and f2(x) i.e.,

(5.9) f( ) = f f (x-w)f (w)dw -03 < x <_co 2 1

From (5.6) it follows that (5.9) becomes

(5.10) f(

co.

= f f,(x-w)f (w)dw, -co <x < co.
0

Suppose that x > 0, then according to (5.7) we have f2(x-w) = 0 for



-48-

w < x and it is seen from (5.10) that

CO

f(x) = f f2(x-w)f1(w)dw, x > O.

On the other hand, when x< 0 it follows that f (x-w) > 0 for w > 0 and

we get

f(x

CO

= f X-1.7 (w)dw, x< •

This shows that W has the following density

(5.11)

f(x) = f f x- f (w)dw x > 0

f(x) = f f (x-w)f (w)dw, x< 0.
0

Since the integrand f2(x-w)f1(w) in 5.11) is always strictly positive

it is seen that

(5.12) f(x) > 0 for -03< x <

From (5.8) it follows that Qo = W + W3 with W and W3 independent and

in a similar way we get

(5.13) g
0,v

(x, s) = f f(x-w,)f (w)dw, -0) < x < co.

Now suppose that f3(x) > 0 for x c A, where A is arbitrary and f (x) = 0

elsewhere.

This yields

(5.14) go,v(x, s) = f f(x-w)f3(w)dw, < x < co.

From (5.12) it is seen that the integrand f(x-w)f (0 in (5.14) is

always strictly positive and this shows that

(5.15) s) > o, x < co,



for all all s > 0, all v c wo and any a1 >0, a2 > 0.

Together the results (5.4), (5.5) and (5.15) imply

(5.16)
n(4, v) = -g
ay
20

c) < 0, v c wo

for every test E Ca and any value of a.

Next we consider 8Gv(x, s)/3v2i for j = 1, 2, M.

As is shown in Appendix C, see (C.39), in this case differentiating

(5.3) with respect to v2i yields

nv(x, s)
(5.17)

for j = 1,

a2 > 0.
Here g(x, ) is the probability density function of the random

variable Q as given in (C.33), (C.34) and (C.35) of Appendix C and

s) is defined by

8v2j
- -[gx, s - s)],

• • • ML, -co < x all s>0, all v wo and any al > 0,

s) =
j v

. (x, s)
3,v

It follows from (5.4) that

(5.18)
uv2i -Igj,v

8x

- 2ce
J,

c)],

for j = 1, 2, ..., M, v c wo, every test cp c Ca and any value of a.

In this case we cannot conclude that 9n(4) v)/v2i ( 0 for v c wo every

test Ca and any value a.

From (5.18) it is seen that, in general, it will depend on al, a2, c and
Bn(4),the point v c wo whether or not 

v)
av < 0. That is, it depends on the
2j

choice of a, the particular cp e Ca and the point v e wo.

However, when m10 = L-r > 2 it is shown in Appendix C, see (C.46), that

(5.17) can be rewritten as

(5.19)
9G (x, s)

8v
2j

for j = 1, 2, ..., M, < x < co, all s > 0 all v c wo and any al > 0,

a2 > 0, where gi,v(x, s) is the probability density function of the
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random variable Qj,s 
as defined in C.41), C.42) and (C.43) of Appendix

C.

By using the same argument as before it is seen that

* , ,
(5.20) g. (x, S) > U

J,V
.... co x <

for j = 1, 2, ..., M, all s > 0, all v E wo and. any ai > 0, a2 > O.

Hence, it follows from (5.4) that, under the condition r < L-2, we have

0p
(5.21) 

an,
= 
-g 
. (0, ) < 0, v Cwo,

av2i 39

j = 1, 2, ..., M, for every test • e Ca and any value of a.

Moreover, as is proved in Appendix C, see (C.51), when m = n+ > 2

and A(s) = - 1s + a2 = -s for all s > 0, we have

(5.22)
Gv(x, s)

av2j
(x, s) < 0,

for j = 1, 2, ..., N, -03 < x < 03, all s > 0 and all v wo, where now

g. (x, j(x, s) is the probability density function of Q with X(s) = -s.
,s

Except for trivial cases the condition u+p-k-2, > 2 is always fulfilled.

On the other hand it is seen that -ais + a2 = -s for all s > 0 if and

only if al = 1 and a2 = 0.

As we know from Section 3, see (3.27), the choice of ai = 1 and a = 0

corresponds to the test, say, .2 E Ca (for any a) given by

4)2(T
(5.23)

T
2 

= 1 if S = < c
1 +T.—

= 0 if S = 
2  

c.
1 + T

1

where c is chosen in such a way that F0(c) = a.

It follows therefore from (5.4) and (5.22) that the power function

7r(.2 v) of the test cp2 e Ca given by (5.23) satisfies:

n(+2, v)
(5.24)

for j =

a 
v2j

gj,v(
c) < 0, v c wo,

M and any value of a.
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This completes the case v c coo.

We proceed with the case where v c w
l 
= w

l 
u 10).

In a similar way, with the aid of Appendix C, we can deduce the

following results from (5.3).

(5.25)
aG (x, s)

av ,v
(x,

10

for — < x < co, all s > 0, all v c wi and any al > 0, a2 > 0, where

ho, (x, s) is a probability density function which satisfies

ho,v(x, s) > 0 for — < x < co.

Thus it is seen from (5.4) that

(5.26)
aw(cp, v) c

av10 •
c) > 0, v c w

for every test 4) c and any value of a.

Moreover we have

(5.27)
aGv(x,

avlj
= s hj,v(x,

for j = 1, 2, ..., M, —co < x < co, all s > 0, all v c ;I and any al > 0,

a2 > 0, where hi,v(x, s) is a probability *density function and where

ahi,v(x, s)
h'
j 

(x,
,v

It follows from (5.4) that

ax

aw(4), v) 
(5.28) = c[h. + 21j,v0 (0, c)], v cay

lj j,v 

for j = 1, 2, •••, M, every test • e Ca and any value of a.

Again it depends on the choice of a, the particular test (I) e Ca and the

point v e wi whether or not w(4), v)/avij > 0.

However, when m20 k—r > 2 we can rewrite (5.27) as follows:

aqv( s) 
(5.29) = sh

j,v

for j

3\7
1

• • • x < co, all s > 0, v C and any al > 0,
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a2 > 0, where h.(x s) is a probability density function with

h (x, s) > 0 for -co < x < 03.
j,v
Hence, it follows from (5.4) that, under the condition r < k-2 we have:

(5.30)
8n(cp v)
8v
lj

= ch (0, > 0, v

= 1, 2, ..., M, for every 4) Ca and any value of a.

Moreover, when m = n+p-k-k > 2 and X(s) = -als + a2 = 1 for all s > 0,

we get

(5.31)
aGv(x'

a lj
- sh

j 
(x, > Op

pV

for j = 1, 2, ..., M, -co < x < 03, all s > 0 and all v e ;
'1' 

where

h*. (x, s) is the probability density function from (5.29) with
,v

X(s) = 1.

In this case it is easily seen that -als + a2 = 1 for all s > 0 if and

only if al = 0 and a2 = 1.

We know from Section 3 that the choice of a1 - 0 and a corresponds- 

to the test, say, (1)3 Ca (for any a) given by

(5.32)

1 + T
2 

(T) = 1 if S= 
T.

< c

1 + T
2 

= 0 if S = c,
T
1

where c satisfies F0 (c) = a.

It is seen from (5.4) and (5.31) that the power function 7103, of the

test cp3 e C as defined in (5.32) has the property

(5.33)
311(4)3,v)

9v1j
ch. c) > 0, v 
j,v

for j = 1, 2, ..., M and any value of a.

This completes the case v e wi.

Before we summarize the results of this section we recall that the

following quantities are given or can be deduced from the regressor

matrices X and Z:
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n = the number of observations

k = the number of columns of X

L = the number of columns of Z

0 = po < pl < < p < pmfl = 1 are the M+2 different

eigenvalues of the matrix (X1X)-1XlZ(Z'Z)-1Z'X (or

equivalently, (Z1Z)-1VX(XTX)-1XlZ)

mp m2, ..., mm are the multiplicities of the eigenvalues

P2' ' PM
p = multiplicity of the eigenvalue

r = p + E m4
j=1

It is not difficult to verify that:

k=dim(M(X))

t= dim(M(Z))

p = dim(AX) n Al(Z))

r = rank(X'Z)

0 < p < r < min(k, t)

p = r if and only if M = 0

Pm-Fi

PP

The following conclusions can be drawn from the results of this section.

For any a and every test (I) e Ca we have:

(a) 11-(4), v) is strictly decreasing in v20 when v e wo.

(b) If r < t-2 the function 1T(4), v) is strictly decreasing in each v2i

for j = 1, 2, ..., M when v e wo.

(c) w(+, v) is strictly increasing in v10 when v e wl.

(d) If r < k-2 the function it(4), v) is strictly increasing in each vij

for j = 1, 2, • • 0 , M when v e

Further we have for any a:

(e) The power function n((1)2, v) of the test .2 s strictly decreasing in

each v2i for j = 1, 2, ..., M when v e wo.

(0 The power function 71.(1)3, v) of the test (1)3 is strictly increasing in

each vij for j = 1, 2 ..., M when v e wi.
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It should be emphasized that the latter two properties are valid

regardless of the value of r.

From (a), (b), (c) and (d) it follows that when r = p or

r < min(k, 0-2, for any value of a all the tests 0 c Ca have the

property (vi).

Further it is seen from (a) and (e) that n(02, v) is always strictly

decreasing in each v2i for j = 0, 1, M when v wo.

In other words, for any a the test w(02, v) has level a (i.e., is an

exact test), and moreover, it has the desirable property that

w(02, v) < a for all v c wo\101.

It also follows from (c) and (f) that w(03, v) is strictly increasing in

each vii for j = 0, 1, M when v wi.

That is, for any a the test 03 c cm has a guaranteed power, i.e.,

w(03, v) > a for all v c

Whether the tests 02 and 03 satisfy property (vi) depends on the value

of r and in the next section we shall try to find for any r a suitable

test 0 c Ca which satisfies property (vi).
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6. The tests .2 and 4)3

In the foregoing section we saw that it depends on the value of

r = rank(X'Z) whether the tests 4) c Ca satisfy property (vi).

We therefore consider the following situations:

(A)

(B)

= p

r> p

Case (B) is divided into the following subcases:

(B.1)

(B.2)

(B.3)

(B.4)

r < min(k, t) - 2

L-2 < r < k-2

k-2 < r < L-2

r > max(k, k) - 2

Note that the above possibilities are mutually exclusive and exhaustive.

With the aid of the results (a) (0 from Section 5 we shall try to '

find in each of the above cases a test (1) c Ca which satisfies property

(vi).

Case (A): We already saw in Section 5 that for any value of a all tests

cf) C Ca have property (vi).

Note that in this case we have v =

when r p.
(v10, v20) since M = 0

Case (B.1): Again for any value of a all the tests 4) e Ca satisfy

property (vi). As was already remarked in Section 5, this easily follows

from the properties (a), (b), (c) and (d).

Case (B.2): Since r <k-2 it follows from (c) and (d) that any test

• C Ca has a power function w(4), v) which is strictly increasing in each

of the variables vij, j = 0, 1, ..., M when v e col. This implies that in

particular the test .2 c Ca has this property. On the other hand it is

seen from (a) and (e) that w((1)2, v) is strictly decreasing in each v2i

for j = 0, 1, ..., M when v wo. This shows that for any a the test

4)2C Ca has property (vi).

The test +2 has critical region (see (5.23))
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2 
c<

1  2'

where c2 is chosen in such a way that F2,0(c2) = a. Here F2, (s) is the

distribution function of the test statistic S2, i.e.,

F2,v(s) = Pv(S2 _

Case (B.3): Since r < Z-2 it is seen from (a) and (b) that the power

function 71(4), v) of any test (I) col, is strictly decreasing in each v2i,

j = 0, 1, M when v wo. Thus in particular the test .3 c Ca has

this property. Now it follows from (c) and (f) that 11(+3, v) is strictly

increasing in each vli for j = 0, 1, ..., M when v c wi. Hence, for any

a the test 4)3 c Ca has property (vi).

We know from (5.32) that the test 03 has the following critical region

(6.2)
1 + T
 2

S
3 
-

T. 
c
3'

where c3 has to be taken in such a way that F3,0(c3) = a. The function

F3,v(s) is the distribution function of the test statistic S3, that is,

F3,v(s) = Pv(S3_

Case (B.4): On the basis of the properties (a) - (0 from Section 5 we

cannot find a test 0 c Ca which satisfies property (vi). In this case it

seems reasonable to take the test 02. As we saw in Section 5 this test

has always level a (that is, it is always an exact test) and satisfies

the desirable property that n(+2, v) < a for all v c wo.

Moreover, since 02 c Ca, it follows that this test is a-similar,

computable and usable, where we recall that the latter property means

that

0 if d = E v co and
j=0 

2i
0 

Tr 4)
2
, 1 if d1 = E v

13 
.

j=0



Next we consider the cases (A) and (B.1).

Since in these cases every test • c Ca has property (vi), it is not

clear which particular test we should take.

In this situation we prefer the test ch. e Ca which corresponds to the

choice of al = a2 = 1 (see (3.27) of Section 3), i.e.,

(6.3)

= 1 if S =
1 + T

2 
c1 + T <

1

 2
= 0 if S 

+ 
> c,1 T

1

1 + T

where c satisfies F0 (c) = a.

Equivalently, we can say that the test 4 has critical region

(6.4)
1 + T2

1 + 
T1 

< c 
—

where cl is chosen in such a way that F1 0(c1) = a.

Here F1,v(s) is the distribution function of the test statistic S1
i.e., Fi,v(s) =

The reason for choosing 41 is that this test turns out to be the

generalized likelihood-ratio (GLR) test with level a for the problem of

testing linear hypotheses, as is shown in Bouman [1].

In general, when A is the GLR statistic, the GLR test with level a has

critical region

(6.5) A < A

where A has to be taken in such a way that

(6.6) sup Pr(A < A0) = a.

0

In the case of testing linear hypotheses it is not difficult to show

(see,Bouman [1]) that

(6.7) A = S.
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Hence the level a GLR test has critical region

2

(6.8) X
0 
= c

where c1 has to be chosen in such a way that

(6.9) sup Pv(S

w0

c
1
) = a.

Now, in general it is not clear how we can find the critical value cl.

However, as we saw above in the cases (A), (B.1) and (B.3) we have

(6.10) sup Pv(Si < s) = Po(Si < s),
w
0

for all s > O.

This shows that in these cases c1 can be found from

(6.11) F1,0(c1) = < ci) =

In other words, in the cases (A), (B.1) and (B.3) the test ch. is the GLR

test with level a.

However, in case (B.3) we choose the test +3 instead of Op since 03 has

the property (vi).

Although the GLR principle is not based on optimum considerations, it

has been very successful in leading to satisfactory procedures in many

specific problems.

Moreover, under fairly general conditions the GLR test possesses optimum

asymptotic properties.

Another, more practical, reason for choosing the test 01 in the cases

(A) and (B.1) is the fact that the test statistic S1 can very easily be

computed form the original data set (y, X, Z), as we shall see in

Section 8.

On the other hand, also from the practical point of view, in case (A) we

could perhaps better choose the tests 02 and 03, since the critical

values c2 and c3 of these tests can be found from the central

F distribution. This can be seen as follows. In case (A) we have r

and therefore M = 0. It is seen from (2.19), (2.20) and (2.21) of

Section 2 that
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(6.12)

U
10
U
4

20
U
4

where U10, U20 and U4 are mutually independent and posses the following

distributions

(6.13)

U1

U
20

Note that do = v20 and d1 = v109 since M = 0.

The test statistics S2 and S3 as defined in (6.1) and (6.2),

respectively, can be written as

(6.14)

20
U + U

41 

0
+ U

4

U10

From m = n+p-k-L and the above results it easily follows that

(6.15)

U10 U4 -k, d1)

U + U4 x2(n-L, d0).

Under Ho we have d > 0 and d1 = 0 and it is seen from (6.13), (6.14)

and (6.15) that

(6.16)

n-k
S
2 k-p 

F
(k
-p,k, d0)

S F(11-L,3 n-2.
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When H

(6.17)

s true we have d = 0 and d1 0 and we get in a similar way

S n-k
2

1 n-2,
S
3 

2,-p
F(E-p, n-2, d1)

In order to find the critical values c2 and c3 we need the distributions

of S2 and 53, respectively, when v = 0. Now v = 0 if and only if do = d1

= 0 and it is easily seen from (6.16) that for v = 0 we get

(6.18)

-k
S2 

n 
F(k-p, n-k)

k-p

S
3 F(n-L, L-13),n-R,

which shows that in case (A) the critical values c2 and c3 can be found

from the tables of the central F distribution.

The results of this section can be summarized in the following table.

Table 2.

,

Situation

.

,.

A

. .

B

B.1 B.2 B.3

,

B.4

Test

,

,

01

$2° +3

,

4)1 03 4)2

The test 01, 02 and 03 have critical regions as defined in (6.4), (6.1)

and (6.2), respectively.

Finally we make the following remarks.
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When 1k-t 2 there always exists a test with property (vi). For if

1k-ti > 2, then either k-t > 2 or L-k > 2. That is, either t < k-2 or

k < L-2.

Since r < min(k, 0 it follows that lk-t1 > 2 implies that

r < max(k, t) - 2. In other words, when 1k-ti > 2 the situation (3.4),

i.e., r > max(k, 1) - 2, never occurs and it is seen from the above

results that there always exists a test with property (vi).

We recall that property (vi) implies the properties (i), (ii) and (v).

That is, when a test possesses property (vi) it has level a (i.e., it is

an exact test) and it is unbiased and strictly discriminating.

The test (1,2 is not defined in the case p k < t, i.e., the nested case

with M(X) C M(Z) and M(X) WZ).

Obviously, this is a subcase of (A) and the critical regions of the

tests .1 and .3 become

(6.19)

and

(6.20)

1  e
1 + T c

respectively.

Both (6.19) and (6.20) are equivalent to the test with critical region

(6.21) T > c
1 — '

which is precisely the UMP invariant level a test for this nested case

(see (3.6) of Section 3).

Similarly, the test .3 is not defined when p = t < k, i.e., the nested

case with M(Z) C M(X) and WZ).

Again this is a subcase of (A) and the critical regions of the tests cp1

and (1)2 are

(6.22)

and

= 1 + T2 < cl
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(6.23) S2 = T21 c2,

respectively.

In this case (6.22) and (6.23) are equivalent to the test with critical

region

n-k
< c,(6.24) T

2

being the the UMP invariant level a test (see (3.15) of Section 3).

Further it should be emphasized that under all circumstances, that is,

regardless of the value of r, the test .2 is a level a test, whereas 43

has guaranteed power greater than a.
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7. The distribution functions of the test statistics

The distribution functions of the test statistics Si, S2 and S3 can

easily be derived from the general formula of the distribution function

F(s) of the test statistic S as given in (4.33), (4.34) and (4.35) of

Section 4.

Since

1 + T2

1 + T1'

the distribution function Fi,v(s) of Si can be obtained from Fv(s)

through the substitution of al = a2 = 1.

By making use of A(s) = -ais + a2 = we get

co sin c1,v(u, s)
(7.1) 1,v(s) 1 - f s) du,

0 T1 ,v(

where

(7.2)

and

(7.3)

,v(u, s) =

c
1,v
(u
' 

s

j=0

m .

1 

2j rn

141 (1 + X2.(s)u2) 
4 + x2 . 4

lj 
2j(s 2

) 
4 ](1+0-s)2 

u
2 
)

1:311j 

2
M T 4(s)A1 .(s)u

2
T .(s)A

2 
(s)

1 l  lj  23 2j 
expF- E [ i}2 2 2

j=0 1 + (s)u 1 + A
2
.(s)u

2
Ali 

23

M
= m arctg(Xii(s)u) + m arctg(A (s)u)

j=0

T .(0X 
ij 
(s)u 

2 
(s

z 
)L.i(s)ula  =  1

arctg((l-s)u).
2

1 +
lj
(s)u

2 
1 +

2 
2j 
(s) 

2 2

- The value of the integrand at u = 0 is given by

(7.4)
sin c (u, s)1,v
U Yi,v(u, S) U=

1az
2'

-0-s(n-k) + (do )1 •
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The coefficients mi0 and m20 are defined as

(7.5)
m10 =

m20 = k-r

The test statistic S2 is given by

T
2

1 + T
1
.

Hence, the distribution function F2 (s) of S can be found from F(s)

through substituting al = 1 and a2

Since X(s) = -als + a2 = -s = A10(s)9 the terms

(1 + X
2 (s)u2 1 

) in (4.34) and m10arctg(
X10(s)u)

(4.35) can be taken together. We get:

(7.6)

where

(7.7)

and

(7.8)

1
F
2 

(s) 
=-,v 2

2,v(u,

irr

0.

co sin e
nL 

(u, s)
r  'v , du,u y (u, s)0 2,v

II (1 +
j=0

,1111j 
2 4

(1

2 
(1 + Xio(s)u

2 
) and

and -1 m arctg(X(s)u) in

m2j 
4

s+ X .( ) )

2 2
M .(s)X

2 
(s)u

2 
T .(S)X .(S)t1

1 13 li  23 23 
+ ])expf— E [ 2 22 2 2

j=0 1 + X
lj
(s)u 1 + 

2j 
X (s)u 

1
2 Emlja m2ja

rctg(X
1j
(s)u) + rctg(X2 (s)u)

j=0

T )X (011 T (S)X (011
lj  2j 2j  1.

2 „ 2'
2jX

1 + (s)u2 2
1+X(s)u

lj

The value of the integrand at u = 0 is given by

(7.9)
sin e (u,

2,v
u y2,v(u, s

u=0
k-p) - s(n-k) + d

0 
- sd

1 
)i
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and m10 and m20 are defined as

(7.10)
ralo L-r+m = n+p-k-r

m10 = kr.

The test statistic S3 s defined as

1 + T2

T
1

This shows that the distribution function F3,v(s) of S3 can be obtained

from F(s) by substituting al = 0 and a2 = 1. Now we have 1(s) = -als +
2

a2 = 1 = A20(s) and in this case the terms (1 + X20(s)u
2
) and

(1 + X2(s)u2) in (4.34) and Imerctg( 
X20(s)u) 

and m arctg(X(s)u) in

(4.35) can be taken together. This yields:

co sin cl (u, s)
(7.11) F3 v(s) = f  ""v du,

0
U y

3 v
u (, s)" 

where

(7.12) Y3 ,(u, = y2,

and

(7.13)

u,

In this case the value of the integrand at u = 0 is given by

(7.14)
sin c

3,v 
(u) s)

U 13,v(u, s)
11=

1
= [(n-L) - s(t-p) + (d

o 
- sd )]2

The coefficients m10 and m20 become

(7.15)
m = L-r10

m20 = k-r+m = n+p-k-r.

In the above formulae the following coefficients are used:
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—s[X
1j
(s) — 1]

m =

r = p + E m.
j=1

mlj m2j rap

1
X
lj
(s) =— (1—s) —

2

• • • M

V(1—s)2 + 4s(1 —

X .(s 
. 

1—s +1.4 
2

P
+ 4s(1 — .)1 1

2j 2 .]

where po = 0

Tii(s) = cij(s)v• + d i(s)vii

'r2 (s) = c2 (s)v2 • d2i(s)v1i

where

1j
(s) + s

)[ (s) — 
X2jXlj 

(s)] 

x2i(s) s 
c2j(s) = X2i(s)[X2i(s) — Aii(s)]

and

(s) =
1 

lj .(s)[X1 X2j
(s) — (s)]

.j 

—s[X
2j
(s) —

d
2 
(s) =

X2j(S)[X;j(S) — lj
(s)]

d
0 
= E v

2j
j=0

= E .d 
v1 1j

j=0

I.

0, 1) •••, tip

• • • M,

Note that under Ho v e coo we have vli = 0, v2i 2_ 0, j = 0, 1, ..., M.



This implies that T10(s) clO(s)v20 = 01 T20(s) = c20(s) 20 I= v 02-0'

ti(S) = Cii(S)V2i > 0, T2j(S) c2 (s)v2j > 0 for j = 1 2, ..., M and

do > 0, d1 = 0.

Under H1 (v c wi) we get vij > 0, v2i = 0, j = 0, 1, M and vli > 0

for at least one j. In this case it follows that T10(s) = 
d10(s)v10

v10 > T20(s) d20(s)v10 0, t(s) = 0, T2i(s) m

d23(s)v13 0 for j = 1, 2, ..., M, where 'r13(s) > 0, T2i(s) > 0 for at

least one j and d0 = 0, d1 >0

In particular when v = 0 the above formulae are of a simple form since

in this case we have vlj = v2j = 0 for j 74 0, 1, , M and this implies

that T i(s) = t2(s) = 0 for j = 0, 1, M and also do = d1 = 0.

The above results show that F. (s), 1 = 1, 2, 3 can be computed for any

s > 0 andvcw0 uw1 through numerical integration.

With the aid of he above formulae we can compute the critical values,

the p-values and the power functions of the tests Si, .2 and .3.

The level a critical value ci of the test cpi satisfies Fi 0(ci) = ci•

So we have to find the solution ci of the equation

(7.16)
1

Ct 26"

03 sin (ei3O 
0 u yi,o(u, c

i= 1, 2, 3.

The p-value of the test is given by

co sin e (u, )
(7.17) F (S ) =-- f 

i3O 
du,i3O i 

u Yi 0(u'
)

i = 1, 2, 3, where Si is the test statistic.

Since the power function ¶((j)i, v) of the test (pi s given by

w(Oi, v) = Fi, (ci), we have

00 sin c (u, ci)m l 
(7.18) w(cpi

2 - 
l r 
IrJ uy

i,v
(u, 

ci
) du,

0 

where v c wo u wi.
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8. The computation of the test statistics and power functions

In order to apply the tests 4)1, cp2 and cp3 in practice we have to compute

the values of the test statistics Si, S2 and S3, respectively, from the

original given data set (y, X, Z).

Moreover, if we want to compute the power function n(4i, v) of the test

(pi at a certain point v E wo u wi, it is important to know how the

vector v can be expressed in terms of the original parameters (u, a)

where a > 0 and p = Xa, a E Rk under Ho or p = Zy Xa, y c Rt under Hi.

That is, we want to compute vii and v2i for j = 0, 1, M from the

original parameter set (3, y, a). We start with the computation of

S2 and S3.
Since the test statistics are simple functions of the maximal invariant

statistic T = (Ti, T2), we shall first investigate how T can be

expressed in terms of (y, X, Z).

We know from Section 2 that

(8.1)

where

ww1' 
1

w'w
4 4

w'w
2 2
f

4w4

w = R'y
1

(8.2) w
2

w
4 
= R'y.

4

The matrices Ri, R2 and R4 are submatrices of the transformation matrix

R as defined in Section 2, i.e.,

(8.3) R= [It ill
2 
SR3:R4 1(n).1 • 

(t—p)(k—p) (p) (n)



-69-

The substitution of (8.2) into 8.1) yields

(8.4)

y'R1Rly

yR
4
Ry
4

'R
2 
R'y
2

yi R
4

y

Now it is important to note that it is not necessary to construct a

transformation matrix R, with the properties as stated in Section 2, in

order to compute Tl and T2. This can be seen as follows.

As is shown in Bouman [1], the columnvectors of the n x (n-k) matrix

R4] form an orthonormal basis for the (n-k)-dimensional linear

subspace M(X) which implies that

(8.5) + R R'
4 4

-1
- X(X'X) X'.

In a similar way it can be shown that

(8.6) +R
4
V = I - Z(Z1Z)

Further we know from Section 2 that the columnvectors of the nxm matrix

R form an orthonormal basis for the m-dimensional linear subspace

M(X) n M(Z) = M([X Z]) , where m = n+p-k-L. Hence, if the

columnvectors of the n x (k+t-p) matrix G form an arbitrary basis for

the (k+t-p)-dimensional linear subspace M([Xi Z]), it follows that

(8.7) = I — G( G' G) 1G' .

How can we find such a matrix G?

We first observe that the number p = dim(AX) n WZ)) is given, since p

is equal to the multiplicity of the eigenvalue 1 of the matrix

(VX)-1X'Z(Z1i)-1VX (or equivalently, (Z'Z)-1Z'X(X'X)-1X'Z) and since

we suppose that the eigenvalues and multiplicities of this matrix are

known. We recall that 0 < p < min(k, i).

In the second place we note that the number of columns that X and Z have

in common is at most equal to p. Now it is not difficult to see that we
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can always find a n x (k-p) submatrix X2 of X such that the column-

vectors of the matrix [X2; Z] form a basis for M([X Z]). If xl, x2,

xk denote the columnvectors of X, we take A = Z and A1 [x1; Ao]

Then we compute det(Aly. If det (Apt].) = 0 we delete xl and take

A2 = [x21, Ao], whereas if det(Aly > 0 we take A2 = jx2:. AO.

Next we compute det(Ap.2). When det(A1A2) = 0 we delete x2 and take

A3 = [x3 Ao] or A3 = [x3 AO, and if det(A?2) > 0 we take

A3 = X 3 A 2 •

Proceeding in this way we obtain a n x (k+Z-p) matrix [X21 Z] with rank

(k+l-p), the columns of which form a basis for MUX ZD.

Consequently, we can take

(8.8) G=

In a similar manner we can find a n x (L-p) submatrix Z2 of Z such that

the columns of the n x (k+2.-p) matrix [X I; Z2] form a basis for

NJUXIZD, that is, we can also take

(8.9) G= Z ].

It should be noted that only in the case when the number of common

columnvectors of X and Z is smaller than p we have to follow the above

procedure in order to find the matrix G.

In most applications however, the number of common columnvectors is

precisely equal to p and in this case the matrix G can very easily be

found through inspection. This follows from the fact that if the number

of common columns of X and Z is p, we have

X = [X1 ] and Z = [Z1

where X1 and Zl are of the order nxp and satisfy X1 = Z1. Therefore we

can simply take G = [X2i Z] or G = [X ;Z2]. Note that these latter two

matrices are essentially the same. That is, they contain the same

columns, only the order of the columns is different. With the aid of

(8.5), (8.6) and (8.7) we obtain from (8.4)
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(8.10)

and

(8.11)

50(R1R1 + R4R1)y — 'R
4 
R y
4

yR
4 
Rty
4

Y'MXY YIMG

Y'MGY

371(R2R1 R4R')y — y'R4R4y

yR
4 
R'y
4

Y'mg Y'Ke
y'mGY

Next we consider the following three linear models

y = x8 + u

(8.12) y Zy + u

y = G6 + u.

The least—squares estimators of B, y and 6 are

(8.13)

A

= (X'X)-1X'y

(Z'Z)-1Z'y

(G'G)-1G'y

and the residual vectors become

(8.14)

A

uX = Y Xa = MXY

— Zy = M_v
L-

A
= y — G6 = M y

This shows that



(8.15)
04 A

Y 'mg
A A

y'M y = u'u
G G'

Substitution of (8.15) into 8.10) and (8.11) yields

(8.16)

A A

- u
GuG

uzuz uGuG

u'u
G G

which shows that T1 and T2 can easily be computed 
from least-squares

.regression of y on X, Z and G, respectively.

Finally, it follows from the definitions of the test statistics Sl,

and S3 that

(8.17)

1 + T u'u
2 Z Z

S =
1 1 + T 

1 ukux

2
1 + T

1

A A

upz -
A A

A A

A
1 + T 1

2 
uzuz

.
T
1 

A A A A
I Iu u -
X X uG

u 
G

Alternative expressions for the test statistics S2 and S3 can be

obtained in the following way.

From G = [X 1 Z] it is not difficult to verify that

(8.18) G(G'G)-1G = Z(Z'ZY-1Z' + MzX2(XIMzX )-1XiM .
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It easily follows from (8.18) that

-1
(8.19) Mz- M

G 
=

where the n x (kp) matrix X2* is defined by

(8.20) =Mz •

The result (8.19) implies that

(8.21)

where

(8.22)

u u utu = e(m
Z Z G G Z

y.

S' X' X
2* 2* 2*

Note that 82* is the least-squares estimator of the parameter vector 82*

in the linear model

8.23) y = X2*B2* u.

Substitution of (8.21) into the expression for

yields

(8.24) q*x2-* 202*
A A

ujux

as given in (8.17)

where it should be noted that B' X' X is the so-called explained
2* 2* 2* 2*

sum of squares in the linear model (8.23).

Similarly, from G = Z2] we obtain

(8.25) mx - MG =

where the n x t-p matrix Z is given by

(8.26) Z2* = MxZ •
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This shows that

(8.27) qux - u'GuG = y' (Mx - )y =

where

(8.28) 

A
That is, y is the least-squares estimator of y * in the linear model

(8.29) y = Z2*y2* + u.

With the aid of (8.17) and (8.27) we get

(8.30)

A

Here we see that y *Z' y * is the explained sum of squares in the

linear model (8.29).

Next we shall consider the computations which are required if we want to

express the power function n(cpi, v) of the test Oi in terms of the

original parameters (8, a) under Ho or (y, a) under H1.

As is shown in Bouman [1], the parameters vli and v2j, j = 0, 1,

can be expressed in terms of (0, y, a) as follows.

Under Ho we have:

(8.31)
8'H H'13

v
2j 
- 

2
a

where 8 e a > 0 and

(8.32)

with po = 0.

••• 14

, j = 0, 11 *00,

=i-V-77x,Ru
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Under H1 we have:

yIK
J
My
J

(8.33)

v2j

2
a

where y ERI is such that Z * XS, c Pk, where again a > 0 and

(8.34) = 0,
J J

_ -
In the expressions (8.32) and (8.34) we have used the matrices X, Z, U.

and Vj 0 = 0, 1, M), these matrices can be found from X and Z in

the following way.

The columnvectors of the nxk matrix X form an arbitrary orthonormal

basis for the linear subspace /M) and the columnvectors of the nxt

matrix Z form an arbitrary orthonormal basis for A/(Z).

There are several ways to compute R and Z (which are not unique) from X
and Z, respectively, for instance, we can use the well-known Gram-Schmidt

procedure.

With X and Z we form the kxk matrix X'ZZ'X and the Lx2, matrix ITZI,E.
We first note that these matrices have the same nonzero eigenvalues.

In the second place, it is not difficult to see that TVZZIR has the same
eigenvalues as the matrix (rX)-1X'Z(Z'Z)-1Z'X, whereas DXXIR. has the

same eigenvalues as (Z'ZriZ'X(X1X)-1X'Z.
- _

That is, X'ZZ'X has an eigenvalue 1 with multiplicity p, M different

eigenvalues pl, p2, ..., pm with 0 < pi < 1 and multiplicities

ml' m2' mm and an eigenvalue po = 0 with multiplicity k-r, where

p + E 
m.j=1 J

The same holds true for 1,xx,2, except that the eigenvalue po = 0 now
has multiplicity L-r.

Now the matrices U
J 
. and V

J 
. are defined in terms of the eigenvalues of

the matrices X'ZZ'X and Z'XX'Z, respectively.
-

The columns of the k x (k-r) matrix U0 are the eigenvectors of X'ZZ'X

which correspond to the eigenvalue 0. The columns of the k x mi matrix

Uj are the eigenvectors of X'ZZ'X corresponding to the eigenvalue pi,

j = 1, 2, 000, Me



Similarly, the the columns of the t x (t-r) matrix Vo are the eigenvectors

of DXX'2 corresponding to the eigenvalue 0, whereas the columns of the
m. matrix V are the eigenvectors which correspond to the eigenvalue3

p j = 1, 2, ..., M.

We suppose that: Upo = VV o = and U'U = 'V
(k-r)' U

j = 1, 2, •••, M.

Finally, we note with respect to (8.31) and (8.33) that: v1  = v2i

for j = 0, 1, M if and only if i c MK X) n MK Z) and also

141 fly

E v . - d
O 
= 

2j 2
j=0 a

for u c M(X) u M(Z) and a > 0.

d
1 
= E v

jj=0 a2
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9. Interpretation of the tests in terms of the original hypotheses

In this section we shall derive the tests (1)i, 42 and on heuristic

grounds and interprete the test statistics Si, S2 and S3 in terms of the

original linear hypotheses.

The original problem of testing linear hypotheses canbe stated as

follows:

On the basis of the vector of observations y n(p, a2I) we want to test

Ho: p = XO, 8 e Rk against Hi: p = Zy, y e R2' where under Hi, y e Rt is

such that Zy * xa, a Rk.
Now under Ho we have the linear model y = Xa+ u and the total sum of

squares y'y can be decomposed into two parts

(9.1) = 13`rXE3 + ukux,

where aixtx$ is the explained sum of squares due to the variation in X
and qux is the residual sum of squares, which is not explained by the

variation in X.

^ —As usual, 8 and ux are given by: B = (X'X) 
1 
X'y and ux = y — XO.

Analogously, under Hi we have the linear model y = Zy + u and the

decomposition

(9.2) = y'Z'Zy + u

where y = (I1Z)-1Z'y and = y — Zy.uZ
Here y'Z'Zy is the explained sum of squares due to the variation in ZA A
and u'u is the residual sum of squares.Z Z
On heuristic grounds it seems natural to reject Ho if upx is large and

u'u is small, that is, if the ratio 
u'uZA 

/u.'.0
X 
is small.Z Z Z 

In other words, as a test statistic we take

(9.3)

A

u
Z
u
Z

u)uX

and reject Ho (the critical region) if

(9.4) S1—<



This, however, is precisely the test .1 as proposed in the foregoing

sections. As is already noted before, S1 can also be derived from the

GLR criterion.

Let us next consider the probability distributions of the denominator

qux and the numerator quz of the test statistic Si.

From y n(p, a2I) it easily follows that

(9.5)

A A
ukux

a
2 X

A A
uzuz

a
2

Under Ho we have:

(9.6)

and under H1:

(9.7)

X

n-k, d1)

8TXIMZX

a
2

>0

'Z'MxZy

d1 
a
2-   >0.

The above results enable us to compute the means and variances of u'uX XA A

and upz, under Ho and H1, respectively.

Under Ho we get:

(9.8)

= 0' n-k)

A A
E(quz) = a2(n-k + do)

A A
Var(u?x) = 2a

4 
(n-k)

A A
Var(quz) = 2a4(n-R, + 2d0),
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and under H1:

(9.9)

A A

Var
A A

u
X
'u

A A

= o'(n-k + d1)

Var(u'u
Z Z

. a n- R,)

= a (n-k + 2d 1)

2a4
 
(n-2).

We recall that d0 can be thought of as a measure of distance from a

point u = xa under Ho to Hi (V(Z)). Similarly, di can be considered as
measuring the distance from a point i = Zy under H1 to H (M(X)).0
Note that E(u)ux) is small under H0 andlarge under Hi. It is also seen

that under Hi the expected value E(u;cux) increases with di and that

E(qux) if d1 co. ^

On the other hand, E(up) is large under Ho and small under Hi.

Further, E(quz) increases with do under Ho and E(quz) +#.00..if do 03.

At this point it should be observed that the denominator 10.0 and the
x X

numerator upz of Si are not stochastically independent. Consequently,

besides the means and variances of 10.11 and ulu the covariance of

qux and quz is an important characteristic of the joint distribution

of these random variables.
A A A A

In order to find Cov(qux, quz) we first recall from Section 2 that:

(9.10)

uxux

a
2

E U . + U
j=0 

ij 4

E U + U
a j=0
2

where U10, U20, (U11, U21), "" (U1M' ) and U4 are mutually

independent random variables.

We know that U10 - X2(2.-r, v10), U20 X2(k-r, v20), U4 - X
2(m), whereas

(Ulj U2j .) j = 1, 2, ..., M has the characteristic function 1, t2)'  '
as given in (2.26) of Section 2.
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By making use of the above mentioned mutual independence we obtain

(9.11) Cov[(111 + E U .+ U4), (U
20 
+ E U2. + U4)]

j=1 j=1

= E 
Coy(Ulj' 

U2.) + Var(U
4
).

j=1

As is shown in Appendix A, by using the general result

2
ln t2)

Cov(U13 
U
2j 
) =

we get

at
1
Bt
2

(9.12) Cov(Uli, U2j) = 2pimi, j = 1, 2, ..., M,

for all v c wo u

Since Var(U4) = 2m, where m = n+p-k-Z, it follows from (9.10), (9.11)

and (9.12) that

A A A A
(9.13) Cov(qux, quz) = 2a

4
(111 + E

J=1 
J J

for all (p, a) with p M(X) u M(Z) and a> 0.

It should be noted that Cov(qux, upz) does not depend on

it takes on the same value under H0 as well 
as H1'

The above results enable us to compute the correlation coefficient of
A A A

ti• that is,

qux and quz. This coefficient is a measure of the dependence between
A A
u...111 and ulu . We have under Ho:
x X Z

A A A A

(9.14) Corr.(ukux' quZ) =  

and under H:

(9.15) Corr.

m+ E p.m.
j=1 "

m + E P.On-AA AA 
j=1 J 3

quX' uZuZ
V(n-k+2d

1)(n-il)

•



Since m > 0, we always have

A A A

0 < Corr.(u'
X
u u'u

Z 
) < 1,

Z 

and Corr.Nux, quz) = 1 if and only if M(X) =14(Z) (that is, the

trivial case of nested models).

In the latter situation we have: p = r = k = L, M = 0, do

also u'u
X 
= u'u with probability 1.

X ZZ
When p = r, i.e., if M = 0, the correlation coefficient becomes

In

An-k)(n-t+2d0)

under H0, and

V(n-k+2d1)(n-L)

= 0 and

under H1.
A

It is seen that there always exists a positive dependence between u'u
X X

and quz.

Further, if we consider the correlation coefficient as a function of the

parameters (p, a), for given linear hypotheses, we see that Corr.(u'
X
u
X' 

u'u
Z 
)

Z 
depends on (p, a) through do and dl.

It easily follows that Corr.(qux, upz) has the following maximum value

m+ E p.m
J jj=1

V(n-k)(n-t)

when do = d1 = 0, i.e., for all points (p, a) with p c M(X) It

a > 0. These points satisfy p = X8 = Zy and form the common boundary

between Ho and H1.

It is also seen, that under Ho the correlation coefficient is a

decreasing function of dn and that Corr.(ukux, upz) 0 if do co.A A A-A
C2rI.(ukux, quz) is a decreasing function of d1 under H1 and

Corr.(qux, quz) 0 if d1 -P. co.

The following table summarizes the moments of 
u'XuX 

and u'u
Z Z.
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Table : Moments of the numerator and denominator of S1

_

Ho: is = xa H : u = Zy

E u'u )
X

a(n-k) a2(n-k+di)

E(u' )
Z

,

a2(n-i+d ) 02(n_2,)

,

Var(qu ) 2a(n-k) 2a(n-k+2d )

Var(u? ) 2a4 n-L+2d0) 2a4 n-2,)

,,

t tCorr.(uvu
' 
, 

uu " 

) , 7
'

, 

M
m + E pm .

j=1 i J

M
m+ E pm .

j=1 J J

V(n-k)(n-t+2d0) V(n-k+2d1)(n-R,)

In the above discussion we ignored the fact that a part of the variation

in X can be explained by Z and vice versa. That is we did not take into

account that X and Z can be correlated.

For instance, suppose that qux, is small, or equivalently, that the

explained sum of squares foxIxa is large.
Then the statistic

i,x,x;

has a large value and we could decide to accept Ho.

In doing so, however, we totally ignore the matrix Z, while at the same

time it is possible that the statistic

y'Z'Zy

u'u
Z Z

takes on a large value too, which points into the direction of accepting

H1.
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A

The large value of a'X'X$/u'X
u
X 
can be possibly due to the fact that the

variation in X is partly explained by the variation of Z.

What we need is that part of X which does not depend on Z. To this

extend we consider the following decomposition of X

(9.16) X = Z(Z'Z)-1Z'X + MzX,

where Mz = I - Z(Z1Z)-1Z'.

Here Z(Z'Z)- Z'X is that part of X which is explained by Z and MzX is

the residual part of X not explained by Z. Note that the columnvectors

of MzX are the residual vectors after least-squares regression of X on

Z.

These columnvectors span a (k-p)-dimensional subspace. If X2 is the

n x (k-p) submatrix of X as defined in the foregoing section, it follows

that the columns of the n x (k-p) submatrix MzX2 of MzX form a basis for

this subspace. That is, the matrix X adjusted for the influence of Z can

be represented by X2* = MzX2.

Next we consider the explained sum of squares due to the adjusted

X7matrix. In other words, we consider the linear model y = X202* + u

and the decomposition

(9.17) = X' X
2* 2* 2* 2* X

2*
uX

2*

-1where 0 = (X' X ) X' y and u2* 2* 2* 2* = y - X2 82.

The 
2*

The explained sum of squares due to X adjusted for Z (i.e., due to X2*)

is equal to at v 
X2*2* 

and a reasonable test statistic, instead ofA A A 2* 2* 
VX'XB/u;cux, seems to be

1* X I:2* X2* 13 2*
(9.18) A A

u'u
X X

Since we expect S2 to be small under H1, we reject Ho if S < c2.

This is precisely the test .2 as proposed in the foregoing sections see

(8.24) of Section 8).

Ofcourse, we can also adjust Z for the influence of X and, by using

similar arguments as before, we obtain the test which rejects Ho when
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is large, or equivalently, when

(9.19)
uuz Z

y' Z' X y
2* 2* 2* 2*

Now this is precisely the test 4)3 as derived in the foregoing sections

(see (8.30) of Section 8).

  <C3.

Here y'2*Z *Z2*y2* is the explained sum of squares due to Z adjusted for

X, i.e., due to Z2* = 14xZ2, where y2* = (Z'2*Z2*) 1Z'2*y.

Again it is informative to compute the means, variances and correlation

coefficients of the numerator and denominator of the test statistics

under H0 and H1, 
respectively.

We start with S2. From

(9.20)

-
'X2*(X12*X)

1x

2 2
a a

uXuX
2 

x

a
n-k, d1),

2,
X (k-p, d)

with d0 and d1 as given in (9.6) and 
(9.7), we can easily compute the

A A

means and variances of fr X' X and u'u
2* 2* 2* 2* X X.

Further it can be seen from

A

es' X
2* * 2 

E U .
a
2 23

j=0
(9.21)

uXuX
=

42 . lj 
a 3=0

that

Cov(u'u
X X'

(9.22)
11

= 2a
4 

E 
p.m., 

if r > p
j=1 J 

if r=p

Again the covariance does not depend on p e M(X) u Al(Z).

With the aid of (9.20) and (9.22) we get:



Table 4: : Moments of the numerator and denominator of S2

H0: i = X8 H1: p = Zy

E(qux)

,

a2(n-k) a2(n-k+d1)

2* 2* 2* *

,

2a(k-p+do) a2(k_p)

Var 
uX'uX 
) 2a4(n-k) 2a4(n-k+2d )

Var(Bikr24,X202*) 2a4 k-p+2d ) 2a4(k-p)

AA

Corr.(qu BI XlX2*B2*)* *

M
E p m

i i

M
E p.m.

j=1 3 i

V( -k)(k-p+2d
o
) V(n-k+2d

1 
)(k-p)

It follows that we always have

and

0 < Corr.(qux,

. A

Corr.(ukux,8" X B
2* 2 2*

^82*
) < 1

if and only if r = p, i.e., if M = 0.

If we consider the correlation coefficient as a function of the

parameters (u, a), for given linear hypotheses, it is easily seen that

it has the maximum value

E p m.
j=1

V(n-k)(k-p)

for all points (u, a) on the boundary of Ho and H1, that is, points with

u c M(X) n /AZ), a > 0 (do = d1 = 0).



The correlation coefficient decreases with d0 under H0 and with d under
A A A A

H1. Also, Corr.(qux, $'2*Xl*X2*82*) 0 if do 03 or if d1 co.

In the second place we consider S3. The means, variances and correlation

coefficient of the denominator y' Z' Z
2* 

y
2 

and the numerator uu can'
2* 2* * Z Z

be derived in a similar way as before.

We get:

Table 5: Moments of the numerator and denominator of S
3

Ho:u = X0 H1: i = Zy

E dq*Z *y * a
2(2,-P) a2 -p+d )

E(u'u )
Z Z

a2(n_m_d ) cr2(n--L)

2* 2* 2* 2a(L-P)
2a4 -Pi-2d1)

Var(quz) 2a4 n-k+2do) 2a4 n-L)

.

Corr. u'u y'
Z Z' 2*

.

' Z
2* 2*

,

)

.

14
E p.m

j=1 J j

14
E p.m.

j=1 33

V(2.-p)(n-k+2d0) V(L-p+2d1)( -

In this case we also have

and

A
0 < Corr.(u'u " Z

Z Z Y2* 2

A A

Corr.(quz, y'2*Z'2*Z2* 2*

2*) < 1

if and only if r = p, i.e., if M = O.

Considered as a function of (u, a), the correlation coefficient has the

maximum value
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ME p4m4
j=1 

at all points (11, a) with u c/Y(Z) n WZ), a> 0 (d = di = 0). Again

the correlation coefficient decreases with do under Ho and with di under

H whereas Corr.(u'u y' Z' Z y ) 0 if d co or if d
1' Z Z' 2* 2* 2* 2* 0 1

Finally, we make the following remarks.

1. The test statistics Si, S2 and S3 are ratios of quadratic forms in

normally distributed random variables. That is, the numerator and

denominator of these statistics are x2-distributed random variables.

However, due to the fact that, in general, the numerator and denominator

are not stochastically independent, the ratio does not have a F distri-

bution. In particular this holds true for Si.

Now we have seen above that in the special case r = p (which was called

case (A) in Section 6), the correlation coefficient of the numerator and

denominator of S2 and S3 is equal to zero. In general this does not

imply that the numerator and demoninator are stochastically independent.

However, as we saw in Section 6, when r = p the numerator and

denominator of S2 and S3 are independent. As a consequence, S2 and S3

(multiplied by a suitable constant) have a F distribution (see (6.16),

(6.17) and (6.18) of Section 6) when r = p.

2. The correlation between the numerator and denominator of S2 and S3

smaller than the correlation between the numerator and denominator of

S1' That is,

(9.23)

and also

(9.24)

A A A

Corr.(u'
X
u (3' V X

2 
* 

X
) < Corr.(u'u

X' 
u'u

Z 
)2* 2* Z 

A A

Corr.(u u  < Corr.(u'u2* 2* 2* 2* X X'

A A

+ co.

We only prove (9.23). The proof of (9.24) is quite analogous.

First consider the situation under Ho. Then (9.23) becomes

Em+Epm
(9.25)

V(n-k)(k-p+2d0) V(n-k)(n-t+2d0)

where do > O.
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By making use of m = n+p-k-k = n-2.-(k-p) = n-t+2d0 - (k-p+2d0), the

inequality (9.25) can be written as:

(9.26)

Let

E pm. /n-+2d0 /k-4-2d0  p.m. v/k-p+2do
J v j 

k-p+2d0 k-p+2d0 n-2,+2d
0 

k-p+2d
0 

n-2:+2d
0

E p.m.
=

k-p+2do

yik-p+2do

n-L+2d
o

then it follows that 0 < x < 1 and 0 < y < 1, since 0 < E pimi < r-p <

k-p and therefore 0 < E pimi < k-p+2d0, whereas m = n+p-k-2, = n-L+2d0 -

(k-p+2d0) > 0 implies that

k-p+2do
0 <   < 1.

o

Hence (9.26) can be rewritten as

(9.27) x < y xy,

for 0 < x < 1 and 0 < y < 1.

Now (9.25) is equivalent to

(1 -y)x
1-y

2

Y

which can be rewritten as

(1-y)x <
(1-y) ( 1+y) 

Multiplying the terms at both sides of the inequality sign by y/(1-y)

yields

(9.28) xy < 1fy.



-89-

Obviously, the inequality (9.28) holds true for 0 < x < 1 and 0 < y < 1,

which proves (9.25).

In the second place consider H then 9.23) becomes

(9.29)
Zpm. 

i  
+ E p.m .

33 

V(n-k+2d1)(k-p) V(n-k+2d1)(n-X)

where d1 > O.

This is equivalent to

(9.30)
E p.m. m + E p .ra

< 33

7-7 ---

Since (9.25) holds true for do = 0, the inequality (9.30) follows at

once from (9.25). This shows the truth of (9.29) and completes the proof

of (9.23).
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10. A large sample approximation to the critical values and p-values of

the tests

As we saw in Section 7 the computation of the critical values and

p-values of the test (pi, 4)2, 4)3 requires numerical integration.

However, when the sample size n is large, the critical values and

p-values can be approximated in a very simple way, as we shall see

below.

We know that, in order to find the critical values and p-values, we need

the distribution functions of the test statistics sl, S2 and S3 on the

boundary of Ho and H1. In other words, if Fi,v(s) = Pv(Si s), i = 1,

2, 3, the critical values and p-values are computed from Fi,o(s), that

is from the distribution functions at the parameter point v = 0. As we

know, the point v = 0 uniquely corresponds to the points (u, a)

satisfying u e M(X) n 14(Z), a > 0.

We recall that the test statistics can be written as the following

ratios of quadratic forms (sums of squares)

(10.1)

S -
1 2

eu /
-X X

A

/
Z Z'

2

a
2

2* 2* 2* 2* 
" " 2
qux/a

" " 2
quz/a

" 2
yl*Z12*Z2*y2*/a

Note that under the hypothesis v = 0 (i.e.,

numerator and denominator of Sl, S2 and S3 are

variables. We have

(10.2)

/a x2 2(n....4)

A .
2

u'u la -X (Z Z

A

A 2
(k-p)2* 2* 2*

- X
2(

L-p)

e M(X) n M(Z), the

X -distributed random
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Now in the applications it is often convenient to divide these

x2 variables by their mean values (number of degrees of freedom) and to

work with the mean sums of squares, instead of the sums of squares. In

doing this, we obtain the following modified test statistics:

(10.3)

- " 2
uiu na (n-t)]* Z Z  n-k= S

1 n-L
S = 

" " 2
quxna (n-k)]

" 

S
2 
- 

* 8'21x2j21,82*/[a
2 
(k-p)]

2
quxn a (n-k)]

n-k
= S

2 k
_
p

2
quzna (n-t)]

S
3 
  s 17.2

3n-,12*Z202*/[a
2
(9.-p)]

If F1 (s) is the distribution function of S i.e.,

(10.4) F
i,v

(s) = Pv(Si < s), i = 1, 2, 3,

we can express the test • in terms of the test statistic S We get for(1)1
1, 2, 3:

* *
The test (pi rejects Ho if Si < ci, where the critical value ci satisfies
* *
F 0(c) = a.

Equivalently, if we work with p-values the test 4 rejects Ho if
* *

F,0 
(S ) < a.

Now it easily follows from

(10.5)

F (s) =
1,v

F
2 

(s) =
,v

n-tF
3,v

(s) F s),
3,v L-p

for all v Ewo U w, that

* n-k
c -j--c
1 n-t 1

* n-k
(10.6) c2 = k_p c2

*
c3 n_st c3,
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and also

* *
(10.7) F

1,0
(S) = F

i
3.

That is, the critical value c can easily be found from the original
* *

critical value ci, whereas the p-value F 0(S) is equal to the original

p-value F1,0 (S).

In fact, the reason for introducing the test statistic Si 
is that the

distribution functions at v = 0 of these statistics can be approximated

in a simple way when n is large. This enables us to approximate the

critical values ci and the p-values F4 (S4) for large n.

As is shown in Appendix D the distribution functions F4,0(
s) of the test

statistics S i = 1, 2, 3, can be approximated with the aid of the

standard-normal distribution and the x
2 distribution, respectively, when

n is large.

We start with the approximation of F
*
10

(s).
, 

Vrimi
(10.8) F

1 
s) 

7E  
1, s > 0 and s * 1,

,
%128(s)

(s-1)

5TT

where

, 2
x -tt

(10.9) 4(x) = f e  dt
-03 VTT

and

--
s(10.10) 

sn(s) (11211)s2 
(
nkt+tr)4.1... 
n-k

The quantity tr in (10.10) is defined by

(10.11) tr = tr[(X'X)-1X'Z(Z1Z)- Z'X] = trt(Z'Z)-1Z'X(X X)-1XIZ]

P E
j=1

.m.•
33

It is also shown in Appendix D that from (10.8) we can derive the

following approximation to the point sa which satisfies F1 0(sd =



S
a a

b
n 

‘ib2 - a c
n n n

if (1)
- max(k k) 

< a <
2

(10.12)

where the coefficients a and cn are given by

a
n

(10.13)

2t
2
a

n-k

2t 
2 
(n-k-t+tr)
a 

(n-k)(n-t)

2
2t
a

n-t •

Here t is the point which satisfies gta) = a, i.e.,

(10.14)

The restriction

v(n max(k,  
< a < (1)[ 

- max(k,
]2 2

in (10.12) is not serious in practice, since

4-
n - max(k, t

(1
2

- max(k,  + 0(c02 1

if n+03 which shows that for large n we have:

01-V
- max(k, - max(k, 

] m 0, (14 ] m 1.2 2

With the aid of (10.8) and (10.12) we obtain large sample approximations
* *

to the p-value F
1,0

(S
1
) and the critical value c

1 
of the test h.



* *(10.15) F1,0(S1) 0
11/7-71,

V28(S)

Since in the applications we only consider significance levels a smaller

than 4, the approximation of ci becomes:

(10.16)
1

- V 2
b
n - acnn
a
n

These results show that the critical value and the p-value of the test

01 can easily be approximated from the standard-normal distribution.

Next we consider the large sample approximation to F2,0(s). From

Appendix D we have:

(10.17) F
* 

(s) G
k-p

[(k-p)(1 + 
s-1  

)1, s > 0,
- 2, 0

Vi3r7Cs-5-

where,

1—t
2

(10.18) G ( ) =   dt
0

and

(10.19) Bn(s) = 11(1--k)s2-2(W)s+1.

With the aid of (10.17) we obtain the following approximations to the

point sa which satisfies F 
(s 

a
) = a.

2,0 

(10.20)

b -2 - ac
s if 0 < G(k-p)
a 

n n n 
a
n

b+4
2
-ac

n n n 
s if Gk-p(k-p) a < G

k-p
[k-p + V(c-p)(n-k)],

a a
n

where the coefficients an, bn and c are given by
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(10.21)

=1

=1

2
qa(k-p)

n-k

2
qa(tr-p)

2
a

n-k

The point qa i (10.21) is defined as follows

(10.22)

where satisfies Giv.. f = a, i.e.,

(10.23) f =
-p
(a).

fa
- 

k-1
31,

The restriction

a < G k-p + V(k-p)(n-k)]

in (10.20) is not serious in practice, since

GkpUlv-P + V(t-P)( -k)] Gk (co)p 
= 1_

if n+w, which shows that for large n we have

Gk-p 
[k-p + V(k-p)(n-k)] =. 1.

With the aid of (10.17) we get the following large sample approximation
* *

to the p-value F
0 
(S ):2, 2

(10.24) F20 (S) = 2 - [(k-p)(1 + )].

V(S)

Since G(i) > i for all i and since in practice we only consider

significance levelsa smaller than I, it follows from (10.20) that the
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approximation of 
2
c becomes equal to:

b
n 

b
n 
- a

n
c

(10.25) c
2 a

n

The approximations to the critical value and p-value of the test .2 can

easily be computed with the aid of the x (k-p) distribution.

Finally we consider the approximation to F3 0(s).

From Appendix D we have:

(10.26) 4,0( .., 1 Gx [(L-p)(1 + 
1-s__1,

 s > 0_pp
J-65-

where now On(s) is defined by

12:(10.27) $ _ 2 _ n(s) - s E)

The result (10.26) enables us to find an approximation to the points sa

which satisfies F
3,0

(s
a
) = a. We have:

.12
b
n 
- rb

n 
- ac

n
s if 1 - G [t-p + V(L-p)(n-L)] < a <
a a t-p

1 - G(L-p), provided that a * 1 -

(10.28)
s if a = 1 -
a 2b

n

S
a

b
n 
+ b

n
 ac

n
a

if 1- (L-p) < a< 1,
t-p

where the coefficients a, bn and cn are defined as follows

a = 1 - q
2
a

2

(10.29) b = 
qa(tr-p) 

1  
n-L

2
cicp-P)

c
n 
=1  

n-L
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The point q in (10.29) is given by

(10.30)
f
1-a

where fl_a satisfies Gt_p f_a = 1-a, i.e.,

(10.31)

Note that

-1
=G (1-a

1-a 2.-p

1 G [2.-p + V.(2,-ign-k)]
St-p(°3) =L-p

if n+00, which shows that for large n

Dt-p + V(2,-p)(n-2,)]_p

Therefore, the restriction

-P
E2,-p+V(2,_0(n-2,)] < a

in (10.28) is not serious in practice.

From (10.26) we obtain a large sample approximation to the p-value
* *
F
3,0

(S
3
).

(10.32) 4,0(4) +k-p

In practice we mostly consider significance levels a smaller than 0.3

and since 1 - G(i) > 0.3 for all i, it follows from (10.28) that the

approximation of c3 becomes

(10.33)

c
3

c
3

- lb
2 
- ac

c
n
2b

a 
, a * 1 - 2(L-p)]

a = 1 - 2(t-P)i-
-13
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In this case, the approximations to the critical value and the p-value

of the test 03 can easily be computed from the x2(i-p) distribution.

In order to facilitate the use of the approximations to sa as given in

(10.20) and (10.28), the following table contains the values of G1(i)

and 1 - Gi(i) for i = 1, 2, ..., 10.

Table 6: Values of G
i
(i) and 1 - G (i)

i G (i)i 1 G (i)i

,

1 0.683 0.317

2 0.632 0.368

3 0.608 0.392

4 0.594 0.406

5 0.584 0.416

6 0.577 0.423

7 0.571 0.429

8 0.567 0.433

9 0.563 0.437

10 0.560 0.440

, ,
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11. Required computations for the applications

In this section we shall give a description of the computations required

in order to apply the tests in practice.

The data set in a problem of testing linear hypotheses consists of

(y, X, Z). On the basis of these data we want to test

Ho: n(Xf3, a21) vs. H1: y n(Zi, a21),

where 0, y and a are unknown.

From the data set (y, X, Z), where y is a n-vector, X is a nxk matrix

with rank k and Z is a nxt matrix with rank t, we make the following

computations.

1. If k < 2,, compute the matrix (rXr X1Z(Z1Z)-1Z'X and the eigenvalues

of this matrix. When t < k, we compute (Z`Z)-1VX(X'X)-1XtZ and the

eigenvalues of the latter matrix. In the case k = t it does not matter

which of the above two matrices is computed.

The above computations yield the multiplicity p of the eigenvalue 1, the

number M of different eigenvalues which are strictly between 0 and 1,

the values pl, p2,

multiplicities ml,

to 0.

• • • ,

m29 '•

pm of these eigenvalues and the corresponding

mm. We note that p as well as M can be equal

2. Computer=p+ E m. consider the classification as given in
j=1 3,

Section 6 and according to Table 2 of Section 6 decide which of the

tests •1 2 or 4)3 shall be used.

3. Compute a = (x,x) lx y, y = (Z'Z) Z'y, = y Xa, uz = y - Zy,
^ -1

ukux and quz.

If the test (1)1 is taken we compute the test statistic

A A 4r,

When (1)2 or 4)3 are used we first construct the matrix G = : Z] or
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G = [X iZg] as described in Section 8 and then compute

6 = (G'G)-1G'y, uG = y - G6 and upG.

If 02 is used we compute

A A

u u
Z 
- 

u 
u

Z G G
A A

11x11

•

When the test 4) is taken we compute

A A

u
Z
u
Z
A A

4. When the test 4) is used we compute the p-value

1

IT 0
sin c

1,0
 (u, S
i
)

u yi,o(u, 1)
 du

as described in Section 7 and reject Ho if

Fi 0(Si) 1a,

where a is a preassigned significance level.

The above integration requires the computation of coefficients

m2 j112i(si). j 0, 1, M, A(Si) and the degrees of freedom Dili

j = 0, 1, ..., M and m. For all three tests we have

= 0,

) = 
2 
— (1 - S) V/(1 - S)

2 
+ 4S i(1 - .)Pj

A2(S) (1 — Si

• • •

f/u— s

M, where p and also

mlj = m2 = m for j =

2
+ 4S1(1 -
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When the test (I) is used we have:

X(S ) = 1 - S1

m10 = L-r

m20

m =

k-r

If the test (p is taken this becomes:

X(S2) = 0

m10 =

m20 = k-r

m = 0.

For the test (1)3 we take:

x(S) = 0

mio = 2,-r

m20 = 1141)-2--r

m = 0.

5. When the sample size n is large we can use the approximations as

describes in Section 10.

If the test (1)1 is used we compute

and

n-k
S
1 

S
1 n-2,

F (S
1,0 1

Vi (S* - 1)

We reject 110 if this approximated p-value is smaller than or equal to a.
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Equivalently, we can approximate the critical value c1 
by

„e2
• b

n 
- Yb

n
- a c

nn
cl a

and reject Ho if S1 is smaller than or equal to this approximated

critical value.

For the test +2 we compute

* n-k
S
2 
= S

2 k-p

and reject Ho if

* *

F20 
(S
2 
) G

k-p 
[(k-p)(1 

+2  
)] < a,

, 

or equivalently, if

b
n

12
b -ac
n n 

S
2 
< c

2 a
n

Similarly, if the test +3 is taken, we compute

S S
3 3n-R,

and reject H if

* *
F 

0 
S)

3,3

or equivalently, if

1 G [(L-p)(1 +
S
3
)] < a,

L-p
V(S3)

* * - bn - ac
S3 — 3 mg

a
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6. Sometimes one is interested in the value of the power function of the

test (pi at the parameter point (a, a) under Ho or (y, a) under Hi.

Now we know from Section 7 that the power function iff((4, of the test

cpi is given by

v)
co sin e.• (u$ c1 1 f  1,v =

2 it u v(u, ci)0
•

Thus, once the critical value ci and the parameter vector v are given,

we can compute the power through numerical integration.

The critical value c • can be found by solving the equationi

, co sin e. (u c.)• f  1,0 1 
du.

if 
0 1

u y.
0 
(u, c), i

A large sample approximation of ci can be derived from the large sample

approximation of ci as given under 5. and the relations (see (10.6) of

Section 10)

*
= n-k 

c
1

k-p=
n-k 2

*
• t-p 3.

For the computation of the vector v = (v10, v11, ... vim, v20, v21, ...,

v2m) in terms of (, a) under Ho or (y, a) under Hi, we refer to Section

8, see formulae (8.31) - (8.34).
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12. Summary and conclusion

In this study the principle of invariance is applied to the problem of

testing linear hypotheses.

Before we apply invariance considerations, the original problem is

transformed into an equivalent problem with a more simple structure, by

means of a suitable linear transformation.

The transformed problem is invariant under a group of transformations

which map the sample space onto itself. These transformatins consist of

changes of scale, certain translations and certain rotations.

They can be interpreted as changes of the coordinate system in which the

observations are expressed.

Since the problem remains invariant under certain changes of the

coordinate system, a natural procedure is to require that the tests

exhibit the same property. That is, we only consider tests which are

invariant with respect to the above group of transformations.

Now the class of invariant tests is the totality of tests depending only

on the maximal invariant statistic. Within this restricted class of

tests we try to find the UMP level a test.

In general, for the problem of testing linear hypotheses we obtain a

two-dimensional maximal invariant statistic, which can easily be

computed from the original observations. In the special case of

(nontrivial) nested linear hypotheses the maximal invariant statistic

turns out to be one-dimensional and there exists a UNP invariant level a

test which coincides with the classical F test.

On the other hand, however, for the problem of testing nonnested linear

hypotheses te existence of a UMP invariant level a test is an unsolved

problem.

In 'order to derive reasonable tests for the nonnested case we do not

only require a test to be invariant and to have level a, but also to be

unbiased, computable, usable and strictly discriminating.

Since we are looking for unbiased level a tests we can restrict

attention to the class of a-similar tests, i.e., the tests which have

rejection probability a at parameter points on the boundary between Ho

and H1'

Now a class of invariant tests is constructed which are a-similar,

computable and usable.
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The power function of these tests is derived and it turns out to depend

on the value of r = rank(X'Z) whether these tests have level a, are

unbiased and strictly discriminating.

In particular we consider the tests (pi, (1)2 and (1)3 which are based on

the test statistics Sl, S2 and S3, respectively.

The test (pi is the a-similar generalized likelihood-ratio test, (1)2 is a

test which under all circumstances is exact, i.e.., (1)2 always has level

a. The test (1)3 has guaranteed power, that is, the power function of (1)3

always exceeds the level a under Hi.

As was said before, whether the tests (1)1, (p2 and (1)3 possess the above

mentioned desirable properties depends on the value of r = rank(X1 Z).

We investigate every possible situation and select the appropriate test.

Further we derive the distribution functions of the test statistics Si,

S2 and S3 and show that the critical values, the p-values and the power

functions of the tests can be computed through numerical integration.

The values of the test statistics Sl, S2 and S3 can easily be computed

from the original data (y, X, Z). The test statistics turn out to be

ratios of sums of squares which have a natural interpretation in terms

of the original linear hypotheses (linear models).

When the sample size n is large the critical values and p-values of the

tests can very easily be approximated from the standard-normal and

x2 distribution.

In the special case of nested linear hypotheses our general tests turn

out to be equivalent to the well-known F test.

Finally we give a review of the computations which are required in order

to apply the tests (pi, (1)2 and (1)3 in practice.
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Appendix A

The characteristic function (t1
, t

2
)

In this appendix we shall derive the joint characteristic function

gti, t2) of the random variables (U1, U2), which are defined by

(A.1)

U = u'u
1 1 1

u2,
2 

where the Dr-dimensional random vectors u1 and u2 have the 
following

probability distribution

(A.2) u2
n((62), [ I VP1 I).

'2 VP1I I

The coefficient p in (A.2) satisfies 0 < p < 1 and the m-dimensional

vectors 61 and 62 have the property that 61 = 0 or 62 = 0.

Moreover, we shall compute the covariance of U1 and U2.

In order to find gti, t2) we need the following general result:

Let the n-dimensional random vector x have a n(11, V) distribution, where

V is nonsingular, and let T be a symmetric nxn matrix, then

(A.3) q(T) = E(eixe Tx II - 2iTVI-1 - 2iTV)-

where i denotes the imaginary unit.

Proof:

Since V is positive definite we have V = SS', where S is a nonsingular

nxn matrix. If we take y = S lx, it follows that x = Sy and we get

(A.4) q(T) = E(ei37' S'TSy EceiYiBY

where B = S'TS in a symmetric nxn matrix and y n(S-1u, I).

Let A be the diagonal matrix of eigenvalues Xi, A2, ..-., An of the

matrix B and H the corresponding orthogonal matrix of eigenvectors, then

B can be written as B = HAH' and it is seen from (A.4) that
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(A.5) 0(T) =
i 'HAH'y E(eiZ),

where z = H'y n(8, I) with 8 H'S-lp.

If . denotes the jth element of the vector z and if W. =Z.)

n, it follows from (A.5) that

(A.6)
n .

2
0(T) = E(exp{i Z A.Z.}) = E(exp{i E X.W.}).

j=1 J Jj=1

Now it is easily verified that the random variables W1, Wi, Wn are

mutually stochastically independent and that Wj - x2(1, ei), j = 1, 2,

n, where ei denotes the jth element of the vector 0.

This gives

n n n
(A.7) .(T) = E( n exp{iX.W4}) = II E(exp{iX.W.}) = n (1).(x.),

j=1

where qt) is the characteristic function of a random variable

possessing a x2(1, 82) distribution, that is,
i

cf)j(t) =

2
1 it ei

(1 - 2it) exp{
1
_
2it

Substitution of the latter result into A.7) yields:

(A.8)

2
n iX40,

0(T) = [ n (1 -2iX ]exp{ E

j=1 
j=1 1-21Xj

II-2iAl-lexpaet(I-21A)-1A0}.

With the aid of the relations A = H'BH, 0 = B = S'TS and SS' = V

we can express the determinant II-2iAl and the quadratic form

81(I-2iA)-1A6 in terms of the original parameters p V and T.

We have

(A.9) I-2iAl = 1I-2iH'BH IH'(I-2iB)HI

IH'I II-2iBI IHI = II-2iBI = II-2i5'TSI

I5'(I-21T55I)(S')-1 I = IS' I-2iTSS' l(S')-1 1

= II-2iTSS'l = II-2iTVI,
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and

(A.10) V(I-2iA)-1/1.0 = 10(V)-11-1(I-2iH'BH)- 11'13S-1p

= p'(S'IgH[Ht(I-2iB)HiqH1 BS-1- 11

= 10(S')-1(I-2i13)-1BS-1u = W(S')-1(I-2iS TS)-1StTu

= W(S')-1[Si(I-2iTSS')(S')-1i-1stTu

= 10(I-2iTSS')-1T11 = W(I-2iTV)-1Tp.

Finally, substitution of (A.9) and (A.10) into A.8 gives

which completes the proof of (A.3).

Now let the random variables (U1, U2) and the random vectors ul and u2

be as defined in (A.1) and (A.2), then it is easily seen that the joint

characteristic function 4(t1, t2) of (UI, U2) can be written as:

(A.11) 4(t1, t

where

it U +it U
2= E(e =

ixiTx,
E(exp{itiului + it2102u }) = E(e ),

f 
X 
=(1) 

and T =
u2

ti'

0 t ]•

It follows from (A.2) that x n(11, V) with

1 [ I 6I) and V =
2 tri7I I

Hence, A.11) together with (A.3) imply that

(A.12) i(t t2) = 4)(T) =

where T, u and V are as defined above.
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Substitution of the expressions for T, p and V into I-21TV and Tp

yields:

and

[ 

(1-2it1)I -2it i
1

I-2iTV = 

1
-2it

2
V7I (1-2it

2
)I

t
1
6
1,

Tp = (
t22

).

Next consider a matrix of the form

[aI bI ]
cI dI '

where a * 0 and d * 0, then it follows from the well-known result

that

(A.13)

A11 A
12

A21 A22

I al bI I
cI cI

= IA2 I

= IdIl (bI)(dI)-1(cI)I

MI( m bc m
(ad - bc)m.

bc\II = d (a - -
d 

Moreover, it is easily seen that:

(A.14) rai bI 1-1 1 dI -1DI 1
cI dl ad-bc [I -cI al

Therefore, if we take a = 1-2it1, b = c = -2it2V and

d = 1-2it2' it follows from the above expression for the matrix 
I-2iTV

that

(A.15) II-2iTVI = [1-2it1-2it2-4(1-p)t1t2

and

(A.16) (I-2iTV)-1 = [1-2it1-2it2-4(1-p)t1t2] [
(1-2it2)1 2it14i7I

2it
2
V-171 (1-2it

1 
)I
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Upon substituting (A.15), A.16) and the expression for p and Tp into

(A.12), we obtain

(A.17)

Finally, since 6

that

(A.18)

[1-2it -2it2-4(1-p)t1t2]

(it + t
exp{

+(it
2 
+2t

1 
t
2 
)66

2 
-4Gt t 6 6

1 2,1 2 

or

1 - 2it1--2it2-4(1-p)t1t2

we always have 662 = 0 and it is seen

[1-2it -2it
2
-4(1-p)t t ]

exp{

where v1 = 66 and v2

Note that

(t1,0) =

and

(it
1 
+.2t
12 

)v
1 
+ (it

2
+2t

1
t
2
)v
2

1-2it -2it -4(1-p)t t
2 1 2

1 -2it ) exp

- it2v2
*(0, 1-2it2) exp{_

2it2}'

which shows that U1 = uu1 
x2 

(in, v1) and U2 = u' 2u2 
x2 

(in, v2), a fact

which, of course, can be directly concluded from (A.2).

Next we shall compute Cov(U1, U2).

To this extend we use the general result

(A.19) Cov(U1,

From (A.18) we obtain

(A.20) ln

9
2
ln gti,

at
1
at
2 ti=t2=0

h(t t
2
)

m in g(t t
2
) + 

g(t1' 
t2) '

-
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with

g(t t2) = 1-2it -2it2 -4(1-p)t t2

h(t t2) = (1t1+2t1t2)171 + (it2+ t t

Differentiation of (A.20) to t1 and t2 yields:

2 2
21_.211_ _rn1 a g -

1 v at at b1 2 3t Bt2 "51at at2 

(A.21)

(A.22)

a
2h ah 11_1 h.2

E t1at2 g at at "52

2_ 

2 n 

, Ea_ ah _2 „„ 3
3t at at at g ǹ atat

1 2 g •1 1 2

With the aid of the definitions of g(ti, t2) and h(ti, t2) in A.21) we

get

(A.23)

at
1

-2i-4(1 -p)t2

= -2i-4(1-p)t1at2
ah 

= (i+2t )vi+2t2v2
at
i

3h = 2t v1 +(i+2ti)v2at2 ,2
g  = —4(1—p)at

1at2

32h  = 2(v ).
at at 1 21 2

Upon substituting t = t2 = 0 into (A.23) we have
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(A.24)

= ag t I
t =t = at1I 2 2

ah
at =r =

ah
at
2

1 t1=t2=O 
= 1V2

=t =0 
= -2i

a
2
g 

=-4(1-)at at It =t =

2a h 
t1

 
t2

 
It = 

2 
= 2

1 

By making use of g(0,0) h(0,0) = 0 (see* A.21)) and A.24) we

obtain from (A.22):

321n*  1
at 3t

1 2
-4(1-p) - (-2i)2]2

+ 2(vi+v
2
) - ( )(-2i) - -21)(iv2

= - it(-4+4p+4) + 2v +2v -2v -2v

= -2mp.

Hence, it follows from (A.19) that

(A.25) Cav(U U2) = 2mp.

Note that the covariance of U1 and U2 does not depend on the parameters

V1 and 1 V2.
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Appendix B

The characteristic function and distribution function of a linear

combination of mutually independent x2 random variables

The purpose of this appendix is to derive some properties of the

characteristic function and the distribution function of a linear

combination of mutually stochastically independent chi-square random

variables.

Before doing this, we need some general results. Most of these results

will be stated without proof. For the proofs we refer to Chung [2] and

Kawata [5].

Let X be a random variable with distribution function F(x). Then the

characteristic function 4)(0 of X is defined by

(B.1) gt) E(eitx
OM OD

itx
e dF(x),

."3 < t < 03, where i denotes the imaginary unit.

Some well-known properties of gt) are:

(i) 4)(t) always exists and 14)(01 < 1, where WO I denotes the

modulus of the complex-valued function 4)(0.

(ii) 4)(0) = 1.

(iii) TTT g-t), where 71)77 denotes the complex conjugate of (1)(t).
(iv) There exists a 1:1 correspondence between F(x) and gt).

When the distribution function F(x) of the random variable X is known,

we can find the corresponding characteristic function (1)(t) from (B.1).

Conversely, if we know the characteristic function 4)(0 of X, the

corresponding distribution function F(x) is given by the so called

inversion formula of Levy:

(B.2)
)+F

2

-itx -itx
2F(x) + F(x-j)

  lim 
1 e 

1
-e 

f gt)dt,
2 27T it

T+0, -T

for x < x2, where F denotes the left-hand limit of F(x) at the

point x and where
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-itx -itx -itx --itx
def. 2

e - e 
it 

4)(01
t=0 = 

lfin
it 

gt x2 - xl= .
t+0

If F(x) is continuous at xl and x the inversion formula becomes:

(B.3

-itx -itx
„ 1  -e = lam -

27r itT+03
gt)dt, xl

Under the condition f Igt)Idt < co the inversion formula can be
ams CO

simplified. In the first place, if f Igo* < co, it can be shown that
_co

F(x) is everywhere continuous and that

(B.4)
Co

2n f-co

-itx
1 

-itx
-e 

2
(t)dt, x <it •

In the second place, when f Igt)Idt < co, we can prove the stronger
=vs Co

result that F(x) is absolutely continuous with density function

(B.5) f(x) = F ( -itx
e gt)dt, -co < x< Co,

00
Moreover, under the stronger condition f ItgOldt < co we have

(B.6)
co

1 
n 

-xfi(x) =--
2
- f -ite

it 
(t)dt,

nun 00

-co < x< Co,

The inversion formula (B.2) does not give the distribution function

itself, but the difference F(x2) - F(x1) at the continuity points xl and

2*

The following inversion formula due to Gil-Palaez gives F(x) directly at

the continuity point x:

(B.7)
TF(x) + F(x-) _ 1 _ 1 -itxltm-- 1 {Im((t)e Vt}dt,2 - 2 

6 
n

0 8
Ttco

for -co < x < co, where Im(gt)e-itx) denotes the imaginary part of the

complex-valued function gt)e-itx.
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For a proof of (B.7) we refer to Kawata 5].

When F(x) is continuous at x we have

(8.8) F(x)
1 -

ltm-- f {Im((t)e
itx 

Vt}dt,
6+o 6
T+0,

Next we shall prove that under a number of special conditions the

right-hand side of formula (B.7) can be simplified. We first prove the

following result.
00

If E(IXI)

(B.9)

for -co< x < co, where E(X) f xdF(x).

Proof:

IxIdF( ) < co, then
NM.

lim{Im(gt)e-itx)/t) = E(X) - x,
t+0

With the aid of (B.1) we have

Im(goe-itx = (t)e-itx _
(g_oeitx

2i

co
(f eitYdF(Y) 

e-itx _ f e-itYdF (Y)eitx]/(2i)
-co

co it(y-x) -it(y-x)
f e

111111M CO

This implies that

e
dF(y) = f sin t(y-x)dF(y).

2i

CO

(B.10) Im(gt)e-itx)/t) = f
amp CO

me CO

sin

def.
If for any x, g(y) = lyi + Ix', we get

sin t(y-x)I
OIMO

ly-x 1 + IX' = g(y).
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03

Since f g(y)dF(Y) = f (ly

00

I lyldF(y) +

and lim
t+0

sin t(y-

,03
f dF(y

• —X,

)dF(y)

= XI) + lxi < c°,

it follows from the dominated convergence theorem of Lebesgue that

co
lim 

f sin t(y-
x dF(y) = fw y-x)dF(y)

t+0 -co

00 CO

f ydF(y) x f dF(y) = E(X)
_co

With the aid of the latter result we obtain from (B.10):

limtIm(4)(t)e
r sin 

t(Y-x)dF(Y) = E(X
,_-itxN/t1 lim j 

t -c°t+0 +0

which completes the proof of (B.9).

In the second place, if E(1)(1) < 00 and f 1 4)\t'
1
Idt <

tthat 1

(B.11)
F(x) + F

2

-co < x < 00, where

Proof:

-
2

-
Im(cp(t)e

itx 
)/tlt.0

co

f {1111(4)(t)e—i")/t}dt,

• 0

def.

- x,

it can be shown

lim{Im((t)e-it) = E(X) - x.
t+0

Since E(IX1) < co, it follows from (B.9) that lim{Im((t)e-it)5/t) =
t+0

E(X) - x, which proves the second part of (B.11).

Now consider the right-hand side of (B.7).

We get:

(B.12) lim f {Im((t)e-itx)/t}dt = f
1 

co

I
(6,T 

t){Im((t)e-itx)/t}dt,
6+0 IT 6 6+0 IT -00
T+00 Ti-co
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where I(6,T)(t) denotes the indicator function of the set (6, T).

From (B.10) it is seen that

-itx).t
If 

sin t(y-
IIm(gt / = dF(y)1

_

CO

We also have

,sin t(y- x)IdF(y) < f IY-xt dF(Y)

x )dF(y) = E(IXI) + lxi.

lIm(+(t)e-itx/t

i gt)e
-itx

I 
2it I

I gt)e-itx - cg-t
2it

0( -t)eitx
2it

Therefore, if the function g(t) is defined by

g(t) = 0, < t < 0

= E(lxl) + lxi, O<t < 1

it follows that

and

1.412.1,

6,T)(t) IIm(gt)e-itx)/t) I g(t)

e
itx

0 1'

f f g(t)dt = f Odt + f {E(IXI) + Ixl}dt + f 111-t-Lidt
am CO00 0 1

= XI) + lx1 f IAILLLIdt <
t
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Since,

lim I
6+0
T+00

6,T
-x

Im(gt 
it

)/t} =

) Im(gt 
itx)/ 1,

the dominated convergence theorem implies that

where 1(0

60 IT
T4.03

co)

nra (t(6,T
-co

7r
-Co

Im(4)(t) =

co)(t) Im(gt e
-itx

Vt}dt

f {Imcgt
0

t x
Vtldt,

t) is the indicator function of (0,

Substitution of the latter results into (B.12) yields:

(B.13) lim -1 f {Im(gt)e-itx)/t}dt =1. f {Im(gt
6+0 

IT 
6 7 0

Ti.co

-itx
e Vt}dt.

Finally, substitution of (B.13) into B.7 completes the proof of

(B.11).

Of course, when F(x) is continuous at x we can write (B.11) in the

following way

(B.14) F(x) = - .1 {I (gt )e-itx)/t}dt,0 

< x < CO.

The integrand Im(gt)e itx)it in the above expressions can always be
written as

(B.15) Im(gt-itx)/t
gt) I sinfarg(gt)) - txl,
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where arg(4)(0) denotes the principal argument of the complex-valued

function OM.

Proof:

Any complex number z can be written as

iz ieiarg(z)z = Izi cos{arg(z)}+ iJzI sin{arg(z)}

which implies that Im(z) = Izi sin{arg(z)}.

Hence,

Im(gt)e-itx) = 10(t)e-itx sin{arg(gt)e-it))}.

Now we have:

Igt)e-itx 1 = go' Kitxl Igo'

and

arg(gt)e-itx) = arg((t)) + arg(e-itx)

= arg((t)) - tx.

From these results it is seen that

Im(0(t)e-it5/t =410(t) sin{arg(0(0) - tx),

which proves the desired result.

So far no special assumptions were made about the random variable X. Now

we shall study the special case where X is defined as a linear

combination of mutually stochastically independent chi-square random

variables, i.e.,

(11.16) X =E aU
j=1

where U19 U29 "69 UM are mutually stochastically independent r
andom

variables with U x2(m O), j = 1, 2, ..., M.
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Further, let a = min {lad, I 21, ...,I aM I) and in = E in., then a> 0

and in = 1, 2, 3, ... 
j=1

Also note that ei o for j = 1, 2, ..., M.
When X is defined through (B.16), the distribution function F(x)

satisfies:

(B.17) F(x) is absolutely continuous.

Proof:

Since the distribution function of U. x2(m. e.) is absolutely
J' J

continuous, it easily follows that the distribution function of

Vj ia.0 is absolutely continuous. This implies that X = E V. where 
J

j=1
V1, V2, ..., Vm are mutually independent random variables with

absolutely continuous distribution functions. In other words, F(x) is

the M-f old convolution of absolutely continuous distributions. Hence, in

order to prove that F(x) is absolutely continuous it suffices to show

that the convolution of 2 absolutely continuous distribution functions

is again absolutely continuous.

Let F1(x) and F2(x) be absolutely continuous with densities

f
1 
(x) = F(x) and f

2
(x) = F(x).

1 2
Let F(x) be the convolution of F1(x) and F2(x), i.e.,

co
F(x) = f

then we have

F(x) = _00

F
1 
(x-u)dF u),

x-u

1
(x-u)f

2 
(u)du = f f

f
1
(z-u)f

= f f(z)dz,-CD
where f(z) = f f

1
(z-u)f (u)du.-CD

moo 00 am 00

u)dzdu =

w)dw f(u)du

f 1(z-u)f
2
(u)dudz
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From the latter result it follows that F(x) is absolutely continuous
CO

with density function f(x) = FT(x) f f,(x-u)f2(u)du and this
- 1

completes the proof of (B.17).

ThefactthatU-x2(me.)impliesE(U)=mi +.and this enables
J 

ej

us to compute E(X), we have

(B.18) E(IXI) < co and E(X) = E +
j=1 3

Proof:

Hence,

Also,

=I E a.U.I < E la I IU.I.
j=1 j=1 J

E( X ) < E( E la.
j=1

1) = E tai l E(
j=1

U.

J J J Jj=1 j=1

E(X) = E( E a U.) = E ai E(U.) = E + ei).
j=1 j=1 J j=1

Next we shall show that X has the following characteristic function

(B.19)

Proof:

Since

Now we get

m.
--M e4aj

2
4)(0 = (1-2ia ] exp{it E  I

j=1 
j=1 1-2iajt-•

o) it follows that

itU4
= E(e J)

m.
_ ite.,
2

1 -2it) exp{ 1 -2it •
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it E a.U.

e
itX 

M i a . tU
j=1 3 3 

= E( H e j3 )gt = E E(
j=1

M i(a.t)U. m
It E(e j 3) = n (1). .0,
j=1 j=1 3 J

which proves the desired result.

The modulus and argument of 4)(0 are given by

1 4)(

(B.20)

M _ I/ 2 
2 2 4 m e . a .t2

jil(1+4a.t) ] expf -2E 331
J 2 2j=1 '

j=1 1-1-4a.t
J

M m. 0.a.t
arg(4)(0) = E [(1) arctg(2a.t) + J J 

2 J 2
j=1 I+4a.t

2

J

Proof:

see Imhof 4 and Koerts and Abrahamse [6].

The function 14)(01 can be bounded above as follows:

(B.21) 14)(01 < (I+4a2t

where a = min{la

Proof:

• • • ,

In
4

-03 < t < c0,

aml) and m = E m..
j•=1 3

In.
_

2 4From (B.20) it is seen that 1401 )( < H (I+4a.t
2 
)

322Now we have 1+4a.t > 1+4a
2
t
2 j=1
, which implies that

m . in,

2 4 4(1+4a .t
2 

< 
(I+4a2 

t
2 
) .

J
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This gives:

mi
_ m

< n (1+4a2.t2) 4 (I+4a t
j=1 j=1

M
_ E m
4j=1 j

= (I+4a2t) = (I+4a2t2)

which completes the proof.

The characteristic fucntion gt) of X has the property that

f
(B.22) f FLILIdt < co.

1 t

Proof:

From (B.21) it follows that

7 FILO... I

1 t

_
co

< t-1(14.4a2t2 
4dt.

1

-/'After the transformation z = (I+4a2t2 ) with inverse transformation

t = (2a)-1z-1(1-z)1 and jacobian

3
dt -1 2

(4a) -; (1-z) 9

we get

co , A 7-- 1
f C1(1-1-4ct2t2) 4dt = r z (.". 

-
7 4 1 z,

1

where A = (1+4a2)-1 < 1.
-1 -1Since z < A < 1 it follows that 1-z < (1-A) < co and this yields

1 A 717- 1
(Iz

4 74
Z

A - 1
1 -

ldz < (1-A)
1 
f z

4 
dz =

-- 2 
0

A
] 1-A)

-1 
—
4 
A
4

0 2
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= (2ma
— 1
4

(1+4a2

The above results imply that

c 0
,

f t la < f1
In

z
4

(1- dz < (2ma)(I+4a
-1 -1 2

( 1+4 a2t 2) 4dt

which proves the desired result.

Next we shall derive sufficient conditions for the integrability of the

functions 14)(01 and It 4)(01 respectively.

If m> 3 then f. IS(t)Idt < co

(B.23)

If m > 5 then f

Proof:

In the first place we have

(1+4a t

It gt)ldt < co

m-
1 ,

(2a)- f
0

-1 1 Fir r(111-4 )
(1-z) dz -

2ct r(-11-)

if m > 3 where use has been made of the above transformation

z = (1+ct2t2)-1.

Hence, if m> 3 it follows from (B.21) that

gOldt ( 1+4a t

which proves the first line of (B.23).

IFT r(?;72)
7dt =  

2a r$
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In the second place, if in > 5 we get in a similar way

co
(14.4a2t2) 4

dt 
. .

2 f t(1+4a t
0

4
dt

1=---1 
2 -1 1  

<.(4a ) f z
4 

dz co
0 a

2
(m-4)

From B.21) we therefore have,

co
f It ca(t)Idt

moo OD

in

tl (I+4a
2
t
2
) 71 

1 
`dt =

a
2
(m-4)

if in> 5 and this shows the second statement of (B.23).

With the aid of (B.23) we can express the density function f(x) = Ft(x)

of X and the derivative fi(x) of f(x) in terms of gt).

If ra > 3 then f(x) =

(B.24)
CO

-itx
e gOdt, < x < co

If m > 5 then fe(x) f 
_ite-itx0(t)dt,1

Proof:

-co < x< co

The results follow at once from (B.23) and the general results (B.5) and

(B.6), respectively.

Now we shall prove that the inversion formula for OW as given in

(B.19) takes the form

co
1 1(B.25) F(x) [Im(0(t)e-itx)t)clt,

0

< x < where

def.
Im(0(t)e-itx)/t1

t=0 
= limam(0(t)e-it5/t}

t+0

= E(X) - x = E a (m. + 04) - x.
j=1
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Proof:

We know that E(IX ) < and f < co, see B.18) and (B.22),

respectively. 
1

Hence, it follows from the general result (B.11) that

F(x) + F(
2 2

x < co and

co
f {Im((t)e-itx)/t}dt,
0

def.
(goe--itx

)/tlt.0 = lim{Im((t)e-itx)/t} = E(X) - x.
t+0

The proof is completed by observing that F(x-) = F(x) for all x, which

is implied by (B.17), and by making use of E(X) = E a.0m. + 0.), see
= J J

(B.18). 
j1 

In order to compute F(x) from the given function gt) it is more

convenient to rewrite (B.25) as follows:

(B.26) F(
sin{c(u) -!2 ux

= - 1 
1
 du,2 7T y(u)

0

x < co, where

and where

y(u) =

m.
M —1 M 0 

2 2
.a.0

2 1 J J  111 (1-1-a.0
24 

exp{7 E
2 2'

j=1 3 j=1 1+a.0
3

, 1
e(u) = E m arctg(a.u) +  3 3

2 j=1 j 3 2 2
1-1-a .0

sin{c(u) - ux

u y(u)

= E(X) -
2 7

tu= def. sin{c(u) - x}
lim
11+0

u y(u)

= E a.(m + 8.) - —
2j=1 j j 2
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Proof:

With the aid of (B.15) it follows from (B.25) that

. 1 lrli, .1F(x) = - 7-1-r j icpkt)i sin{arg((t)) - tx}dt
0

am CO x < 0).

1
After the transformation u = 2t with inverse transformation = 

2 
— u and

dt 1
jacobian 4LTI 7 we get

7F(x) = -Tr 7;
,1

u I sin{arg(+(j21. u)) - 1 ux}du.

Now the first part of (B.26) follows at once from (B.20) by setting y(u)

10(4 u) I-1 and e(u) = arg(g1 u)).

In order to prove the second part of (B.26) we observe that

sin{e(u) - ux)
u y(u)

sin{arg(44 u))

1
1 2 * -iux

= Im(0(-2- u)e )/ = Im(cp (u)e

* 1
where x = — x and

2

m.
M - -a 

*

4'0 II ) = [ (1-2i4u) 44) ] exp{iu Iii  ()Jai  1
* }

j=1 j=1 1-2ia u
i

1
2
ux)

* 1
with aj = -1 ai, j = 1, 2, M.

That is e(u) is the characteristic function of the random variable

X E a.0 where the U 's are defined as before.
j=1 

J4

Hence, it follows from (B.9) and (B.18) that

-
lim{Im(4)

* 
(u)e

iux 
)/t.') = E(X

u+0

m *

j=1 J J 2 j=1 j 
i

and this implies that



-129-

um
11+0

sinte(u) - — uxl M
2  1 1

E a.0m. + 0.) --x
j 2u y(u)

as was to be proved.

For the numerical computation of F(x) at a fixed point x, the integral

in (B.26) is evaluated in two steps.

1
sin{c(u) - ux)

110 
u y( u) 

du is approximated by

sin{c(u) -

u y(u)
0

UX

 du for sufficiently large U.

U sin{e(u) ux}d

u Y(u)0

rule of Simpson.

is approximated by using the compound

The truncation error in a) and the approximation error in b) both can be

made arbitrarily small.

For a computer program which computes F(x) in the way indicated above,

we refer to Koerts and Abrahamse [6].

As far as the truncation error in a) is concerned, we have the following

result:

(B.27)

where

and

7
 sin{e( ) -

u y(u)
 dul < T(U), U > 0,

22

- c- 

_ _2. 
1 M 8 . a .0

T(U) = 2m IU expf- .1"-.
1 2 22

j=1 1+a.0
3

m.

2
= ii a .

j=1
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Proof:

sin{c(u) ux)

u y(u)

22 22
Since lufa.0 > a u and

J j

sin{c(u) - x}1
 dui < f I 

u y(u) I
1 U

1 _du.
u y(u)

M 0.a2.u2
expf= E is nondecreasing in u > 0, it

2 j=1 142

follows from the definition of y(u) that

N a m e.a2u2
2 2 4 1 _i_j___}

u y(u) > u n (ap t exp E 2 2
j=1 ' j=1 Ffa.0

J

— 1
2

= u 
+

for u > U.

This implies that

exp

2 
M a.0

2

2 2
j=1 14a.0

m a22

r < c P{- 
E
 )- ex

1  2 2

22
M 0.a.0

2m-1 
c 

- 1exp{ -
j=1 Ffa.0

which completes the proof of (B.27).

Note that in the case 0 = 0 for all j we get

- m

T(U) = 2m- c-ilu 2.

- 1
du

Further it is easily seen that T(U) is a strictly decreasing function of

U > 0 with T(U) + 0 as U + co.

When O > 0 for at least one j we have:

_ m
-1

In
ANIMID

2m c
1 
c
2 

U < T(U) < 2m
-1
c
-
1
1
U U > 0,

where c2 = exp
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Appendix C 

The distribution function of Q considered as a function of the

parameters

In this appendix we shall investigate how the distribution function of a

particular linear combination of mutually stochastically independent

chi-square random variables depends on the noncentrality parameters.

To be more specific, consider the random variable Qs, which for each

fixed s > 0 is defined by

(C.1) E [A .(s)V .(s) + A
j=0 1 

lj j )V2j(s)] + 
X(s)V(s).

The random variables V10( s), Vii(s), Vim(s), V20(s), V21(s),

V2m(s), V(s) are mutually stochastically independent and the

coefficients A1 (s) and X j(s) are given by

(C.2)

1
.(s) -(1-s)=1/)2 + 4s(1 -

*)2 2

1
A2 (s) =7(1-s) + 1 V 0.-s)2 + 4s(1 - pi),

j = 0, 1, ..., M, where po = 0 < pl < p2 < < pm < 1.

The coefficient X(s) is arbitrary and the random variables V(s), V1 (s)

and V2 (s) possess the following probability distributions:

(C.3)

V(s)

,Vi 2V1 (s) x (m ii, Tii(s))

V2( s) (s) '' X 0112j, T2j(5))

where m > 0, Tali > 0, m2j > 0, j = 0, 1, ..., M and mlj = m2i = raj for

j = 1, 2, ..., M.

The noncentrality parameters 'r1 (s) and t1 (s) in (C.3) are of the form

Tii(s) = c1i(s)v2i + du(s)vii

Tii(s) = c j(s)v2i + d2i(s)v1i,

(C.4)
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for j = 0, 1, ... M, where the parameters vii and v2i satisfy vij o,

v2i > 0 and where the coefficients cli(s), c2i(s), dij(s) and d2 (s) are

given by

(C.5)

X
ij
(s) s

clj(s) = Alj
(s)D,1j(s) - A

2j
(s
)
]

(s) =
2j X2i(s)[Vs) .(s)]

-s[A .(s) - 1]
d .(s) =  

.(s)[Alj A2j .(s) - (s)]j 

d .(s) =
A2j (s)Dt2j .(s) - Alj .(s)]

-s[A
2j
( ) - 1]

With respect to the above coefficients we make the following remarks.

In the first place we note that

X10(s) = -s$

(C.6)

0(s) = 1

-s < Ali (s) < 0, 0 < X2(s) < 1, 

Secondly, it is not difficult to verify that

+ x2(s) = 1-s

(C.7)

1j(s) .(s) = -s(1 Pp,

for j = 0, 1, ..., M.

From (C.5) and (C.6) it easily follows that

(C.8)
c10(s) = c20() = 1

d10(s) = 1, d20 (s) = 0

and also that cli(s) > 0, c2 (s) > 0, d1 (s) > 0 and d2i(s) > 0 for

j = 1, 2, ..., M.
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Since the noncentrality parameters ti(s) and T2i(s) of the chi-square

random variables V13(s) and V23(s) depend on the parameters vli and v2i,

it will be clear that the distribution function of the random variable

Qs depends on the parameters vi j and v2i.

We shall investigate this dependence in the following two situations:

vii

vii

ve)4 > j = 0, M.

o, = o, j = 0, 1, ... M.

That is, if v = v2) with v1 = (v10' v11' .., vim) and

v2 = (v20' v21, val), we shall derive the partial derivatives 

9 Gv(x,

3v2j

in situation (I), and

av
lj

j = 0,

in situation (II).

Here Gv(x, s) denotes the distribution function of Qs

G (xv 13(Q5

From (C.1) and the result (B.19) of Appendix B it follows that the

itQ,
characteristic function ipv(t, s) = E(e ') of Qs takes the form

(C.9) *v(t,
M _ 

_m .
_ _ m2j____al 

[ H (1 -2iX
13 
.(s)t) 

2 
(1 -2iX

23 
.(s)t) 2 ]

j=0

M X1j(s)T1j(s) 1-2iX(s)t) expat E
j=0 1j

X .(s)T .(s)
23 23  11
1 -2iX

23 
.(s)t

where i denotes the imaginary unit.

By making use of the result (B.25) of Appendix B, we can express

Gv(x, s) in terms of xpv(t, s) as follows:
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(C.10) G
v
(x,

1

a: - f {ImOpv(t, s)e )/t}dt,
0

- co < x < co, where Im(pv(t, s)e-itx) denotes the imaginary part of the

complex-valued function *v(t, s) itxe- and where

. def. 
-

Im(4)
v
(t, s)e-itx)/t1.. A = lim{Im( yt, 

s)eitx )/t}

=̀v t+0

14
= E(Q) - x = E 

lj 
[Al (s)(m . +

j=0

+ X (s)(m2i + T2i(5))] + X(s

Now we shall first derive aGv(x, s)/av for j = 0,

(I).

• • • M in case

Since we have vli = 0, j = 0, 1, ..., M it follows that

Tii(s) = cli(s)v2i and Tii(s) = c2 (s)v2i (see (C.4)) and this shows

that *v(t, s) takes the form:

- _ m2j 

(C.11) *v(t, n = [ (1 
-2iXlj 

2 
(s)t) (1 

-2iX2j 
2 

.(s)t) ]
j=0

1-2iX(s)t)
M X (s)c (s)v2 X (s)c (s)v2

1i lj 2J +  2j 2J 2j11.
exp{it E [ 1 -2iX

lj
(s)t 1 -2iX

2j 
.(s)t JJ

j=0 

If ; = (0, ;2) with ;2 = (

from (C.10) that

(C.12)

2
v
21

v .+A 0410,

97.9 2J 9

aGv(x, G x, - G(
 
X,

  = lim  
av2i

il+co

lim
A+0

it

-
Im(11) (t, s)e

itx

0

Im((t, s)e-itx)

tA

for j = 0, 1, ••• M.

We start with the case j = 0. Since c10(s)

X20(s) = 1, we can write:

- 0, c20(6) =

it is seen

 dt,

and
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where

itv
= f(t) exp 

20
}1-2it '

def.
f(t) =xpv(t,

This yields

-itv
) exp{ 

20
).

1-2it

it(v20s) = f(t) exp{ A)11-2it

itA= f(t) exp 1_2it} exp 1-2itl

itv20

= *v(t, s) exp{iTt}.

By making use of Im( ) = (z z)/(2i) for a complex number z and

,ipv(t, s)e-itx = s)eitx

it follows that

Im(*(t, s)e itx) 
-

Im(* (t, s)e
-itx
)_-

(C.13)

where

tA
- f[h(t, A) + h(-t,

itA 
_itx fexpt

h(t, ) = ipv(t, s)e ( 
itA

Substitution of (C.13) into (C.12) gives:

(C.14)

).

;Gv(x, s) 
1 c° 1  = lim - f —[h(t, A) + h(-t, A)]dt.av

20 IT 2A+0 0

1If the modulus of the integrand 
2
—[h(t, A) + h(-t, A)] can be bounded by

a positive, integrable function of t which does not depend on A, we can

apply Lebesgue's dominated convergence theorem and interchange the

operations lim and f.
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1
We therefore first consider I 

2
—[h(t, A) + h(-t, AM .

Since h(t, A) = h(-t, A) and Ih(t, A)I = Ih(t, A)I, it follows that

(C.15)
1

A) + h(-t, A)]I
2

= lh(t, A)I =

—2-Ih(t, )J+22-".111(—t , I

itA
exp

1-2it' - 'I,
itA

where use has been made of the definition of h(t, A).

In order to obtain the desired result we shall prove that for any A < 0

(C.16)

itA 
exp{ 

l-2it} -
I itA

for A < A < co and all t.

Proof:

Let A > 0, then

1 -'A 
2 -

I < e 1(1-2it)
1 

I

itA ity 
1 A

exP11-2it 
= 
exp{ 

1-2itilY=A 
= (1-2it)

- 
f expl 

ity  1,1
itA itA y=0

A 0

which shows that

Since

itAexpt7iIii

itA
< (1 -2it)

2
2 t <Iexp{12 }it 

= 
1+4t2

for y > 0 and all t, we get

itA ,
I exPIT=TIP

itA

—1 ,

I _c I (1-2it)-1

-1
= l(1-2it) I < e

for any A < 0, A > 0 and all t.

1
—A

A
f le
0

A
1
-7 f d y
a 0

(1-2it)-11,

ity
F11-2iti Y•
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Next suppose that A < 0, then we have

itA 
.exp{1-2it

Now we get

itA

= (1 -2it

ity 
1

exp,1-2it  ly=0
itA IY=A

0
1 

) 
j 
r

exp{-
1
L

1i
5-Y-- v

k a A '-

2 ity
= < expr

2At
2

1+4t 1+4t
1-21t 2'

for A < y < 0 and all t.

This yields:

1 exp
itA 
1 -2it
itA

1(1-2it

= 1(1-2it

-1

I(1-2it)-1 1

exp

0
-1 1 -A) A

0
-2At

2 
1 } dy

4t
2 (-A) 

A

ity 
exp {12} dY

2
-exp(2t2) (1 2it)-1 exp{ 

12At
2
)

1-1-4t`

—
1
A
2

for any A < 0, A < A < 0 and all t, where use has been made of

-2At
2

-2At2 exp{ < lim exp{ 2) = e A < 0.
1-1-4e" t+±.0 1-1-4t

This completes the proof of (C.16).

The substitution of (C.16) into (C.15) yields:

1
(i) I --2-[h(t, A) + h(-t,

0.7
t,
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for any A < 0, A < A < co and all t, where

(C.17) (1 -2it) -1 *(t, s).

Since (1-2it)-1 is the characteristic function of a random variable with

a x2(2) distribution, it follows that the function Ipo,v(t, s) is the

characteristic function of the random variable

Q0,s = Qs +

where W is independent of Vij(s), V2i(s) and V(s) and W x2(2).

With the aid of X20(s) = 1 and (C.1) it is seen that Q0,5 can be written

as:

(C.18) 0,6 = ii(s) + X2i(s)V2i(s)] +
j=0 ij

where V (s), V
11 
(s), 

20 ' 
(s), (s), ... (s), i(s) are

10 ' 1M 2M
mutually stochastically independent and have the following distributions

(C.19)

Ws) - X2(;)

2 ~ 
.(s))

lj
(s) ~ x (raw

2 --
V j(s) - X (m2i, j(s)),

j I= 0) 1, ..., M.

The degrees of freedom are given by

(C.20)

m=m

20 
= m

20 
+ 2

= 0, •• • I M

• • •
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Note that Q0,6 is again a random variable of the type considered in

(C.1) and that (10,s can be obtained from Qs through replacing m20 by

m20 + 2 = m20.
As is shown in Appendix 13, see (8.23), if the sum of the degrees of

freedom E ( 
j 
+ 

2J
.) + t> 3, it follows that

j=0

(C.21)

Now we have

,v
t, s) dt < 03.

since m,n > 1 and this

Returning to the positive function e

side of (i), it is seen from (C.21) that

(f)

where I(0)

From

,v

+ m - = E
j=0

shows (C.21).
1

--A
2

t s)dt = e

1
- —A 03
2

< e
co

9

1
- —A
2

+ in + 2 > m + 2> 3,

t, s)I in the right-hand

I(0,,)(t) 14)0,v

t, s)Idt < c0,

) denotes the indicator function of (0,

ex
p itA itA 

- 1 it(1-2it) lexp{
1-2it}1lim 

I2it 
= lim(itA itA+C) A+0

1-2it)
-1
1
im 

1-2it) ,exp{ 
it -1
1-2it

} = 
A+0

it follows that

1
lim

2 
h(t, A) + h(-t, A)] =

A+0

t, s)Idt

t(1-2it)-14,17(t, s)e-itx + (1+2it)- tpv(-t, s)e
itx
]

itx
1.s)e-itx + *0(-t, s)e 
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The results (i), (ii) and (iii) enable us to apply the dominated

convergence theorem to (C.14) and this yields

3G
v
(x, s)

(C.22)
3v
20

col

0

-itx„

wO,v

Since C.21) implies that both integrals

—itx
I le

0

are finite, we get

co

(t, s)Idt and f leitx*o,v ,

le-itx„

wO,v

1 rl e—itx,

2n L')

) eitx

0 0

'V

(t, s)dt + I eitx
0

eitx.„
410,

—t, s)dt

—t, sndt =

,37

co

T rr; tj e 
—itx 

0
r * (t s)dt + f —itx

0 0,v 
e 11)

0,
—co

e
—itx
*(t, s)dt.
0,v

t, s)dt]

—t, sndt.

t, s)dt] =

With the aid of the latter result, C.22) can be rewritten as

(C.23)
8G
v
(x, s)

av
20

e
—itx

,v
(t, s)dt.

Now let Go,v(x, s) be the distribution function of Q0,s, i.e.,

GO,v(x' s) = P(Q0,5 < x) and let the pr
obability density function of

Q0,5 be denoted by go,v(x, s), that is,

(x,
,v

Since E alj + m2 
j=0

Appendix B that

)c,,v(

aG s)(317v 
ax •

+1;i> 3, it follows from the result (B.24) of
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(C.24) (x, a) Tif
-itx

,V
t, s)dt,

for -co < x < co.

Finally, the substitution of (C.24) into (C.23) yields

(C.25)
aGv(x, s)

av
20

for -03 < x < co, all s > 0 all v = (0, v2) and any X(s). This completes

the case j = O.

Next we consider the-case j = k, where k = 1, 2, ..., 11. We start with

formula (C.12) and in this case the function ik(t, s) can be written as

c
lk
(s)A

lk
(s) c

2k
(s)X

2k
(s)

11
gipv(t, s) exp(it

1-2iXrk(s)t 
1-2"2k(s)tjj.

Substitution of this result into (C.12) gives

(C.26)
aGv(x' s)

av
2k

1 pa = lm - Tff- 
1
[h(t, A) + h(-t, A)]dt,

A+0 0

where now h(t, A) is defined by

h(t, A) - Ipv(t, s)e
-itx exp{itA 00) - 1),

itA

and where

Now we have

(C.27)

c
lk
(s)A

lk
(s) c

2k 
(s)X

2k 
(s)

1-2iX
lk 
(s)t 1-2iX

2k 
(s)t

h(t, A) h( -t, < Ih(t, )1

1' (t, 01 I exp{itA 2,(t)} — 1
itA 1,

and we therefore first consider the modulus of [exp{itA t(t)} - 1]/(itA).

We shall prove that for any A < 0:

(C.28) exp{itA f.(0} - 1 I
itA 1111111•11.

1  A 
2 (1-100

1L(t)1
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for A < A < co and all t.

Proof:

Let A > 0, then

exp{itA t(t)} -

which shows that

Since

itA
_ exp{ity t(t)}1y=A 1 A

= t(t) f exp{ity t(t)}dy,
itA y=0 

A 0

I exp{itA LW} - 1 I 
A

1 f
WO j exp{ity t(t)} dy.itA A 0

lexpaty 11.(0)
clk 

(s)X
2
lk 
(s)t c

2k 
(s)X

2
2 
(6)t

2

= exp{-2y 
4. 

])
2 2 2 2

1+4A
lk
(s)t 1-4-4X

2k 
(s)t

= exp{-2y w(t)} < 1

for y 0 and all t, we get

I exp{itA t(t)} - 1 I
itA

1  A 
2 (1-p

t(t)I <e

for any A < 0 and all to where

A
L(t) (f) dy

WO I

clk 
(s)X2 (s)t2 c (s)),

2 
(s)t

2

w(t)- 
lk 

+ 
2k 2k 

1+0,
2 
k
(s)t

2 1+44k(s)t2
l 

If A < 0 we have

expatA t(t)) -1
itA

exp{ity t(t)} y=0
itA

0
= t(t) f exp{ity t(t)}dy.- )

A
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Since

lexP{itY L(0}1 exp{-2y w(t)) < exp{-2A w(t)}

for A < y < 0 and all t it follows that

0
1 exp{itA L(t)} - 1 

itA 
12,(01 f 

"1 
lexp{ity L(t)}1dy

A

0

L(01 eXp{-2A W 
A 

r .y
d L(01 exp{-2A w(t)}

- 

< IL(S) 1 exp{-2A w(t)} < I(t)1 exp{--1A(clk(s) c2

for any A < 0, A < A < 0 and all t, where use has been made of

exp{ -2A (0) < lim exp{-2A w(t)} exp{-IA(c(s) + c
2k
(s))).

t.**

From (C.5) and (C.7) it can be seen that

(C.29) 1
(s) + c (s)

lk 2k 1-pk'

which shows that

I expatA L(01 - 1
itA

1  A 
2 (1 -pk)< 12,()1 e -

for any A < 0, A < A < 0 and alit.

This completes the proof of (C.28).

Now substitution of (C.28) into (C.27) yields

(C.30) h(t A) + h(-t, A)]1 < e

1  A 
2 (1-p )

L(t)4137(t,

for any A < 0, A < A < 03 and all t.

With the aid of (C.5) (C.7) and (C.29) it is not difficult to verify

that
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(C.31) t(t) =
lk
(s)c

lk 
(s) A

2k 
(s) 2k(s) (1+2ist)

1-2iX
lk 
(s)t 1-2iX2k(s)t (1-2iX (s)t)(1-21X2k(s)t)

and the latter result shows that (C.30) can be rewritten as

=ID

1 A

1 
2

(iv)  [h(t, A) -4- h(-t, A)] I < e I(1+2ist)lPk,v(t,

for any A < 0, A< A< co and all t, where

(C.32) s) = (1-2iX lk(s)t)-1( 1-2iX k(s)01-14117(t,

In order to show that the positive function in the right-hand side of

(iv) is integrable, we first investigate the function tpk,v(t, s) as

defined in (C.32).

Since (1-2iXik(s)t)- (1-2iX (s)t)- s the characteristic function of

1 (s)W1 X2k(s)W

where W - x2(2), W2 x2(2) and W1 and W2 are independent, it follows

that Ipk,v(t, s) is the characteristic function of the random variable

Qk,s = Qs + X
(s)W1 x W2

where Wi and W2 are independent of Vij(s),

From these results it can be seen that

(C.33)

•() and V( )•

+ X2j 
(s)V

2j 
(s)] + X(s)V(s),

lj 

where Y(s), 
"411(s)' "" 

Y(s), 
V20(s)' "" 

(s), ) are

mutually stochastically independent with

(C.34)

V(s) x260

1
-

(s) x2(mir T1 (s))

V2 (s) x26:2j, T2 (s)),
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j = 0, 1, ..., M.

The degrees of freedom are given by

(C.35)

P4.1

• • •

m
lk = mik 

+ 2 = 
mk 
+ 2

m
2k = in2k 

+ 2 = Ink + 2.

k

The random variable Q is again of the type considered in (C.1) and it

can be obtained from Qs through raplacing m-lk --- and  m2k -- by mlk 2 1711
and m2k + 2 = m2k' 

respectively.

If the sum of the degrees of freedom

E 6;
j=o

iP40

it follows from B.23) of Appendix B that

(C.36)
-Co

MOP CO

Now we have

,v(t, s)Idt <

s)Idt <t*k,v(t,

(m . 'mQo j)+ = E (m + m2 ) + m + 4
j=0 13 j=0

mik2k+ 4 = 2mk + 4 > 6,--

since  ink 2t. 1, and this shows (C.36).

With the aid of (C.36) we get



(v)
0

A
2

1  A 
2 (1-p ) co

A
2 (1-p )

CO
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(1+2ist)*k v(t, s)Idt =

)
(t) (1+2ist)Ipk,v(t, s) Idt <

(1+2ist)*k,v(t, )Idt <

f.{1&,v t,

1  A 
2

{f 11Pk,

Finally it is seen from

lim 
exp{itA t(t)}

that

A+ 0
itA

+2s

t, s) Idt + 2

= 
fit

A+0

= gt) lim exp{itA t(t)} = L(t)
A+0

t, Ildt

(t s)Idt} < 00•
v

am CO

t(t) exp{itA OM)
it

(1+2ist)(1-2iXik( )0-1( 1-2iX (

i) lim [h(t, A) + h(-t, A)] =
2

A+0

[(1+2ist)* se
-itx eitx3.

+ (1-2ist)Ipk,v(-t, s

The results (iv), (v) and (vi) show that we can apply the dominated

convergence theorem of Lebesgue to (C.26) and this yields:

(C.37)

3Gv(x,

3 v 2k
= aim R

T1+2ist)ex-it_Tr f 1

0

+ (1-2ist)e
itx

V

(t,

-t, -t, s)]dt.
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Since (C.36) implies that both integrals
co co

I I(1+2ist)e
-itx

t
k 
( 
' 

s)dt and f I(1-2ist)e
itx

*k (-t, I 
s),dt are

i,v-t ,v
0 0
finite, it is not difficult to verify that (C.37) can be rewritten as

(C.38)
agv(x, 

s)
av
2k

71

co
e-itx(1+2ist)*

k,v 
(t, s)dt.

Let ,(x, s) be the distribution function of 
the random variable a-K,sm 

and let (x'2 s) denote the corresponding probability density-k v 
function, i.e.,

M
Since E (mii

j=0

where

v
(x, s) =

k v
k,v

(x
' 

s)

9x

) + i'> 6, it follows from B.24) of Appendix B that

s) =
k,v

IT

CO

e *
k,v 

t, s)dt

-ite*
k 

t, s)dt,
,v

,v(
x,

ax •

Substitution of the latter results into C.38) yields:

(C.39)
aGv(x, s)

av
2k

v(x, s) - 2sg' (x, s)]
k,v

for k = 1, M, < x < all s > 0, all v = (0, v2) and any

X(s).

If we compare this result to the case j = 0, see (C.25), it is seen that

aGv(x, s)/9v2j, j = 1, 2, ..., M can no longer be expressed in terms of

a probability density function only.

However, under certain conditions on the degrees of freedom parameters

m10' m and the coefficient X(s), it can be shown that

ac (x, s)
av
2k 

k,v(x' s
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where gk,v(x, s) is a probability density function. In order to see

this we reconsider (C.38) and define

(C.40) s) = (I+2ist)*
k v

(t,

Now suppose that mi0 > 2. Since X10(s) = -s and

11)k,v(t, s) = 
(1-2iXik(s)t)-1( 1-2"2k(s)t)-11Pv(t, s), it 

follows from

m10

(C.9) that *k,v(t, s) contains the term (1+2ist) 2 with m /2 > 1.
10 --

Hence, *k,v(t, s) is again a characteristic function and it is not

difficult to verify that the corresponding random variable, say 0

can be written as:

(C.41)
Qk,s = E [A

j=0
.(s) + A

2j 
.(s)e

2j.(s)] +

where the random variables at the right-hand side are mutually

stochastically independent and where

(C.42)

-* 2*
V cs x Cm )

-*
(s) - X km1Y

v (0) x (m22 j

The degrees of freedom are given by

(C.43)

=

-*
m= - 2
10 

m
10

-*
m2 = m2j j = 

0, 1, M,
'

where m, 
and2j

m are as defined in (C.35).
lj 
-*

Note that m10 
= 1;10 - 2 m10

- 2 > 0, since m102 2.
' =  --

With  the aid of (C.35) and m10 > 2 it is also seen that
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M
(C.44) E (m m + in

lj 2j
j=0

Since Q 
k 

is a random variable of the type considered in C.1 it
,s

follows from (C.44) and (B.24) of Appendix B that

(C.45) g (x, s
k v Tr

f jitx4 v(t, s)dt,
am co

where gk,v(x, s) is the probability density function of Qk,s.

The substitution of (C.40) into (C.38) gives

aGv(x, s)

av
2k

71 
e (t, s)dtHK,

and it follows from C.45) that, under the condition mio > 2, we have

(C.46)
agv(x, 

s)
av
2k

for k = 1, 2, osi, < x < 00, all s > 0, all v = 0, v2) and any

X(s).

Next we consider the situation where m > 2 and X(s) = -s for all s > 0.

Since Alo(s) = -s = X(s), it follows that (C.9) becomes

(C.47) Ipler(t, [ n (1 —2ix .(s)t)
j=0 3

where

(C.48)

A

A A

_ 12.121
2 2 ,1 -2iX

2j (s)t) J

M A (s)T (s) (s)T (s)
expfit E F  lj  2j 2j 

j 1-2iX
lj 
(s)t 1-2iX2j(s)t =0 

That is Qs can be written as
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(C.49) Qs = E [ 14(s)Vii(s) + A2i(s)V2i(s)],
j=0

where the random variables at the right-hand side are mutually

independent and where

(C.50)

2,^V
lj(s) - X kmli 1 

(s))

2,^
2j(s) X (m2y 2

j = 0, 1, ..., M.

It is seen that Qs in (C.49) can be obtained from (C.1) through

replacing A(s) by 0 and m10 by m10 + m = m10- 
2. Since the result

(C.46) holds true for any X(s), it follows that

aGv(x' s) 
8v
2k 

= -gk,v(x, s),(C.51)

for k = 1, 2, ..., M, -co < x < co, all s > 0 and all v = (0, v2) where

g
k,v

(x, s) is the probability density function corresponding to the

characteristic function (see (C.40)):

*k,v
t, s) (1+2ist) (t,

1+2ist)( 1-2i ( t)
-1
(1-2iX

2k
(s)t)

-1
Ipv(t,

This completes the situation (I).

We proceed with case (II), i.e., we suppose that vii > 0,

j 0, 1, ..., 14 and we shall derive nv(x, s)/avii.

It is seen from (C.4) that Tij(s) = dij(s)vj and Tii(s)

which shows that Ipv(t, s) takes the form

_

/12j

(C.52) 4(t,v(t, [ E (1 -2iXlj(s)t) 
2 
(1 -2iX 

j
(s)t) 

2 
](1-21.A(s)t)

j=0

M Ali(s)dli(s)vli expfit E 1_2ix (s)t
j-0 lj

(s)d2 (s)v1(s)v
3 j
1-2iX

2j 
(s)t ] 1

Now we take .1:71 = ( l' 
0) with 4; = (v10,

11' "" j
it follows from (C.10) that

+L,
v1M 
) and
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(C.53)
aG
v
(x, 

x, - pv(x, s)

= lim 
av
1j A+0

TX

s)e
-itx -

Im(11(t, s)e
itx
)17 

lim - f 
A+0 IFT 0

for j = 0, 1, ..., M.

tA

By using similar arguments as before it can be shown that

(C.54)

where

(C.55)

aG( s)  = s r
By 2w J
10 _03

-itx
,v  (t, s)dt,

s) = (1+2ist)-1 *v(t, s)

is a characteristic function which satisfies

CO

L 
s)idt <

dt,

Hence, if  s) is the corresponding probability density function,

we have

(C.56) r e-itx*o,v
s)dt.,v

(x, s) =1-
2w

Substitution of (C.56) into (C.54) yields

(C.57)
aG
v
(x, s)

av10
  = s h

0,v
(x, s),

for -03 < x < 03, all s > 0, all v = (v 0) and any A(s).

When j = k 1, 2, ..., M we get

(C.58)

where

(C.59) kov(t*

aGv(x,

av
lk

e
-itx

1-2it)ipk,v(t, s)dt,

(1-2iX (s)t)-1(1-21X2k(s)t)— 41/47(t,
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is a characteristic function satisfying

s)Idt <

(t, s)Idt < co.

(C.60)

,V

If hk,x* s) denotes the probability density function 
corresponding to

*k v(t* s) and if

hk,v(x' s)

it follows from (C.60) that

(C.61)

h (x )
k,v '

ax

r —itx
2 

ih

n e 9
t, s)dt

1 —
(x
' 

s) = f —ite
itx 

t, s)dt.
k,v 2n

Substitution of (C.61) into C.58) gives

aG (x, s)
(C.62)   = s[hk x, ) + 2h' (x s)]"av

lk 
, 

k,v 

for k = 1, M,

A(s).

When the function ipk,v t, s) is defined by

(C.63)

—co < x < all s > 0, all v = (v1, 0) and any

s) = (1-2it)Ipic,v s),

it can be shown in a similar manner as before that, under the condition

m20 > 2 (t, s) is again a characteristic function with the property
K,V

that

(C.64) e
—itx *

hk v 2n J 
1), (t, s)dt,

— cc,

where hk (x, s) is the probability density function corresponding to,v 

*k v(t  s).



-153-

Therefore, if m20 it is seen from C.63) and (C.64) that (C.58)

becomes

BG17(x, s)
(C.65) (x,

By
lk

for k = 1, 2, ... -03 < x < 03, all s > 0, all v = 0) and any

A(s).

Finally we consider the case where m> 2 and X(s) 1 for all s > 0.

Since A20(s) = 1 = X(s), it follows that Ipv(t, s) in (C.9) can be

written as:

M
,(C.66) ipv(t, [ II (1 -2iX ( )0 2 

(17-2iX
2 

2
j
(s)t) J

j=0

M 
expat E iJ 

A,4(s)T
/ 
„(s) X

2j
(s)T

2j
(s)

-/ j=0 1-2iXii(s)t 1-2iX
2j
(s)t 11'

where

•••, M

(C.67)

This means that Qs takes the form

(C.68)
M

. E [ 
i 
(s)v

i 
(s) + x (s)V (s)]s i j=0

where the random variables at the right-hand side are mutually

independent and where

(C.69)

V1 (s) x2
 
(711j, ili(s))

22j(s) x(;2y T2i(s))'

• • • , •
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That is, Qs in (C.68) can be obtained from (C.1) through replacing A(s)

by 0 and m20 by m2o + m m20 > 2. Since (C.65) holds true for any X(s)

it follows that, under the condition m> 2 and X(s) = 1 for all s > 0

we have

(C.70)
aG s)

av
lk

11,_ (X, s)

for k = 1, 2, ..., M, - < x < 03, all s > 0 and all v (v1, 0), where

s) is the probability density function corresponding to the
K,V

characteristic function 
*k v 

(t, s) as defined in (C.63). This completes

the case (II).

Summarizing the above results, if Qs is defined by (C.1) - (C.5), then

the characteristic function *v(t, s) of Qs is given by (C.9) and the

distribution function Gy(x, s) can be found through (C.10) where

v = (v1, v2) with v- = (v10, v119 ..., vim) and 
vL ( v21, "" v20'

The partial derivatives of Gv(x, s) with respect to the parameters vij

and v2i under the hypotheses (I) and (II), respectively, are given by:

(I)

(a)

= 0 v2i > 0,

aGv(x,

ay20

for -03 < x < 03, all s > 0, all v (0, v2) and any A(s), where

gO,v(x' s) is the probability density function 
corresponding to the

characteristic function

(b)

*0

av
2k

1-2it)- *v(t,

,v
(x, - 2sglit v(x,

for k = 1, 2, M, -03 < x < 03, all s > 0, all v = (0, v2) and any

A(s), where gk,v(x, s) is the probability density function corresponding

to the characteristic function
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and where

(1-2"lk(s)t)-1(1-2"2k(s)t)-1 *(t, s),

(x,
gt
k,v

(c) If mio > 2, the function

*
k,v

(t, s) = (1+2ist)a (t, s)
Tic,v

is again a characteristic function and

aGv(x, s)

av
2k

g
k,v

(x
' 

s),

for k = 1, 2, ..., 1.14 -c0 < x < 03, all s > 0, all v = (0, v2) and any

X(s), where gk,v(x, s) is the probability density function corresponding

to 4,v(t, s).

(d) If in> 2 and X(s) = -s i for all s > 0,

*k s) 
= (1.+2ist)Ipk,v(t, s)

is a characteristic function and

aG
v
(x, s)

= gk,v(x' s)'av
2k

for k = 1, 2,

again g(x,
* v

lPk,v(t' 6).

(a)

-03 < x < co, all s > 0 and all v = (0, v2), where

s) is the probability density function corresponding to

0, v2j

aGv(x, s)

av
10
  = s h

0,v
(x, s),

for -03 < x < co, all s > 0, all v = (v1, 0) and any X(s), where

hotv(x, s) is the probability density function corresponding to the

characteristic function
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(b)

*0 t,

3G
v
(x,

lk

= (I+2ist

Ilk*

*v( s)

x, 2hic (x, s)].

for k = 1, 2, M, -03 < x < 03, all s > 0, all v = (v1, 0) and any

A(s), where hk,v(x, s) is the probability density function corresponding

to the characteristic function

and where

hit( x,

(1-2iX (s)t)- 1-2"2k(s)t)- *v(t, s),

hk (x,$)

ax

(c) If nin the function

114c,v(t'
(1-21011/4 v(t,

is again a characteristic function and

BG
v
(x, s)

= h
lk 

k,v

for k = 1, 2, ..., 14, -co < x < co, all s > 0, all v = (v1, 0) and any

A(s), where h
k v

(x
' 

s) is the probability density function corresponding

to s).

(d) If m > 2 and X(s) = 1 for all s > 0,

1-2it)*k,v(t, s)

is a characteristic function and

acv  ()it, s)
= s h

*
av
lk k v

(x 
'

for k = 1 2, M, -03 < x < co, all s > 0, all v = (v1, 0), where

again hk,v(x, s) is the probability density function corresponding to

s).
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Appendix D

A large sample approximation to the distribution function of the test

statistics

In this appendix we shall derive a large sample approximation to the

distribution function of the test statistics

u'u
Z Z n-k

1
A X

- u1 u* Z G G n-k
(D.1)

t k-p
u_
x
ti
X

u
Z 
u
Z  L-p 

S
3 
=

n-L'
uGuG

where

(D.2)

u
G 
= y - G6,

with

(X1X)-1X'y

(D.3) y = (Z'Z)-1Z'y

(G'G)-1G'y.

Here y is a n-dimensional random vector having a n(u, a2I) distribution.

X and Z are given (nonstochastic) matrices, X is of the order nxk with

rank k and Z is of the order nxl with rank L. Further, p is defined by

p = dim(M(X) n KZ)), where in general, 1V(A) denotes the linear (vector-)

subspace (of Rn) spanned by the columnvectors of the nxm matrix A. The

matrix G is nonstochastic and of the order nx(k+l-p) with rank k+L-p.
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The columnvectors of G form a basis for the (k+t-p)-dimensional linear

subspace It/(X) 4.1Y(Z). We shall derive approximations to the

distributions of the statistics in (D.1) for large n (the sample size)

and under the assumption that the parameters (u, a) satisfy

(D.4) (u, a) c {(p, a)I p €M(X) n M(Z), a> 0).

Throughout this appendix we also assume that p = dim(V(X) n WZ)) is

independent of n. It should be noted that P(S < 0) = 0, i = 1, 2, 3. We

start with the variable S
*

. 
Now S

* 
can be written as:

1 1

(D.5)

where

s c n-k
1 '

Si

It is easily seen that the event Si < s is equivalent to
" " 2 " ̂ 2

Q1(s) = quzia - squx/a < 0.

As is shown in Section 4 and Section 8 the random variable Q1(s) can be

written as a linear combination of mutually stochastically independent

x2 random variables. Since the coefficients of this linear combination

and the degrees of freedom of the x2 variables depend on the eigenvalues

(and corresponding multiplicities of these eigenvalues) of the kxk

matrix (X'X) 1X'Z(Z'Z)-1Z'X, we first consider the latter matrix.

It can be shown that this matrix has an eigenvalue 1 with multiplicity p.

Now suppose that (rX)-1X'Z(ZTZ)-1VX has M different eigenvalues pi,

p2, ..., pm with 0 < pi < 1 j = 1, 2, M and multiplicities

1, m2, ..., m14. If r = p + E m., it is not difficult to see that

j=1
r = rank(X'Z) and that 0 < p < r < min(k, t). We also have

tr = tr[(X'X) 1X'Z(Z'Z) 1Z'X] = p + E p m .
j=1

It should be observed that the matrices (X1X)-1X'Z(Z'Z)-1Z'X and

(VZ)-1VX(rX)-1X'Z have the same nonzero eigenvalues.
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By using the results of Section 4 and Section 8 and assuming that u and

a satisfy (D.4) we get for s > 0:

(D.6) Q ) = E [ (s)V + A
2 
(s)V ] + (1-s)V,

j=0

where the random variables V10, V1

mutually independent with

(D.7)

(D.8)

2
X (m)

(

lj 
X2 

‘1111j)

V2i x2(m2j),

M and where

s) =

j = 0, 1, ..., M.

2
1 1
— (1-s) --V

000, V1 V20 ... ,V V are2M

(1- + 4 (1-p.)

I1- v 0-s + 4s(1-p ),

The coefficient po in (D.8) is defined by po =0.

The degrees of freedom in (D.7) are given by

(D.9)

in =

m10 = 1-r

m20 = k-r

mli m m2j mi, j = 1, • • • ,

N
Note that in + E (m + = (n+p-k-t) + (t-r) + (k-r) +

M j=0 
lj 2j

M
+ 2 E m

i 
= n+p-2r + 2(r-p) = n-p, since r = p + E 

1
m .

j=1 j=1
j

It is not difficult to verify that the coefficients in (D.8) satisfy:

(D.10)

ii(s) + x2j(s) = 1—s

x (0x2i(s) 
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for j = 0, M, and that

X10(s) = -s0 2 (s) = 1

1 < s < 1
Xlj

(D.11) -s < Xii(s) < 1-s, 1 < s <

1-s < A2j(s) < 1, 0 < s < 1

0 < X2i(s) <1,

for j = 1, 2, ..., M.

Now we define the coefficients Ti(s), T2(s), Tn_p(s) as follows:

the first mio coefficients Ti(s) are equal to Aio(s), the second m11

coefficients Ti(s) are equal to All(s)0 ..., and the last 
m coefficients

• s) are equal to 1-s. Then the random variable Q1(s) in (D.6) 
can be

Ti(
rewritten as

(D.12)
n-p

Q1(s) = E Ti(s)Ui,
i=1

where U1, U2, ..., Un_p are mutually independent random variables with

Ui - x2(1) for j = 1, 2, ..., n-p.

Next we return to the statistic S and consider the event S
1 
< s. Since

1 --

S1 < s is equivalent to Q1(s) < 0, it follows from (D.5) that the event

S < s is equivalent to
1 --

A A 2 n-1 " 2
( s) = u'u /a - /a 10.
n-k Z Z n-k X X

If we define W1(s) by

W1(s) 
= (11(;-T s),

it is seen from (D.12) that

n-p
(D.13) W

1 
(s) = E a

i
(s)U

i=1



-161-

where

(D.14) a
i
(s) = k 

s),
n-

= 1, 2, ..., n-p.

This shows that the event S <
1 —

is equivalent to W (s) < 0 with W

as given in (D.13) and that

(D.15) P(S: < s) = (W
1 
( ) < 0).

Hence, if we can find an approximation to the distribution function of

W1 (s) for 
large n, we can use this result to approximate the probability

P(S < s).

Now
-

Now we shall show that when s * 1, p (s) = (W (s)) and
2
al(s) = Var(Wi(s)), we have

W
1 
(s) p (s) F

1
a (s)

n(0, ) if n+00,

where denotes convergence in distribution.

We first compute pi(s), a21(s) and the coefficient of skewness

which is defined by

Yi(s) =
E[(W (

tal(s)]3
The coefficient y (s) is a measure of asymmetry of the distribution of

W1(s) or (141(s) - pi(s))/al(s).

Since U1, U2, Un_p are mutually independent and

E(Ui) = 1

Var(Ui) =

E[(Ui - 1) ] = 8,

it follows from D.13) that
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n-p
p (s) = E a

i 
(s)

1 
1=1

n-p
(D.16) a a2(s) = 2 E [ (s)12

1
1=1

EiNi(s) Vi(s))3
n-p

8 E a (s)13
i=1 

[at (s)]

making use of (D.14), the definition of (s), (D.10) and (D.9) we

obtain:

(D.17)

where

(D.18)

1

a
2
(s
1

-t)(s -1)

= 2 -0 811(s)

6n(s)
n-t 

(s)]
3/2'

n-k-t+tr 
(s) = (stin:±1Z)s ( n-k )

sn(s) = — (i-1,1)25

+1

3   3
(n-t)(n-k-t+tr) 2 n-k-t+tr

(n-k)2

Note that, since 0 < tr < min(k, we have

urn 8(s)= (1_s)2

n+co
(D.19)

lim 611(s) = 1-
n+co

which shows that for s 1 we have

6n(s)  
li 

f
m 

= ̀  
IS )3 + 1 if 0 < s < 1

n+ [an(s)] /
3 2 1121T 1 if 1 < s <

0, 

Hence it follows from (D.17) that for s 1

(D.20) lim yi(s) = 0.
n+00

co.

n-k
+ 1.

In order to derive the limiting distribution of (Wi(s) - p1(sX1/01(s) we

use the following theorem, due to Liapounov, see Cramer [3].
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Let Xl, X2, ..., Xn be mutually stochastically independent random

variables with pi = E(Xi) and 4. = Var(Xi).

If E(IXi - pie) < for all i and

then

E E(IX
i=1

lim
n+co

pi 1 
3

( E
2)3/2
a4

i=1

E Xi - E ui F
i=1 i=1

n(0, ) if n+0).

Now suppose that s > 0 is fixed and s 1.

Let Xi be defined by Xi = ai(s)Ui for i = 1, 2, ...

Then X1, X2, Xn_p are mutually independent and pi = E(X
2 
ai = Var(Xi) = 2[ai(s)]

2
 for i = 1,

Further it follows from (D.13) and (D.16) that

n-p
W
1 
(s) = Z X4

i=1

n-p
(D.21) (s) = Zu4

i=1

n-p

s) = E a
2
4.

i=1

2, ..., n-p.

The condition E(IXi - u113) < becomes ai(s) j3 E( lU - 11 ) < co. Since

,-. x2(1), we have E(111 113) = E(1133i - 314 + 3111 - 11)
3 2

< E(Ui + 3Ui + 3111 + 1) = 28, for all i.

From (D.11) it is seen that IXii(s)1 < s and IX2i(s)1 < 1 for s > 0 and

j = 0, 1, M. Since 11-s1 < max(1, s) it follows that Iti(s)1 <
max(1, s).

According to D.14) we get



-164-

(D.22) (s)I < max(1,
2.

n-k

When t > k it follows that < s and a ( )
n-k

we have

n- 2. n-k+k-t k-2, k- 2. 
<

n-k n-k 
1 + n-k 1

since n-k > t-p+1 (m = n+p-k-t > 1).

This shows that for t < k

n-t k-p+1 
-s < s.
n-k -p+1

Hence, when t < k

k-p+1 
la(s)1 max(1, s),

and we always have

def.
(D.23) la 

'
(s)I max(1, s 

k-1
s) = g(s).

max (1, s). If t < k,

Note that g(s) does not depend on n.

Together with EOM - 113) < 28 the result D.23) yields

(D.24) E(IXi 13) < 28[g(s)]3 < co

for all i.

We proceed by considering

n-p
E E(IX

1=1
n-p

2 3/2
E

1=1

n-p 2
By making use of E Cri

1=1
and (D.24) we get:

= a s) = 2(n-t) An(s) (see D.17) and (D.18))
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n-pf
E E(IXi

i=1
0 <

n-p

(n-9j3

where

(n-p) 28[g(s)]
3

3/2
3/2 [2(n-k) (s)]

[g(s)i3
= ,

2 3/2 3/2 
B 
n
(s) 

[8 (s)] (n-k)

B (s) = 7°7 [g(s)13
3/2

[B(s)] -

If s 1, we know that lim BC s)= 1-s

Since

n+co

lim B(s) = (s)
1 -sl

n+03

lim  11-1) = 0,
3/2ni-co (n-k)

it follows that

lim  n-p

I"' 
03/2 n(s) = 0

(n- 

and this implies that

n-p
E E(IX -

(D.25) 
lim i=1  

= 0n-p
( E a
1=1

n+co

11 1
3
)

3/2

> 0 and this shows that

when s * 1.

The conditions of Liapounov's theorem are satisfied and we have shown

that for any s > 0, s * 1:

(D.26)
s)

n-p

u (s) xi

a (s)

n-p
E p

i Fi=1
n(0,

t in-p
E (7

2

i=1
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if n+co.

The result enables us to approximate P Si < s for large n, s > 0 and

S * 1.

From (D.15) we get:

W (s) - p (s) - p (s)
1 1 

P S < s) = P(W
1 
(s) < 0) = P[ 

1 

al(s)
1 a

1 
(s)1 — — 

and by making use of (D.26) it follows that

(D.27) PC S1 < s) Ca 
1‘ 
to 19

when n is large, where

-0(x) =
-co Ir2Tr

t2
dt.

Finally, substitution of pi(s) and

side of (D.27) yields for s > 0, s

from D.17) into the right-hand

(D.28) P(S
* 

< s)
1 —

VTIT7T

when n is large, where 8n(5) is as given in (D.18).

Note that, since $n (1-s)2 if n+co, we have

Vi (s-1) / 0 if s < 1
0[

VT1117T

if n+co. This result agrees with the fact that the random variable Si

converges in probability (and therefore also in distribution) to the

constant 1 if n+03.

Now it remains to consider the case where s = 1.

From (D.17) and (D.18) we can compute the mean, variance and coefficient

of skewness of W1(1), we get:

(D.29)

p
1 (1) = 

0

2
al(
) = 2(2:1)(k*L-2tr)

n-k

Y ( )
(k-L) (n-k-L+tr) - (k+k-2tr) 

a 
(k-L-2tr)

3/2
 V(n-k)(n-L)
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Suppose first that k t, then since 0 < tr < min(k, it follows that

m 
[
( -k,-t+tr) - (k+2 -2tr 

] = 1,

which shows that the'coefficient of skewness y1(1) does not converge to

0 if n+m.

Therefore, if (W1(1) - 111(1))/a1(1) = 141(1)/a1(1) has a limiting

distribution, this limiting distribution is not equal to a n(0, 1)

distribution.

In the second place, suppose that k = 2, then we have

u(1) = 0

( ) = 4(k-tr)

Y ( ) = 0

Although now yi(1) = 0 for all n, it can again be shown that

does not have a limiting n(0, 1) distribution.

In order to see this, consider (D.13) for s = 1 and k = t, we get:

n-p n-p
W (1) = E ai(1)Ui = E 

Ti
(1)U

ii=1 1=1

2(ky-p) n-p
= E T (1)Ui E T

i
(1)U

i
i=1 i=2(1c-p)+1

where use has been made of (D.14).

From the fact that Ti(s) = 1-s for i = 2(k-p).+1, n-p it follows

that T1(1) = 0 for i = 2(k-0+1, n-p and this shows that

2(k-p)
141( ) = E

i=1

where U1, U2, 
.." 12(k-P) 

are mutually independent 2(1) variables and

where only the 2(k-p) coefficients Ti(1) depend on n through pi and

Alp), A2j(1) j = 0, 1, ..., /14 see (D.8). Note that

Ali(1) = - VI=f7- and 
X2j (1) = + VI-77- for j = 0, 1, ..., N.i  i
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Hence, when s = 1 and k = t, we have

W1(1) - ui(1)

a(1)
1

2(k-p)
;(1)U 

1=1i=1
9

which shows that if (W1(1) - 111(1))/a1(1) has a limiting distribution,

this limiting distribution is not a n(0, 1) distribution.

Since the limiting distribution in the case s = 1 (if it exists) is not

of a simple form, we shall not consider this case any further.

It should be noted that when k = L there is no need to approximate

P(S
1 
< 1). This follows from the fact that for k = L, the probability
—

distribution of W1(1) is symmetric around 0. That is, we have for any n

PCs < 1) = P(wit < = •--

The result (D.28) also enables us to approximate the value of s which

satisfies

P(S 
1 
< s) = a,
— a

where a is a preassigned probability.

For large n this value can be approximated by the value of x which

satisfies

(D.30) 0 Vi_ (x-1) 

V27-775-
=a.

Let t = 0- '(a), then (D.30) is equivalent toa

Gzi, (x-1) 0.31) = t
a
.

VI (

Since ta < 0 if and only if a <i, we first consider the case where21
a <1- and try to find the solution x of (D.31) which satisfies

0 < x < 1.

Now (D.31) can be rewritten as

f(x) = n-t)( - 2t
2
8 (x) = 0,a n

and with the aid of (D.18) this becomes
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(D.32) f(x) m anx 2bnx + cn

where

(D.33) b (n-10(n-t)

2
2ta

c - n-t

2
2ta

a m 1 -
n n-k

2t 
2 
n-k-t+tr)

a

Since n is large we suppose that n-k > 2t2 and n-t > 2t2 which for
a a

ta < 0 is 
equivalent to

in-max(k,
a > 414- V

2

For large n this is no serious restriction on a, because

n-max(k, t)
= 0,2

if n+00,.

Further we have from tr < min(k,

n-k n-k-t+tr and n-t > n-k-t+tr.

Also, since we exclude the trivial case p = k (which is equivalent

to A(X) = M(Z) m M(G)), we never have n-k = n-k-t+tr and at the same

time n-t m n-k-t+tr.

This shows that

0 < a < 1

o < bn < 1

0 < c < 1

(D.34) b an— n

b > cn n
2
b> a c
n nn

2bn + c < O.
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If we solve D.32), we get

(D.35)

x
2

b V 2
b
n 
- ac

n
a
n

b + - ac
n nnn

a
n

Since b
2 
> a c it follows that x1 and x2 are real and 

different. Further
n fl fl

it is seen from a > 0 f(0) = cn 0 and f(1) = a - 2bn + cn < 0 that

0 < xl < 1 and x2 > 1. Now we were looking for a solution in the

interval (0, 1) and the above results show that, for large n, the value

of sa which satisfies P(S < s) = a can be approximated bya

(D.36) s -x =
a 1 a

n

- vb - a c
n n n

where (14- Vn 
max(k,  < a 

<1' 
and where the coefficients a b

2 ' 2 n' n
1

and cn are as given in (D.33). Next we consider the case where a >
1

Since ta > 0 if and only if a > 7, it follows from (D.31) that we are

looking for a solution x which satisfies x > 1.

Hence, it is easily seen from the above results that, for large n, the

value of sa can be approximated by

b + Vb2
n n

 ac
n

(D.37) s •x =
a 

2 a
n

when 
2
1 a < oin-max(k, 0

I.—
2

Again the restriction on a is not serious, since

(DIV 
n-max(k,  

0(00 = 1,
2

if n+co.
1
.

Finally we consider a = 
2
— Since t

a 
0 if and only if a =

from (D.32) and (D.33) that sa xl = x2 = 1 in this case.

it is seen
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We also note that the approximations xl and x2 in (D.36) and (D.37),

respectively, has the property that xl + 1 and x2 + 1 if n+co. This

easily follows from the fact that a + 1, bn + 1 and cn + 1 if n+co (see

(D.33)).

We now proceed by deriving a large sample approximation to the

distribution function of the statistic S
2 
under the hypothesis (D.4).

Here we assume that p < k, since otherwise S2 
is not defined. From (D.1)

we see that S can be wit ten as
2

n-k
(D.38) S

2 
= S

2 kp'

where
A A

u u
Z 

— utu
Z GG

u)11.13(

The event S is equivalent to

Q2(s) (uiuz -

In a similar way as before, by using the results of Section 4 and

Section 8, it can be shown that for s > 0 the random variable Q (s2 can

be written as

(D.39) +
2j
.(s)v

j=0 lj lj 

Here the coefficients Ali(s) and X2i(s) are as given in (D.8), the

random variables V10, V11, ..., Vim, V20, ..., V2m are mutually

independent with

(D.40)

(D.41)

x'(

V2j x (

• • •

.)

2j)

11, and the degrees of freedom ar now defined by

m10 m L-14111 m = n+p-k-r

m20 m k-r

m2j = mj,
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We define the coefficients Ti(s) T2(s),t(s) as follows: the

first mlo coefficients ti(s) are equal to 110(s), the second mil

coefficients Ti(s) are equal to X(s), ..., the last m2m coefficients

Ti(s) are equal to X2m(s). Then Q2(s) in (D.39) can be rewritten as

• (D.42)
n-

Q2(s) = E Ti(s)ui,

where the U 's are mutually independent x2(1) random variables.

Consider the event S < s. Since S2 < s is equivalent to Q2(s) < 0 it
-

followsfollows from (D.38) that S < s is equivalent to Q2 (Hs) 
(it-P-s) < 0, where

2-- 

(D.43) Q ]tES) = 
Z 

(utu
2 n-k G G n-k X X

If we define W2(s) by

W
2
(0 = f...tEsN

it is seen from (D.42) that

(D.44)

n-p
W
2
(s) = Zai(s)Ui,

i=1

where

(D.45) 
a (s)

= 1, 2, ..., n-p.

This shows that the event S < s is equivalent to W2(s) < 0 with W2(s)
-

asas given in (D.44) and that

(D.46) P(S < s
2 —

P(W2(s) < 
0).

In order to find an approximation to P(S < s), we therefore first
-

derivederive the limiting distribution of

W(s) - p (s)

s)
•

2
where p2(s) = E(W2(s)) and a2(s) = Var(W2(s)).
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From (D.44), (D.45) and the definition of the coefficients Ti(s) we

obtain the following expressions for p (s), 022(s) and the coefficient of

skewness

Ii (s) = -(kr-p)(s-1

(D.47) a ) = 2(k-p) )

where

6n(s)
8(s)]3/2

(s) = (1-a)s - 
2 4. 1
n-k )

6n(s) ..(t-i)2 3 + (k-p)(tr-p)2

(n-k)2

It easily follows from (D.48) that

(D.49)

lim $n(s) =
n-0-op

lim 6n(s) = 1
n+co

and this implies see D.47)) that

(D.50) lim 
1'2 
(s)= 0.

n+00

- YIE:EAs + 1.

Since y2(s) is the coefficient skewness of the random variable

(W2(s) - p2(s))/a2(s), the latter result shows that this variable does

not have a limiting n(0, 1) distribution.

In other words, although W2(s) can be written as a sum of mutually

independent random variables (see (D.44)), we cannot apply Liapounov's

theorem in order to find the limiting distribution of

(W2(s) -

We shall now show that this limiting distribution can directly be found

from the expression (D.43).
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From the definition of W

A

) we get

^
- u'u )/a

and by making use of (D.47) we obtain

W2(s) — 112(s)

a2(s)

which can be rewritten as

(D.51)
- P2(s)

a2(s)

2
n-k)su tu

X
/a ,

'u - u'u 
G 
) a2 - 02:2)s;t; /a2 + (k-p)(s-1)

ZZ G n-k X X

A A A " 2
Z
u
Z 
- 

uG'uG 
)/a - (k-p)

u'u /a
2

VIC,27 X X 
- s(

2 n-k
1 ) / V13777

/ ficrsT

It can easily be verified that under the hypothesis D.4 we have for

all n

(D.52)

A

;X;X

Hence u;cux/a
2 
)/(n-k) converges in probability to 1 if m*02. Since

en(s) • 1, if follows that the second term at the right-hand side of

(D.51) converges in probability to 0 if T1+03.

This means that (W2(s) - u2(s))/a2(s) has the same limiting distribution

as the first term at the right-hand sie of (D.51).

Again since Bn(s) 0 it is seen that

2 2
a - X (k-p)

A

—x(-k

2 A A
- u'u )/a - (k-p)

G G
f3ri-Ts7

has the same limiting distribution as



-175-

A A A A ,
(u'u

Z 
- u'u

G 
k-p

Z G 

2(1%r".7"-P)

However, as can be seen from (D.52) the latter random variable has a

distribution which is independent of n. This shows that the limiting

distribution of (W2(s) - p2(s))/a (s) is equal to the distribution of

- u'u )/a
2 
- (k-p)

G G

V2(k-p)
AA 2 2

Since (u'u - 
uG'uG 

)/a x (k-p) this variable has mean k7.1) and and variance
ZZ 

2(k-p) and we have shown that

(D.53)
W
2
(s) - p (s) (k-p) - (k-p)

a
2 
(s)

2(11r-7----p)

if n+00.

That is, (W2(s) - p2(s))/a2(s) converges in distribution to a

standardized x2(k-p) distribution i.e.,

(D.54)
W2(s) - p (s)

2 
P[ < x] 

a
2 
(s)

G
k p

if n+m, where

x
(x) = f 6 

0

t

dt.

2.

k-p + xV-2-57-7]

The convergence in (D.54) holds true for -co < x < co, except when
1k-p = 1, 2, then the points x - — v2 and x = -1, respectively, are
2

excluded.

This result enables us to approximate P(S, < s) for large n and s > 0.
de. —

From (D.46) we have

P(S
2 — P(W

2 < P[ 
W (s) - U2(s) -u(s)

<  
a2(s) 

— a (s)

and by making use of (D.54) it follows that
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(D.55) P(S2 < s) Gk_p k-p
112(s) 
a
2
(s) /1"--7-173-2(1]

when n is large.

Substitution of p2(s) and a2(s) from (D.47) into the right-hand side of

(D.55) yields for s > 0

(D.56) P(S < s) 
s-1

[(k-p)(1 + r777)1
2 — k-p

$1(

when n is large, where Bn(s) is as given in (D.48).

It should be observed that 1+ (s-1)/Vici5T > 0 for all s > 0.

Note that since (s) 1 if n+co, we have

k_p[(k-p)(1 +  s-1 )1 4. Gk_p[(k-P)s]

8r‘r----P7

if n+co. This agrees with the fact that S2 
x2(k-p)/(k-p) if n+co.

It should also be observed that the coefficient of skewness y2(s) of

(W2(s) - p2(s)/a2(s) converges to the coefficient of skewness V.- of

2
(k-p) 

2(1V-17--p)

if n-0-00 (see (D.50)).

With the aid of (D.56) we can find a approximation to the value of

sa 0 which satisfies P(S
2 
< s) = a.

For large n this value can be approximated by the value of x which

satisfies

(D.57) x-1 
G
k
_
p
[(k-p)(1 + )]

Let f
a 
= G

k-p
(a), then D.57) is equivalent to

f
a(D.58) 

x-1 

677T k-p

def.
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Since qa < 0 if and only if a < Gk_p(k-p), we first consider the case

where a < Gk_p(k-p) and try to find the solution x of (D.58) which

satisfies 0 < x < 1. Note that qa > -1 and that qa = -1 if and only if

a = 0.

Further we also note that 0.683 = (1) > G(2) > G3(3) > ... and
1

Gr(r) +7 if r+co.

Now (D.58) can be rewritten as

f( = -
2

q
a
8
n
(x) = 0,

and with the aid of (D.48) this becomes,

(D.59) f(x) = anx2 2bnx + c = 0,

where

(D.60)

a
n

c= 1-

2
qa(k-p)

n-k

2
qa(tr-p)

2
a

n-k

From k-p < n-k n is large), p < tr < k, -1 < < 0 it follows that

(D.61) 0 < c < an < bn < 1.

This shows that

(D.62)

b
2 
> a c

n n

- 2b
n 
+ c < 0

Note that for a < Gk_ (k-p) we have c = 0 if and only if a = 0 and also

bn = 1 if and only if tr = p.

If we solve (D.59), we get
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(D.63)

1

b
n 
- Vb2 - ac

a
n

b + b2 - ac
n n

X =  
2 a

n

From b
2
n  ac it 

follows that xi and x2 are real and different. Further

it is seen from an > 0, f(0) = c > 0 and f(1) = an - 2bn + c < 0 that

0 < xl < 1 and x2 > 1. Since we are looking for a solution in the

interval [0, 1) the above results show that, for large n, the value of

sa which satisfies P(S < s) = a can be approximated by

(D.64) s x
1a 

b
n 
- V b2 - a

n
c

a

where the coefficients an, bn and c are as given in (D.60) and where

0 < a < Gk_p(k-p).

Next we consider the case where a > -K-p

Since qa > 0 if and only if a> Gk_p(k-p), it follows from (D.58) that

we are looking for a solution x which satisfies x > 1. Here we have to

consider two subcases:

(1) a 1 Gk_p[2(k-p)]

(ii) a >

Note that for a > Gk_p(k-p) we have c = 0 if and only if

a = Gk_p[2(k-p)] and also bn = 1 if and only if tr = p.

Under the assumption (i) we have 0 < qa < 1 and it is easily seen that

an, bn and c satisfy (D.61) and (D.62). It follows that 0 < xi < 1 and

x2 > 1.

Hence the approximation of sa becomes

b + Vb2 - ac
(D.65) s x - n n

a a
n

When a satisfies (ii) we get qa > 1 and therefore c < 0. Since n is
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large we make the additional assumption that qa < which is

equivalent to

a < Gkp
[k-p + V(k-p)(n-k)] .

- 

• This is no serious restriction on a since

[k-p + V(k-p)(n-k)] Gk (co). 1,k-p

if n+02.

Now we get

(D.66) c < 0 < a < bn 1

and it follows again that (D.62) is satisfied. The roots xi and x2 are

therefore real and different and since an > 0, f(0) = c < 0 and f(1) =

an - 2bn + c < 0 we get xl < 0 and x2 > 1. Hence the approximation of sa

is again given by (D.65).

The above results show that, when

a < G
k-p

[k-p + V(k-p)(n-k)],

the value of sa which satisfies P(S < s) = a can be approximated by2-- a

(D.67) S x
a 2

b + Vb2 ac
n n

a

provided that n is large.

Finally we consider the case a

Now qa = 0 if and only if a = Gk_p(k-p) and it is seen from (D.59) and

(D.60) that sa = xl = x2 = 1 when a

It should be observed that x1 and x2 in (D.64) and (D.67), respectively,

satisfy

f
a+ k_p and

if n+0,3. This follows from the fact that an + 1 and bn + 1 when n+0, (see

(D.60)).
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Now it remains to find a large sample approximation to the distribution

of the statistic S
3 

as defined in (D.1), under the hypothesis (D.4).

Here we assume that t > p, since otherwise S is not defined.
3

We have

1 1
(D.68) P S3 < s = 1

S
3

where

(D.69)
u u - u
X X uG G rr-t

A .
uz

If we compare the latter expression with the definition of S2 it follows

that we can find a large sample approximation for

S
3

from (D.56) through replacing k by L and s by 1.

We get

(D.70)

where

Bn(-1) = --t)*2

as can be seen from (D.48).

Since

Bnd) = 72

)1,

tri3Z-)

(7!....71)1,

we can rewrite (D.70) in the following way

(D.71) 
p(1* < 

711s.7,) G
t-p

[(t-p)(1 + 
 is 

S3

where now now 811(s) s defined by
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(D.72) On( 8) 82  2(.11e7i2)8

Substitution of (D.71) into D.68) yields for s > 0

(D.73) P(S < s)
3 --

Gi Rt-p)(1 +  1-s_p )1,

when n is large, where 8n(s) is as given in (D.72). It should be

observed that 1 + (1-s)/16775- > 0 for all s > 0.

Note that since On(s) s2 if n+co, we have

1-s 
1 - G 

- 
Rt-p)(1 + )] 1 - (172)tp 

if n+ao. This

Again, from

of s whicha
That is, sa

* L-13
agrees with the fact that S3 if n+co.

X (1-P)
(D.73) we can find a large sample approximation of the value

satisfies P(S3 < sa) = a.

can be approximated by the solution x of the equation

or equivalently,

(D.74)

p [ 27.p) ( 1 4.  1-X  )

vgc--0

1-x . 1-a

VTITT 1-13

def.
1 =

-
where f, = GL

1 
(1-a).

-p
Equation (D.47) can be rewritten as

(D.75) f(x) = ax2 - 2bn:x +

where

1

(D.76) b
n

c
n

2
qa

2
qa(tr-p)

n-L

2
c"-P)

n-t

in a,
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Similar to the previous case we obtain the following solutions.

When

1 - G
L 

[t-p + V(2,-p)(n-t)] < a < 1 - (L-p)
-p

the value of s which satisfies P(S
3 

s
a 

a is approximated by

(D.77)

Note that

s
a 

m x =

s
a 

x

- Vb
tt 
- ac

n

c
n
2b
n

a 
, if a 1 - G2,_[ 

2(L-P)]

, if a = 1 -

2
c
n 

b n 
-ac

n
lim

2b a
a+0

and that for a < 1 -

a = 1 G2,.. [2(2,-)].

The The restriction

a> 1 -

t-p
2(L-p)]

we have a = 0 if and only if

+ V(t-p)(n-t)]
t-p

is not serious for large n since

if n+0).

If 1-

(D.78)

1 - t-p V(L-p)(n-t)] + 1 - G 
-

(0:) = 0,
p-13

t-p) < a < 1, we have

S x
b
n 
+ - ac

n n
a •

For the case a = 1 - t (1-p) we get sa 
x
1 
= x = 1. It should be

-p  2
observed that 0.317 = 1 - G1(1) < 1 - G2(2) < 1 - G3(3) < ... and

1 - Gr(r) + if r+03.
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Further we note that x and x2 in (D.77) 
and (D.78), respectively,

satisfy

it-1) and▪ f ▪ f
ll-a -a

if n+co. This is easily seen from the fact that b 1 and c 1 if n+03n n

(see (D.76)).

Summarizing the results of this appendix, we have the following large

sample approximations to P(Si < s), s > 0 and to the value of sa which

satisfies P(S. • < s 
a
) = a, i = 1, 2, 3:

(I) 

V 

p(S
1 
< s) * (1)F1( s-1)1, s * 1--

--281775-5-

where

12
- vb - a c

n nn
x

sa 1 a
n

if
n-max(k,

2
1

< a <

b + a c if 

2 — 

< a < 01V n-max(k, 2,) n n  1s x 
2 a

n 

nn 
71,a  2

- 
1 
t
2

1 2
dt

VTIT

,n(s) = (111:Ilds

a
n 
=1-

b
n 

1

c
n

= 41.

2t
2
a

n-k

n-k-t+tr 
2)s+1 

n-k

2t
2
a(n-k-t+tr)

(n-k)(n-L)

2t
2
a

).
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(II) P(S < s) [(k-p)(1 +  s-1 )]
2— k-p

where

b
n n n 

s 
1 a

n 
if 0 < < Git_p(k-P)

a 

b
n 
+ Vb2 - a c

n n
S =  
a x2 a

n

G = f
0

r 22

1
2

 dt

, if G

s) = (
k-p

)s ( )s + 
1n-krr-k

2
qa(k-p)

=1

n-k

2
qa(tr-p)

2
a

k-p

n-k

-1
f = Gk (a)•a -p

k-p) < a < Git_p k-p + V(k-p)(n-k)],

(III)  )] P(S s) 1 '1'
1.-p L‘ 1)1\

3 

V13-171787

s
a

x
1

b
n 

ac

a

if 1 -
L

[L-p + V(L-p)(n-L)] < a < 1 G 
-
(L-p) provided that

-p Lp

a * 1 -



where

s
a 

m if a = 1 - G
Lp 

[2(L-p)]-2b
n
'

bn 
+ Vb

n 
-ac

2

s m x
2a a 

n
, if 1 - G

t-p
(L-p) < a < 1,

17 t
G (x) 'a f t dt

e
r 

0

B(s)

x

2
- qa

rep 2

_ 2a,E=2As aLTA
‘n-1 'n-L'

2
qa(tr-p)

b
n 1  

n-L

2
sict(2.-P)

c
n 
= 1  

n-t

f
1-am,a L-p

-1f
1 

=

The above approximations can easily be computed with the aid of the
n(0, 1) and x2 distributions.
For the given matrices X and Z we only have to compute

p m dim0/00 n A(Z))

tr = tr[X'Xr X1Z(Z!Z)- 1Z' X] tr[ (Z' Z)-1Z'X(X' X) ir Z]

In most applications p will be equal to the number of columnvectors that
X and Z have in common.
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