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Testing nonnested linear hypotheses II:

Some invariant exact tests

J. Bouman

Abstract

In this paper we derive a number of invariant tests for the problem of
testing linear hypotheses.

The power functions of these tests are studied and it turns out to

depend on the value of r = rank(X'Z) (where X and Z are the given

regressor matrices) whether the tests have level a, are unbiased and

possess certain other desirable properties.
The required computations in order to use the tests in practice are
given,

We also derive large sample approximations to the critical values and

the p-values of the tests.
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1. Introduction

where ure R and ¢ > 0 are unknown.

On the basis of Y we want to test the hypotheses
(1-2) HO: U= XB VS,

where X and Z are given nonstochastic regressor matrices of the order
nxk and nxg, respectively, and where g ¢ X and y ¢ R? are unknown.
In order to make Hy and Hy mutually exclusive, we assupe that under H
the vector Yy ¢ R? ig such that Zy # XB for B ¢ Ek.

) =k < n and rank(z) = g < p.
If, in general, M(A) denotes the linear (vector-) subspace (of RY)
spanned by the columnvectors of the nxm matrix A, the above Problem can
also be stated as follows,
On the basis of the observable random vector ¥s the distribution of
which ig assumed to be n(y, 021), we want to test

(1.3) Hy: v e M(X)  vs. Hy: uoe M(2)\m(x).
In general, hypotheses HO and Hl are said to be nested when every

Parameter point under HO(HI) is a limit point of HI(HO)‘ If this is not
the case the hypotheses are called nonnested Oor separate,




p = dim(M(X) n M(Z)) = min(k, 2).

In the nested case M(Z) < M(X) it seems more realistic to test

Hy: w e M(X)\m(2) vs. Hy:w e M2),

instead of (1.3), since M(Z)\AKX) is the empty set when M(Z) < M(X).
Note that in our problem the hypotheses cannot be strictly separate
since the points belonging to the set

{Cuy, 0)] u=0, 0> 0}

are always common limit points of HO and Hl'

As said before this paper is concerned with the derivation of invariant
exact tests for the problem of testing linear hypotheses.

In Section 2 some of the main results of Bouman [1l] are presented. In
Section 3 we construct a whole class of invariant tests. The
distribution function of the general test statistic is derived in
Section 4. Section 5 is concerned with the question whether the tests
posses certain desirable properties, such as having level a and being
unbiased. In Section 6 we consider three specific tests and the
distribution functions of the corresponding test statistics are derived
in Section 7.

The computation of the test statistics from the data (y, X, Z) and the
computation of the power functions in terms of the parameters B, Yy and ¢
are considered in Section 8.

Section 9 is concerned with the interpretation of the tests.

When n is large, the critical values and p-values of the tests can
easily be approximated as is shown in Section 10.

The required computations are given in Section 11 and a summary of the
results is presented in Section 12.

In this paper only a small number of references is made. For more
general literature on the topic of testing linear hypotheses we refer to
Bouman [1]. Finally, in the Appendices (A) - (D) a number of special

results are derived.




2. The transformed problem and reduction through invariance

Before applying invariance considerations to our testing problem it is
convenient to transform the original problem into a problem with a more
simple structure.

- As we saw in the preceding section, we assume that the vector of

observations y has a n(yu, 021) distribution and we want to test
(2.1) Hy: w e M(X)  vs.  Hy: u e MGZ\M(X).

Now it is shown in Bouman [1] that this problem can be transformed into
a more simple problem through the linear transformation w = R'y, where

the nonsingular nxn matrix R has the following structure

(2.2) R=[R : R R iR ](n),

(2-p) (k-p) (p) (m)

where p = dim(M(X) n M(Z)) and m = n+p-k-1. ;
The columnvectors of the submatrices Ri form an orthonormal basis for

the following linear subspaces Vys

V)= M) (M(X) + M(2))

M(Z) n (M(X) + M(Z))

= M(X) n M(Z)

where, in general; M(A) denotes the orthogonal complement (with respect
to R?) of the linear subspace M(A) and where + denotes the sum of 2

linear subspaces.

The above subspaces satisfy:




dim(Vl)

dim(V,)

dim(V3)

dim(V4) =

Vi nVy= {0}, 4%
VeV, ® V38V, =FR,

where O is the null vector and where the symbol ® denotes the direct sum

of 2 linear subspaces.

From w = R'y and y ~ n(yu, 021) it easily follows that

(2.5) w ~ n(R'y, o2R'R).
If 6 = R'y, vy =.Riy, ei = Riu, i=1, 2, 3, 4, it is not difficult to
see that w' = (w! w! w! wi), g' = (Bi 8! o! ez) and that we always

1 2 3 2 3
have

where D = RiRZ'

Moreover it can be shown that el = 0 if and only if p € M(X) and also
8, = 0 if and only if u e M(Z).

Hence, it is seen from (2.1), (2.5) and (2.6) that the original problem
(2.1) is equivalent to the following transformed problem:

On the basis of the vector of observations w which has a n(#, 029)

distribution, we want to test

It should be observed that there exists a whole class of matrices R of

the above type which give rise to a transformed problem of the form




described above. Since for our purposes it does not matter which
particular matrix R from this class is chosen, we extend the above model
to the situation where R is supposed to be an unknown matrix. However we

always know that D = RiR where the columnvectors of Ry and R, form an

2
orthonormal basis for the subspaces V) and Vo respectively.

Now it is not difficult to verify that the transformed problem remains
invariant under the following group of transformations of the sample

space (the space of w) onto itself:

(2.8) G: w+ g(w) = cHw + a,

R

for all c € Rl, c # 0, all vectors a' = (0' O aa 0') with ag €
and all orthogonal matrices H of the form

where H, is an orthogonal (2-p)x(%-p) matrix, H, is an orthogonal
(k-p)x(k-p) matrix, Hy is an orthogonal pxp matrix and H, is an
orthogonal mxm matrix. ‘

The transformations (2.8) can be interpreted as changes of the
coordinate system in which the data (w) are expressed. When a problem is
independent of the particular coordinate system chosen, it is natural to
restrict attention to tests which satisfy the same property, since
otherwise the acceptance or rejection of the hypothesis under
consideration would depend on the choice of the coordinates, which is
quite arbitrary and has no bearing on the problem.

That is, we restrict attention to tests (functions of w) which are
invariant with respect to (2.8):

(2.10) ¢(g(w)) = ¢(w) for all g € G and w ¢ R,

where ¢ is a critical function,i.e., ¢(w) is a statistic and
0 < ¢(w) < 1 for all w ¢ R*%)

*) For any value of w a test or critical function ¢ specifies the
probability of rejecting HO when the sample outcome w is observed.




Now a test ¢ is invariant under G (i.e., satisfies (2.10)) if and only
if ¢ is a function of a maximal invariant statistic T = t(w), i.e., ¢(w)
= y(t(w)), where ¢ is a critical function.

A statistic T = t(w) is maximal invariant if and only if

a) t(g(w)) = t(w) for all g ¢ G and w € R,
b) t(wg) = t(w) implies that w, = g(w) for some g € G.

It follows that the class of invariant tests can be represented by ¢(T),
where ¢ is a critical function and T = t(w) is a maximal invariant.

As is shown in Bouman [1], when

tl(W) =

- tz(w) -

the statistic
(2.12) T = t(w) = (£,(W), t,(w)) = (T}, Tp)

is maximal invariant under G.

The above discussion shows that the principle of invariance reduces the
sample space R" (the space of w) to the space of T, which is a subspace
of R% since T, 20and T, > 0.

Usually, invariance not only reduces the sample space but also the
parameter space since, as is typically the case, the probability
distribution of the maximal invariant depends only on a function of the
parameters. In order to see this for our problem we consider the
probability distribution of T.

We shall use the fact that T is invariant under the transformations

g € G: w+ g(w) = chw + a, with ¢, a and H as indicated above (see (2.8)
and (2.9)).

Now it can be proved, see Bouman [1], that for any D there exists an

orthogonal matrix of the type H, say




with arbitrary orthogonal submatrices K3 and K, and orthogonal
submatrices K, and K, depending on D such that

' =
(2.13) KIDK2 c,

where the (2-p) x (k-p) matrix C has the

0 L] L] .

VEII(ml).

'r'il(mu)

(k-1) (ml) (mm)

Here Pys Pps eee, py are the M different eigenvalues with 0 < p. <1 and
multiplicities my, my, ..., my of the kxk matrix x'x)"1xrz(z z)" 1z x

(or equivalently, of the £x% matrix (Z'Z)"IZ'X(X'X)'IX'Z) and r is
M
defined by r=p+ I m

j.
3=1
It can easily be seen that r = rank(X'Z), 0 { p £ r £ min(k, &) and that
the hypotheses in (2.1) or (2.7) are nested if and only if
p = min(k, 2).

Let ¢ ﬂ-%, as= --% Kb with b' = (0' O 65 0') and H = K, then

u=g(w) = chw + a =-% K(w-b) or equivalently u' = (ui ui ué uz) with

1




Since T 1is invariant under G we have

and from w ~ n(#, ozn) it follows that
(2.16)  u ~n(s, I,

where

r=1xeE = ke -

I
ol
0
0

This shows that the probability distribution of T depends on the unknown
parameters through Gl‘and 8o« Note that the hypotheses in terms of §

become
(2-18) HO: 61 =0 VSe. HI: 61 # 0, 62 = 0.
When the subvectors u;, u,, §; and §, are partitioned as follows

(2-1) (k-r)
(ml) ‘ (ml)

° b4
3
.

(mM)




it can be seen from (2.16), (2.17) and (2.14) that Ugs Uo0» (“11’ uyy),

ey (ulM’ uZM) and u, are mutually stochastically independent and have
the following probability distributions

ujg ~ 208105 I(g-r))

uyg ~ 18305 I(g-r))

',B;I(m )

3 ), 3 =1, 2, e, M

Lm,)

(m

k|
UA ~ n(O, I(m))o

Next we define

Ulj =

Uy




M

with Ul = Ulj’ U2 = jzo U2j and also that

Ujos Uzps (Upgs Ugg)s eee, (Ujm» Upm)» U, are mutually independent.

The above results enable us to characterize the probability distribution
of T.

The latter distribution is uniquely determined by the distribution
function F(tl, tZ) as well as by the characteristic function w(tl, tz),
which are defined by

it T, + it,T
Wey, t)) = B¢ 210 T2,

where i denotes the imaginary unit.

Since in our case it is more easy to find w(tl, tz) than F(tl, t2), we
shall characterize the probability distribution of T by w(tl, t2).

We get

it{T+it,T it Ty+itHT

it1U1/U4+it2U2/U4 l

E{E(e UR);

© it U,/u+it U, /u

[ E(e 11 22 u, = u) f£(u)du,
0

where f(u) denotes the probability density function of the random
variable U4.

From (2.19) it follows that U4 = u ~ xz(m) and this shows that:

]
A

(2.22) f(u) =2 ——, u> 0

my .2
FCE) 2
Further we know that (Ul’ Uy) and U, are independent which implies that

it U./u + it U./u it . U./u + it U, /u
Ee 11 272 U, = W = ECe 11 27277




and therefore we have

9! )
i), + 15y,
(2.23)  ¥(ty, t,) = [ ECe v U2y £(u)du.
0

it,U+it,U
It remains to find E(e 1 ! 2 2)’

(U}, Up)-
From the mutual independence of (Ulo’ UZO)’ (Ull’ U21), eees (Upys UZM)
it follows that '

i.e., the characteristic function of

M M
1t U +it,U, it .foul 5T, .fouz j
E(e ) = E(e =

M it U, +it. U, . M 1t.U, +it U, . M
=E(nme 1137223y g g 1137225 ¢ ¥.(t), ty),
3=0 3=0 =0 7

where

it U, .+it, U, .

=0, 1, eeey, M
2
Since (2.19) implies that Ujg = uioulo ~ x (&r, le)’

2
Ugg = u&OuZO ~ x (k-r, vzo), where v._ = §! 6§  and v, = §

10  °10°10 20

520, and
since U;o and Uy are independent we get

'
20

-1 k-r
- — it v - — it v
2 110 2 220
2.25 = - e -
( ) Wo(tl, t2) (1 Zitl) exP{l—Zitl} (1 Zitz) exp{l_Zit }

2
When (ulj’ “Zj) have the joint probability distribution as given in
(2.19), it is shown in Appendix A that the joint characteristic function
of U,. = u! = 1!

13 uljulj and Uzj uzju2j is of the following form

m
>

(2.26) \l’j(tl, t2) = (1 - Zit1 - 21t2 - 4(1 - pj)tltz)

(1t:1 + 2t1t2)v1j + (11:2 + 2t1t2)v

exp{—7— 2it) - 2it, - 4(I-p )t E,

2y,




j=1, 2, eee, M, where Vi3 =
Hence, (2.23) can be written as
o M t t

1 "2
(2.27) w(tl, t2) = g jgo wj(—;,-—a) f(u)du,

where f(u) and Wj(tl, t2) are as given in (2.22) and (2.25), (2.26),

respectively.
Since the characteristic function w(tl, t2) of T depends on the

parameters through
(2.28) v =v(s) = (VI: VZ)’
where v, = (vlo, Vi]s eees le), vy = (vzo, Vols eess Vou) and

= '
vlj GleIj
(2.29)

v,. = 6'.6
2j 2j°23,

j=0,1, ¢es, M, it follows that the probability distribution of T has

the same property.

In other words invariance reduces the parameter space to the space of v.
It should be noted from (2.29) that we always have v > 0.

Further it is een from (2.18) that we can write the hypotheses in terms

of v as follows
(2.30) Hy: vy =0 wvs. Hj:v; #0, vy,=0.

The above discussion shows that the principle of invariance reduces the
testing problem (2.7) to the problem of testing (2.30) on the basis of
the observation T = (T;, Tp), which is known to have the characteristic
function y(t;, t,).

If we define

wy = {v|v = (vys Vo), vy = 0, vy > 0}
(2.31)
w = {v]v = (Vis Vo) vy 2 0, vy # 0, v, = 0},




the hypotheses (2.30) of the reduced problem can be rewritten as
(2.32) H0: VvV € (.I)O VSe Hl: V € wlo

Note that the point v = 0 (which belongs to mo) forms the boundary

between H, and H; and that v = 0 if and only if the original parameter

point (u, o) in (2.1) satisfies y € M(X) n M(Z) and o > O.

Having reduced the problem through invariance considerations we now try
to find the "best" test among the invariant tests, or equivalently, we
shall try to find the "best" test for the reduced problem.

This problem will be considered in the next section and as a measure of
quality of a test we shall use the power function of the test. In our
case, when ¢(T) is an invariant test, the power function of the test is
defined by

(2.33) (¢, V) = EG(¢(T)), Vv € wg VU w;.

Note that, since any test or critical function ¢ specifies the
conditional probability of rejecting Hy given that T = t, i.e.,

¢(t) = P(Hy is rejected|T = t),

we have

(¢, V) = E(¢(T)) = E,(P(H, is rejected |T))

= Pv(H0 is rejected).

Since the rejection of Hy 1s a wrong decision for v ¢ w and a correct
decision when v € w1 it is therefore desirable to find a test which

makes n(¢, v) small for v e Wy and large for v ¢ w) .

At the end of this section we consider the special case where the linear
hypotheses are nested.

This situation occurs if M(X) © M(Z) or M(Z) < M(X), or equivalently, if
p = min(k, £). We have 3 subcases:

a) M(X) = M(Z), or equivalently, p = k = ¢

b) M(X) < M(Z) and M(X) # M(Z), which corresponds to p = k < &

c) M(Z) c M(X) and M(X) # M(Z), which is equivalent to p = £ < k.




Obviously, case a) is trivial. It is easily seen that w, 6 and Q become

equal to

wo= (wy W), 8 = () 0'), o= [(I) ]

It follows that there are no maximal invariants and the only invariant
functions are the constant functionms.

In case b) we get:

w' = (wi wé wZ), o' = (ei eé 0'), o= [

and the hypotheses (2.7) become

which are obviously nested hypotheses.

As a maximal invariant we obtain

wlw
T = tl(w) =T, = 11

]
1 wl‘w4

and v becomes
v = Vl = Vlo = 5'10510'
Hence the spaces w and w; in the reduced problem take the form
mo = {VIV = Vlo = 0}, ml = {V'V = Vlo > 0}-
Since in the case c) it is seen that M(Z)\M(X) is the empty set, we have
to modify the original hypotheses in (2.1). It is natural to take
(2.34)  Hyr w e MOO\M(Z)  vs. Hp:ou e M(Z).
For the transformed problem we get

w' = (wé wa wZ), o' = (eé 95 0'), Q=




and the hypotheses (2.7) now become (see (2.34))
HO: 02 # 0 VE e le 92 = 0,
which are again nested hypotheses.

The maximal invariant takes the form

WWZ

T“tz(w)=T2=-‘—’-w—4

and for v we obtain

V=V2=V20=6 S

J
20°20°

which shows that ) and w; can be written as

wg * {VIV = Va0 > 0}, wy = {VIV = Voo = 0}.




3. L&-class tests

A test ¢* would be a uniformly best test for the reduced problem if for

any other test ¢ we have:
n(¢*, v) < n(¢, v) for all v e u
n(¢*, v) > n(¢, v) for all v € w;.

However, it is well known that, not only for our problem, but in
general, such a uniformly best test does not exist.

The usual procudure then is to restrict attention to the subclass of
level a tests. A test ¢ is said to have level a if the size of the test

is equal to a preassigned significance level a, i.e.,

sup n(d, V) = a.
“0
Now we try to find a best test within this restricted class.
A level o test ¢* is uniformly most powerful (UMP) for the reduced

problem if for any other level a test ¢ we have
(3.2) n(¢*, v) > n(¢, v) for all v € w;.

If there exists a UMP level a test ¢* for the reduced problem (2.32) in
terms of T, we can use the fact that T = t(w) and define the test y*

through
Pr(w) = ¢*(t(w)).

Then the test y* is a UMP invariant level o« test for the original
problem (2.7) in terms of w.

It is not difficult to show, see Bouman [1], that in the case of nested
linear hypotheses (p = min(k, 2)) there exists a UMP invariant level a
test for the problem. This test turns out to be the classical F test.
Whether or not there exists a UMP invariant level a test for the
nonnested case (p < min(k, £)) is an open problem.

In order to find a reasonable test for the nonnested case we shall

narrow the class of tests still further.




First of all we always require that the tests have level a, i.e.,

(1) sup (¢, V) = a.

“o
That is, we restrict attention to tests ¢, whose probability of a type I
error is at most equal to a preassigned level a. Tests with this
property are often called exact tests.
Another useful criterion is unbiasedness.
A test ¢ is said to be unbiased if

(ii) sup n(¢, v) £ inf w(¢, V).

“0 “1
This is a reasonable requirement, since if a test is biased, at least
for some parameter points under H; the probability of accepting Hj is
larger than at some parameter points under Hye
In general, when Hy and H; have common boundary points, a test is called
o-similar if the power function has the value o at all these boundary

points.

Since in our case v = 0 is the only common boundary point of ) and wys
a test ¢ is a-similar if

(303) “(¢) 0) = Q.
When the power function n(¢, v) of a test ¢ is continuous in v the

conditions (i) and (ii) imply property (3.3). In other words, in that

case any unbiased level a test is oa—-similar.

This can be seen as follows. Since 0 € wy, we have sup (¢, v) > n(o, 0).
If n(¢, v) is continuous in v it follows that “o

inf n(¢, v) = _!-nf (¢, V),
“1 91
where El is the closure of W) 1 L v {0}. From O ¢ w
inf n(¢, v) = inf n(¢, v) £ n(4, 0) and therefore
w w
1 1
(3.4) inf n(¢, v) < n(¢, 0) < sup n(¢, V).
“1 “0

i.e., W, o= we get

1




Suppose that ¢ satisfies (i) and (ii), then we have

(3.5) a = sup w(¢, v) < inf n(¢, v).
“o “y
If we combine (3.4) and (3.5) we obtain

sup (¢, v) = inf n(¢, v) = n(¢, 0) = aq,

“o “1
which shows the stated property.
So in our search for unbiased level o tests we can restrict attention to
the class of a-similar tests, provided that the power functions are
continuous.
From the practical point of view it is important to consider tests with
computable power functions, since the value of the power function at
parameter points of interest gives us an idea about the quality of the
test.

We therefore require that

(iii) (¢, v) = E,(¢(T)) is numerically computable for any

vV € wy U wye

Tests with this property will shortly be called computable tests.

At this point it should be observed that imposing the restrictioms (i),
(ii) and (iii) does not automatically yield a satisfactory test. There
are several tests which satisfy these requirements, but as we shall see
below some of them do not make much sense. In other words not every
computable, a-similar test which satisfies (i) and (ii) is a good test.
For instance, consider the test ¢(T) = a. This is a purely randomized
test which rejects Hy with probability a regardless of the observation
T = (Tl’ T)).

It will be clear that in general this is not a good test. However, since

n(¢, V) = a for all v ¢ wy Y wy» it is seen that the test is computable.

Moreover, from w(¢, 0) = a it follows that the test is o-similar.

Obviously we have

a = sup (¢, v) < inf w(¢, V),
“o “1




which shows that the test is unbiased with level a. In other words the
oc—similar test ¢(T) = a satisfies the properties (i), (ii) and (iii).

In the trivial case of nested models, i.e., when p = k = ¢

(M(X) = M(Z)), this test is UMP, but in all other situations the test

¢(T) = a 1s a bad test.

As a second example consider the test

m
(3.6) $(T) = 11 T) 775> ¢;

m
= (0 if Tli:—p-< cl’,

where c; 1is chosen in such a way that (¢, 0) = a and where we assume
that £ > p, since otherwise the test is not defined.
Note that this is a purely nonrandomized test which rejects HO if
m
Tl ‘sz'z cl-
By construction the test is o—-similar and we shall show that it also
satisfies the properties (i), (ii) and (iii).
From Section 2, see (2.15), we know that
u'u
(3.7) L=
474

and from (2.16) and (2.17) it can be concluded that uiu1 and ul"u4 are

independent random variables with the following distributions
ulu, ~ y2(2-p, d,)
171 A |
2
uzu4 ~ x (m),

where

(3.9) :
3.9 = 6'6 = z v .
1°17 I Y1

Hence, it follows that T1 z%; has a noncentral F distribution with £-p

and m degrees of freedom and noncentrality parameter dl’ i.e.,

m
(3.10) Tl - " F(L-p, m, dl).




Since under Hy: v € wy we have Vi3 T 0, j=0, 1, ee., M, it is seen

that dl = 0 under HO and this shows that

m
(3.11) 'I'1 P ~ F(2-p, m) under HO’

i.e., under H, the random variable T1 Eg;-has a central F distribution
with 2-p and m degrees of freedom. '

The power function of ¢ becomes

2 cl)

(3.12)  w(¢, v) = E_(¢(T)) = P (T, Tf-%

1- G(Cl; -p, m, dl)’

for any v € wy VU wy, where G(x; Ty, Ty, A) is the distribution function
of the F(rl, Ty A) distribution.
Since v = O implies that d; = 0, it follows that n(¢, 0) = a is

equivalent to
G(cl; 2-p, my, 0) = l-q,

which shows that the critical value ¢, can be found from the table of

the F(&-p, m) distribution. Once c; is known we can compute (¢, v) in
(3.12) for any v € wy U w; from tables of the F(2-p, m, d;) distribution.
Hence, the test ¢ is computable.

Further it is easily seen from the fact that d1 = 0 under Hy that

(3.13) n(¢, v) = 1-G(cy; 2-p, m, 0) = a for all v € wjy.

Next consider Hy: v € wy. Then we have vlj_Z_O, j=0,1, ey Mand at

least one V13 > 0. This implies that d; > O under H,.

Now it can be shown, see Lehmann [7], p. 316, that G(x; Ty Tp, A) is a
strictly decreasing function of A > 0 for any x. It follows that
l-G(cl; £-p, m, dl) is strictly increasing in d1.2.0 and therefore we

have

(3.14) (¢, v) = 1-G(cq; 2-p, m, d;) > a for all v € w;.
1 1 1




From (3.13) and (3.14) it is easily seen that

a = sup n(¢, v) £ inf =(¢, V),
“0 “1

which shows that ¢ is unbiased with level a.
Hence, the a-similar test ¢ as defined in (3.6) satisfies the properties
(1), (ii) and (iii).
It is not difficult to verify that this test is UMP for the nested case
with M(X) < M(Z) and M(X) # M(Z), i.e., when p = k < 2. For the other
(nonnested) situations it seems to be a reasonable test, especially

since it has the desirable properties that under Hy:

(¢, V) > a for all v ¢ Wy

n(¢, v) + 1 if at least one of the vlj's + o,
The latter property is equivalent to

lim =#(¢, v) =1,

d, +

1

since dl + o if and only if at least one of the vlj's + o,
M

Note that dl = 3 vlj can be considered as a measure of distance of a
j=0

point v ¢ w; to Hye.

On the other hand, in the nonnested cases (i.e., when p < min(k, &)) the
above test has the drawback that under HO

n(¢, V) = a for all v ¢ wy

(¢, V)-+* 0 if at least one of the vzj's + o,

In a way, this is what could be expected, since the test completely
ignores the information contained in the variable TZ‘




As a final example we consider the test

m
¢(T) = 1 if T2-k—-_1;-<-c2

m
= 0 if T2 p > Cys
provided that k > p, where ¢y is chosen in such a way that #(¢, 0) = a.
Again this is a purely nonrandomized test with critical region
m
T, k—p < Cye
Obviously, the test is a-similar.

In the same way as before it follows from the results of Section 2 that
m

(3.16) T2 E:;\N F(k-p, m, dO)’

where

(3.17)

Note that do can be considered as a measure of the distance of a point
vV € wy to Hl. Under HO we have sz.Z.O’ j=0,1, «ee, M and it is seen
that dO_Z_O under Hye Since under H) we have Vo3 = 0, =0, 1, «ee, M,
it follows that dj = 0 under Hy and this shows that

m

(3.18) T, —— ~ F(k~-p, m) under H

2 k-p 1°

The power function of ¢ becomes

(3.19)  w(¢4, V) = E_(4(T)) = (T, k—j‘_‘; < c,)

= G(Cz; k-p, m, dO)’

for any v ¢ wg YV wye.
Now v = 0 implies that dy = 0 and it is seen that (¢, 0) = a is

equivalent to

G(cy; k-p, my 0) = a,




showing that the critical value c, can be found from the table of the
F(k-p, m) distribution.

When c, is known we can compute (¢, v) in (3.19) for any v € wy U w;
from the tables of the F(k-p, m, dgy) distribution. Hence, the test ¢ is
computable.

Since G(cz; k-p, m, do) is strictly decreasing in dO_Z_O, it is easily
seen that
(3.20) (¢, v) = G(cz; k-p, m, do)ii a for all v € uye.

Further, the fact that do = 0 under Hl implies that

(3.21) (¢, V) = G(cy; k-p, my, 0) = a for all v € w.

Together with n(4, 0) = a it follows from (3.20) and (3.21) that

a = sup (¢, v) £ inf n(¢, V),
“0 !

i.e., the test is unbiased with level a.
Hence, we have shown that the a-similar test ¢ as defined in (3.15)
satisfies the properties (i), (ii) and (iii).
This test turns out to be UMP for the nested case with M(Z) < M(X) and
M(X) # M(Z), i.e., when p = 2 < k.
Although the test has the desirable properties that under H

m(¢, v) < a for all v e wy\{0}

lim =(¢, v) + O,

d +o

0

it is not very attractive for the nonnested situations, since under Hl

(¢, v) = a for all v € u;

(¢, v) > 1 if d; + =




Here it should be noted that the test ¢ as given in (3.15) ignores the
information contained in T;.

In order to exclude tests as considered in the above examples for the
problem of testing nonnested linear hypotheses, we impose the following

additional requirement
(iv) n(¢, v) + O if d0 + o and (¢, v) + 1 if d1,+ ©,

Such a test will be called usable.
M
We recall that d, = I v,. and d, = v, .
0 §=0 2j 1 =0 1j
of the distance of a point v € wy to w) and dl as the distance of a

and that dO can be thought

point v ¢ w; to wpe

Further we have

vV € if and only if dO.Z.O’ dl =0
v € w; if and only if dy = 0, d; >0
v =0 if and only if d53 = 0, d; = O
do + o if and only if at least ome Voj

dl + o if and only if at least one Vg o+

Another desirable property for o—-similar tests is
(v) (¢, v) < a for all v ¢ mo\{O} and (¢, v) > a for all v e w;.
Such tests will be called strictly discriminating.

Now it is not difficult to see that property (v) implies the properties

(1) and (ii) for a-similar tests with continuous power function.

The above discussion makes it clear that the "best" we can do in the

given situation is to concentrate on a-similar tests which are

computable and usable (i.e., satisfy (iii) and (iv)) and then verify

whether these tests are strictly discriminating (i.e., satisfy (v)).
For many tests it turns out to be rather difficult to find out whether

or not property (v) is satisfied.




Often the following stronger property can be more easily handled:

(vi) For v € w the function n(¢, v) is strictly decreasing in each
of the variables V2 j (3 =0, 1, ¢ee, M) and for v € w; the
function n(¢, v) is strictly increasing in each of the

variables V15 (j =0, 1, ceey M)

Obviously, for a—-similar tests, property (vi) iﬁplies the properties
(iv) and (v).

In order to find o-similar tests which are computable and usable we
shall investigate the behavior of the observation T = (Tl’ TZ) under the
hypotheses Hy and H;, respectively.

In general, if X is a random variable with probability distribution Py,
where 6 denotes a parameter, we say that X is stochastically strictly
increasing in 6 if Pe(x > x) is a strictly increasing function of 6 for
any Xe.

Thus, if X is stochastically increasing in 6, X tends to have larger
values as 6 increases.

As we saw above T; and T, have the following probability distributions:

m
Tl 2= "~ F(2-p, m, dl)

-

T2 k-p

~ F(k-p, m, do).

We also saw that, if G(x; Ty Tos A) 1is the distribution function of a
F(rl, Ty, A) distribution, G(x; Tys T A) is strictly decreasing in

A > 0 for any value of x.

This shows that T, is stbchastically strictly increasing in d1 and T, is
stochastically strictly increasing in dj.

In view of (3.22) this means that under Hy the random variable T, tends
to be small, whereas T} tends to have larger values under H; as dl
increases. On the other hand, T, tends to be small under H;, but under

Hy the random variable T, tends to have larger values as dy increases.




Schematically, we have:

Table 1: Behavior of T = (Tl’ TZ)

Hy Hy

Ty
Ty

Since a test ¢ is given by specifying the probability ¢(t) that Hj is
rejected for every possible outcome t of T, it is natural to select
tests with large values of ¢(t) when T; is large and T, is small, and
with small values of ¢(t) when T, is small and T, is large.

From the practical point of view it is desirable to have nonrandomized

tests and we therefore consider tests of the type given by

a2 + bZTZ
(3.23) $(T) = 1 4if § = T F5 T <c

1 171~

a2 + b2T2

a1 + bZ'I‘2

0 if s = > c,

where a; > 0, a; > 0, b; > 0 and b, > 0.

That is, we consider tests with critical region S { c and it is easily

seen from the above scheme that the test statistic S tends to be large
~under Hy and small under H;.

With respect to (3.23) we make the following remarks.

In the first place we note that (3.23) specifies a whole class of tests,

since with every choice of aj, ap, bj, by and c there corresponds a

test.

Secondly, the reason for defining S as the ratio of two linear functions

is that this choice yields computable tests.

In the third place it should be noted that we do not consider tests with

b, = 0 or b, = 0, because this would mean that we ignore the information

contained in T; or T, (or both).




The restrictions b; > 0 and b, > 0 imply that in specifying tests of the
type (3.23), we can take without loss of generality b, = b, = 1.
This follows from the fact ;hat the event

s=82+b2T2< .
al+b1T1—

with a; 20, ay 20, b, > 0 and by > 0 is equivalent to

* *
with al_>_0, a,
b a a b
* ) 1 % *
S =S—, a, =—, a, ==—and ¢ = ¢ —,
b2 1 b1 2 b2 b2

2> 0, where

Hence we can redefine (3.23) as

a, + T

2<c

(3.24) ¢(T) =1 4if S = ;—1-—‘:—,1;;_

a, + T

2 2
=0if § = —=> ¢,
al+Tl

where a) 20, a, > 0.

That is, we consider tests with critical region S < c where the test
statistic S is defined by |

a. + T
(3.25) s=—2_2

A L T
al + '1‘l
with a1_>_0, 82_>_0.

When p = k we take a, > 0, whereas ay > 0 in case p = 2, since otherwise
S is not defined.

Let F (s) be the distribution function of the test statistic S, i.e.

F,(s) = P (S < s), then it follows from (3.24) that the power function
m(¢, v) of ¢ becomes




(3.26)  w(¢, v) = E(4(D) = B(S < ©) = Fy(e)e

This means that the properties of the power function can be derived from

the distribution function of the test statistic S.
In the next section we shall show that for arbitrary 31.2.0 and azjl()

the distribution function Fv(s) satisfies the following properties:

(a) Fv(s) + 0 if dj + = and Fv(s) + 1 if dl + o, for all s > 0.
(b) Fv(s) is continuous in v for any s > O.
(c) Fv(s) is numerically computable for all v and all s > O.

(d) Fv(s) is continuous in s > 0 for any v.

At this point we recall that we were looking for a-similar tests with
the property of being computable and usable.

We shall now show that all tests belonging to the following class meet
the above requirements.

For any a (0 < a < 1) we define the class of tests Cq by

a2 + t2
(3.27) Gy = {6 |o(t) =1 if';;f;—gz_g c, ¢(t) = 0 elsewhere,

where c satisfies Fo(c) = a; a; 20, a, 2> 0},

where t = (tl, tz) with tlzo, t2_>_0.

Note that for any fixed value of a there corresponds a test ¢ € C, with
every choice of ay and a,. This can be seen as follows. From (d) we see
that Fo(s) is continuous in s > 0 for any (al, az), which implies the
existence of a value of ¢ > 0 satisfying Fo(c) = o

When ¢ € Cq the power function of ¢ becomes

a2 + T2

(3.28)  wo, V) = E(6(D) = B (5= < c)

=P (5<ce) =F(c), VeuVuw,

where c is chosen in such a way that Fp(c) = a.
Therefore it follows at once from (b) that w(¢, v) is continuous in v.
Next we shall show that for any a the tests ¢ e (  are a-similar,

computable and usable.




Since ¢ satisfies Fo(c) = q, it is seen from (3.28) that =n(¢, 0) = Fo(c)
= o for any ¢ € Co» which shows that the tests ¢ € Ca are o—similar.
Further it follows from (c) that Fo(s) is computable for all s > 0. This
enables us to compute a value of c which satisfies Fo(c) = g. Once c is
known, according to property (c) we can compute w(¢, V) = F,(c) for all
V€ uwy Vo That is, any ¢ evCa is computable.

Finally, it is seen from (a) that #(¢, v) = F,(c) » 0 if dy + = and

(¢, v) = F,(c) + 1 if d; + =, which shows that any ¢ € Ca is usable.

~Having constructed for any a a class of a-similar tests with continuous
power function and satisfying the properties (iii) and (iv), the
question arises whether this class contains tests which satisfy the
property (v) (and consequently also (i) and (ii)).

However, before we shall investigate this question, it remains to prove
that the distribution function Fv(s) of the general test statistic S

satisfies the poperties (a) - (d). This will be done in the next
section.




4. The distribution function of the general test statistic

In this section we consider the distribution function Fv(s) of the
general test statistic S as defined in (3.25) of the preceding section.
We first write S in the following form
| \j
a, + T2 a, + U2/U4 a, + u2u2/u4u4

al + Tl al

(4.1) S =

= T T 2
+ UI/U4 a, + ulu1/u4u4
where use has been made of (2.15), (2.10) and (2.21) of Section 2.
From Section 2, see (2.16) and (2.17), we also know that the vector u,
L - ] v ] ]
defined by u (u1 uy Uy u4), satisfies

(4.2) u ~ n(6§, T),

where §' = (Gi Gé 0' 0') with 61 and 62 uﬁknown and where T is a
known matrix (see (2.17)).

Let z ~ n(0, I') where z' = (zi zé z& zZ), then the distribution of z
does not depend on §. Now if u = z + §, it follows that u ~ n(§, I).
That is, u in (4.1) and (4.2) can be written as u = z + § with

z ~n(0, T).

This shows that S can be written as
] ]
a, + (z2 + 62) (z2 + 62)/24z4
| ]
a, + (z1 + 51) (zl + 61)/z4z4

(4.3) S = Sé(z) =

with z ~ n(0, T).
We note that, since the distribution of T = (Tl’ T2) depends on §
through v = v(§) = (Vl’ v2) as defined in (2.28) and (2.29), it follows

from (4.1) that also Fv(s) only depends on § through v = v(§) = (vl, v2).
M M
= = 1 = = ! .
Further we recall that do I v 6!6, and dl X vlj 6161

3=0 2j 272 320
We shall now prove the properties (a) — (d) of the foregoing section for

arbitrary fixed values of 31.2.0’ 32.2.0'
(a) F,(s) + 0 if dy + = and F (s) + 1 if d; + = for all s > O.
Proof :

First consider Hye Then do.Z.O and dl = 0 or, equivalently, 6 = 0 and
from (4.3) we get




] ]
a, + (22 + 62) (22 + 52)/2424

1 ]
a; + 2121/2424

S = 86(2) =

Since dj = 6562 it follows that do + o if and only if at least one
element of the vector 62 + + o,
Now the random vector z has a n(0, T) distribution which is independent
of 6. So for every realization of z it is seen that (zz + 62)'(22 +6,)
+ « 1f at least one element of 62 + + «. Hence if do + o then SG(Z) + ®
for every realization of z. This implies that S + w with probability 1
if dy + =, which in turn shows that F,(s) = P,(S < 8) + 0 for all s if
d0+°o
In the second place consider H;. Now do = 0 and dl > 0, or equivalently,
§; # 0 and §, = 0.
From (4.3) we have:

? 1
a, + 2222/2424

a, + (z1 + 61)'(21 + 61)/22‘24

S = 86(2) =

In this case it follows from d; = 6161 that dl + o if and only if at

least one element of 6] + + =,

Again for every realization of z it is seen that (zl + 61)'(21 +6)) + =
if at least one element of 6 ++ =

Therefore, if dl + = it follows that 35(2) + 0 for every realization of
z. This implies that S » 0 with pProbability 1 if d; + =, which shows
that F (s) = P,(8<8) + 0 for s < 0 and F,(s) = P,(8§ < 8) + 1 for

s > 0, if d1 + ® and this completes the proof of (a).

(b) Fv(s) is continuous in v for any s > 0.

Proof:
From v = y(§) = (vl, v2) it follows that v + Vi if and only if § » 8x

for some 8% which satisfies Vx = V(8). Now for any realization of the

random vector z it ig seen from (4.3) that

lim 86(2) = 56 (z).
6+6,, *

Therefore, if Sy = SG*(Z)’ it follows that

lim § = S, with probability 1.
6+6,,




The latter result implies that

lim Fv(s) = Fv (s),

*
vV,

for all s where Fv*(s) is continuous.

Under (d) we shall prove that Fv(s) is continuous in s > 0 for any v.

Hence Fv*(s) is continuous in s > 0 and this shows that

lim F. (s) = F._ (s) for any s > O,
v v
VAV, *

which completes the proof of (b).
(c) Fv(s) is computable for all v and all s > O.

Proof:

From (4.1) we get

a, + T a

2 2 + U2/U4 U, + a,U

__2" %2
’
+0,/U, " U, +au,

2
1

(4.4) S =

al + T1 a

where U;, U, and U, are as given in (2.20) of Section 2.

Since a; > 0, ap > 0, Py(U; > 0) = Py(Up > 0) = Py(Us > 0) =1 it
follows that Py(S > 0) = 1 and consequently F,(s) = Pv(s‘s_s) = 0 for
s < 0. Thus we can restrict attention to the points s > O.

The event S s is equivalent to

U2 + aZU4
< s,

Ul + alU4 -

and since the latter event is equivalent to
it follows that
(4.5) S { s if and only if Qs—<- 0,

where the random variable Qg is defined by




(4.6) Qg = -8 U + U2 + (-als + a2) Uys 8 > 0.

From (4.5) we have P (S £ 8) = PV(QS_S_O) and if Gv(x, s) = PV(QS.S_x)
it is seen that

(4.7) FV(S) = Gv(os ),

for v € wy Y wy and s > 0.

In order to compute GV(O, s) we shall first derive the characteristic
function y,(t, s) of Qg
We get from (4.6)

itQg ei(—s)tUI+itU2+i(—als+a2)tU4)

(4.8) by(t, 8) = E(e °) = E(

B E(ei(-s)tUl+itU2)E(ei(-gls+a2)tU4)’

where 1 denotes the imaginary unit and where use has been made of the
independence of (Ul’ U,) and U,, see Section 2.

The first term at the right-hand side of (4.8) is the characteristic
function of (Ul’ U,) developed at the point (-st, t), whereas the second
term is the characteristic function of U, at the point (-a1s+az)t.

Now we know from Section 2 that U, ~ xz(m) and therefore we have

" -
(4.9) e ATV e ,

where A(s) is defined by
(4.10) A(s) = -a;s + a,.

We also know from Section 2 that

it U +1it, U M
(4.11) Ee 1 222 1 (e » £,
it1? "2
3=0
where Wj(tl, ty), 3=0, 1, oo, M are as given in (2.25) and (2.26).
Substitution of (4.9) and (4.11) (with t; = -st and t, = t) into (4.8)
yields:




M
(4.12) wv(t, s) =[ 1 ¥

j(—st, t)] (1-2ix(s)t) .
3=0

From (2.25) we get
I a4 —sv

(4.13)  yy(-st, ©) = (1-24(-8)t) 2 exp{it 10

=7i(=s)t)
_ker

v
(1-2it) 2 exp{it 20

I-Zit}°

Since, in general,
- L
2 ite
(1-2it) exP{l—Zit}

is the charactéristic function of a xz(r, 8)distribution, and since the
characteristic function of the sum of 2 independent random variables is
equal to the product of the characteristic functions, it follows that
(4.13) is the characteristic function of

"Svlo(S) + Vzo(S),

where Vlo(s) and VZO(S) are independent random variables with the
following distributions

Vio(8) ~ X281, vy
(4.14)
Vao(s) ~ x2(k-r, vap).

In a similar way from (2.26) we have

(4.15) Yj(-st, t) = (1-21(1-s)£ + és(l-pj)tz)

(1+213t)v2j - s(l—Zit)vlj

exp{it

1-2i(1-s)t + As(l-pj

for j=1, 2, ..., M, where P3 and my are given numbers, see Section 2.

The terms at the right-hand side of (4.15) can be factorized as follows.

(4.16)  1-21(1-8)t + 4s(1-py)t? = (1-213}4(8)) (1-212y5(s) L),




A 4(s) = 3(1-8) - (1-9)% + 4s(1-p.)

P3

- :
by (8) = H(1ms) + W (1-s)% + 4s(1-p,),

j = 1’ 2’ ..l’ M.

We also have

(14+2ist)v

oo18) 24 ~ s(l-Zit)vlj 3lj(s) rlj(s)

Azj(S) rzj(S)

+

= - — 9
1-2i(1-8)t + 45(1—pj)t2 1 Zixlj(s)t 1 Zixzj(s)t

where
= clj(s)VZj + dlj(s)vlj

= CZj(S)VZj + d2j(s)v1j

Alj(s) + s
Alj(S)[Alj(S) - Azj(S)]

) Azj(s) + s
xzj(s)[xzj(s) - Xl

j(s)]

-S[Alj(S) 1]
xlj(s)[xlj(S) - ij(s)]

dlj(S) =

-s[Azj(s) 1]

() = Ty, (&) = AT

d2j

=1, 2, ve., M.

Substitution of (4.16) and (4.18) into (4.15) yields
m,
-l Ay L(8)T

(s)t) 2 exp{it 112 Zikij

(s)

(4.21) ¥.(-st, t) = (1 - 24)) (s)t}

3

3

A, (s)T

(1 - 212,,()t) exp{it =2 21%, 4

(s)
(S)t}’




Using the same argument as before it is seen that (4.21) is the

characteristic function of

where the random variables Vlj(s) and sz(s) are independent and has the

following distributions

vy3(8) ~ x(mys 115(8))
(4.22)
Vy5(8) ~ x(ms,s Tp5(8)),

for =1, 2, eee, M.

If we define py = 0 we can extend (4.17) to the case j = 0. This yields
Alo(s) = =g and Azo(s) = 1. By doing the same for (4.19) and (4.20) we
obtain clo(s) = 0, czo(s) =1, dlo(s) =1, dZO(S) = 0 and consequently

T10(8) = vjo and T90(8) = Vyqe
Hence, if we define m 5 and my3 for j=0, 1, eee, M as

mlo = Q-I‘
mzo k-r

mlj mzj = mj, j= 1, 2, eoey M,

it is seen from (4.13), (4.14) and (4.21), (4.22) that

m, .
- _%l A (8D 1y 4(8)
(-st, t) = (1 - Ziklj(S)t) exp{it 1 - zixlj(s)t}

4.
(4.24) wj

m
-2 A, .(8)1,.(8)

2 (s)t) 2 exp{it 2] 2]

J 1= 20h,(s)t

(1 - 2ix s

for j =0, 1, «ee, M, is the characteristic function of

Alj(s)vlj(s) + AZj(S)VZj(s)’




where the independent random variables Vlj(s) and sz(s) are distributed
as follows

Vlj(s) ~ xz(mlj, le(s))
(4.25)
Vp3(8) ~ xP(myg, Tp5(s)),

=0, 1, eee, M.
With respect to the coefficients Alj(s) and Azj(s) it should be noted
that

Alj(s) < 0, Azj(S) >0
(4.26) Alj(s) + Azj(S) = l-s

Alj(s)AZj(s) = ‘S(I“Dj)’

for j = 0’ 1’ ..., M.
Further it is easily verified from (4.20) that

clj(s) > 0’ czj(S) > 0, dlj(s) > 0 and dzj(S) >0

for j = 1, 2, veey M.

Let us now return to the characteristic function wv(t, s) of the random
variable Qg in (4.12).

Since the characteristic function of a sum of mutually independent
random variables 1s equal to the product of the characteristic functions
it follows from the above results that Qg can be written as

M

4027 =

( ) Q jEO[Alj(s)Vlj(s) + Azj(s)sz(s)] + A(s)V(s),
where the random variables Vi0(s), Vi10(8)5 ooy Viu(s), Voo(8)s «oe,
Vou(s), V(s) are mutually independent and where

Vlj(s) ~ xz(mlj’ le(s))

} j = 0, 1, soey M
(4.28)  Vyy(s) ~ x?(mzj, T55(8))

V(s)  ~ x(m).




It also follows that wv(t, s) becomes

m, . m, .
N | -2
2 2
(4.29) v (ty, s) = [ n1 (1- 2ix, .(s)t) (1 - 2ix,.(s8)t) ]
v =0 13 2j
m
-3 M Alj(S)rlj(S) Azj(S)rzj(S)

(1 - 2ix(s)t) exp{it I [ + == 1}.
3=0 1 - Ziklj(s)t 1 Zikzj(s)t

Note wv(t, s) is completely known for every choice of a; > 0, a, 2 0,

vV euwyUuw and s > O.

As is shown is Appendix B, see (B.25), for a random variable of the type
considered in (4.27) with characteristic function (4.29), we have the

following inversion formula
1 -itx
(4.30) G (x, 8) =5 -] {Im(y (¢, s)e )/t}dt,

where in general, Im(z) denotes the imaginary part of the complex number
z, i.e., In(z) = (z - z)/(21) and where Gv(x, s) is the distribution
function of Qg-

The value of the integrand t = 0 is given by

def. —itx

)/t} = E(Qs) -X.

In(y, (t, s)e Tty /¢ = lin{In(y(t, s)e

t=0 £ 40

With the aid of (4.7) it follows from (4.30) that
1
(4.31) FV(S) = GV(O’ S) =E - {Im(ll)v(t, S))/t}dt,

for any a; > 0, a, > 0, v € wy VU w; and s > 0.
Also,

In(y (t, ))/t|, o = EQ),

where it is not difficult to verify that

M
(4.32) E(Q) = j:o lklj(S)(m1j + le(s)) + xzj(s)(m

= -s(z-p+d1) + (k—p+d0) + (-als + az)m.

23 + sz(s))] + A(s)m




We recall that

M M
d.= ¢ v,.,d = I v, . and m = ntp-k-L.
0 3=0 2’ "1 =0 1j
It should also be noted that wv(t, s) has a simple form at the point

v = 0 since for v = 0 we get tlj(s) = rzj(s) =0, j=0, 1, ¢ee, M. This
yields

M 2y _ D23

Volts &) = [jgo (1-212 4(8)) 2 (1-212 4(8)t)

(1-2ix(s)t) .

Now the function Im(y (t, s)) can be determined and as is shown in

(B.26) of Appendix B, the formula (4.31) can be written in the following
way

sin ev(u, s)

du,

(4.33)  F (s) =G (0, 8) =5 - é

u v, (u, s)

where yv(u, s) and ev(u, s) are given by

" 213 P23 n
Yo ) = 11+ a2 (ed) ¢ (a4 (e 4 1+ ey’
520 j j

2 2 2 2
expik ? [rlj(s)xli(s)u s tzj(s)xzj(s)u
20 1ty 14 a0

M

jEo[m1j arctg(xlj(s)u) + mzjbarctg(xzj(s)u)

1
ev(u, 8) =3

tlj(s)llj(s)u sz(s)xgj(s)u]

<+

+
2 2 2 2
1+ Al(s)u 1+ Azj(s)u

+ -;- m arctg(A(s)u).




The value of the integrand at u = 0 is given by

sin ev(u, s)

u Yv(u, 5) u=0 = %.E(Qs)’

where E(Qg) is as given in (4.32).

For any a; > 0, a5 > 0, Vv € wy VU w) and s > 0 we can compute F,(s)
through numerical integration of the right-hand side of (4.33).

The computerprogram FQUAD computes Fv(s) to any desired degree of
accuracy. This program is developed by Louter and can be found in Koerts
and Abrahamse [6]. The above method of computing the distribution
function of S (or QS) is usually called Imhof's method and for more
details on this numerical integration we refer to Appendix B. This
completes the proof of (c).

Before we shall prove property (d), we make the following additional
remarks.

In the first place we note that the computations are much simpler when

v = 0. In this case we have

sin eo(u, s)

du,

1 1%
(4.36)  F,(s) =5 - -;(f)

u yy(u, 8)
where

m, . m2.

M D1 m
Yolu, &) = [ 11+ 22 (3d) * 1+ 2 (?) 100+ aBere®)
$=0 3 3

m

M
eo(u, 5) =-% jfo[mlj arctg(xlj(s)u) + m2j arctg(xzj(s)u)]

+-%-m arctg(A(s)u).

For the value of the integrand at u = 0 we get

sin eo(u, s)

I PRI _ _
u yo(u, 8) | o = 5[-s(2-p) + (k-p) + (-a;s + a,)m].

In the second place, for the applications it is important to see that

0 <M< min(k, £).




Now, usually k and & are small and this shows that, in most cases, M and
therefore also the number of terms in (4.33), (4.34) and (4.35) will be small.

(d) F,(s) is continuous in s > 0 for any v.

Proof:
Consider the random variable Qg as defined in (4.6). With the aid of (2.20),
(2.16) and (2.17) of Section 2 we can rewrite Qg in the following way

(4.38) Qg = qg(u) = -sulu, + ulu, + (-a

]
1% 9y, s+ a))uu

1 4

| - v ' ] ] ~
where u (u1 uy uz u4) and u ~ n(§, T).
Consider an arbitrary s, > O and let Qs* = qs*(u).

For every 6 and evéry realization of the random vector u it follows from
(4.38) that

lin g (w) = q_ (),

*
S+S*

which shows that Qg *+ Qs* with probability 1.
If v = v(§), the latter property implies that

1im Gv(x, 8) = Gv(x, 5,)
8+s
*
for all x where G, (x, s,) is continuous.
Now it 1is shown in Appendix B (see (B.17)) that Gv(x, s) is continuous in all
x (for any v and any s > 0). It follows that G, (x, s,) is continuous in x = 0

and therefore we have

lim G (0, 8) = G_(0, s,).
S-PS*

Since F,(s) = GV(O, s8) (see 4.7)) we obtain

lim Fv(s) = Fv(s*)

S+S*
for any v, which proves the desired result.
At the end of this section we recall from Section 3 that a particular Cd-class
test is specified by first fixing a value of « and then chosing a test ¢ € C,
by fixing a; > 0 and a22_0.




This test has critical region S  c, where c has to be taken in such a way
that Fo(c) = Q.

So it follows from (4.36) that we have to solve the equation (i.e., find the
value of ¢ which satisfies)

sin eo(u, c)
du = a.

L_17
2 o U yo(u, c)
It will be clear that this requires an iteration procedure, where within each
iteration we have to perform a numerical integration.

Since in general the critical values c cannot be tabulated it seems preferable
to compute the p-value (critical level) of the test, instead of the critical
value.

The p-value is defined by

sin eo(u, S)
u Ao(u, S)

du,

1 17
(4.39) FO(S) =-2-—;£

where S is the test statistic.

Obviously, in order to compute FO(S) no iteration procedure is required.

The procedure where HO is rejected when S_S;c with ¢ satisfying Fo(c) = o 1s
precisely equivalent to the procedure whgre HO is rejected when FO(S):£ Ce
That is, the p-value FO(S) can be thought of as a standardized test statistic
which for v = 0 has a uniform distribution over the interval (0, 1).




5. Properties of the Chfclass tests

In Section 3 we saw that every test ¢ € Cy 18 a~similar and has the
properties (iii) and (iv) (i.e., it is computable and usable). It is
important to note that ¢ possesses these properties for any problem of
testing linear hypotheses, that is, regardless of the particular
regressor matrices X and Z.

Now the question arises whether ¢ has level a or is unbiased, and, if
the answer is yes, whether ¢ is strictly discriminating. In other words,
we may ask whether ¢ € C, satisfies the properties (i), (ii) and (v) as
formulated in Section 3.

The answer to this question turns out to depend on the specific testing
problem, that is, it depends on the particular matrices X and Z.

To be more specific, we shall see below that when the quantity

r = rank(X'Z) satisfies certain conditions, every test ¢ € C, possesses
the properties (i), (ii) and (v) for any value of a.

As we saw in Section 3, when the a-similar test ¢ has a continuous power
function, property (v) implies the properties (i) and (ii). Since the
power function of any ¢ ¢ Ca is continuous in v it suffices to verify
whether ¢ satisfies property (v).

Now, as was already noticed before the following stronger property

(which implies (v) for any ¢ ¢ Cy) 1is often more easy to verify:

(vi) For v € wg the function w(¢, v) is strictly decreasing in each
of the variables Va3 (3 =0, 1, ¢oe, M) and for v € w; the
function (¢, v) is strictly increasing in each of the
variables V13 (3 =0, 1, ¢eey, M.

We shall investigate how the power function w(¢, v) depends on the

parameters Vyn, Vy), ees, Vo under H, and on the parameters Vi, Vj;»
seey VlM under Hlo

In order to do this we shall derive the partial derivatives

o
—-%%'L), 3= 0, 1, ees, M

23

for v € wg and




, 3=0, 1, eee, M

for v € wye
We know from Section 3 that a test ¢ € C4 has the following power

function
(5.1) w(d, V) = Fv(c), Vo€ uwy U o,

where Fv(s) is the distribution function of the general test statistic S
(as defined in (3.25)) and where c satisfies Fo(c) = Q.

Moreover, in Section 4 we have shown that
(5.2)  Fy(s) = 6,(0, 8),

where Gv(x, s) is the distribution function o6f the auxiliary random
variable Qg (as defined in (4.6) or (4.27)); and also that (see (4.30))

~itXy/¢)at,

(5.3) G,(x, 8) =5 - {Im(y,(t, s)e
where wv(t, s) is the characteristic function of Qg as given in (4.29).
The above results show that the partial derivatives of n(¢, v) with
respect to ¥ and V)3 (j =0, 1, eeey M) can be found from (5.3), since

an(4, v) _ an(O, c)
szj avzj
an(e, v) _ %% ©

avlj avlj

(5.4)

j = 0’ 1’ LI Y Mo-

For this reason, from (5.3) we shall first derive expressions for

antx, 8) an(x, 8)

and ~,
avzj avlj

for =0, 1, eeey M, any x (-» < x < @) and any s > O.
We start with v € wy. As is shown in Appendix C we may differentiate the
right-hand side of (5.3) under the integral and this yields, see (C.25):

an(x, 5)

8v20

(5.5) = - go’v(x) S)




for =« { x { », all s > 0, all v € wg and any a; >0, a, > 0, where
go’v(x, s) is the probability density function of the random variable
Qo,s as defined in (C.18),~(C.19) and (C.20) of Appendix C.

Since go’v(x, s) is a probability density function it follows that
go,v(x, §) > 0 for == < x { =,

However we shall show that in this case we have go’v(x, s) > 0 for

-0 { x { =,

In order to see this, we observe that Qo,s is a sum of mutually
independent random variables. Except for trivial cases this sum contains

at least one random variable, say Wi, with probability density function
£1(x) >0, x>0
fl(x) =0,x<0
and at least one random variable Wy with probability density function
fz(x) >0, x<0
fz(x) =0, x> 0.
That is, QO,s can be written as
(508) QO,S = Wl + WZ + W3,
"~ where Wi W, and W, are mutually independent and where W3 has an
arbitrary density function f3(x).
Let W =W, + Wy, then the probability density f(x) of W is the
convolution of the demnsities fl(x) and fz(x), i.e.,

(5.9) f(x) = | £,(x-w)f (W)dw, == < x < .

From (5.6) it follows that (5.9) becomes

(5.10) f(x) = [ fz(x-w)fl(w)dw, - ¢ x { =,
0

Suppose that x > 0, then according to (5.7) we have fz(Xew) = 0 for




w < x and it is seen from (5.10) that
£(x) = [ £,(x-w)f, (W)dw, x > 0.
X

On the other hand, when x < 0 it follows that f,(x-w) > 0 for w > 0 and

we get
f(x) = f fz(x—w)fl(w)dw, x < 0.
0

This shows that W has the following density

f(x) = f fz(x—w)fl(w)dw, x>0
X

f(x) = f fz(x—w)fl(w)dw, x < 0.
0

Since the integrand fz(x-w)fl(w) in (5.11) is always strictly positive
it is seen that

(5.12) f(x) > 0 for =» < x { =,

From (5.8) it follows that QO g = W+ W3 with W and W3 independent and
’ .

in a similar way we get

(5.13) 8y (%> 8) = ] £(x-w) 5 (W)dw, == < x < =,

-0

Now suppose that f3(x) > 0 for x € A, where A is arbitrary and f3(x) =0
elsewhere. '
This yields

(5.14) 8p,v(%X, &) = / E(x-w) £, (W)dw, == < x < =
A

From (5.12) it is seen that the integrand f(x-w)f3(w) in (5.14) 1is
always strictly positive and this shows that

(5.15) go’v(x, 8) > 0, =» < x € o,




for all s > 0, all v € w, and any a; > O, 8210.
Together the results (5.4), (5.5) and (5.15) imply

(5.16) e, v) -8, .(0, c) 0, V€uw,
v o,v 0
20
for every test ¢ € C and any value of a.
Next we consider 3G,(x, s)/av2j for =1, 2, e, M.
As is shown in Appendix C, see (C.39), in this case differentiating
(5.3) with respect to Va3 yields

9G (%, s8)
(5.17) —%’T = -lg; ,(x; 8) = 288} (x, 8],
for =1, 2, eoe, My =2 < x < =, all 5> 0, all v € w, and any a, > 0,
ap 2 > 0.
Here g3, v(x, s) is the probability density function of the random
variable Q4 g as given in (C.33), (C.34) and (C.35) of Appendix C and
g',v(x, s) is defined by

3g . v(x, 5)
1 = —JJ——
gj,v(x’ s) ax L4

It follows from (5.4) that

am(o, v) '
(5.18) _-77L___ = -[g, (0, ¢) - 2cgj’v(0, o)l,

a 2j j’
for j=1, 2, eee, My v € wgs every test ¢ € C“ and any value of «a.
In this case we cannot conclude that 3n(¢, v)/avzj <0 forve Wy, every

test ¢ € Cu and any value a.

From (5.18) it is seen that, in general, it will depend on ay, 8y, C and

the point v € wg whether or not —I%EL——l < 0. That is, it depends on the
V23
choice of a, the particular ¢ ¢ C, and the point v € Wy e

However, when m;j = &-r > 2 it is shown in Appendix C, see (C.46), that
(5.17) can be rewritten as

) N BGv(x, s) *
5.19 _— - X. 8
avzj gj,v( ] ).
for j =1, 2, re - < x<w= all s>0, all v € w) and any a; > 0,
a, 2 > 0, where gj (x, s) is the probability density function of the




*

random variable Qj g 38 defined in (C.41), (C.42) and (C.43) of Appendix
’

C.

By using the same argument as before it is seen that

*
(5.20) gj,v(x, s) >0, = { X { o

for 3 =1, 2, ..., M, all s > 0, all v € w, and. any al_z_o, 82_2_0.
Hence, it follows from (5.4) that, under the condition r £ £-2, we have

*
(5.21) '23%%*—21 = -gj,v(O, c) 0, ve wys
23

j=1, 2, «¢s, M, for every test ¢ € (C, and any value of a.
Moreover, as is proved in Appendix C, see (C.51), when m = ntp-k-2 > 2
and A(s) = -a;s + a; = -8 for all s > 0, we have

oG _(x, s)
(5.22) —0—— = -g’Jf,v(x, §) < 0,

avzj
for 3 =1, 2, eeey, My = { x {( », all s > 0 and all v ¢ Wy where now
gg’v(x, s) is the probability density function of Qz,s with A(s) = -s.
Except for trivial cases the condition mtp-k-2 > 2 is always fulfilled.
On the other hand it is seen that -a;s + a;, = -s for all s > 0 if and
only if a; = 1 and a, = 0.
As we know from Section 3, see (3.27), the choice of a; =1 and a, = 0

corresponds to the test, say, ¢2 € Cy (for any a) given by

T

2
T+T1.3¢

¢2(T) =] 1if § = )

T,

I+1,

> Ce.

where c is chosen in such a way that Fo(c) = Q.
It follows therefore from (5.4) and (5.22) that the power function
n(¢2, v) of the test ¢, € C, given by (5.23) satisfies:

8ﬂ(¢2, v)

avzj

*
(5.24) = -gj’v(o, c) <0, ve Wy

for j=1, 2, «es, M and any value of a.




This completes the case v € wje.

We proceed with the case where v € w, = w U {0}.

1 1
In a similar way, with the aid of Appendix C, we can deduce the

following results from (5.3).

3Gv(x, s)

avlo

(5.25) = ShO,v(x’ 8),

for = ¢ x <=, all 6> 0, all v ¢ w and any a, > 0, a, > 0, where

2

ho v(x, s) is a probability density function which satisfies
’

hO,v(x’ g) > 0 for = ® { x € o,

Thus it is seen from (5.4) that

(5.26) am(e, v) = cho v(0, c) >0, vew

v

10 1

for every test ¢ € Co and any value of a.
Moreover we have
3G _(x, s)

(5.27) —;’-v—l—-—— = s[hj’v(x, s) + Zhﬁ,v("' 8)],
J

for j=1, 2, eee, M =< x < w, all 8 >0, all v ¢ Bl and any a; > 0,

32.2.0’ where hj,v(x’ s) is a probability ‘density function and where

eh, (x, s)
h;] J(x 8) = _i:if__

ox

It follows from (5.4) that

(5.28) —91'%:L)= elh; (0, ©) +2n} (0, )], v ew

13 1’

for =1, 2, .u., M, every test ¢ € Cu and any value of a.
Again 1t depends on the choice of a, the particular test ¢ € Ca and the
point v € w; whether or not n(¢, v)/avlj > 0.
However, when Wy = k=r > 2 we can rewrite (5.27) as follows:
an(x, s)

*
(5.29) T = Shj,v(x’ s),

for =1, 2, ¢eey M, =@ < x { w, all 5 > 0, v € 0, and any a; > 0,

1




*
a2 > 0, where hj (x, s) is a probability density function with

(x, g) > 0 for == ¢ x € =,
Hence, it follows from (5.4) that, under the condition r £ k-2, we have:

*

(5.30) 2 V) _ ¥ 0, ) >0, veuw,
avlj sV 1

i=1, 2, «.., M, for every ¢ € C, and any value of «a.

Moreover, when m = n+p-k-2 > 2 and A(s) = -a;s + a5, =1 for all s > 0,

we get

an(x, s)

avlj

(5.31) = sh L% 8) >0,

for j=1, 2, eeey My =2 { x { o, all s > 0 and all v € wl’ where

(x, s) is the probability density function from (5.29) with
X(S)
In this case it is easily seen that -a;s + a; = 1 for all s > 0 if and

only if a; = 0 and a; = 1.

We know from Section 3 that the choice of a = 0 and a, =1 corresponds

to the test, say, ¢3 € Cy (for any a) given by

1+ T
$5(T) = 1 if § =

where ¢ satisfies Fo(c) = Q.
It is seen from (5.4) and (5.31) that the power function n(¢3, v) of the

test ¢3 € (, as defined in (5.32) has the property

a“(¢3’ V)

. )
(5.33) 5y = Chj,v(o’ c) >0, ve s

13
for j=1, 2, «esy M and any value of a.
This completes the case v ¢ Wy
Before we summarize the results of this section we recall that the
following quantities are given or can be deduced from the regressor

matrices X and Z:




the number of observations

the number of columns of X

the number of columns of Z

Po <py € eee < py« Py = 1 are the M+2 different
eigenvalues of the matrix (X'x)'lx'Z(Z'Z)'IZ'X (or
equivalently, (2'Z)~1z'x(x'x)"1x'2)

My, eee, My are the multiplicities of the eigenvalues P1>»
Pos ey Py

multiplicity of the eigenvalue P+l = 1
M

p+t+ I m,
=1

It is not difficult to verify that:

L

following

any a and

dim(M(X))

dim(M(Z))

dim(M(X) n M(Z))
rank(X'Z)

p £ r £ min(k, 2)

r if and only if M= 0

conclusions can be drawn from the results of this section.

every test ¢ € Cy we have:

n(¢, v) is strictly decreasing in Voo When v € uy.

If r < 2-2 the function n(4, v) is strictly decreasing in each V23

for j=1, 2, ¢eey, Mwhen v ¢ wye

n(¢, v) is strictly increasing in Vio when v € wy .

If r < k-2 the function n(¢, v) is strictly increasing in each Vi3

for j = 1,

2, «eey M when v ¢ wye

Further we have for any a:

(e) The power

function n(¢2, v) of the test ¢, 1is strictly decreasing in

each V23 for j=1, 2, .., Mwhen v ¢ wge

(f) The power

function n(¢3, v) of the test ¢5 is strictly increasing in

each MR for =1, 2, oo, M when v ¢ wy .




It should be emphasized that the latter two properties are valid
regardless of the value of r.

Froﬁ (a), (b), (c) and (d) it follows that when r = p or

r < min(k, 2)-2, for any value of a all the tests ¢ € C, have the

property (vi).
Further it is seen from (a) and (e) that w(¢2, v) is always strictly

decreasing in each Va3 for j=0, 1, «e., M when v € wy e

In other words, for any a the test ﬂ(¢2, v) has level o (i.e., is an
exact test), and moreover, it has the desirable property that

m(¢,, V) < a for all v ¢ mo\{O}.

It also follows from (c) and (f) that n(¢3, v) is strictly increasing in
each V15 for j=0, 1, ¢eey, Mwhen v ¢ Wy

That is, for any a the test ¢3 € Cy has a guaranteed power, i.e.,

n(¢3, v) > a for all v € Wy .

Whether the tests ¢, and ¢4 satisfy property (vi) depends on the value
of r and in the next section we shall try to find for any r a suitable

test ¢ € C, which satisfies property (vi).




6. The tests ¢1, ¢2 and ¢3

In the foregoing section we saw that it depends on the value of
r = rank(X'Z) whether the tests ¢ ¢ C, satisfy property (vi).

We therefore consider the following situations:

(A) r=p
(B) r>p

Case (B) is divided into the following subcases:

(B.1) r < min(k, 2) - 2
(B.2) 2-2 < r £ k-2
(B.3) k-2 < r £ 22
(B.4) r > max(k, &) - 2

Note that the above possibilities are mutually exclusive and exhaustive.
With the aid of the results (a) - (f) from Section 5 we shall try to °

find in each of the above cases a test ¢ ¢ Ca which satisfies property
(vi).

Case (A): We already saw in Section 5 that for any value of a all tests
$ € C& have property (vi).

Note that in this case we have v = (vl, VZ) = (vlo, VZO) since M = 0
when r = p,

Case (B.1l): Again for any value of a all the tests ¢ € C, satisfy
property (vi). As was already remarked in Section 5, this easily follows
from the properties (a), (b), (c) and (d).

Case (B.2): Since r L k-2 it follows from (c) and (d) that any test

¢ € C, has a power function n(¢, v) which is strictly increasing in each
of the variables MEL j=0,1, «eoe, M when v ¢ w;e This implies that in
particular the test ¢, ¢ Cq has this property. On the other hand it is
seen from (a) and (e) that n(¢2, v) 1is strictly decreasing in each Va3
for 3 =0, 1, ..., M when v € wy. This shows that for any a the test

¢2 € Cq has property (vi).

The test ¢, has critical region (see (5.23))
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(6.1) S

where c, is chosen in such a way that Fy 0(c2) = a. Here Fz’v(s) is the
, !
distribution function of the test statistic S,, i.e.,

Fz’v(s) = PV(SZS S)c

Case (B.3): Since r £ 2-2 it is seen from (a) and (b) that the power
function w(¢, v) of any test ¢ € Ch is strictly decreasing in each Vo3
j=0,1, .o, M when v € wjpe Thus in particular the test ¢5 € Cy has
this property. Now it follows from (c) and (f) that n(¢3, v) is strictly
increasing in each V1j for j=0, 1, +.., M when v € w;. Hence, for any
a the test $3 € Gy has property (vi).

We know from (5.32) that the test $3 has the following critical region

1+ T2
T1

(6.2) £ec

3’

where cy has to be taken in such a way that F3’0(c3) = a. The function
Fq v(s) is the distribution function of the test statistic S, that is,
H

Fy 4(s) = P(53 < 6).

Case (B.4): On the basis of the properties (a) - (f) from Section 5 we
cannot find a test ¢ € C, which satisfies property (vi). In this case it
seems reasonable to take the test boe As we saw in Section 5 this test
has always level a (that is, it is always an exact test) and satisfies
the desirable property that n(¢2, v) < a for all v € w,.

Moreover, since $o € Cys it follows that this test is o-similar,
computable and usable, where we recall that the latter property means

that

n(¢2, v) + 0 if do

n(¢2, v) + 1 if d,




Next we consider the cases (A) and (B.l).

Since in these cases every test ¢ € C, has property (vi), it is not

clear which particular test we should take.
In this situation we prefer the test b1 € Cy which corresponds to the
choice of a; = a; =1 (see (3.27) of Section 3), i.e.,

1+T

2 < c

$,(T) = 1 1f 8 "1y, <

1+ T2

=OifS=T_-’_—-ﬁ

> c,

where c satisfies Fo(c) = Q.

Equivalently, we can say that the test ¢; has critical region

1+ T2
(6.4) ==—<c

1+ Tl-— 1°
where c; is chosen in such a way~that Fl,O(cl) = Q.
Here Fl,v(s) is the distribution function of the test statistic 81»
i.e., Fl,v(s) = Rv(Sljg 8)e
The reason for choosing $¢; is that this test turns out to be the
generalized likelihood-ratio (GLR) test with level o for the problem of

testing linear hypotheses, as is shown in Bouman [1].

‘ In general, when A is the GLR statistic, the GLR test with level a has
critical region

(6.5) A< A
where Ap has to be taken in such a way that

(6.6) sup Pr(A.S_AO) = a.

H,

In the case of testing linear hypotheses it is not difficult to show
(see_Bouman [1]) that

n

(6.7) A = sf.




Hence the level a GLR test has critical region
2

(6.8) S, £A

n_
1=0
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where c, has to be chosen in such a way that

(6.9) Zup PV(S1 S_cl) = Q.
0
Now, in general it 1is not clear how we can find the critical value Cye.

However, as we saw above, in the cases (A), (B.l) and (B.3) we have

(6.10) sup P_(S, < s) ='PO(SI‘S s),
w
0
for all s > 0.

This shows that in these cases c) can be fouﬁd from
(6.11) Fl,O(cl) = PO(SI.S-CI) = .

In other words, in the cases (A), (B.l) and (B.3) the test ¢; is the GLR
test with level a.

However, in case (B.3) we choose the test ¢3 instead of ¢1, since ¢3 has
the property (vi).

Although the GLR principle is not based on optimum consideratioms, it
has been very successful in leading to satisfactory procedures in many
specific problems.

Moreover, under fairly general conditions the GLR test possesses optimum

asymptotic properties.

Another, more practical, reason for choosing the test $; in the cases
(A) and (B.l) is the fact that the test statistic S, can very easily be
computed form the original data set (y, X, Z), as we shall see in
Section 8.

On the other hand, also from the ﬁractical point of view, in case (A) we

could perhaps better choose the tests ¢ and ¢4, since the critical
values c, and cy of these tests can be found from the central

F distribution. This can be seen as follows. In case (A) we have r = p
and therefore M = 0. It is seen from (2.19), (2.20) and (2.21) of
Section 2 that




where U;q, U and U, are mutually independent and posses the following
distributions

2
2
2

Note that dj = v,q and d; = v, since M = 0.’

The test statistics S, and S5 as defined in (6.1) and (6.2),
respectively, can be written as

From m = n+p-k-2 and the above results it easily follows that
Uy + U, ~ x2(n-k, d,)
10 4 e |
(6.15)

UZO + U4 ~ xz(n‘-f., do)o

Under Hy we have do_Z_O and d; = 0 and it is seen from (6.13), (6.14)
and (6.15) that

n-k
82 kp ~ F(k-p, n—k, do)

f‘-
S, -I;% ~ F(o-2, 2-p, d,)




When H; is true we have d; = 0 and dl > 0 and we get in a similar way

~ F(n-k, k-p, dl)
2

1
S g-

< ~ F(&-p, &, dl)
3

In order to find the critical values éz and cq we need the distributions

of Sy and S3, respectively, when v = 0. Now v = 0 if and only if dO = dl
= 0 and it is easily seen from (6.16) that for v = 0 we get
n-k

52 E:; ~ F(k-p, n—k)

2P | F(p-g. g-
83 ' F(n-2, 2-p),

which shows that in case (A) the critical values cy and cy can be found
from the tables of the central F distribution.

The results of this section can be summarized in the following table.

Table 2.

Situation

The test ¢;, ¢, and $3 have critical regions as defined in (6.4), (6.1)
and (6.2), respectively.
Finally we make the following remarks.




When |k—2|2;2 there always exists a test with property (vi). For if

]bﬂzj,mmeRMrbLZZM£¢2}.mui&eRMrpinM

k < 2-2. |

Since r < min(k, 2) it follows that |k-2| > 2 implies that

r < max(k, £) - 2. In other words, when |k-2| > 2 the situation (B.4),

i.e., r > max(k, £) - 2, never occurs and it is seen from the above

results that there always exists a test with property (vi).

We recall that property (vi) implieé the properties (i), (ii) and (v).
That is, when a test possesses property (vi) it has level a (i.e., it is

 an exact test) and it is unbiased and strictly discriminating.

The test ¢, is not defined in the case p = k < &, i.e., the nested case

with M(X) < M(Z) and M(X) # M(Z).

Obviously, this is a subcase of (A) and the critical regions of the

tests ¢; and ¢ become

(6.19) Lec

1+ T

1 1

and

1
(6020) S3 = 'ﬂ'_(_ C3,

respectively.

Both (6.19) and (6.20) are equivalent to the test with critical region

(6.21) 1T TE> e,

which is precisely the UMP invariant level o« test for this nested case
(see (3.6) of Section 3).

Similarly, the test ¢3 is not defined when p = £ < k, i.e., the nested
case with M(Z) < M(X) and M(X) # M(Z).

Again this is a subcase of (A) and the critical regions of the tests ¢
and $o are

and




(6.23) SZ = T2_<_C2,

respectively.
In this case (6.22) and (6.23) are equivalent to the test with critical

region

n—
(6.24) ‘ T2 —-—2.--<- C,
being the UMP invariant level a test (see (3.15) of Section 3).

Further it should be emphasized that under all circumstances, that is,

regardless of the value of r, the test 23 is a level a test, whereas ¢4

has guaranteed power greater than a.




7. The distribution functions of the test statistics

The distribution functions of the test statistics S;, S, and S5 can
easily be derived from the general formula of the distribution function
Fv(s) of the test statistic S as given in (4.33), (4.34) and (4.35) of
Section 4.

Since

_1+h
= ]
1 + Tl

the distribution function Fl,v(s) of S; can be obtained from Fv(s)
through the substitution of a, =a, = 1.

By making use of A(s) = -a;s + a, = l-s we get

(u, s)
1,v du,

(7.1) Fl,v(s) =
where

m, . m, .
A 2] o
2 2.4

M
(1 + xfj(s)uz) b a+ Agj(s)uz) 4 11+01-8)2u?)

Yl,v(u: s) = [on

sz(s)xgj(s)u2

2 2
M rlj(s)xlj(s)u "
2

eXP{% | 3
j=0 1 + Alj

+
2 2
(s)u 1+ Azj(s)u

(s)u) + m

arctg(A 23 (s)u)

arctg(a

M
T [m
A

1
81, (u, 8) ==
v 2 j

rlj(s)klj(s)u

1j 2]

1,.(8)A, . (s)u
2§ 727 +3i0 arctg((1l-s)u).

+
2] 2

+
2 2 2
+
1 klj(s)u 1+ xzj(s)u

The value of the integrand at u = 0 is given by

sin el’v(u, s)

@D S

= 2(n-0)-s(a-k) + (d, - sd)].

u=0




The coefficients o0 and m,q are defined as

m = g-r
10
(7.5)
mzo = k-r

The test statistic S, is given by

T2

1+ Tl

Hence, the distribution function FZ,V(S) of S, can be found from Fv(s)
through substituting a; =1 and a, = 0.

Since A(s) = -ajs + a; = -5 = Alo(s), the terms (1 + A%O(s)uz) and

(1 + A%(s)u?) in (4.34) and 1

2 10
(4.35) can be taken together. We get:

arctg(AlO(s)u) and %-m arctg(A(s)u) in

(7.6) Fz’v(s) =
where

m, .
; -

]

2 2, 4 2 2
Y?_’v(u, 8) = [j_I__IO(l + Ap5(8u) 1+ lzj(S)u )

M T .(s)A2 (s)u2 T .(s))‘z.(s)u2
exp{-l | 1 1) + 2] 2]
230 14 2 e 1 ) (e’

M
ez’v(u, s) n-% j:O[mljarctg(xlj(s)u) + mzjarctg(kzj(s)u)

le(s)klj(s)u
2
1j

sz(s)kzj(s)u

+ +

]o
(s)u? 1+ Agj(s)uz

1+ A

The value of the integrand at u = 0 is given by

sin e, _(u, s8)
(7.9) 2,V

1 .
u YZ,V(“’ 5) |0 = 51(k-p) - s(n-k) + (d; - sd))]




and o9 and my, are defined as

o9 = &-rim = m+p—k-r
(7.10)
mlo = k-r.

The test statistic S3 is defined as

1+ T2

Tl
This shows that the distribution function Fy ,(8) of S3 can be obtained
, .
from F (s) by substituting a; =0 and a; = l. Now we have A(s) = -a;s +
a, = 1= Ayg(s) and in this case the terms (1 + AgO(S)uz) and
(1 + Az(s)uz) in (4.34) and %-mzoarctg(kzo(s)u) and-l

5 arctg(A(s)u) in
(4.35) can be taken together. This yields:

(7.11)
where
(7.12)
and
(7.13) 83’v(u, s) = Ez,v(“’ 8).

In this case the value of the integrand at u = 0 is given by

sin € (u, s)
(7.14) 3,90 °

= 5 L(m=2) = s(2=p) + (4, - sd))]

u 73’v(u, s)

The coefficients o and oy, become

m,n = £-r
(7.15) 10

In the above formulae the following coefficients are used:




m = ntp-k-2
M
r=p+ I m,
=1 7
myy = mpy =Wy, = 1, 2, e, M

A 5(8) =% (1-s) --%\f(l—s)z + 4s(l = py)
9 j’: 0’ 1, LN Y M,

hg3(®) -1 (oo +%V’(l—-s)2 + 4s(l - pj)‘

where Po = 0

le(s) = clj(s)vzj + dlj(s)vlj
» J=0, 1, «ee, M,

rzj(s) °2j(s)v2j + d2j(s)v1j

- where
Alj(s) + s
Alj(S)[AIj(S) - kzj(S)]

clj(S)

Azj(s) + s
c,.(s) =
23 Azj(S)[lzj(S) Alj(S)]

-s[klj(s) -
Alj(S)[llj(S) -

-s[Azj(s)
Xp3(8) Ay () =

v

23

Vlj.

Note that under Hy, (v € mo) we have vy = 0, VZjEL 0, =0, 1, eoe, M.




This implies that 110(5) = clo(s)vzo = 0, rzo(s) = czo(s)vzo = VZO-Z-O’
rlj(s) = clj(s)vzj_z_o, tzj(s) = czj(s)vzj.z_o for j=1, 2, ¢es, M and
dg 2 0, d, = 0.

Under H, (v € ml) we get Vlj.Z.O’ Vo3 = 0, j=0, 1, eee, M and V13 >0
for at least one j. In this case it follows that Tlo(s) = dlo(s)vlo =
vip 2 0, Tzo(s) = dzo(s)vlo = 0, tlj(s) = dlj(s)vlj_z_o, tzj(s) =
d2j(s)vlj >0 for j=1, 2, «..y, M, where le(s) > 0, sz(s) > 0 for at
least one j and dy = 0, d; > O.

In particular when v = 0 the above formulae are of a simple form, since
in this case we have Vij = Vo3 = 0 for j =0, 1, ees, M and this implies
that le(s) = sz(s) =0 for =0, 1, «.., M and also dj = d; = 0.

The above results show that Fi,v(s)’ i =1, 2, 3 can be computed for any
s > 0and v € wo YU w through numerical integration.

With the aid of he above formulae we can compute the critical values,
the p-values and the power functions of the tests b1» 49 and ¢q.

The level a critical value cy of the test ¢i satisfies Fi,O(ci) = Qe

So we have to find the solution ¢y of the equation

1 1%
0

i=1, 2, 3.
The p-value of the test $; is given by

sin ei,O(U’ Si)

A
du,

1 15
aan Fo(s) =5 - é

i=1, 2, 3, where Si is the test statistic.
Since the power function n(¢i, v) of the test $4 is given by
(¢y, V) = Fi,v(ci)’ we have

sin ei’v(u, ci)

du,

(7.18) (4, V) =3 -1
0

u Yi,v(u’ Ci)

i=1, 2, 3, where v € wy v ml.




8. The computation of the test statistics and power functions

In order to apply the tests ¢;, ¢, and ¢4 in practice we have to compute
the values of the test statistics Sl’ 82 and S3, respectively, from the
original given data set (y, X, Z).

Moreover, if we want to compute the power function n(¢i, v) of the test
$; at a certain point Vv € wy VU w;, it is important to know how the
vector v can be expressed in terms of the original parameters (u, o),
where 0 > 0 and u = XB, B € R under HO or p= 2y # XB, Y € R under H;.
That is, we want to compute V14 and Vo for j =0, 1, ese, M from the
original parameter set (B8, Y, o). We start with the computation of §,,
82 and S3.

Since the test statistics are simple functions of the maximal invariant
statistic T = (Tl’ TZ)' we shall first investigate how T can be
expressed in terms of (y, X, Z).

We know from Section 2 that
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]
Ray.

The matrices Rl, R, and R, are submatrices of the transformation matrix

R as defined in Section 2, i.e.,’

(8.3) R=[R iR, {R IR, I(n).

(2-p) (k-p) (p) (m)




The substitution of (8.2) into (8.1) yields

' ]
T YRRy
1 y'RaRzy
]
y'RRYY

= ‘T““T‘
y RARA

Now it is important to note that it is not necessary to construct a
transformation matrix R, with the properties as stated in Section 2, in
order to compute T1 and T2. This can be seen as follows.

As is shown in Bouman [1], the columnvectors of the n x (n-k) matrix

[ng RA] form an orthonormal basis for the (n-k)-dimensional linear

subspace M(X) , which implies that

-1
' ' = = -
(8.5) RlRl + R4R4 MX I - X(X'X) "X'.

In a similar way it can be shown that

-1
(8.6) RZRé + RARZ = M I-2(2'2) 2!
Further we know from Section 2 that the columnvectors of the nxm matrix

RA form an orthonormal basis for the m-dimensional linear subspace
M(X) n M(Z) = M([X:Z]) , where m = m+p-k-2. Hence, if the
columnvectors of the n x (k+g-p) matrix G form an arbitrary basis for
the (k+2-p)-dimensional linear subspace M([X : Z]), it follows that

(8.7) R} = M, = I—6(c'6) 6.

How can we find such a matrix G?

We first observe that the number p = dim(M(X) n M(Z)) is given, since p
is equal to the multiplicity of the eigenvalue 1 of the matrix

x'x)"Ixrz(z'2) 1z (or equivalently, (2'2)"lz'x(x'X)"1%'Z) and since

we suppose that the eigenvalues and multiplicities of this matrix are
known. We recall that 0 < p £ min(k, 2).

In the second place we note that the number of columns that X and Z have

in common is at most equal to p. Now it is not difficult to see that we




can always find a n x (k-p) submatrix X, of X such that the column-
vectors of the matrix [XZ; Z] form a basis for M([X: Z]). If X5 X,
«es; X, denote the columnvectors of X, we take Ay = Z and A, = [x1 3A0].
Then we compute det(AiAl). If det (AiAl) = 0 we delete x; and take

A, = [xzs AO], whereas if det(AiAl) > 0 we take A, = [XZE'AII'

Next we compute det(AéAz). When det(AiAz) =0 we delete x, and take

Aq = [x3§ AO] or A3 = [x3§,A1], and if det(AiA2) > 0 we take

Aq = [x3: A5].

Proceeding in this way we obtain a n x (k+2-p) matrix [XZQ Z] with rank
(k+2-p), the columns of which form a basis for M([X :Z]).

Consequently, we can take
(8.8) G = [ng zZ].

In a similar manner we can find a n x (2-p) submatrix Z, of Z such that
the columns of the n x (k+£-p) matrix [X 522] form a basis for
M([X: Z]), that is, we can also take

(8.9) G = [Xx1z,].

It should be noted that only in the case when the number of common
columnvectors of X and Z is smaller than p we have to follow the above
procedure in order to find the matrix G.

In most applications however, the number of common columnvectors is
precisely equal to p and in this case the matrix G can very easily be
found through inspection. This follows from the fact that if the number

of common columns of X and Z is p, we have

X = [Xla X2] and Z = [213 ZZ]’

where X, and Z, are of the order nxp and satisfy X, = 2. Therefore we
can simply take G = [X,% 2] or G = [X EZZ]. Note that these latter two
matrices are essentially the same. That is, they contain the same
columns, only the order of the columns is different. With the aid of
(8.5), (8.6) and (8.7) we obtain from (8.4)




y'(RlRi + R Ri)y Y'R, R}y

4Ry
Y'R,RLY

y'™Myy - y'™™
y'Mgy

led

y'(RzR' + R R' )y - 'RARZ
y RaRzy

|l - \
y'Myy = y'™M.y
y'Moy

Next we consider the following three linear models
y=XB+u
(8.12) y =2y + u
y = G§ + u.
The least-squares estimators of B, y and § are
1y~ Ly
(X'X) X'y
voy—1o
(z'z) “z2'y

(c'6) ey
and the residual vectors become

uy = y - XB = Mxy

u, =y =2y =My

~

ug =y - G5 =My

This shows that




A A

= uguss

(8.15) into (8.10) and (8.11) yields

which shows that T; and T, can easily be computed from least-squares

regression of y on X, Z and G, respectively.

Finally, it follows from the definitions of the test statistics §;, S,
and 33 that

Alternative expressions for the’test statistics S, and S5 can be
obtained in the following way.

From G = [XZE 2] it is not difficult to verify that

10yl = 17y~1 )
(8.18) G(G'G)™ "G 2(2'2) 2" + MZXZ(XEMZXZ) XZMZ.




It easily follows from (8.18) that
-1
- - 1
(8.19) M, = My = X (X5,X.,) X
where the n x (k-p) matrix XZ* is defined by
(8.20) X2* = M2X2c

The result (8.19) implies that

= ' - =

where

(8:22) By, = (XX, ) XLy,

Note that 82* is the least-squares estimator of the parameter vector Box

in the linear model

Substitution of (8.21) into the expression for S2 as given in (8.17)
yields

1
UUx

where it should be noted that Bé* 7% 2*82* is the so-called explained
sum of squares in the linear model (8.23).

Similarly, from G = [X tZ,] we obtain
- 13 -1
(8.25) My - Moo= 2,,(2%,2,,)7 2b,,

where the n x (2-p) matrix Zyx is given by

(8026) Zz* = MXZZ'




This shows that

A A A A

(8.27)  wlu, - ulu. = y'(M, - M)y = §i*z§*22*§2*,

where

(8.28) Yy = (23,2, 28,y

That is, ;2* is the least—-squares estimator of Yox in the linear model
(8.29) Y = ZoxYox t+ u.

With the aid of (8.17) and (8.27) we get

]
YzYz

3 >~ ~
YouZokZoxY o

Here we see that ;5*25*22*;2* is the explained sum of squares in the
linear model (8.29).

Next we shall consider the computations which are required if we want to
express the power function n(¢1, v) of the test é4 in terms of the
original parameters (B, o) under Hy or (Y, 0) under Hj .

As 1s shown in Bouman [1], the parameters Vi and Vo j=0,1, seey M
can be expressed in terms of (B, Y, 0) as follows.

Under Hy we have:

v,. =0, 3 =0, 1, eeey M

13
B'H H!B

2
o)

9 j‘o, 1’ ooy M

where B € Rk, o> 0 and

(8.32) Hj = Vl—pj‘x'iuj, 3 =0, 1, cee, M,

with Po = 0.




Under Hl we have:

Y'K.Kly
v "—J'—l—ajgo’l’

1j c2

Vg = 05 3 =0, 1, eee, M,

where y € RY is such that Zy + XB, B € Rk, where again o > 0 and

(8.34) Ky = Vl-pj‘z'ivj, j=0, 1, eeey, Me

In the expressions (8.32) and (8.34) we have used the matrices i, 2, Uj
and Vj (3 =0, 1, ¢cey, M), these matrices can be found from X and Z in ‘
the following way.

The columnvectors of the nxk matrix X form an arbitrary orthonormal
basis for the linear subspace ¥(X) and the columnvectors of the nxg
matrix Z form an arbitrary orthonormal basis for M(Z).

There are several ways to compute X and Z (which are not unique) from X
and Z, respectively, for instance, we can use the well-known Gram—Schmidt
procedure.

With X and Z we form the kxk matrix X'ZZ'X and the £xg matrix Z'XX'Z.

We first note that these matrices have the same nonzero eigenvalues.

In the second place, it is not difficult to see that X'ZZ'X has the same
eigenvalues as the matrix (X'x)-lx'Z(Z'Z)'IZ'X, whereas Z'XX'X has the
same eigenvalues as (Z'Z)—IZ'X(X'X)-IX'Z.

~ That is,‘i'fz'i has an eigenvalue 1 with multiplicity p, M different
eigenvalues P1s Pgs eeey py With 0 < Py < 1 and multiplicities

m;, m,, .ﬁ.’ my and an eigenvalue pg = 0 with multiplicity k-r, where
r=p-+ j:l mj.

The same holds true for Z'XX'Z, except that the eigenvalue po = 0 now
has multiplicity g-r.

Now the matrices Uj and Vj are defined in terms of the eigenvalues of

the matrices X'ZZ'X and i-ii'i, respectively.
The columns of the k x (k-r) matrix Uy are the eigenvectors of X'Z2'X
which correspond to the eigenvalue 0. The columns of the k x my matrix

Uj are the eigenvectors of X'22'X corresponding to the eigenvalue Py
j - l, 2’ ooy M'




Similarly, the columns of the & x (2-r) matrix Vo are the eigenvectors

of Z'XX'Z corresponding to the eigenvalue 0, whereas the columns of the

L x my matrix Vj are the eigenvectors which correspond to the eigenvalue

pj, j= 1, 2, ceey M.

. ] = ] = | = ' =
We suppose that: UOU0 I(k—r)’ VOV0 I(z-r) and UjUj Vjvj I(m

j = 1’ 2’ ..., M.
Finally, we note with respect to (8.31) and (8.33) that: Vi = Va3 = 0
for j =0, 1, eee, M if and only if u € M(X) n M(Z) and also

M u'™M u M M u
d0 = I Vi = 22 ’ d1 = I Vs = zx .
=0 “3 ¢ =0 3 ¢

i

for w € M(X) v M(Z) and o > O.




9. Interpretation of the tests in terms of the original hypotheses

In this section we shall derive the tests $1» ¢ and $3 on heuristic
grounds and interprete the test statistics S;» Sy and S5 in terms of the
original linear hypotheses.

The original problem of testing linear hypotheses ‘can be stated as
follows: :

On the basis of the vector of observations y ~ n(uy, 021) we want to test
Hy: u = XB, B € r¥ against Hy: u= 2y, v ¢ Rx where under H;, Y € R is
such that Zy # XB, B € Rk

Now under Hjy we have the linear model y = XB + u and the total sum of

squares y'y can be decomposed into two parts

(9.1) y'y = B'X‘XB + uxp

where B'X'XB is the explained sum of squares due to the variation in X

and uxu is the residual sum of squares, which is not explained by the
variation in X.

~

As usual, B and uy are given by: B = (X'X)-lx'y and Uy =y = XB.
Analogously, under Hl we have the linear model y = Zy + u and the
decomposition

A A

= w171
(9.2) y'y YZZY+uZ 7

where y = (Z'Z)—lz'y and u, =y- ZYe

Here Y'Z'ZY is the explained sum of squares due to the variation in Z
and “é“z is the residual sum of squares.

A A A A

Z 7 is small, that is, if the ratio u u /%{u is small.

In other words, as a test statistic we take

u,u
(9.3) L= 22
]
UxUx

and reject Ho (the critical region) if

On heuristic grounds it seems natural to reJect Hy if uiu is large and

(9.4) Sl i Clo




This, however, is precisely the test $; as proposed in the foregoing
sections. As is already noted before, S; can also be derived from the
GLR criterion.

Let us next consider the probability distributions of the denominator

A A A A

u)'(uX and the numerator uéuZ of the test statistic S;.
From y ~ n(y, 021) it easily follows that

A'A
UxUx

2
o

2
~ X (mk, d))

]

7%z
2

o

v 2

Under HO we have:

B'X'szs
(9.6) —_Z >0

and under le

(9.7) 0= 0

0.

Y'Z'M Zy
===z 7’

(o]

d;

A A

The above results enable us to compute the means and variances of uiux

and “ﬁ“z’ under H; and H, respectively.

Under Hy we get:
E(u'u,) = o2(n-k)
XX

E(ulu

_ 2
7U7) =0 (n-2 + do)

A A

Var(uiux) = 204(n-k)

A A

4
Var(uju,) = 20°(n-2 + 2d.),

Z




and under le
2
E(u u ) o“(n~k + dl)

~ ~ 2
1] -
E(uzuz o (n=-2)

A A

4
] -
Var(uxux) 20 (n~-k + Zdl)

A A

var(u

1u,) 207 (n-1).

We recall that do can be thought of as a measure of distance from a

point u = X8 under Hjy to H; (M(Z)). Similarly, d; can be considered as
measuring the distance from a point u = Zy under H; to Hy M((x)).

A A

Note that E(uiux) is small under Hy and large under H. It is also seen

that under Hy the expected value E(uiux) increases with dl and that
E(uxu ) + = if d1 + o,

~ A

On the other hand, E(uZ Z) is large under Hy and small under Hp.

A A

Further, E(uiuz) increases with d0 under HO and E(u ) + = if dy + =,

At this point it should be observed that the denominator uxu and the
numerator uzuz of S, are not stochastically independent. Consequently,

besides the means and variances of uxu and uzuz, the covariance of

~ A

uxu and uzu is an important characteristic of the joint distribution
of these random variables.

In order to find Cov(uiux, uiuz) we first recall from Section 2 that:

where Ujor Uygs (Ull’ UZI)’ ceey (UlM, UZM) and U, are mutually
independent random variables.

We know that Ujq ~ x2(£—r, vi0)s Upg ~ xz(k-r, Voo)s Uy ~ xz(m), whereas
(Ulj’ UZj)’ j=1, 2, «eey, M has the characteristic function wj(tl, t,)
as given in (2.26) of Section 2.




By making use of the above mentioned mutual independence we obtain

M M
(9.11) Cov[(U10 + jzl Ulj + UA)’ (U20 + jzl U2j + U4)]

Cov(U

U,.) + var(U,).
=1 2j 4

15°

As is shown in Appendix A, by using the general result

2
) 3°1n wj(tl, t2)

23 8t ot

Cov(Ulj, U 5 ¢

we get
(9.12) COV(Ulj, U2j) = 2pjmj, j= 1, 2, eoey M,

for all v ¢ wy Y wye.
Since Var(U,) = 2m, where m = mtp-k-2, it follows from (9.10), (9.11)
and (9.12) that

' ' =
(9.13) Cov(uxux, uzuz) 20 (m + j:l pjmj),
for all (p, o) with p e‘M(X) U M(Z) and o > O.

A 1

It should be noted that Cov(uxux, uzuz) does not depend on yu, that is,
it takes on the same value under HO as well as Hl'
The above results enable us to compute the correlation coefficient of

A A A A

u}'(uX and uéuz. This coefficient is a measure of the dependence between
;i;x and ;iaz. We have under Hy:
M
m + j:l pjmj
V(aK) (a-$233)

(9.14) Corr.(&iax, ;éaz) =

and under HI:

M

m+ I p.m,
j=1 31

V(n—k+2dl)(n—£).

(9.15) Corr.(;iax, ;i;z) =




Since m > 0, we always have

A A

] ]
0 < Corr.(uxux, uzu ) <1,

Z
and Corr.(uiux, uéuz) = 1 if and only if M(X) = M(Z) (that is, the
trivial case of nested models).

In the latter situation we have: p=r =%k = ¢, M = 0, dg = dl = 0 and

A A A A

' = 1!
also»uxuX usu, with probability 1.

When p = r, i.e., if M = 0, the correlation coefficient becomes

m
V(n-k)(n—£+2d0)

under Hyp,s and

m

V(n—k+2d1)(n-£)

under Hl.

A A

It is seen that there always exists a positive dependence between uiux

]
and uZuz.

Further, if we consider the correlation coefficient as a function of the

A A

parameters (u, o), for given linear hypotheses, we see that Corr.(uip

depends on (u, o) through dy and d,.

]
x Yzéz)

A a

It easily follows that Corr.(uiux, uéuz) has the following maximum value

M

m+ I p.m
=1 93

V(n-k)(n-2)

when dj = d; = 0, i.e., for all points (u, o) with u e M(X) n M(Z),
o > 0. These points satisfy p = XB = Zy and form the common boundary
between HO and Hl'

It is also seen, that under Hy the correlation coefficient is a

decreasing function of dy and that Corr.(uiux, uéuz) + 0 if dy + =.

Similafly, Corr.(uiux, uéuz) is a decreasing function of d, under H, and
| ]
Corr.(uxux, uzuz) + 0 if dl + o,

The following table summarizes the moments of uiux and u%uz.

A A A A




Table 3:

Moments of the numerator and denominator of S

1

HO: u = XB

HI: =2y .

A A

]
E(uxux

o2 (n-k)

o2(n-k+d;)

A A

1
E(uZuZ

cz(n-b+d0)

oz(n—z)

Var(;)'(:lx)

20%(n-k)

20*(n-k+2d,)

]
Var(uzuz)

20"(n-z+2do)

ZoA(n—Z)

M

m+ I p.m,
j=1 43

M
m+ I p.m,
=1 JJ

Corr.(;i;x, ;é;z)

V(n—k)(n—£+2d0)

V(n—k+2dl)(n-£)

In the above discussion we ignored the fact that a part of the

variation

in X can be explained by Z and vice versa. That is, we did not take into
account that X and Z can be correlated.

~ A

For instance, suppose that uiux, is small, or equivalently, that the

explained sum of squares B'X'XB is large.

Then the statistic

B'X'X8
uguy

has a large value and we could decide to accept Hj.

In doing so, however, we totally ignore the matrix Z, while at the same

time it is possible that the statistic
Yl Zl Z][
T
e A/
takes on a large value too, which points into the direction of accepting
Hl.




A A A

The large value of B'X'XB/uqu can be possibly due to the fact that the
variation in X is partly explained by the variation of Z.
What we need is that part of X which does not depend on Z. To this

extend we consider the following decomposition of X
(9.16) X = 2(2'2)712'x + M;X,

where M, = I - 2(2'z)"lz',

Here Z(Z'Z)-IZ'X is that part of X which is explained by Z and M;X is
the residual part of X not explained by Z. Note that the columnvectors
of M,X are the residual vectors after least-squares regression of X on
Z.

These columnvectors span a (k-p)-dimensional subspace. If XZ is the

n x (k-p) submatrix of X as defined in the foregoing section, it follows
that the columns of the n x (k-p) submatrix M X, of MyX form a basis for
this subspace. That is, the matrix X adjusted for the influence of Z can
be represented by Xox = MzX,.

Next we consider the explained sum of squares due to the adjusted

X-matrix. In other words, we consider the linear model y = Xz*Bz* +u

and the decomposition

~ -~

(9.17) y'y = 82* 2*X2*82* u' u

where 82* = (XE*XZ*)-IXi*y and u

= y"' X B .
XZ* 2% " 2%
The explained sum of squares due to X adjusted for Z (i.e., due to Xz*)

is equal to B XZ*XZ*BZ* and a reasonable test statistic, instead of

A A A

'X‘XB/uqu, seems to be

B'z* 2 X8z

“x“x

Since we expect Sy to be small under H), we reject Hy if §9 £ ¢5.

This is precisely the test ¢, as proposed in the foregoing sections (see
(8.24) of Section 8).

(9.18)

Ofcourse, we can also adjust Z for the influence of X and, by using
similar arguments as before, we obtain the test which rejects Ho when

VoxZonZ ox Y o

~ A

J
'U.ZUZ




is large, or equivalently, when

'u
(9.19) ——zz_ Cye
' ZI .Y
Yox “ox 2* 2%
Now this is precisely the test $3 as derived in the foregoing sections
(see (8.30) of Section 8).

is the explained sum of squares due to Z adjusted for

Here YZ*ZZ* 2% Yo%
X, i.e., due to Zyx = MyZ,, where Yox = (Z 2*) Z*Y'
Again it is informative to compute the means, variances and correlation

coefficients of the numerator and denominator of the test statistics

under HO and Hy, respectively.
We start with Sy« From

BowX z*xz*s (Xz*xz*) Xz*y

2 2
o o

1
Y%
2

(¢}

2
~ X (k"‘P, do)

2
~ x (n-k, dl)’

with d0 and d; as given in (9.6) and (9.7), we can easily compute the
means and variances of 82* % 2*82* and UXPX

Further it can be seen from

84X B

M
T .m,, 1if r >
meJ ’ P

Cov(uguy, Bl Xou 2*82*)
(9.22)
" = 0, ifr=0p

Again the covariance does not depend on p € M(X) U M(Z).
With the aid of (9.20) and (9.22) we get:




Table 4: Moments of the numerator and denominator of S2

Ho: = XB le u = 2y

E(B;(Gx) o2(n-k) o? (n-ktd))

E(B3, XD, Koy Boy) o2(k-p+dy) o2 (k-p)

-~ A

be b
Var(uiux) 20 (n-k) 20 (n k+2d1)

Var(Bh, Xb, X, B,,) 20% (k-pt+2d) 26%(k-p)

M M
I p.m I p.m,
j=1 17 j=1 JJ

Corr.(uiux, Bé*x&*XZ*BZ*)

V(n—k)(k—p+2d0) V(n—k+2dl)(k—p)

It follows that we always have

0« Corr.(uiux, Bé*Xé*XZ*BZ*) <1

A A

' Av l 2 =
Corr.(uxux, BZ*XZ*XZ*BZ*) 0
if and only if r = p, i.e., if M = 0.
If we consider the correlation coefficient as a function of the
parameters (u, o), for given linear hypotheses, it is easily seen that

it has the maximum value

M

I p,m,

j=1 33
V(n-k)(k-p)

for all points (u, o) on the boundary of Hy and H,, that is, points with
e MX)n M2Z), 0>0 (d0 = dl = 0).




The correlation coefficient decreases with do under HO and with d1 under

H;. Also, Corr.(uxux, 82*X2*X2*82*) + 0 if d0 + o or if d; + =

In the second place we consider S3. The means, variances and correlation
coefficient of the denominator 72*22*22*72* and the numerator uzuz can
be derived in a similar way as before.

We get:

Table 5: Moments of the numerator and denominator of 83

HO: u= X8 Hl: = 2y

E(Yz*zz* 2*72*) ‘ o?(2-p) 02(£-p+d1)

A A

E(ulu

su, o?(n-g+d ) o?(n-2)

Var(Yhy 25, ZouYos) 26*(-p) 20*(2-p+2d))

A A

4 Go
Var(uéuz) 20 (n—2+2d0) 20 (n=2)

M M
I p.m, I p.m,
A A ~ ~ j=1 JJ jl JJ

Corre(uiu,, ¥5,20,Z,,You)
R R R/ ey Y ey V(3-p+2d ) (o= 1)

o)

In this case we also have

A A

\j ﬂ' \j N
0< Corr.(uzuz, YZ*ZZ*ZZ*YZ*) <1

A A

\
Corr.(uzu

70 YouZhuZoxYou) = O

if and only if r = p, i.e., if M = 0.
Considered as a function of (u, o), the correlation coefficient has the

maximum value




M
z

o 19

V(z-p)(n-2)
at all points (u, o) with y e M(Z) n M(Z), o> O (do =d, = 0). Again
the correlation coefficient decreases with d; under Hy and with d; under
Hy, whereas Corr.(; ;Z’ 72* 2* 2*72*) + 0 if d0 + o or if d1 + o,
Finally, we make the following remarks.
1. The test statistics S;, S, and S5 are ratios of quadratic forms in
normally distributed random variables. That is, the numerator and
denominator of these statistics are xz—distributed random variables.
However, due to the fact that, in general, the numerator and denominator
are not stochastically independent, the ratio does not have a F distri-
bution. In particular this holds true for Spe
Now we have seen above that in the special case r = p (which was called
case (A) in Section 6), the correlation coefficient of the numerator and
denominator of S, and S3 1s equal to zero. In general this does not
imply that the numerator and demoninator are stochastically independent.
However, as we saw in Section 6, when r = p the numerator and
denominator of S, and S3 are independent. As a consequence, Sy and S3
(multiplied by a suitable constant) have a F distribution (see (6.16),
(6.17) and (6.18) of Section 6) when r = p.
2. The correlation between the numerator and denominator of S, and S35 is

smaller than the correlation between the numerator and denominator of
Sl' That is,

A A -~

(9.23) Corr.(uiex, Bi*XE*XZ*BZ*) < Corr.(u u

A A

x* Yz%z)
and also

A A

(9.24) Corr.(uéuz, Yé*;E*ZZ*YZ*) < Corr.(u Uys u )
We only prove (9.23). The proof of (9.24) is quite analogous.
First consider the situation under Hy. Then (9.23) becomes

I p.m, m+ I p,m
(9.25) 1] < 1]

V(oK) (k-p+2d ) V(n-k)(n-uzdo)’

where d0 > 0.




By making use of m = n+p-k-£ = n-2-(k-p) = n-2+2d, - (k—p+2d0), the
inequality (9.25) can be written as:

I p.m, -2+2d k=-pt+2d I p.m, /k=pt2d,
meJ p / 0 _ / pt 0 + meJ pt 0
0

k—p+2d0 k—p+2d0 n-2+2d krp+2d0 n—-£+2d0

Z p,m,
x =

k-p+2d

k-pt2d

Y=Y o0
: n—£+2d0

then it follows that 0 { x < 1and 0 <y <1, since 0 { I Pym; <rpXl
k-p and therefore 0 { I e < k—p+2d0, whereas m = n+p-k-% = n-£+2d0 -
(k-p+2d0) > 0 implies that

* k-pr2d

0< 0

n—2+2d0

< 1.

Hence (9.26) can be rewritten as
1

(9.27) X <-§-- y + xy,

for 0{x<1land 0 <y < 1.
Now (9.25) is equivalent to

1=v2
(1-y)x < -—YL,

which can be rewritten as
(1-y)x ¢ L= Uty) )§1+ ),

Multiplying the terms at both sides of the inequality sign by y/(l-y)
yields

(9.28)  xy < I+y.




Obviously, the inequality (9.28) holds true for 0 { x < 1 and 0 <y <1,
which proves (9.25).

In the second place comsider H;, then (9.23) becomes

X pjmj < m+ I pjmj :
V(n-k+2dl)(k—p) V(n—k+2d1)(n—l)

(9.29)

where dl > 0.
This is equivalent to
m+ I p.m,

I p.m
(9.30) 1J ¢ 13,
Vk-p V-2

Since (9.25) holds true for dj = 0, the inequality (9.30) follows at

once from (9.25). This shows the truth of (9.29) and completes the proof
of (9.23).




10. A large sample approximation to the critical values and p-values of

the tests

As we saw in Section 7, the computation of the critical values and
p-values of the test $1> 425 93 requires numerical integration.
However, when the sample size n is large, the critical values and
p-values can be approximated in a very simple way, as we shall see
below.

We know that, in order to find the critical values and p-values, we need
the distribution functions of the test statistics S;, S, and S3 on the
boundary of Hy and H;. In other words, if Fi,v(s) = Pv(Si.S_s), i=1,
2, 3, the critical values and p-values are computed from Fi,O(s)’ that
is from the distribution functions at the parameter point v = 0. As we
know, the point v = 0 uniquely corresponds to the points (u, o)
satisfying p e M(X) n M(Z), o > O.

We recall that the test statistics can be written as the following

ratios of quadratic forms (sums of squares)

A A

2
1
uZuZ/o

= -~ ~ 2
]
uguy/ o

51

~ 2
o X0 X0 B/ 0
“i“x/°2

-~ ~ 2
]
uzuz/a

)

~ ~ 2
[ [}
YouLouZonYou/ ©

Note that, under the hypothesis v = 0 (i.e., p € M(X) n M(Z), the

2

numerator and denominator of S1» 5y and S3 are y“-~distributed random

variables. We have

wu /0" ~ 3 (nmk)

A A

2 2
“é“zlo ~ x (n=2)

2 2 2
§*X§*X2*82*/o ~ X (k-p)

You Zox Zox You/ 0 ~ X (2-P)




Now in the applications it is often convenient to divide these
X2 variables by their mean values (number of degrees of freedom) and to
work with the mean sums of squares, instead of the sums of squares. In

doing this, we obtain the following modified test statistics:

uzuz/[o (n-2)]

) uiux/[c (n-k)]

n-k
1 n-¢

=S

K 2*32*/[0 S B
2 krp

W/ Lo%(ak)]

~

u,/[o*(n-0)]

5*2'2* 2*Y2*/[0 (2-p)]

*
If Fi v(s) is the distribution function of S:, i.e.,

* *
(10.4) Fi,v(s) = Pv(Si <s), 1i=1, 2, 3,

*
we can express the test ¢; in terms of the test statistic Si' We get for
i=1, 2, 3:

*
The test ¢1 rejects Hy if S < ci, where the critical value ey satisfies
(c)
Equivalently, if we work with p-values the test ¢; rejects Hy if
*
Fi’O(Si)-S ae
Now it easily follows from

n-2
l1,vin-k

k-p

FZ,V(n—k

(n-l
3,v 2-p

for all v ¢ wg V wy, that




and also
* LN {
(10.7) Fi,O(Si) - Fi’o(si), = 1, 2, 30

That is, the critical value c; can easily be found from the original
critical value cy, whereas the p-value F (S ) is equal to the original
p-value Fi 0(S ).

In fact, the reason for introducing the test statistic Si is that the
distribution functions at v = 0 of these statistics can be approximated
in a simple way when n is large. This enables us to approximate the
critical values c: and the p-values Fi O(Si) for large n.

As 1is shown in Appendix D the distribution functions Fi 0(s) of the test
statistics S i=1, 2, 3, can be approximated with the aid of the

2

standard-normal distribution and the x“ distribution, respectively, when

n is large.

We start with the approximation of F (s).

1,0

[-B:E—SEZLl], s >0and s # 1,

(10.8) F: NORE:
’ stn(S)

where
(10.9) (x) =

and

(10.10) 8 (s) = (bysP-p(Rfithy gy,

The quantity tr in (10.10) is defined by
(10.11)  tr = er[(X'X)"1x'z(2'2)"12'x] = er[(2'2) Lz x(x'x)"1x'2) =

p..e
o 33

It is also shown in Appendix D that from (10.8) we can derive the

*
following approximation to the point Sq which satisfies F1 O(Su) = q
]




nno. Q[_\ln—maazc(k, 2)] <a<

(10.12)

b + Vbz c

- “nn if + < al ¢[J Z
a an

- max(k, 2)]
2 ]

where the coefficients a

a* Pp @nd c, are given by

212

1...——

n-k

2t§(n—k—£+tr)
(n-k)(n-2)

(10.13) bn =1-

2t2
Q

1_—

n ne

Here t is the point which satisfies ¢(ta) = qa, il.e.,
(10.14)  t, = ¢ Xa).

The restriction

o < ﬂ‘/n- max:()-k, 9.)]

in (10.12) is not serious in practice, since

ol- VA maxll, B 5 g(-=) = 0

o/ 2Bk, B, 0 - )

if n+o which shows that for large n we have:

o[- V 2= ma>2t(k, 21 .0, oV B max(k 2 ..,

With the aid of (10.8) and (10.12) we obtain large sample approximations

* * *
to the p-value F1 0(Sl) and the critical value ¢
’

1 of the test by




Vn-¢ (St -

(10.15) ~ &

F:,O(S:)
Vs (s])

Since in the applications we only consider significance levels a smaller

*
than 4, the approximation of <y becomes:

(10.16)

These results show that the critical value and the p-value of the test
¢y can easily be approximated from the standard—normal distribution.
Next we consider the large sample approximation to F2 0(s) From

Appendix D we have:

*
(10.17) F, (s) = G [(k—p)(l + )1, s > 0,
2,0 VE‘?A)

where
(10.18)

and

(10.19)  8_(s) = (=Rys’-2(EER)sv1.

With the aid of (10.17) we obtain the following approximations to the
. *
point s, which satisfies FZ,O(sa) = Qe

(10.20)

Gk_p(krp) Lal Gk_p[k-p + V(k-p) (n-K)],

where the coefficients a , b, and c are given by

n’




where fa satisfies Gk—p(fa) = a, i.e.,

-1
(10.23) £, = G_ (o).

The restriction
- Vik-10) (n=K)
a < Gk_p[k P + V(k-p)(n-k)]
in (10.20) is not serious in practice, since
-  — - 0 -
Gy—plk=P + V(k=p)(n-K)] » Gpp(=) = 1
if n+o, which shows that for large n we have
- Vk-p)(n-K)] = 1.
Gk_p[k p + V(k-p)(n-k)] = 1

With the aid of (10.17) we get the following large sample approximation
* *
to the p~value FZ,O(SZ):

*
st -1
(10.26)  F, ((5,) = Seopl (D) (1 + 2—)].

VB_(s3)

Since G;(1) > % for all i and since in practice we only consider

significance levelsa smaller than 3, it follows from (10.20) that the




*
approximation of c, becomes equal to:

(10.25) c; ~

The approximations to the critical value and p-value of the test ¢, can
easily be computed with the aid of the xz(k-p) distribution.
Finally we consider the approximation to F3 0( s).

From Appendix D we have:

* 1-s
F, ~(s) ~1-6G,_ [(e-p)(1 + )1, s > 0
30 o B_(%)

(10.26)
where now Bn(s) is defined by

_ 2 _ tr-p 2-p.
(10.27) Bn(s) =8 z(n-l )s + (n—z)'

The result (10. 26) enables us to find an approximation to the points s

which satisfies F3 0(5 ) = a. We have:

B jf 1 - G [z-p + V(e-p)(n-2)] € <

(Z-p), provided that a« # 1 = G,_ [2(g-p)]

C

s ~-2—.b-— ifa=1- G [Z(Q‘P)]

bn + Vbi - ac

D41 - G, (£-p) <all,

where the coefficients a, b, and c, are defined as follows

a=1- qi

2
(tr-p)
(10.29) p = - S TP
n n-9

2
q(2-p)
1_.___..__
n n-£




The point q, in (10.29) is given by

fl-a

o - 2-p

where fl-a satisfies Gz—p(fl-a) = l-q, i.e.,

(10.31)

-1

1-a

Note that

1- 6, [ep + V(-p(n-2)] + 1 - Gy (=) = 0,

if n+eo, which shows that for large n
- - Vie—p)(n-2)] = 0.
1 Gz_p[l p + V(2-p)(n-2)] = 0
Therefore, the restriction
1= 6, ltp + Vp)(2-D)] < «

in (10.28) is not serious in practice.
From (10.26) we obtain a large sample approximation to the p-value
* *
F3,0(83).
1-5
* * 3
10.32 s 1 - - —)1].
(10.32) B3 (89 = 1= G, [(=p)(1 + ——2)]
KEW

In practice we mostly consider significance levels a smaller than 0.3

and since 1 - Gi(i) > 0.3 for all i, it follows from (10.28) that the
*

approximation of Cq becomes

2
- ac
n

% 0 #1-6, [20(2-p)]
(10.33)

1 - Gz_p[Z(z-p)]-




In this case, the approximations to the critical value and the p-value

of the test ¢ can easily be computed from the xz(z-p) distribution.

In order to facilitate the use of the approximations to s as given in

a
(10.20) and (10.28), the following table contains the values of Gi(i)

and 1 - Gi(i) for 1 = 1’ 2, coey 10.

Table 6: Values of Gi(i) and 1 - Gi(i)

G4 (1) 1 - G4(1)

0.683 0.317
0.632 0.368
0.608 0.392
0.594 0.406
0.584 0.416
0.577 0.423
0.571 0.429
0.567 0.433
0.563 0.437
0.560 0.440
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1ll. Required computations for the applications

In this section we shall give a description of the computations required
in order to apply the tests in practice.
The data set in a problem of testing linear hypotheses consists of

(y, X, Z). On the basis of these data we want to test

Hy: y ~ n(X8, o?I) vs. Hj: y ~ n(Zy, ?1),

where B, Yy and ¢ are unknown. -
From the data set (y, X, Z), where y is a n-vector, X is a nxk matrix
with rank k and Z is a nxg matrix with rank £, we make the following

computations.

1. If k < 2, compute the matrix (X'X)_IX'Z(Z'Z)'IZ'X and the eigenvalues
of this matrix. When & < k, we compute (Z'Z)-IZ'X(X'X)'IX'Z and the
eigenvalues of the latter matrix. In the case k = g it does not matter
which of the above two matrices is computed.

The above computations yield the multiplicity p of the eigenvalue 1, the
number M of different eigenvalues which are strictly between O and 1,
the values Pls P2s eees Py of these eigenvalues and the corresponding

multiplicities M}, My, eee, My. We note that p as well as M can be equal
to 0.

M
2. Compute r = p + I mj, consider the classification as given in

J=1
Section 6 and according to Table 2 of Section 6 decide which of the
tests ¢;, ¢, or ¢3 shall be used.

~ - ~ ~ ~

~ _1 -
E.ACompute B = (X'X) X'y, y=(2'2) lZ'y, Uy =y - X8, u, =y- Zy,
u)'(uX and uéuz.
If the test ¢; 1s taken we compute the test statistic

When ¢, or ¢5 are used we first construct the matrix G = [Xp% Z] or




G = [X: ZZ] as described in Section 8 and then compute
6 = (G'G)” G'y, uG

If 2 is used we compute

=y - GG and u! uG

as described in Section 7 and reject Ho if
Fi,0080) Lo,

where a is a preassigned significance level.
The above integration requires the computation of coefficients Alj(Si),
Azj(Si), j=0,1, «cc; M, A(S;) and the degrees of freedom mp4s Do gs

j=0,1, «oe, M and m. For all three tests we have

1 1 2
My(S) =3 (1= 8) =3V - 5% + 45,1 - b

1 1 2
hy(8) =3 (1= 5D + 3 V1 - sp? + 45,00 - by,

j=0,1, ee., M, where P = 0, and also

myy = myy = my for j =1, 2, «eey, M.




When the test ¢; is used we have:

110

Mo =
m = n-i-p-k—l .

If the test ¢, 1is taken this becomes:

oo = n+p—-k-r

20

m:

For the test $5 we take:

mlO = 2-r
My = mtp—2-r

0.

5. When the sample size n is large we can use the approximations as
describes in Section 10.
If the test ¢, is used we compute

n-k

Sl n-2

* * Vn-2 (St - 1)
Fp,085) = el 1.

V2 8_(s)

We reject Hy if this approximated p-value is smaller than or equal to a.




*

R

Equivalently, we can approximate the critical value c

*
and reject Hj if S1

critical value.

is smaller than or equal to this approximated

For the test ¢, we compute

* n-k
5, = 5% ip

and reject Hj if

*
S, -1

* * K 2
F2,0(SZ) - Gk—p[( -p)(1 +-——*—)] Lo
B (S,)

or equivalently, if

b
* * n
82 S_cz "~

Similarly, if the test ¢, is taken, we compute

* -
- 2-p
S3= 530

and reject HO if

1 S*
—31<aq

*
B,(53)

* * '
F3’0(S3) ~ 1= Gz_p[(l‘P)(l +

or equivalently, if




6. Sometimes one is interested in the value of the power function of the

test ¢; at the parameter point (B, o) under Hy or (y, o) under H;.

Now we know from Section 7 that the power function w(¢;, V) of the test

$; is given by

sin € (u, i)

1 _1°7
(o, V) =5 - =
(¢1’ 2 n é u Yy, v(u, c, )

Thus, once the critical value c; and the parameter vector v are given,
we can compute the power through numerical integration.

The critical value c; can be found by solving the equation

sin e, 0(u, c )

1 1%
a=--—= du
2 é u 1 G(u’ c. )

A large sample approximation of c; can be derived from the large sample

*
approximation of c; as given under 5. and the relations (see (10.6) of
Section 10)

n-4
n—-k
k-p
n-k

For the computation of the vector v = (vlo, Vils ccc ViMe V205 Vops e

Vo) in terms of (B, o) under Hy or (y, o) under H;, we refer to Section
8, see formulae (8.31) - (8.34).

L]




12. Summary and conclusion

In this study the principle of invariance is applied to the problem of

testing linear hypotheses.

Before we apply invariance considerations, the original problem is
transformed into an equivalent problem with a more simple structure, by
means of a suitable linear transformation.

The transformed problem is invariant under a group of transformations
which map the sample space onto itself. These transformatins consist of
changes of scale, certain translations and certain rotationms.

They can be interpreted as changes of the coordinate system in which the
observations are expressed.

Since the problem remains invariant under certain changes of the
coordinate system, a natural procedure is to require that the tests
exhibit the same property. That is, we only consider tests which are
invariant with respect to the above group of transformations.

Now the class of invariant tests is the totality of tests depending only
on the maximal invariant statistic. Within this restricted class of
tests we try to find the UMP level a test.

In general, for the problem of testing linear hypotheses we obtain a
two-dimensional maximal invariant statistic, which can easily be
computed from the original observations. In the special case of
(nontrivial) nested linear hypotheses the maximal invariant statistic
turns out to be one-dimensional and there exists a UMP invariant level a
test which coincides with the classical F test.

On the other hand, however, for the problem of testing nonnested linear
hypotheses te existence of a UMP invariant level a test is an unsolved
problem.

In order to derive reasonable tests for the nonnested case we do not
only require a test to be invariant and to have level a, but also to be
ﬁnbiased, computable, usable and strictly discriminating.

Since we are looking for unbiased level a tests we can restrict
attention to the class of o-similar tests, i.e., the tests which have
rejection probability a at parameter points on the boundary between Hy
and Hl'

Now a class of invariant tests is constructed which are a-similar,

computable and usable.




The power function of these tests is derived and it turns out to depend
on the value of r = rank(X'Z) whether these tests have level a, are
unbiased and strictly discriminating.

In particular we consider the tests $15 ¢o and ¢35 which are based on
the test statistics S5;, Sy and S3, respectively.

The test ¢y is the a-similar generalized likelihood-ratio test, ¢ is a
test which under all circumstances is exact, i.e., b9 always has level
a. The test ¢4 has guaranteed power, that is, the power function of b3

always exceeds the level a under Hl‘

As was said before, whether the tests 61> ¢é and ¢3 possess the above

mentioned desirable properties depends on the value of r = rank(X'Z).
We investigate every possible situation and select the appropriate test.
Further we derive the distribution functions of the test statistics Sl’
S, and S5 and show that the critical values, the p-values and the power
functions of the tests can be computed through numerical integration.
The values of the test statistics S51» S, and S5 can easily be computed
from the original data (y, X, Z). The test statistics turn out to be
ratios of sums of squares which have a natural interpretation in terms
of the original linear hypotheses (linear models).

When the sample size n is large the critical values and p-values of the

tests can very easily be approximated from the standard-normal and

x2 distribution.

In the special case of nested linear hypotheses our general tests turn
out to be equivalent to the well-known F test.
Fiqally we give a review of the computations which are required in order

to apply the tests $1> ¢, and ¢35 in practice.
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AEEendix A

The characteristic function w(tl, tz)

In this appendix we shall derive the joint characteristic function
w(tl, tz) of the random variables (Ul’ U2), which are defined by

Y

- 1
U2 Uy,

where the m—dimensional random vectors u; and u,) have the following

probability distribution

o Oy eal(h | BV
2 2 Vol
The coefficient p in (A.2) satisfies 0 < p < 1 and the m~dimensional
vectors 61 and 62 have the property that 61 = 0 or 62 = 0.
Moreover, we shall compute the covariance of U; and Use
In order to find w(tl, t,) we need the following general result:
Let the n-dimensional random vector x have a n(y, V) distribution, where

V is nonsingular, and let T be a symmetric nxn matrix, then

(A.3) oD = B ™) = |1 - 2107v|Y explin' (1 - 2iTv)"lTy},

where i denotes the imaginary unit.

Proof:

Since V is positive definite we have V = SS', where S is a nonsingular

nxn matrix. If we take y = S_lx, it follows that x = Sy and we get

(A.4) o(T) = E(elY'S'TSYy - p(elv'Byy,

where B = S'TS in a symmetric nxn matrix and y ~ n(S"lu, I).
Let A be the diagonal matrix of eigenvalues Al» Ay, eee, A, Of the

matrix B and H the corresponding orthogonal matrix of eigenvectors, then

B can be written as B = HAH' and it is seen from (A.4) that




(A.5)  o(T) = E(eIYHA'Y) o peelziAzy,

where z = H'y ~ n(8, I) with 8 = H'S” 1},

1f Zj denotes the jth element of the vector z and if Wj =7

eee, N, it follows from (A.5) that

n n .
(A.6)  &(T) = ECexp{i T A,Z°}) = E(exp{i I AW.}).

o 373 1 33

j=1 j=1
Now it is easily verified that the random variables Wis Wos eee, W, are
mutually stochastically independent and that Wj ~ xz(l, ej), j=1, 2,

essy, N, where 6. denotes the jth element of the vector 6.

J
This gives

n n
(A.7) (T) = E(jg1 exp{ikjwj}) = jfl E(exp{ikjwj}) = i ¢j(kj),

where ¢j(t) is the characteristic function of a random variable

possessing a x2(1 ej) distribution, that is,

it 62

-1
¢j(t) = (1 - 2it) expf;:f;g}-

Substitution of the latter result into (A.7) yields:

n il 6

a8 oD = [ 1 =20 expl T i)
31 =1 T

= |1—21A|’*exp{1e'(1-21A)'1Ae}.

With the aid of the relations A = H'BH, 6 = H'S—lu, B = S'TS and SS' =V
we can express the determinant |I—21A| and the quadratic form
6'(1—21A)’1A6 in terms of the original parameters u, V and T.

We have

(A.9) |1-21A| = |1-24H'BH| = |H'(I-21B)H|
|a*| |1-2iB| |H| = |1-2iB| = |I-2iS'TS|
|s'(1-21188')(s*)" 1| = |s'| |1-2iTss'| |(s")7!|

|1-21T8S'| = |1-2iTV|,




o' (I-2i0)"1ae = w'(s*)"lu(1-21n'BH) " lm'BS Ly
u' (s~ lu[n' (1-2iB)H] " lurBS~ Ly

= p'(s") " I(z-2iB)"1Bs™ Iy = pr(sty)~I(1-215'TS) IS T
ur (s~ st (1-2iTss" ) (s~ 11" s Ty

p'(1-24T88") "Ity = pr(1-21TV) " lTp,

Finally, substitution of (A.9) and (A.10) into (A.8) gives
¢(T) = II—ZiTVI_%exp{iu'(I—ZiTV)_lTu},

which completes the proof of (A.3).
Now let the random variables (Ul, UZ) and the random vectors uy and uy
be as defined in (A.1) and (A.2), then it is easily seen that the joint

characteristic function w(tl, t2) of (Ul’ U2) can be written as:

it U . +it, U
(Ad1)  We, t) =Ee "2 o

. ' . ' - ix'Tx
E(exp{ltlulul + 1t2u2u2}) E(e ),

u1 tII
X =(u2) and T = o 1|

It follows from (A.2) that x ~ n(p, V) with

[
u = (61) and V = I Vol .
2 Vol I

Hence, (A.11) together with (A.3) imply that
(A.12) ¥(ty, t)) = (T) = |I—21TVl—%exp{iu'(I-ZiTV)—lTu},

where T, y and V are as defined above.




Substitution of the expressions for T, p and V into I-2iTV and Tu
yields:

(1-21t )1 —21:1V31
I-2iTV = ,
-21:2VBI (1-2it )1

t,6
171
Ty = (tzsz).

Next consider a matrix of the form
al bl
cI d1 })°
where a # 0 and d # 0, then it follows from the well-known result

A A
1 M2 -1
Ay Ay | T [As,] A1) = Ajp8p04,, 1
that

al bl

2T | = Jar) Jar - D@D 7D |

(A.13)

= ®|(a - 2H1] = a™a - 2H™ = (ad - b)™.

Moreover, it is easily seen that:

al bl |-1 1 dl -b1
(4.14) [cI dI] = ad-bc [-cI al ]'

Therefore, if we take a = 1—21t1, b = —ZithE, c = -ZitiVB and
d = 1-21t2, it follows from the above expression for the matrix I-2iTV
that /

(A.15)  |I-24TV| = [1-21t;=2it,~4(1-p)t;t,]"

and

-1 (1-2it,)1 21t VoI
ZitZVBi (1-2it))1




Upon substituting (A.15), (A.16) and the expression for p and Ty into
(A.12), we obtain

(A.17) ¢(t1,t2) = [1—21t1~21t2—4(1-p)t1t2]

\] ] 4 - ]
(it1+2t1t2)6161+(1t2+2t1t2)6262 AVBtltzslsz

exp{ I - 2it -2it,-4(1-p)t t, }.

Finally, since §; = 0 or §, = 0 we always have 6152 = 0 and it is seen
that

(A.18) w(tl, tz) = [1—21t1-21t2-4(1-p)t1t2]

(itl+2t1t2)vl + (it2+2t1t2)v2

exp{ — = —~ 7 1,
1 21t1 2it2 4(1 p)tlt2

= &1
where vy 6161 and v

= A0
2 = 66
Note that

2.

- it.v
- (1o 11
¥(ty, 0) = (1-2it)) exp{l_Zitl}

- it2v2
¥(0, t,) = (1-2it,) expff:fgg;},

2 2
= ' ~ = 1 ~
which shows that U, uju, ~x (m, vl) and U2 uju, ~ X (m, v2), a fact
which, of course, can be directly concluded from (A.2).
Next we shall compute Cov(Ul, Uz).

To this extend we use the general result

azln ¢(t1, t

) = -
2 Btlatz

2)

(A.19) Cov(U,, U

From (A.18) we obtain

h(tl, tz)

A.20 . e L
( ) In ¥(t;, t,) > 1n g(t), t)) + BE,, ©,) °




(A.21)

h(tl, t2) = (it1+2t1t2)v1 + (it2+2tlt2)v2.

Differentiation of (A.ZO) to t, and t, yields:

2

3 1ny _ _ 98 38
(A.22) at ot [8t 3t at, at, 1/g?

2 1 2 1

3*h __ ah 2g ]/g

+ [Btlatz at, 2

8g 8h __3__2 28 38
[atl at2 +h atlatzl/g + 2h 3t atz/g .

With the aid of the definitions of g(t;, t,) and h(t;, ty) in (A.21)

-21-4(1-p)t2

—Zi—é(l—p)t1

(i+2t2)v1+2t2v2

—_—= 2t 1 1+(1+2t )v

-4(1-p)

= 2(v,tv,).
at,dt, 1 72

Upon substituting ty=t, = 0 into (A.23) we have




= —4(1-p)

= 2(vl+v2)

By making use of g(0,0) = 1, h(0,0) = 0 (see (A.21)) and (A.24) we
obtain from (A.22):

2
) 1n& 2
atlat2 t1=t2=0 "%[’4(1‘0) - (=21)7]

2(v1+v2) - (ivl)(—Zi) - (—Zi)(ivz)

m
—-5(—4+4p+4) + 2v1+2v2-2v1—2v2

-Zmp.
Hence, it follows from (A.19) that
(A.25) Cov(Ul, UZ) = 2mp.

Note that the covariance of U, and U, does not depend on the parameters

V1 and Voo




Aggendix B

The characteristic function and distribution function of a linear
2

combination of mutually independent x“ random variables

The purpose of this appendix is to derive some properties of the
characteristic function and the distribution function of a linear
combination of mutually stochastically independent chi-square random
variables.

Before doing this, we need some general results. Most of these results
will be stated without proof. For the proofs we refer to Chung [2] and
Kawata [5].

Let X be a random variable with distribution function F(x). Then the
characteristic function ¢(t) of X is defined by

[ -]
itx) = I eitX

(B.1) ¢(t) = E(e dF(x),

-
-» { t { o, where i denotes the imaginary unit.

Some well-known properties of ¢(t) are:

(1)  ¢(t) always exists and |¢(t)]| < 1, where |¢(t)| denotes the
modulus of the complex-valued function ¢(t).

(11) ¢(0) = 1.

(ii1) () = ¢(-t), where $(t) denotes the complex conjugate of ¢(t).

(iv) There exists a 1:1 correspondence between F(x) and ¢(t).

When the distribution function F(x) of the random variable X is known,
we can find the corresponding characteristic function ¢(t) from (B.1l).
Conversely, if we know the characteristic function ¢(t) of X, the
corresponding distribution function F(x) is given by the so called

inversion formula of Lévy:

F(x,) + F(x3) F(x,) + F(x= T -itxl -1tx2 .
2 2 m -—2." it ,
T+ =T

(B.2)

for Xy < Xy, where F(x-) denotes the left-hand limit of F(x) at the

point x and where




e 2 def. o l_ T2
Tc o(t) p=o = lm It ¢(t) = x,

t+0

If F(x) is continuous at x; and Xy the inversion formula becomes:

, -itx1 -itxz
- €
(B.3) F(x,) - F(x,) = .ﬁ‘: T o(t)dt, x, < x,.

Under the condition [ |[¢(t)|dt < o the inversion formula can be
-0 ©
simplified. In the first place, if [ [#(t) |dt < =, it can be shown that
-co

F(x) is everywhere continuous and that

-itx
1 1 2

(B.4) F(x,) = F(x)) =5= [ = — $(£)de, x < x,.

©©

In the second place, when f |¢(t)|dt { », we can prove the stronger

- 00

result that F(x) is absolutely continuous with density function

(-]
(B.5)  £(x) = F'(®) =4= [ & 1 y(r)de, —o < x < =
-co
[+ -]
Moreover, under the stronger condition [ |t¢(t)|dt < = we have

-0

(B.6) £1(x) =-;—nf —ite 1y (e)dt, —w < x < o

The inversion formula (B.2) does not give the distribution function
itself, but the difference F(xz) - F(xl) at the continuity points x; and
X

2.
The following inversion formula due to Gil-Palaez gives F(x) directly at

the continuity point x:

T .
.7y ERFFG) 2 - tin L [ mee(o)e ) e1ae,
840 " 5 '
Thoo

for -=» < x < =, where Im(¢(t)e-itx) denotes the imaginary part of the
complex-valued function ¢(t)e_itx.




For a proof of (B.7) we refer to Kawata [5].

When F(x) is continuous at x we have

1 1 T -itx
(B.8) F(x) =5 lim-; f {Im(¢(t)e )/t}dt, == < x { =,

540 ~ &
T4eo

Next we shall prove that under a number of special conditions the
right-hand side of formula (B.7) can be simplified. We first prove the
following result.

1f E(|X]) = [ |x|dF(x) < =, then

(8.9)  lim{Im(4(t)e It*

)/t} = E(X) - X,
ty0 .

(-]

for == < x € », where E(X) = [ xdF(x).

- 00

Proof:
With the aid of (B.l) we have

-itx itx
In(g(t)e 1¥) = Ao got)e

[f eitde(y)e"itX _ f e"itde(y)eitX

1/(21) =
o dit(y-x) _ -it(y-x) <
e Zie dF(y) = [ sin t(y-x)dF(y).

-0 -0

This implies that

(8.10)  (In(s(t)e 1) ey = [ 210 LGNar(y),

def.
If for any x, g(y) = |y| + |x|, we get

Sin EGmR| ¢ x| < [y] + |x] = ().




Since [ g(y)dF(y) = [ (|y| + |x|)dF(y)

=00
o

= [ |y|dF(y) + |x| [ dF(y) = E(|X]) + |x] < =,

- 00

and lim M_ = y—x’

t+0

it follows from the dominated convergence theorem of Lebesgue that

Lin | sin tm®)gp(y) - f (y-x)dF(y)

t40 -

= [ ydF(y) - x [ dF(y) = E(X) - x.

With the aid of the latter result we obtain from (B.10):

Lin{Tn($(£)e )/} = 11m [ 20 tOgp(y) = EX) - x,
t40 t40 =e

which completes the proof of (B.9).

In the second place, if E(|X|) < = and f }igg—ldt { w, it can be shown
that

F(x) + F(x=)

(B.11) ! =2 -1 [ (me(r)e T
0

)/ tldte,

- { x { o, where

. def. s
In(o(t)e™ /el o = lin{In(s(e)e )/t} = KX) - x.
t+0

Proof:

—'t
Since E(|X|) { o, it follows from (B.9) that lim{Im(¢(t)e 1 x)/t} =
t+0
E(X) - x, which proves the second part of (B.1ll).

Now consider the right-hand side of (B.7).
We get:

(8.12)  1ind f {Im(4(t)e %) /t}dt = lim & f I(s,my(t) (InC4(t)e “IE%) /),
540 " 540 T
T4 T4




where 1(5 T)(t) denotes the indicator function of the set (§, T).
’
From (B.10) it is seen that

|m(oe)e ¥y e ] = |f SRLEG4p(y)

<f 1R arey) < [ Jy-x|aR(y)
- } -co

<L Uyl + [xDarty) = E(X]) + [x].

-0

We also have

. -itx itx
_1tx/t| - ;¢(t)e - d(=t)e |

|Im(¢(t)e 51T

-itx itx
$(t)e =ty ™ e(e)
AN T |+ ] 2it | gcl'

Therefore, if the function g(t) is defined by
g(t) =0, —2 <t <0
E(|X]) + |x], 0t <1

= e, 1<t

t

it follows that

II(5’T)(t) {M(tb(t)e-itx)/t}l < g(t)

© 0 1 -
Im g(t)dt = {m 0dt +(f) {EC|X]) + |x]}dt +{ Igit)ldt

= E(Jx]) + [x| + [ [EE|at <
1




lim I, . (t) {Im(é(t)e T¥
s¢0 (6T
Thoo

)/t} =

-itx

I(O’m)(t) {Im(¢(t)e )/t},

the dominated convergence theorem implies that

lin < fm I(S’T)(t) {Im(¢(t)e_itx)/t}dt =

§40 T -
The

-itx

)/t}dt

71 T(0,e)(® mCetore

-itx

% {Im(¢(t)e )/tldt,

where I(O,m)(t) is the indicator function of (0, =).

Substitution of the latter results into (B.12) yields:

T

(B.13)  lim < [ {mm(s(t)e ™) /t1ae =L [ {mmCoCe)e i)/ eae.
§40 " S "o
Tte

Finally, substitution of (B.13) into (B.7) completes the proof of
(B.11).

Of course, when F(x) is continuous at x we can write (B.11) in the

following way

(B.14)  F(x) =3 -+ [ {Im(s(t)e T/t

-0 { x { o,
The integrand Im(¢(t)e-itx)/t in the above expressions can always be

written as

(B.15)  Im(4()e ")/t =L |4(t) | sinfarg(s(t)) - tx},




where arg(¢(t)) denotes the principal argument of the complex-valued

function ¢(t).

Proof:

Any complex number z can be written as
z = Izleiarg(z) = |z| cos{arg(z)} + i|z| sin{arg(z)}

which implies that Im(z) = |z| sin{arg(z)}.

Hence,
I‘m(d’(t)e-itx) = l¢(t)e—itxl Siﬂ{arg(¢(t)e-itx)}.

Now we have:

lo(e)e™ %] = Jo(t) | |eitX| = |o(t) |

arg(e(t)e 1t%) = arg(e(t)) + arg(e™1t¥)

= arg(¢(t)) - tx.

From these results it is seen that

Im(o(t)e TH%

1
)/t =<|é(t)| sinfarg(e(t)) - tx},
which proves the desired result.
So far no special assumptions were made about the random variable X. Now
we shall study the special case where X is defined as a linear
combination of mutually stochastically independent chi-square random

variables, i.e.,

M

(B.16) X= I a,U,,
j=1 4

where U;, Uy, «e., Uy are mutually stochastically independent random
Val'iables With Uj ~ xz(mj’ ej)’ j = 1, 2, LN Y Mo




Further, let a = min {|a;], |ay], «ev) lay|} and m = I mss then a > 0
and m = 1, 2, 3, ... =1
Also note that ej_z_o for =1, 2, «ee, M.
When X is defined through (B.16), the distribution function F(x)

satisfies:
(B.17) F(x) is absolutely continuous.

~ Proof:

J
continuous, it easily follows that the distribution function of

M

Vj = ajUj is absolutely continuous. This implies that X = I V. where
J=1

Vl’ VZ’ eeey VM are mutually independent random variables with

Since the distribution function of U. ~ 2(mj, ej) is absolutely

absolutely continuous distribution functions. In other words, F(x) is
the M-fold convolution of absolutely continuous distributions. Hence, in
order to prove that F(x) is absolutely continuous it suffices to show
that the convolution of 2 absolutely continuous distribution functions
is again absolutely continuous.

Let Fl(x) and Fz(x) be absolutely continuous with densities

fl(x) = Fi(x) and fz(x) = Fé(x).

Let F(x) be the convolution of Fl(x) and Fz(x), i.e.,

F(x) = | Fl(x—u)dFZ(u),

-0

then we have

®© X-u

Fl(x—u)fz(u)du = L’[f fl(w)dw]fz(u)du

X X o
f fl(z—u)fz(u)dzdu = f f fl(z—u)fz(u)dudz

- - =

X
f f(z)dz,

=00

where f(z) = f fl(z—u)fz(u)du.

- 00




From the latter result it follows that F(x) is absolutely continuous

(-]
with density function f(x) = F'(x) = [ fl(x-u)fz(u)du and this
completes the proof of (B.17). -
The fact that Uj ~ xz(mj, ej)’ implies E(Uj) = oy +’6j and this enables

us to compute E(X), we have

M

(B.18)  E(|X|) < wand E(X) = I a(m,+ 0

R A R

Proof:

, M
E(|X]) < E(C Z
j=

I“j' 'Uj') = I

a.| ECJU.D
1 RN

M ' M
= % |a,| EC(U,) = £ J|a,| (m,+ 8,) < =.
j=l j' j j=1 l Jl J J

M M M

E(X) = E( I ajU )= I a E(Uj) = I a

(m, + 6.).
j=1 h| j=1 h| j=1 4 3 R

Next we shall show that X has the following characteristic function

m,
M -31 M  6.a.
(B.19) o(t) = [ 1 (1-2ia,t) ] exp{it I =— e
\ =1 3 . j=1 1 Ziujt
Proof:

Since Uj ~ x2(mj, ej) it follows that

-=1  ite

itUj >
¢j(t) = E(e ) = (1-2it) expiy=5i¢}-

Now we get




- E(eitx

M
= 1 E(e
j=1

which proves the desired result.

The modulus and argument of ¢(t) are given by

2.2

M 2 9" M 6.a.t
[e(t)] = [.H (1+4ajt ) ] exp{-2 3 3 2}

j=1 j=1 1+4ajt

m, f.a.t
5 .
[(2 ) arctg(Zajt) + 5 2]

arg(¢(t)) =
: j=1 L+4ajt

Proof:

see Imhof [4] and Koerts and Abrahamse [6].

The function |¢(t)| can be bounded above as follows:

m

(B.21)  [o(8)] < (+4olt?) 4, co ¢t <

M
where o = min{lall, lazl, ceey |aM|} and m = Elmj.

.

J

Proof:
m,
-
4

M
From (B.20) it is seen that |¢(t)| < I (1+4a%t2)
- J

2 2 2 2 3=l
Now we have 1+4ajt 2 1+4a"t”, which implies that

m,
-l
4

(l+4a§t2) < (1+4at?)




This gives:

m m
. | -
M M 2.2

le()] < 1 (+aaltd) 4 < 1 (1+4a’e?)

=1 3 j=1

1
&Iy -
= (1+4a2t ) =1 = (1+4a2t2)

which completes the proof.
The characteristic fucntion ¢(t) of X has the property that
(8.22) [ |24t <

1

Proof:
From (B.21) it follows that

[ |L£-§-)—|dt < [t avae?eh  Aae.
1 1

After the transformation z = (L+4a2t2)-1 with inverse transformation

t = (2a)-lz-%(1-z)§ and jacobian
-3 -1
1) = w7tz 20y 2,

- 1 .
2

[ T (1+40%e )
1

where A = (1+4a2)"1 ¢ 1. ‘
Since z < A < 1 it follows that (1-z)~1 ¢ (1-A)"1! ¢ = and this yields

o _
; =1 -1

1 -1 1
> | 2 (1-z) “dz < > (1-4)

-1.4 4

2(lA) 5 0]'5




m
S S
= (2ned) 1+aa®y 4 .

The above results imply that

Iif:—Q|dt$ e e’y fae
1

n_ -4
%- 2 (l-z)—ldz S_(Zmaz)-l(L+4u2) 4 < =,

which proves the desired result.
Next we shall derive sufficient conditions for the integrability of the
functions |¢(t)| and |t ¢(t)|, respectively.

If m > 3 then [ |¢(t)|dt € =

If m> 5 then [ |t ¢(t)]|dt € =.

- 00

Proof:

In the first place we have

m
/ (1+40%t?) %ac = 2 / (1+4a%t?) “Yar =
0

=00

Gl e G- Ve rdgh
(2a) z (1-2) dz = ————— ({ o,

20 r(%)

if m > 3, where use has been made of the above transformation
z = (1+a2t?)”1,
Hence, if m > 3 it follows from (B.21) that

b o - V}'p(EZ%)
[ le(o)]de < [ Qac’e?) Yar = —— 21 ¢ a,

- - 20 r(%)

which proves the first line of (B.23).




In the second place, if m > 5 we get in a similar way

m

© -
dt = 2 [ t(1+4a’t?) “ar =
0

[ ]t (1+4at?y 4
z4
1 4

-1
(402)— z

From (B.21) we therefore have,

[ |t eto)de < [ |e] (+sa’tD ar =_2_1_< -
= a (m—4)

if m > 5 and this shows the second statement of (B.23).
With the aid of (B.23) we can express the density function f(x) = F'(x)
of X and the derivative f'(x) of f£(x) in terms of ¢(t).

If m> 3 then £(x) =5 [ & Fg(t)dt, ~= < x < o

If m > 5 then f'(x) =-%; ] -ite.itx¢(t)dt, == { x { =,

Proof:
The results follow at once from (B.23) and the general results (B.5) and
(B.6), respectively. '

Now we shall prove that the inversion formula for ¢(t) as given in
(B.19) takes the form

-itx

(B.25)  F(x) == - %f {In(s(t)e %)t )dt,
0

-o { x { =, where

def. _
lim{Im(¢(t)e itx

t+0

Im(s(t)e 1%yt )/t}

t=0

M
= E(X) -x= I a,(m, + 6
=1 b

)-x.

3




Proof:

—————— [+

We know that E(|X|) < = and | |Q%£l|dt { =, see (B.18) and (B.22),
respectively. 1

Hence, it follows from the general result (B.ll) that

{Im(p(t)e **

)/ tldt,

F(x) + F(x-) =l_l}°
2 2 m 0

-»o { x < » and

1 -itx dff° -itx _
m(¢(t)e )/t t=0 = lim{Im(¢(t)e Y/t} = E(X) - x.
t40

The proof is completed by observing that F(x-) = F(x) for all x, which

M
is implied by (B.17), and by making use of E(X) = I a,(m, + ej), see

(B.18). =1

In order to compute F(x) from the given function ¢(t) it is more

convenient to rewrite (B.25) as follows:

sin{e(u) —-% ux}

u y(u) du,

(B.26) F(x) =3 -3 f
0

-o { x < =, where

oy 2 2
M 2 Z'Zl 1 M 6.a.u
[ T (1+a’u®)’ ] expfi T -—l—%ji}

j=1 J j=1 1+aju

6.a.u

1
1+a2.u2
J

1
Y . arct .u) +
2 ; 1[mJ arc g(aJu)

and where

sin{e(u) - %-ux} def. sin{e(u) --% ux}

- = lim
u y(u) u=0 040 u y(u)

M
1 1 1 1
=5 E(X) -=x == + - > X
5 (X) 7 X =75 j:laj(mj ej) > X




Proof:
With the aid of (B.15) it follows from (B.25) that

L |o(t)| sinfarg(4(t)) - tx}dt, -= < x < =

After the transformation u = 2t with inverse transformation t --% u and
jacobian Ig—t-l =i e get
du 2
1 171 1 1 1
F(x) 7" é " |¢(2 u)| sin{arg(¢0§ u)) - > ux}du.

Now the first part of (B.26) follows at once from (B.20) by setting y(u)
1 -1 1
= |¢(3 u)| * and e(u) = arg(4(5 u)).

In order to prove the second part of (B.26) we observe that

sin{e(u) --% ux}

u y(u)

- -11; |¢(-%- u) | sin{arg( 4,(% w)) - _;_ ux}

23

—iu(2

x) —iux*)/

= Im(¢6% u)e Y/u = Im(¢*(u)e

= x and

m, *
M - M
T

6.a.
n (1—2:la.*u) 4 ] exp{iu —Ll;—}

o (u) = [ y
j=1 j=1 1-21au

* 1
With aj "—Z’Qj, j= 1, 2, sy Mo

That is ¢*(u) is the characteristic function of the random variable
M
*
Xf = I a.U,, where the Uj's are defined as before.
j=1 3 3
Hence, it follows from (B.9) and (B.18) that

*

lin{In(é (w)e 1% y/u} = EGX) - x
ut0 :

) -1«

a.(m, + 8 2

e R

and this implies that




sin{e(u) —-% ux} 1

1 1
i == E(X) -5 x = (m, +0,) -5 x
i+g u y(w) 2 B -y x i 1a3( 378 73

as was to be proved.
For the numerical computation of F(x) at a fixed point x, the integral
in (B.26) is evaluated in two steps.

o sin{e(u) --% ux}

a)

: T (%) du is approximated by

U sin{e(u) - %-ux}

é (D) du for sufficiently large U.

U sin{e(u) --% ux}

é ey du is approximated by using the compound

rule of Simpson.

The truncation error in a) and the approximation error in b) both can be
made arbitrarily small.
For a computer program which computes F(x) in the way indicated above,
we refer to Koerts and Abrahamse [6].
As far as the truncation error in a) is concerned, we have the following
result:

o sin{e(u) - l—ux}

2
(B.27) lfj ey

du| < T(U), U > O,

where

m 2.2
-5 M 6.a.0

T(U) = 2m_1cIIU exp{--% T 2 2}
j=1 1+ajU

m,
1
2




o sgin{e(u) - Y ux} ©
—du| < [ '
U

2 sin{e(u) - —;- ux}

[

U u y(u)

u y(u) du £

’ 2 2 ,
22 2 1 M 6.a.u

Since l+au” > azu and exp{#+ I —J—J—} is nondecreasing in u > 0, it
i = 2 22
. j=1 1+aju

follows from the definition of y(u) that

m
M i M 0,020
2 2.4 1
uy(u) Du I (aju ) exp{i T > 2}
j=1 5= 1+ayy

+ 1 M B(sz2

1
c, exp{m+ I 1,
1 2 51 1+a§U2

for u > U.
This implies that

m 2.2
13 M 6,aU

cI U exp{- Y T > 2}’
3=l I+a3y

- Zm"l

which completes the proof of (B.27).

Note that in the case ej = 0 for all j we get

m

T(U) = Zm-chIU 2,

Further it is easily seen that T(U) is a strictly decreasing function of
U> 0 with T(U) + 0 as U + . )

When ej > 0 for at least one j we have:

-z
1 2

-
-1 -1 2
c:1 c::2 U

< T(U) < 2m-1¢IlU , U> o0,

2m

1 M
where ¢, = exp{i z

0.}.
3=17




AEEendix C

The distribution function of Qs considered as a function of the

Earameters

In this appendix we shall investigate how the distribution function of a
particular linear combination of mutually stochastically independent
chi-square random variables depends on the noncentrality parameters.
To be more specific, consider the random variable Qg, which for each
fixed s > 0 is defined by

M

(c.1) s = z

3 0[Alj(s)vlj(s) + Azj(s)vzj(s)] + A(s)V(s).

The random variables Vlo(s), Vll(s)’ cany VlM(s), VZO(S)’ V21(s), coey
VZM(S)’ V(s) are mutually stochastically independent and the
coefficients llj(s) and Azj(s) are given by

klj(s) = %{1—5) - %‘VQI-S)Z + 4s(1 - pj)
(C.2)

A3() =—;-(1-s) +-%\/(l-s)2 + 4s(l - o),

j=0, 1, ...,M,Wherep0=0<p1<p2< o-o<m< 1.
The coefficient A(s) is arbitrary and the random variables V(s), Vlj(s)
and sz(s) possess the following probability distributions:

V(s) ~ x%(m)
Vlj(s) ~ xz(mlj, le(S))

Vpi(8) ~ x*(mys, Ty5(s))

?here m > 0, mlj_z_o, mzj_z_o, j=0, 1, eee, M and mp g = Wy = Wy for
J = 1’ 2’ ..., M.

The noncentrality parameters rlj(s) and le(S) in (C.3) are of the form

le(s) clj(s)v2j + dlj(s)v1j
(C.4)

le(s) = °2j(s)V2j + de(s)vlj’




for j =0, 1, «¢s, M, where the parameters Vlj and v2j satisfy vlj > 0,
V23 > 0 and where the coefficients clj(s), °2j(s)' dlj(s) and de(S) are
given by

Alj(s) + s ,
(s) - Azj(S)]

= A CSIA

3 13

Azj(s) + s
IR OIEHO RO

-s[Alj(s) 1]
IO ROIEEWO)

—s[Azj(s) - 1]
xzj(s>[x2j(s) xlj(s)]'

d2 (s) =

h|

With respect to the above coefficients we make the following remarks.

In the first place we note that

Alo(s) = =g, Azo(s) =1

-5 £ Alj(s) <0, 0K Azj(s) <1, =1, 2, eoe, Mo
Secondly, it is not difficult to verify that

Alj(s) + Azj(S) = ]-s
(c.7)

for 3 =0, 1, es., M.
From (C.5) and (C.6) it easily follows that

clo(S) = 0, C20(S) =1
dlo(S) = 1, dzo(S) =0

and also that clj(s) > 0, °2j(s) > 0, dlj(s) > 0 and de(s) > 0 for
j = 1, 2’ 00., M0




Since the noncentrality parameters tlj(s) and sz(s) of the chi-square
random variables Vlj(s) and sz(s) depend on the parameters V13 and Vo3
it will be clear that the distribution function of the random variable
Qg depends on the parameters V15 and Vo

We shall investigate this dependence in the following two situations:
(I) s : j LI INY Mo
(1I1) V1jZ°’ Vy3=0, 3 = eeey M.

That is, if v = (vl, v2) with v, = (VIO’ Vils cees le) and
vy = (vzo, Vols eees VZM), we shall derive the partial derivatives
3 Gv(x, s)

avzj

0, 1’ *o 0y M

in situation (I), and
3 Gv(x, s)
avlj
in situation (II).

Here Gv(x, s) denotes the distribution function of Qgs i.e.,
Gv(x, s) = P(QS £ x).

From (C.1) and the result (B.19) of Appendix B it follows that the

it
characteristic function y (t, s) = E(e QS) of Q  takes the form

m, . m, .
: S

(€9 (e, 8 = [ 1 (=202, (a)0) 2 (1-28dy5(e)0) 2]

3=0

-B MoOA L (8)t .(s) A, .(8)T,.(s)

2 13577714 2j " 23
1-2ix ] . ; :

( (s)t) eXP{itjEOH-znlj(s)t + =213, (s)t 11,

where i denotes the imaginary unit.

By making use of the result (B.25) of Appendix B, we can express

Gv(x, s) in terms of wv(t, s) as follows:




(C.10) Gv(x, 8) =-%---% {Im(wv(t, s)e-itx

)/tldt,

- » { x { », where Im(y,(t, s)e'itx) denotes the imaginary part of the

-itx

complex-valued function wv(t, s8)e and where

’ def .
el o = lm{Im(y (t, s)e
t=0 £40 v

-itx -itx

Im(y (t, s)e )/t}

M
= E(QS) -x = jzo[)‘lj(s)(mlj + le(s))

+ Azj(s)(mzj + sz(s))] + A(s)m - X.

Now we shall first derive an(x, s)/av2j for j=0, 1, «ee, M in case
(D).

Since we have Vi3 = 0, j= 0, 1, eee, M it follows that
le(s) = clj(s)VZj and le(s) = °2j(s)v2j (see (C.4)) and this shows
that wv(t, s) takes the form:

2y _ 2

M
—-— - 2 -
(C.11) wv(t, s) = [jgo(l Ziklj(s)t) (1 Zilzj(s)t)

M )\Ij(s)clj(s)vgi

(1-21x(s)t) exp{it I [——
=0 1 Zixlj(s)t

AZj(s)CZjFS)VZj
I-Zikzj(s)t

+ ]}.

If v= (0’ ;2) with ;2 = (Vzo, V21, ey V2j+A, soey VZM), it is seen
from (C.10) that

3G_(x, s) G~(x, s) - Gv(x, s)
v v

v = 1im A
2j A+

Im(y (t, S)e-itx) = Im(y(t, s)e 1t¥)

A4

lim -1
A»0 m

tA dt,
for j = 0’ 1’ ...’ M.
We start with the case j = 0. Since ¢ p(s) = 0, cy(s) =1 and

Azo(s) = ], we can write:




wv(t, s) = f(t)
def.
f(t) = \pv(t’
This yields

it(v20 + A)
¢$(t, s) = EXPf———I:EIE-——}

itv
20 itA
expliic) exPiissic)

itA

b, (t, s) exv{1 it

i

By making use of Im(z) = (z - z)/(2i) for a complex number z and

wv(t» S)e-itx _ wv(’t: s)eitx

it follows that

-itx itx

Im(y_(t, s)e ") - Im(y (t, s)e )

N

I = $[h(t, A) + h(-t, A)],

it
SXPTTTE

ita

} -1
h(t, 8) = ¥ (t, s)e ¢

Substitution of (C.13) into (C.12) gives:

3G _(x, s)

(Cold) ——"- 1113 —%f [h(t, A) + h(-t, A)]dt.
20 A+ 0

If the modulus of the integrand %{h(t, A) + h(-t, A)] can be bounded by

a positive, integrable function of t which does not depend on A, we can

apply Lebesgue's dominated convergence theorem and interchange the
operations lim and |,




We therefore first consider [%[h(t, a) + h(-t, M]].
Since h(t, A) = h(-t, A) and |h(t, A)| = |h(t, A)|, it follows that

(c.15)  RIh(t, &) + h(-t, O]] < 3[nct, O] +F|n(-t, »)]

itA
expliio7e) ~ 1

ita

= lh(t: A)I = I‘bv(t’ S)l I

where use has been made of the definition of h(t, A).

In order to obtain the desired result we shall prove that for any A< 0O
ita 1

exp{i7ie) ~ ! - 2A -1
Tth | < e [(1-2it) 7|

(C.16) |
for A < A { » and all t.

Proof:

Let A > 0, then

itA ity _
exp{izoigl — 1 explyTgigh{y=2 -1

Tta =Ttz |y=0 = (172it)

which shows that
itaA
et - !
ita

exp

| < |(1-21)71

2
Iexpf4££z—}| = eprzngE}_S 1

1-2it 1+4t

for y > 0 and all t, we get

1tA
expiysogel ~ ! 1

Ter < |(1-24t)

dy

_1,

= Jaean”Y ce P ja-2anT,

for any A< 0, A > O and all t.




Next suppose that A < 0, then we have

itA
o s o
itA itA y=A

0
R B | it
= (-2i0) " Ty [ exe{gTyiniay

Now we get

2

IEXP{I 21t}| = exp{ } < exp { 2}

1+4t 1+4t

for A<y <0 and all t.
This yields:

itA
expii55e! -1
Tth < ](1—21t)

< |(1-Zit)_1| exp{:ZAE—
1+4t

2
-2At

|(1-2it)7} | exp {—2AE } < J(1-2ie)” | exp ==}
1+4t2 1+4t

_ L,

< =210 e 2
for any A< 0, A< A< 0 and all t, where use has been made of

2
exp{ 2At2} £ lim exp{—ZéEE}
1+4¢t tato 1+4t

This completes the proof of (C.16).
The substitution of (C.16) into (C.15) yields:
1

- A
(1) | 3InCt, 8) + h-t, B]| < e 2 | ¥,4(Es 9]




for any A< 0, A < A < =» and all t, where
(C.17) g o(t, &) = (1-216)71 y(t, 8).

Since (1-2:[.1:)_1 is the characteristic function of a random variable with
a X2(2) distribution, it follows that the function wo v(t, g) is the
b}

characteristic function of the random variable

Q,s = & + W

where W is independent of Vlj(s)’ sz(s) and V(s) and W ~ x2(2).
With the aid of Azo(s) =1 and (C.l) it is seen that Qy ¢ can be written
’

as:

M

(c.18) Q.

where Vlo(s), Vll(s), cony le(s)’ VZO(S)’ evey VZM(S)’ V(s) are
mutually stochastically independent and have the following distributions

T(s) ~ x2(®)

~ 2~
Vlj(s) ~ X (mlj’ le(S))

~ 2~
sz(s) ~ X (ij’ sz(s)),

3=0, 1, eeey M.

The degrees of freedom are given by

=m1j, j = 0, 1, vy M

= m20 + 2

= mzj, j = 1, 2, ceey M




Note that Q. s is again a random variable of the type considered in
’
(C.1) and that Qp. g can be obtained from Qg through replacing m,, by
~ ’
m20 + 2 = m20.
As is shown in Appendix B, see (B.23), if the sum of the degrees of

M

freedom f (m,.+ m,.) +m > 3, it follows that
j=o 1 2] =

(c.21)y |1po’v(t, 8) |dt < .

Now we have

M

L+ m ) +m= I (m

+ m
23 §=0 1j 2

) +m+ 2 Z.mz + 2> 3,

3=0 3 ° T
since myq > 1 and this shows (C.21).

-4,

Returning to the positive function e 2 |¢0 E s) | in the right-hand
) ’
side of (i), it is seen from (C.21) that

1
- =A ®
|¢0’v(t, s)|dt = e 2 [ 1(0’“0(t)|w0’v(t, s) |dt

1
- EA ©
Le 7 [y Jle, 8)de < =,

where I(o,@)(t) denotes the indicator function of (0, «).
From

it -
1-2it 1-2it
lim = = linf T )
A+O A+0

= (1-2it) 11im exp{l—f-g—i‘—} - (1-216)"%,
A+0 t

it follows that

(111)  m3 [h(t, 8) + h(-t, B)] =
A+0

-% [(1—21:)'1wv(t, s)e 1t 4 (1+21t)-1¢v(-t, s)elt™]

itx

1 -
=7 W o(8s &% 4y -ty o6,




The results (i), (ii) and (iii) enable us to apply the dominated
convergence theorem to (C.l14) and this yields

8Gv(x, s)

avzo

-i

(C.22) = -1l (x, 6 + ey (o, o))
0 ’ ?

Since (C.21) implies that both integrals

? Ie-itx itx

0

wO,v(t’ s) |dt and é le

N Gl s) |dt

are finite, we get

-itx

171 itx
s {)3 [Ty (£, 8) + &7y (-t 8)]de =

[f e’itxwo J(ts 8)dt + / eitxwo v(-t, s)dt] =

1
27 0 ’ 0

it

1,5 it
27 [I e *

0
Vo, (ts 8)dE + [ e

xwo Lt 8)dt] =
0 ’ - ’

] e_itxwo’v(t, s)dt.

-Q0

1
27

With the aid of the latter result, (C.22) can be rewritten as

3G (x, s8)
v 1
(C.23) —_— -

-itx
v e
20 ©

wo’v(t, s)dt.

Now let Go’v(x, s) be the distribution function of Qy g» i.e.,
. ’
GO,V(X, §) = P(Qy g < x) and let the probability denmsity function of
)6 =
QO,S be denoted by g, . (x, s), that is,
bl

aGo v(x, )
80’V(X, s) = Gb’v(x, §) = ———LE;——__— .
M~ ~
Since jEo(mlj + m2j
Appendix B that

) + 5'2_3, it follows from the result (B.24) of




(C.24) go’v(x, 8) -d f e-it

x
2n ¢ wO,v(t’ s)dt,

for =« ¢ x € =,

Finally, the substitution of (C.24) into (C.23) yields

an(x, s)

(C.25) v

= -8, ,(x, 8)
20 o,v

for == { x { », all s > 0, all v = (0, vz) and any A(s). This completes
the case j = O. '

Next we consider the case j = k, where k = 1, 2, ..., M. We start with

formula (C.12) and in this case the function ¢~(t, s) can be written as
3 _

clk(s)ilk(s) . CZk(s)XZk(g)]}
l-ZiAlk(s)t l-ZiAZk(s)t °

v (t, 8) =y (t, 5) exp{ita[
v

Substitution of this result into (C.12) gives

an(x, s)

(C.26) v

= lin -2 [ [n(e, ) + h(-t, B)]dt,
2k A+0 0

where now h(t, A) is defined by

h(t, &) = y (¢, s)e—itx(exp““‘iﬁi"” - 1y,

and where

(82 () ey (8)2y (8)

2(t) = —— + .
1 Zixlk(s)t 1-21A2k(s)t

Now we have

(C.27) |3 [h(t, &) + h(-t, ]| < [n(t, 8|

- exp{itA g(t)} - 1
IIJ’v(t’ 8| ita

and we therefore first consider the modulus of [exp{itA 2(t)} - 1]/(itA).
We shall prove that for any A < O:

exp{ita 2(t)} - 1
(C.28) ith




for A < A { » and all t.

Proof:
Let A > 0, then

A
exp{itA 2(t)} - 1 _ exp{ity 2(t)}|y=A _ 1
Teh = 11 =0 2(t) é exp{ity 2(t)}dy,

which shows that

_ A
explith MO} = L | ¢ |yr)) %(j) lexp{ity 2(t)}|dy.

clk(s)xfk(s)tz c2k(s)x§k(s)c2

|exp{ity 2(t)}| = exp{-2yl 5 57— + 5 5
1+4x1k(s)t L+4x2k(s)t

1}

= exp{-2y w(t)} <1

for y > 0 and all t, we get

A
exp{itA 2(t)} - 1 1
Tta < o3 é dy

T2 (1-p.)
= |e(t)] < e P |eCe) |,

for any A < 0 and all t, where

2 2. 2 2
clk(s)xlk(s)t cZk(s)AZk(s)t

w(t) = 5 5 + 5 5
1+4A1k(s)t 1+412k(s)t

If A € 0 we have

exp{ita #(t)} -1 _ _ exp{ity 2(t)}|y=0
ita it y=A

0
= 9(t) T%ZT [ exp{ity 2(t)}dy.
A




|exp{ity 2(t)}| = exp{-2y w(t)} < exp{-2A w(t)}

for A<y <0 and all t, it follows that

0
exp{itAiigt)} -1 < |2(t)l T%KT { lexp{ity 2(t)}|dy

0
< |a(t)| exp{-2a w(t)} ﬁ [ dy = |a(t)| exp{-2a w(t)}
A

< 2(0)] expl-24 W(D)} < [2(t) | expl- gAle;, (8) + €y (8)))

for any A< 0, A< A< O and all t, where use has been made of

exp{-2A w(t)} < lim exp{-2A w(t)} = exp{-'%A(clk(S) + CZk(S))}-
t+teo

From (C.5) and (C.7) it can be seen that

1
(C.29) clk(s) + c2k(s) "T:BE

which shows that

1
- T2 (1-p)

for any A< 0, A< A< O and all t.
This completes the proof of (C.28).
Now substitution of (C.28) into (C.27) yields
-1
) . 2 (1-p,)
(C.30) | 3 [h(t, A) + h(-t, A)]| < e la(e)y (L, 8],

for any A< 0, A< A< = and all t.

With the aid of (C.5), (C.7) and (C.29) it is not difficult to verify
that




S T VA e (1+21st)
=203 (8T T 1m20Ny, (8)E ~ (I-21A (8) D) (1-2Dhy (s)E) °

and the latter result shows that (C.30) can be rewritten as

(l-pk)

(1v) | 3 [h(t, 8) + h-t, B]| < e |(+21st) (£, 8],

for any A< 0, A< A< = and all t, where
(C.32) Y y(t &) = (1=21h3(8))H(1-242 (8) ) 1y (t, 8)o

In order to show that the positive function in the right-hand side of
(iv) 1is integrable, we first investigate the function ¥ v(t, s) as
’

defined in (C.32).
Since (1-2111k(s)t)-1(1-21x2k(s)t)-l is the characteristic function of

where W, ~ x2(2), Wy ~ x2(2) and W; and W, are independent, it follows
that Y, v(t, s) is the characteristic function of the random variable
’

Q,s = U T i8IV + Ay (8)W,

vhere W, and W, are independent of Vlj(s), sz(s) and V(s).

From these results it can be seen that
M ~ ~
(C.33) Q _ = [, .(s)V. . (&) + A,.(s)V,.(8)] + A(s)V(s),
k,8 §=0 1j 13 23 23

where VIO(S)’ Vll(s), cees VIM(S)’ VZO(S)’ eony VZM(S)’ V(s) are
mutually stochastically independent with

V(s) ~ x2(@)

~ 2~
ORPLCHNENOY

~ 2 ~
sz(s) ~ X (ij’ sz(s))a




j’ 0, 1’ seey M.

The degrees of freedom are given by

m

13
[y j“o, 1, L) M, j*k
23

~
m

23

= m

~
m

+2=mk+2

1k - M1k

~

mZk mZk + 2= m + 2.

The random variable Qe s is again of the type considered in (C.l) and it
bl

can be obtained from Qg through raplacing m;, and Moy by myy + 2 = LR

and mgy + 2 = Doy respectively.

If the sum of the degrees of freedom

M
I (m,+m,,)+nm)>5,
jo0 W7 723

it follows from (B.23) of Appendix B that

Iw lwk,v(t, 8) |[dt < =

(C.36)

f ltwk,v(t, ) |[dt € =

- 00

Now we have
M M

T (Elj + Ezj) +m= % (m

3=0 j=0 1 Yrmd

+ m2j

dmy +my +4=2m 46,
since m; > 1, and this shows (C.36).

With the aid of (C.36) we get




|(1+Zist)¢k’v(t, §) |[dt =
{m Io,m)(t) |(1+2ist)¢k’v(t, s) |[dt <

Im |(+21s0)y, (t, §) [dt <
1_4A
(1-p, ) =
{m{lwk,v(t’ s)| + 2s|t wk’v(t, s) | }dt

1 _ A
- —2' (l-pk) © ©
=e { |¢k’v(t, s)|dt +2s [ |t wk’v(t, s) |[dt} < e,

- 00

Finally it is seen from

exp{itA 2(t)} - 1
ita

it o(t) exp{ita z(t)})

lim 1t

A+O

= lim(
A+0

= g(t) lim exp{itA 2(t)} = &(t) =
A+0

(1#21st) (1-24213 (8)t) 1 (1-212,, (5) )72,

lim-% [h(t, A) + h(-t, A)] =
A+0O

itx]

% [(1+2188)9, (¢, s)e X 4 (1-21st)y, (-t, s)e

The results (iv), (v) and (vi) show that we can apply the dominated
convergence theorem of Lebesgue to (C.26) and this yields:

3GV(X, s)

(€.37) —e——= -1 11 [ar2as)e
0

wk,v(t’ s)

8v2k

.

+ (1-21st)eitxwk v(—t, s)]dt.




Since (C.36) implies that both integrals

J |(1+Zist)e_itx\pk (t, s)|dt and [ |(1—2:Lst)eitx1pk (-t, s)|dt are
0 Vv 0 vV

finite, it is not difficult to verify that (C.37) can be rewritten as

an(x, 5)

-itx
ov e

1
(C.38) ™ = -3 ; (1+2:Lst)\pk’v(t, s)dt.

Let Gy v(x, s) be the distribution function of the random variable Q. ¢
’ ’
and let g, v(x, s) denote the corresponding probability density
’

‘function, i.e.,

, ack v(x, s)
= =
gy, y(¥» 8) = G (%, 8) = ——.

M~
Since I (m

+ Ezj) +m > 6, it follows from (B.24) of Appendix B that
3=0

13

1 -]
gk,v(x, s =-2;f

-Q0

-itx
¢k’v(t3 s)dt

, _1 7. -itx
gy (%> 8) =37 ;fw ite Ty (t, s)dt,

9g, (%, s)
k,v'?

M B ——
Sk,v(x, s) %

L]

Substitution of the latter results into (C.38) yields:

BGv(x, s)
(C.39) — " -[gk’v(X. s) - ZSg{(’v(x, s)],

2k
for k=1, 2, ¢eo, M, =« < x { =, all s > 0, all v = (0, vz) and any
A(s).
If we compare this result to the case j = 0, see (C.25), it is seen that
3G, (x, 8)/8V2j, j=1, 2, «e¢, M can no longer be expressed in terms of
a probability density function only.
However, under certain conditions on the degrees of freedom parameters
m;o» @ and the coefficient A(s), it can be shown that

an(x, s)

*
Tavy, “By,v(%> 8)»




*
where 8y v(x, s) is a probability density function. In order to see
’
this, we reconsider (C.38) and define

(C.40) w;’v(c, §) = (1+21st)y_ (t, 8)

Now suppose that m;, > 2. Since Xlo(s) = -5 and
Ve, v(Es 8) = (1=212 13 ())TH(1-202p, () 0) "1y (2, 8, it follows from
m
10

(C.9) that wk’v(t, s) contains the term (1+2ist) 2
*

with mlo/z.g 1.
Hence, wk v(t, s) is again a characteristic function and it is not
’ *

difficult to verify that the corresponding random variable, say Qk s?
b}

can be written as:

(A  Qf, = T Dy T} + 40T} 7
. Qk,S j:o lj S) lj(S) zj(s)vzj(S)] + A(S)V (S),
where the random variables at the right-hand side are mutually

stochastically independent and where

*(8) ~ 2@ )

v
~k
v

2, ~%
1j(S) ~ X (mlj. 'rlj(S))
9 j= 0, 1, ceey M.

K 2 ~%
vzj(e) ~ X (ij’ sz(s))

The degrees of freedom are given by
m
=m, - 2

10

= glj, j= 1, 2, eeey M

= Ezj, j = 0’ 1, ey M,

where m, Elj and EZj are as defined in (C.35).
~* ~
Note that Dy = By = 2 = LI

With the aid of (C.35) and mlO.Z.Z it is also seen that

- 2> 0, since o0 2 2.




(C.4) ? (~* + ¥

. m m
j0 13T M2

Since Q; o is a random variable of the type considered in (C.l), it
£}

follows from (C.44) and (B.24) of Appendix B that

~k

* 1 7 -itx * :
(C.45) gy J(xs &) =50 [ ey (&, o),

* *
where 8y v(x, s) is the probability density function of Qk g*

? b}
The substitution of (C.40) into (C.38) gives

BGV(X) §)

1 T -itx *
ov T [ e ¢k,v(t’ s)dt

2k
and it follows from (C.45) that, under the condition m g 2 2, we have

BGv(x, §) *

(C.46) = == 8y (% 8),

2k
for k =1, 2, ees, My =» < x < o, all s > 0, all v = (0, v2) and any
A(s).

Next we consider the situation where m > 2 and A(s) = -s for all s > 0.

Since Alo(s) = -5 = A(s), it follows that (C.9) becomes

m
: - g

wv(:, s) = [ I (1—2111j(s)t) 2 (1-21a (s)t)-

3=0 23

exp{it ? {xlj(s}rlj(S) +123(S)121(S) 1}
=0 1-21xlj(s)t 1-21x2j(s)t ’

~

i U T A

-~

mlj = mlj’ J=1, 2, ¢eu, M

~

mzj = mzj, j = 0’ 1’ X XY M.

That is, Qg can be written as




M
(c.49) Q= j):O[Alj(s)v

where the random variables at the right-hand side are mutually

(s) + 12 (s)vzj(s)],

13 3

independent and where

vlj(s) ~ xz(ﬁlj. 113(5))
(C.50)

sz(S) ~ xz(;Zj’ sz(S)),

=0, 1, eee, M.
It is seen that Qg in (C.49) can be obtained from (C.l1l) through
replacing A(s) by 0 and mo by mjg+m = ;10.2 2. Since the result
(C.46) holds true for any A(s), it follows that

aGV(x, s) *

(C.Sl) av = -gk’v(x’ S)’

2k

for k =1, 2, eeey My =2 < x { w, all s > 0 and all v = (0, vz), where
* .
8y v(x, s) is the probability density function corresponding to the
’
characteristic function (see (C.40)):

wi,v(c, 8) = (+2ist) y (¢, s) =
(L+215t)(I-Zillk(s)t)-l(I-ZiAZk(s)t)_lwv(t, ).

This completes the situation (I).

We proceed with case (I1I), i.e., we suppose that vljjl o, Voy = o,
j=0, 1, «ee, M and we shall derive 3G,(x, s)/avlj.

It is seeg from (C.4) that rlj(s) = dlj(s>vj and rlj(s) = de(s)vlj’
which shows that wv(t, s) takes the form

M 0y "24

(€52)  w(t, &) = [ I (-2 ()8) 2 (=24hy(e)E) 2 1(1-24M()E)
3=0 |

(s)v
(s)t

M A, .(8)d, . (s)v.. A, .(s)d
exp{it ¢t [ 1) 1] 1] 2

2]
oo 12IKy(8)E + 17

23

Liyy

Now we take V = (31, 0) with ; = (v

it follows from (C.10) that

+ A, ooy le) and

1 10° V11 *** Vj




an(x, 8) G~(x, s) - Gv(x, s)
(C.53) ——— = lim -
13 A+0

Im(y_(t, s)e-itx) -

A4

lim - f
A+0 0

for j = 0, 1, ccey M.

By using similar arguments as before it can be shown that

oG (x, s) ©
v s -itx
(C.54) ——E;IE-—— el Y Im e wO,v(t’ s)dt,

where
(C.55) g, (t, &) = (1+21s8)71 y (t, )

is a characteristic function which satisfies

-]

I lwo’v(t, 8)|dt { =,

Hence, if ho’Q(x, s) is the corresponding probability density function,
we have

1 G -1
(C.56) hO,v(x’ 8) =5 [ e txwo’v(t,

Substitution of (C.56) into (C.54) yields

3Gv(x, s)

(C.57) v

” = g hO,v(x’ s),
for =« { x { =, all s > 0, all v = (vl, 0) and any A(s).
Whenj=k" 1, 2. -oo,Mweget

BGV(x, s)

(C.58) v

-5 -itx,
” o {w e (1 21c)¢k’v(:, s)dt,

where

(C.59) Wy (t, 8) = (1-212y, (8)E)"1(1-242p, (s)1)71 g (t, 8)




is a characteristic function satisfying

J |¢k’v(t, g) |[dt < =

(C.60)

] |t wk’v(t, 8) |dt < =,

If hk,v(x’ s) denotes the probability density function corresponding to
wk’v(t, s) and if

3 (x, 8)
h'l'(,v(x’ 5) = hk ;x ’

it follows from (C.60) that

1 7 -itx
hk,v(x’ 8) o [ e wk’v(t, s)dt

(Co61)

' - 1 _qp—itx
hk,v(x’ 8) = 5= Iw ite wk’v(t, s)dt.

Substitution of (C.61) into (C.58) gives

an(x, s)

(C.62) 5

” = s[hk,v(x, s) + Zhi’v(x, s)],

for k =1, 2, ¢os, My =» < x < =, all 58 > 0, all v = (v;, 0) and any

A(S)c
* ,
When the function b v(t, s) is defined by
- t]

(C.63) ¢;’v(t, &) = (1-21t)y ' (t, ),

it can be shown in a similar manner as before that, under the condition
*

mzo‘Z_zs wk’v(t, s) is again a characteristic function with the property

that

(C.64) hi’v(x, ) =3= [ My (z, e,

*
where hk v(x, s) is the probability density function corresponding to
* ’ '

wk,v(t, 8).




Therefore, if myq > 2, it is seen from (C.63) and (C.64) that (C.58)

becomes

9G_(x, s) *
(C.65) —p— = sy (x, &),

1k
for k = 1, 2, oo, M, o< x < =, all s > 0, all v = (vl, 0) and any
A(s).
Finally we consider the case where m > 2 and A(s) = 1 for all s > 0.

Since Azo(s) = ] = A(s), it follows that wv(t, s) in (C.9) can be
written as:

M - _ D2y
(C.66) y(ty, 8) = [ I (1-21ix,,.(s)t) (1=-2ix,.(s)t)
v §=0 1j 23

{ M [A (s)r (s) Azj(s)rZi(s)]}
exp{it I + ’
3=0 1- ZiA j(s)t I-Zixzj(s)t

~

mlj = mlj’ j = 0, 1, ceey M

20 +m> 2

mzj = mzj, j = 1, 2, ooy M

This means that Qg takes the form
M
(c.68) g = 32 SR OMHOR: lzj(S)sz(S)].

where the random variables at the right-hand side are mutually
independent and where

V)48 ~ i@y, 1080

2&
sz(s) ~ X (ij’ sz(s)),

j bd 0, 1’ LR N M.




That is, Qg in (C.68) can be obtained from (C.1) through replacing A(s)
by 0 and myy by myq + m = mZO-Z 2. Since (C.65) holds true for any A(s)
it follows that, under the condition m > 2 and A(s) = 1 for all s > 0,
we have

3G _(x, s)

€.70 v *
(C.70) X hk,v

for k=1, 2, eeo, -0 { X< w» all s > 0 and all v = (vl, 0), where
hk (x, 8) is the probability density function corresponding to the
characteristic function wk (t, s) as defined in (C.63). This completes
the case (II).

Summarizing the above results, if Qg is defined by (C.1) - (C.5), then
the characteristic function y,(t, &) of Qg is given by (C.9) and the
distribution function Gv(x, s) can be found through (C.10), where

v = (Vl’ v2) with v; = (VIO’ Vils cee» le) and v, = (VZO’ Vols *ees VZM)'
The partial derivatives of G,(x, s) with respect to the parameters Vi3
and Va3 under the hypotheses (I) and (II), respectively, are given by:

(1) Vi3 =0, vp520, =0, 1, «e, Mo

BGv(x, s)

(a) go’v(x; ),

Va0

for =» { x { », all s > 0, all v = (O, v2) and any A(s), where
go’v(x, s) is the probability density function corresponding to the

characteristic function

¥o,v(ts &) = (1-216)71 (¢, 8).

acv(x, s)

(b) v

W - - 1
o [gk,v(X. 5) ngk’v(X. s)],
for k =1, 2, eee, My ~© < x < », all s > 0, all v = (0, vz) and any
A(s), where gk’v(x, s8) is the probability density function corresponding

to the characteristic function




e (6 8) = (1212 () 0) " H(1-2000 () D) 7T g (e, ),

and where

g, ,(xs &)
] - —

(c) 1If m10_2_2, the function
. 218ty (t, &)
wk’v(t, s) = (1+ st)\l:k’v t, s

is again a characteristic function and

an(x, s)

*
av2k gk,v(x’ ),

for k = 1, 2, oo, - { x <= all s > 0, all v = (0, VZ) and any
R(S), where gk (x, s) is the probability density function corresponding
to wk (t, s).

(d) If m > 2 and A(s) = -s for all s > 0,

w:’v(:, s) = (1+2ist)¢k’v(t, s)

is a characteristic function and

B B s
I ?
3V2k k,v
for k = 1: 2y eee, -»<{x<w all s >0 and all v = (0, v,), where
again gk (x, s) is the probability density function corresponding to
wk (s ).

(II) vlj_>_0, sz = 0, j = 0, 1, seey M.

BGV(x, 8)
(a) ——3316-—— = g hO,v(x’ 8),
for ~=» { x { =, all 8 > 0, all v = (vy, 0) and any A(s), where

hO,v(x’ s8) is the probability density function corresponding to the
characteristic function




¥o,y(ts 8) = (1+215t)71 4 (t, 8)

an(x, s)

v

(b) = s[hk,v(x, s) + 2h£’v(x, s)].

1k

for k =1, 2, eeey My o { x { », all s > 0, all v = (vl, 0) and any
A(s), where h, _(x, s) is the probability density function corresponding
H

to the characteristic function
Ve v(Es 8) = (1202, ())1(1-200 ()) ™1 (2, 8,

and where

ahk v(x,s)
ax :

hi’v(x) s) =

(c) If myq 2 2, the function
*
wk’v(t’ S) = (I—Zit)¢k’v(t: S)

is again a characteristic function and

an(x, s)

*
v =g hk,v(x’ s),

1k

for k=1, 2, eeo, M, =o< x { w, all s > 0, all v = (v;, 0) and any
*
A(s), where hk

v(x, s) is the probability density function corresponding
* ’
to wk’v(t, 5).

(d) If m > 2 and A(s) = 1 for all s > O,
*
wk’v(t: §) = (I-Zit)wk V(t’ s)

is a characteristic function and
an(x, 5) h*
T 8 k’v(X. 8),
for k=1, 2, eee, My =« {( x { », all s > 0, all v = (vl, 0), where
*
again hk v(x, s) is the probability density function corresponding to
’

*
wk,v(tﬁ s)'




Aggendix D

A large sample approximation to the distribution function of the test

statistics

In this appendix we shall derive a large sample approximation to the

distribution function of the test statistics

- (x50 xy

= (z'2) " lzy

= (G'c)'lc'y.

Here y is a nmdimensional random vector having a n(y, 021) distribution.
X and Z are given (nonstochastic) matrices, X is of the order nxk with
rank k and Z is of the order nxg with rank %. Further, p is defined by
p = dim(M(X) n M(Z)), where in general, M(A) denotes the linear (vector-)
subspace (of R™) spanned by the columnvectors of the nxm matrix A. The

matrix G is nonstochastic and of the order nx(k+£-p) with rank k+2-p.




The columnvectors of G form a basis for the (k+f-p)-dimensional linear
subspace M(X) + M(Z). We shall derive approximations to the
distributions of the statistics in (D.1l) for large n (the sample size)

and under the assumption that the parameters (u, o) satisfy
(D.4) (u, 0) € {Cu, 0)| u e M(X) n M(Z), o> O}.

Throughout this appendix we also assume that p = dim(M(X) n M(Z)) is
*
independent of n. It should be noted that P(Si.ﬁ 0)=0,1i=1, 2, 3. We
* *
start with the variable Sl' Now S1 can be written as:

*
(DQS) Sl = Sl E:E Py

where

It is easily seen that the event §; < s is equivalent to

A

Q;(s) = ;éuzloz - su'u,/o? < 0.

XX
As 1is shown in Section 4 and Section 8 the random variable Ql(s) can be

written as a linear combination of mutually stochastically independent

x2 random variables. Since the coefficients of this linear combination
and the degrees of freedom of the x2 variables depend on the eigenvalues
(and corresponding multiplicities of these eigenvalues) of the kxk
matrix (X'X)-IX'Z(Z'Z)'IZ'X, we first consider the latter matrix.

It can be shown that this matrix has an eigenvalue 1 with multiplicity p.
Now suppose that (X'X)'IX'Z(Z'Z)'IZ'X has M different eigenvalues p,,

pz, evey pM With 0 < pj < 1, j = 1, 2, ec ey M and multiplicities
M .

My, My, ees, Mye If r =p+ I mj, it is not difficult to see that
j=1

r = rank(X'Z) and that 0<p<r<min(k, £2). We also have

M

tr = tr[(x'x)'lx'z(z'zflz'x] =p+ I p,m,.
j=1 33

It should be observed that the matrices (X'X)—IX'Z(Z'Z)'IZ'X and
(Z'Z)-IZ'X(X'X)-IX'Z have the same nonzero eigenvalues.




By using the results of Section 4 and Section 8 and assuming that u and
o satisfy (D.4), we get for s > O:
M

(D.6) Q(s) = ¢ [Alj(S)V

+ A
3=0 2

13 3

where the random variables Vlo, Vll, .0‘., VIM, V20, ey VZM’ V are
mutually independent with

vV ~ x%(m)
(D.7) Vlj ~ Xz(mlj)

Vgy ~ XA(my3),

j=10, 1, ¢ee, M and where

SO =1 o) - 1 V (1-8)2 + 4s(1-p,)

(D.8)

hg3(8) -1 (-9 +1 V (-8)2 + 4s(1-p,),

j= 0, 1, ey M.
The coefficient pg in (D.8) is defined by pg = 0.
The degrees of freedom in (D.7) are given by

m = mp=-k-2¢

mlo = g-r

m20 = k-1

mlj = m2j = j, j = 1, 2, eo ey M

M

Note that m + I (m,, + m,,) = (n+p-k-2) + (&-r) + (k-r) +
M g0 12 M
+2 I m, = ntp-2r + 2(r-p) = n-p, sincer = p + I m,.
i=1 3 j=1 3
It is not difficult to verify that the coefficients in (D.8) satisfy:

Alj(s) + ij(S) = l-g
(D.10)

llj(s)AZj(s) = “S(l—pj),




for j =0, 1, «e¢, M, and that

Alo(s) = -5, Azo(s) =1

-s<k1j(s)<0, 1<s<1
-s < Alj(s) <l-s, 1 {8 =
l-s < Ap5(s8) <1, 0<s<1

0<A2j(5)<1, 1_<_S<°°,

for =1, 2, eeey, M.
Now we define the coefficients rl(s), TZ(S), ceey rn_p(s) as follows:
the first m;, coefficients 14(s) are equal to Alo(s), the second mj,;
coefficients t4(s) are equal to All(s), eee, and the last m coefficients
Ti(s) are equal to l-s. Then the random variable Ql(s) in (D.6) can be
rewritten as

n=p

(D.12)  Q,(8) = I T;(s)Uy,

i=1
where Uy, Uj, «.., Un-p are mutually independent random variables with
Ui ~ x2(1) fOI' j = 1, 2’ sy n=p.

* *
Next we return to the statistic S1 and consider the event Sl_s s. Since

Slj;s is equivalent to Ql(s).S_O, it follows from (D.5) that the event

*
Sl.ﬁ s is equivalent to

n-2
n—k

= v - ((— (]
s) uzuZ/o ( k)suqu/o < 0.

Q¢
If we define Wl(s) by
Wi(s) = Q= 8,

it is seen from (D.12) that

n=p
(D.13) Wl(s) = 121 ui(s)Ui,




where

n-%
(D.14) ui(s) = TiQE:E §),
i = 1, 2, ecey n-P.

*
This shows that the event S1 £ s is equivalent to wl(s).S_O with Wl(s)
as given in (D.13) and that -

(D.15) P(S:.S s) = B(W (s) < 0).

Hence, if we can find an approximation to the distribution function of
Wl(:) for large n, we can use this result to approximate the probability
P(S1 < 8).

Now we shall show that when s # 1, u;(s) = E(W,(s)) and

oi(s) = Var(W,(s)), we have

WI(S) - w(s) F
ol(s) + n(0, 1) if n+w,

F
where + denotes convergence in distribution.

We first compute u,(s), o%(s) and the coefficient of skewness y;(s),
which is defined by

EL(W () = u ()]
[01(5)13

v,(8) =

" The coefficient Yl(s) is a measure of asymmetry of the distribution of
Wi(8) or (W,(8) = uy(s))/0y(s).
Since Ups Ugy eee, Un-p are mutually independent and

E( Ui) =1
Var(Ui) = 2

E[(U; - D3] =8,

it follows from (D.13) that




n-=p
u.(s) = T a,(s)
1 1=1 i

n—
z

(D.16) of(s) = 2
i=

P 2
[a,(s)]
!

3 np 3
E[(Wl(s) - “1(5)) ]=8 ¢t [“1(5)] .
i=]

By making use of (D.14), the definition of ti(s), (D.10) and (D.9) we
obtain:

ul(S) = - (n-2)(s-1)

(0.17)  o5(s) = 2An-2) 6 (s)
8 6n(s)
" 8 ()]

Yl(s) 3/29

n-2, 2 _ n—k-g+tr
Bn(s) (_n—k)s A= )s + 1
(D.18)

n-2.2 3 (n-2)(n-k-g+tr) 2 _ n=k-g+tr
Gn(s) - (n-k) s+ 3 (n-k)z 5 36———7Z——ﬁs + 1.

n—
Note that, since 0 £ tr £ min(k, %), we have

Un 5.(s) = (1-5)"
lin §_(s) = (1-5)3,

n-+o
which shows that for s # 1 we have

s (s)
lim n = ( 1-5 )3 -
e T

Hence, it follows from (D.17) that for s # 1
(D.20) lim yl(s) = Q.
n+o

In order to derive the limiting distribution of (wl(s) - ul(s)Yol(s) we

use the following theorem, due to Liapounov, see Cramér [3].




Let X;, X5, «+., X, be mutually stochastically independent random
variables with “i = E(Xi) and oi = Var(X ).
If E(|X; - “il ) < = for all i and

n 3
EOE(JX - ug )
i=1
1im o = 0,
n+o (1 1)3/2

i=1

+ n(0, 1) if n+w,

Now suppose that s > O is fixed and s # 1.

Let X; be defined by X; = a;(s)U; for 1 = 1, 2, ..., n-p.

Tgen Xis Xgs oo, Xn_p are mutually independent and W = E(Xi) = ui(s),
o = Var(X ) = Z[ai(s)] for i =1, 2, ..., n-p.

Further it follows from (D.13) and (D.16) that

n-p

Wl(s) 121 Xi
n-p

(D.21) ul(S) = 121 uy

n-=p
of(s) X oi
i=1

The condition E(Ixi - uil ) < = becomes Iai(s)l E(|uy - 1|3) < w, Since
Uy ~ x2(1), we have E(|U; - 113) = B(|v] - 307 + 3u, - 1])

< E(U] + 307 + 30, + 1) = 28, for all 1.

From (D 11) it is seen that |A1j(s)| < s and |A2j(s)| < 1 for s > 0 and

j=0,1, «..;, M. Since |1-s| < max(l, s) it follows that [ty(e) ] <
max(l, s).

According to (D.14) we get




(0.22)  |ag(8)] < max(1, =ds).

When £ > k it follows that %%s_s s and |ai(s)| < max(1, s). If £ < k,
we have

n-% _ n-k+k-% k-2 k-2
n-k ok L+l -p+1?

since n-k > 2-p+l (m = mtp-k-2 > 1).
This shows that for g2 < k

Hence, when £ < k

la;(s)| £ max(1, —E-slz:wi )s

and we always have

: def.
(0.23) o (s)] < max(l, 5, SE2s) = g(s).

g=p+1
Note that g(s) does not depend on n.
Together with E(|U; - 1]3) < 28 the result (D.23) yields

(0.24)  E(]Xg - uy|3) < 28[g(s)]° < =

for all i.

We proceed by considering

n=p 3
-51 EC(|X; = g
n-p
(:
i=1

i

2

01)3/2

n-p
By making use of I Gi = af(s) = 2(n-2) Bn(s) (see (D.17) and (D.18))
i=]
and (D.24) we get:




n-p 3

121 EC(]% = w | (n-p) 28[g(s)]1>

0 ¢ — <
P 5372 T [2(n-2) B.(s)] 2
(z 01) n
1=1

W7 [g(s)]°

n-p n—-p

(n-2)

372 372 377 Bn(8)>

(n-2) [Bn(S)]

[ 3
Bn(s) = 7V2_ (:83}]2 o
[8n(5)] -

we know that lim Bn(s) (l-s)2 > 0 and this shows that
n+eo

(s) 43
lim B (s) = W2 [§=c7]” < =«

n+wo

lim—an O’
N+ (n—,?,)3/2

it follows that

and this implies that

n-=p 3

I OE(X - w )
i=1

(D.25) lim

n+o

= 0,

n-p
1 c5)3/2

i=1

when s # 1.

The conditions of Liapounov's theorem are satisfied and we have shown
that for any s > 0, s # 1:

n-p n-p
W,(s) = u,(s) 151 Xy - 121 Y1 F
ol(s) B > n(O, 1)
n=p
\/ 2
I o

4= 1




if n+e,

The result enables us to approximate P(Sj £ s) for large n, s > 0 and
s # 1.

From (D.15) we get:

W.(s) - ul(s) - ul(S)
°1(S) £ °1(s) ]

1

P(S) < &) = B(W (s) < 0) = P

and by making use of (D.26) it follows that

* -u,(s)
(D.27) P(5; < 8) ~ QP;I(ET_]’
when n is large, where
2
|
(x) = f — e dt.
- V27

-1
2

Finally, substitution of ul(s) and ol(s) from (D.17) into the right-hand
side of (D.27) yields for s > 0, s # 1

(D.28) p(s’; < 5) = pi¥azi (el
V2 8, (s)

when n is large, where Bn(s) is as given in (D.18).

Note that, since B, + (l-s)2 if n+o, we have

Vn-2 (s-1) if s <1
! ]+ { if s > 1
V2 B_(s) ’

if n+o, This result agrees with the fact that the random variable S

*

1
converges in probability (and therefore also in distribution) to the

constant 1 if n+w,
Now it remains to consider the case where s = 1.
From (D.17) and (D.18) we can compute the mean, variance and coefficient

of skewness of W;(1), we get:
K@) =0

afu) = 2(2E) (hg-2tr)

71(1) = V8 (k=-2) 77 (n-k=-g+tr) - (k+2-2t£l].
(k-g2-2tr) V(oK) (1)




Suppose first that k # £, then since 0  tr £ min(k, £), it follows that

1im [(n—kr2+tr) - (k+£-2tr)}

.1’
N+ Y(n-k)(n-2)

which shows that the coefficient of skewness yl(l) does not converge to
0 if nae,

Therefore, if (W (1) = u;(1))/0;(1) = W,;(1)/0,(1) has a limiting
distribution, this limiting distribution is not equal to a n(0, 1)
‘distribution.

In the second place, suppose that k -72, then we have

“1(1) =

o3(1) =

Yl(l) =

Although now v;(1) = 0 for all n, it can again be shown that Wl(l)/ol(l)
does not have a limiting n(0, 1) distribution.

In order to see this, consider (D.13) for s = 1 and k = 2, we get:

n-p n-p
W.(1) = £ a. (1)U, = T T1,(1)U
1 =1 1 i i1=1 i i

2(k-p) n-p
= z ., (1)U, + X . (1u,,
=1 11 gekepys1 0 H

where use has been made of (D.14).

From the fact that 14(8) = 1-s for 1 = 2(k-p)+1, ..., n-p it follows
that ri(l) = 0 for i = 2(k-p)+l, ..., n-p and this shows that
2(k-p)

W, (1) = 121 1, (DU,
where‘Ul, UZ’ coey UZ(k-p) are mutually independent xz(l) variables and
where only the 2(k-p) coefficients 14(1) depend on n through Py and
Alj(l), Azj(l) j=0, 1, see, M, see (D.8). Note that
Ay = - VT:E; and Azj(l) = + VI:E; for j = 0, 1, ees, M.




Hence, when s =1 and k = £, we have

2(k-p)

b 7, (1)U
Wl(l) - ul(l) _ =1 i i

o, (1) 2

-tr

which shows that 1f (W;(1) = u;(1))/0,(1) has a limiting distribution,
this limiting distribution is not a n(0, 1) distribution.

Since the limiting distribution in the case s = 1 (if it exists) is not
of a simple form, we shall not consider this case any further.

It should be noted that when k = £ there is no need to approximate
P(S:_S 1). This follows from the fact that for k = 2, the probability
distribution of Wl(l) is symmetric around 0. That is, we have for any n

* 1
P(S; < 1) = B(W (1) < 0) =5 .

The result (D.28) also enables us to approximate the value of s  which

satisfies

*
P(Sl < Su) = a,

where a is a preassigned probability.
For large n this value can be approximated by the value of x which

satisfies

(D.BO) ¢[_2:£_£§:ll] = Qe
V2 8, (x)

Let t, = ¢-l(a), then (D.30) is equivalent to

Yo-p (x-1) _, |

VIEm  °

Since ty < 0 if and only if « <-%, we first consider the case where
a <-% and try to find the solution x of (D.31) which satisfies
0<x< 1.
Now (D.31) can be rewritten as

(Do31)

£(x) = (-0 (x-1? - 2t28 (1) = 0,

and with the aid of (D.18) this becomes




(D.32)  £(x) = ax?- 2b.x + ¢, = 0,

where

2t2
a

1__._.

-k

2t§(n—k—2+tr)
(n-k)(n-2)

= ] -
n

2t2

1_—

n-—

Since n is large we: suppose that n-k > 2t‘2: and ¢ > 2ti, which
ty < 0 is equivalent to

«> o[- \/n-max:(!k 2,)].

For large n this is no serious restriction on a, because

Q[_Vn-LaxéhLl).] > Q(-—m) = 0’

if nae,

Further we have from tr < min(k, £):
n-k > n-k-g+tr and n-% 2 n-k-g+tr.

Also, since we exclude the trivial case p = k = ¢ (which is equivalent
to M(X) = M(Z) = M(G)), we never have n-k = n-k-f+tr and at the same
time n-f = n-k-g+tr.

This shows that

0<an<1
0<bn<1
0<cn<1

bn->-an

by 2 ¢
2
n

b~ > a c

nn

an-2bn+cn<0.




If we solve (D.32), we get

Since brz1 > ac, it follows that X and X, are real and different. Further
it is seen from a, > 0, £(0) = ¢, > 0 and £(1) = a, = 2b, + ¢, < 0 that
0<x; <1 and x5 > 1. Now we were looking for a solution in the

interval (0, 1) and the above results show that, for large n, the value

*
of s, which satisfies P(Sl < sa) = o can be approximated by

(D.36)

where ¢[- \ﬁl - ma;(kl 2')] <al -;-, and where the coefficients a , b,
and c, are as given in (D.33). Next we consider the case where a > —;—.
Since t > 0 if and only if a > %, it follows from (D.31) that we are
looking for a solution x which satisfies x > 1.

Hence, it is easily seen from the above results that, for large n, the

value of s, can be approximated by

b +Vb2-ac
. _n n n n

X
2 a ’
n

when % <al o[\_f“'ma";k 2,

Again the restriction on a is not serious, since

q,[\/%)_n.] > () = 1,

if N+,
Finally we consider o = -%. Since tQl = 0 if and only if a = l, it is seen

from (D.32) and (D.33) that By ¥ Xy = Xy = 1 in this case.




We also note that the approximations x; and x; in (D.36) and (D.37),
respectively, has the property that x; + 1 and x, + 1 if n+wo. This
easily follows from the fact that a, + 1, bn +1 and c * 1 if n+o (see
(D.33)).

We now proceed by deriving a large sample approximation to the

*
distribution function of the statistic S2 under the hypothesis (D.4).

*
Here we assume that p < k, since otherwise S

2 is not defined. From (D.1l)

-k
we see that 52 can be witten as

(D.38)

where

The event Sz.s_s is equivalent to

Q,(s) = (uzu, - U(';UG)/OZ -5 u)‘(uX/a2 < 0.

In a similar way as before, by using the results of Section 4 and

Section 8, it can be shown that for s > 0 the random variable Qz(s) can
be written as

M
(D.39) QZ(S) = I

3 0[Alj(s)V1j + lz

j(s)VZj]'

- Here the coefficients Alj(s) and Azj(s) are as given in (D.8), the

random variables Vlo, Vll, ceey le, vZo, ceey VZM are mutually
independent with

2
V . x (m .)
(D.40) 1] 13

sz ~ Xz(mzj) ’

j=0,1, ¢ece, M, and the degrees of freedom ar now defined by

mjy = &-r+m = g-r+mip-k-2 = ntp-k-r

mzo = k-r

mlj = m2j = mj, j = 1, 2, LY M




We define the coefficients rl(s), rz(s), ceey tn_p(s) as follows: the
first m;, coefficients 15(s) are equal to 1,5(s), the second m,
coefficients Ti(s) are equal to All(s), ees, the last myy coefficients
Ti(s) are equal to AZM(S). Then Qz(s) in (D.39) can be rewritten as
n=p
(D.42) Qz(s) = I ri(s)Ui,
i=1
where the Ui's are mutually independent xz(l) random variables.

*
2 £ s. Since S, < s 1s equivalent to Qz(s) <0 it

* -
follows from (D.38) that Sz.ﬁ s is equivalent to QZCE:ES)_S 0, where

Consider the event S

(0.43)  Q,(Bs) = (ubu, - wln)/o” - (Rysuru, /o’
If we define Wz(s) by
W, (s) = Q,(=Rs),
2 2'n-k
it is seen from (D.42) that
n-p

(D.44) WZ(S) = E ai(s)U

]
i=1 i

where

k-
(D.45) @ (s) = 1,(=Ps),
i=1, 2, e, n=p.

*
This shows that the event Sz.ﬁ s is equivalent to Wy(s) < 0 with W, (s)
as given in (D.44) and that

(D.46)  B(S, < 8) = B(W,(s) < O).

*
In order to find an approximation to P(SZ_S s), we therefore first

derive the limiting distribution of

WZ(S) - ”2(5)
02(8) ’

where uz(s) = E(Wz(s)) and oi(s) ; Var(wz(s)).




From (D.44), (D.45) and the definition of the coefficients Ti(s) we
2
obtain the following expressions for uz(s), oz(s) and the coefficient of

skewness yz(s):
uo(8) = =(k-p)(s-1)
o5(8) = 2(k=p) 8 (s)

8 Gn(s)
P g (61132

YZ(S) =

B_(s) = (=Rys? - 2(EERys + 1
5 () = ~(ERy263 4+ 3 (k; )S;‘ 22 - 3EERys + 1.
n-

It easily follows from (D.48) that

1lim Bn(s) =1

n+w

lim Gn(s) =1

N+

and this implies (see (D.47)) that

(D.50)  lim y.(s) =V =5 o.
w2 k-p

Since yz(s) is the coefficient skewness of the random variable
(Wy(s) = uy(s))/oy(s), the latter result shows that this variable does
not have a limiting n(0, 1) distribution.

-In other words, although Wz(s) can be written as a sum of mutually
independent random variables (see (D.44)), we cannot apply Liapounov's
theorem in order to find the limiting distribution of
(Wy(8) = uy(8))/0,y(s).

We shall now show that this limiting distribution can directly be found
from the expression (D.43).




From the definition of Wz(s) we get
Wy(s) = (ujuy - un)/o” - (——lpz)su ay/ o,

and by making use of (D.47) we obtain

A A A A a A

W,(s) - u,y(s) ] (uju, - uéuc)/o ( k)su /o + (k-p)(s-1)
72(®) VZ(ep) VE(5) '

which can be rewritten as

~

Wy(s) = uy(s)  (upu, = utu)/o” = (k-p)
9,(8) V2(k-p)

(D.51) / Ven(s)

A A

2
- wu /o
-VER g X - nvE®.

It can easily be verified that under the hypothesis (D.4) we have for
all n

(uzuZ - u )/o ~ xz(k‘P)

;X;x/oz ~ xz(n-k)

Hence, (uiux/cz)/(n-k) converges in probability to 1 if n+w. Since

8n(s) + 1, if follows that the second term at the right-hand side of
(D.51) converges in probability to 0 if naw,

This means that (W,(s) - uy(8))/0,(s) has the same limiting distribution
as the first term at the right-hand sie of (D.51).

Again since Bn(s) + 0 it is seen that

(;'; - u'u )/o - (k-p)
R / VE(®)

V2(k-p)

has the same limiting distribution as
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(;éaz - uGuG)/a - (k-p)

V2(k-p)

However, as can be seen from (D.52) the latter random variable has a
distribution which is independent of n. This shows that the limiting
distribution of (Wy(s) = uy(s))/o,(s) is equal to the distribution of

(uyu, - vtug)/o” = (k-p)
V2(k-p)

Since (uzu, - G)/O xz(k-p) this variable has mean k-p and variance
2(k-p) and we have shown that

Wy(8) = uy(s) F x’(k-p) = (k-p)
>

0,(8) VZ(k=p)

(D.53)

if new,

That is, (W,(s) = uy(s))/o,(s) converges in distribution to a
standardized xz(krp) distribution, i.e.,

W,(8) = u,(s)
(D.54) P[ ) < x] + G, _ [k—p + xV2(k-p)]
2

if n+w, where

G (x) = é’

Iy 2?2

The convergence in (D.54) holds true for - ¢ x { =, except when

k-p = 1, 2, then the points x = --% V2 and x = -1, respectively, are
excluded. |

This result enables us to approximate P(S;_S s) for large n and s > O.
From (D.46) we have
W,(8) = u,(s) uz(S)]

oz(s) (S)

B(S, < 8) = B(Wy(s) < 0) = P

and by making use of (D.54) it follows that




u,(s)

(D.55)  B(S; < 8) = G_ [k-p -

when n is large.
Substitution of uz(s) and oz(s) from (D.47) into the right-hand side of

(D.55) yields for s > O

s—-1

)]

*
(D.56)  P(S, < 8) =G _ [(k-p)(1 +
¢ k-p VBn(S)

when n is large, where B, (s) is as given in (D.48).

It should be observed that 1 + (s-l)/VBn(s) > 0 for all s > O.

Note that since Bn(s) + 1 if n+eo, we have

6, [(k-p)(1 +—="19] » 6, [(k-p)s]
kP VE(® P

F
*
if n+o, This agrees with the fact that S2 + Xz(k—p)/(k-p) if n+e,

It should also be observed that the coefficient of skewness Yz(s) of

(Wy(s) = uy(5)/0y(s) converges to the coefficient of skewness v Eg; of

’(p) = (kp)
V2(k-p)
if n+eo (see (D.50)).
With the aid of (D.56) we can find a approximation to the value of

*
8y 2 0 which satisfies P(S2 < sa) = Qe
For large n this value can be approximated by the value of x which

satisfies

x-1 )] ='a.

(D.57) G, [(k-p)(1 +
k-p Vsn(x)

Let fa = Giip(u), then (D.57) is equivalent to

%=1 f def.
VE_(x) P ¢




Since q, < 0 if and only if a < Gk_p(k—p), we first consider the case
where o < Gk_p(k-p) and try to find the solution x of (D.58) which
satisfies 0 < x < 1. Note that 9y 2 -1 and that q, = -1 if and only if
a = 0.

Further we also note that 0.683 = G, (1) > G2(2) > G3(3) > eee and
G(r) » 5 if ram.

Now (D.58) can be rewritten as

£(x) = (x-1)2 - ¢28 () = 0,

and with the aid of (D.48) this becomes,
(D.59) f(x) = anx2 - anx +c=0,

where

2
qa(k-p)
an =1- n-k

2
qa(tr-p)
n-k

=] -

c=1- qi

From k-p < n-k (n is large), p £ tr < k, -l.s_qa < 0 it follows that
(D.61) 0<ec<a <b <1,
This shows that

2
bn > ac
(D.62)
an - an +c <0

Note that for a < Gk_p(k—p) we have ¢ = 0 if and only if o = 0 and also
bn = 1 if and only if tr = p,

If we solve (D.59), we get




From bi > ac it follows that X and x, are real and different. Further
it is seen from a; > 0, £(0) = c > 0 and £(1) = a, - 2b, + c < 0 that
0<% <1 and xy > 1. Since we are looking for a solution in the

interval [0, 1) the above results show that, for large n, the value of

*
54 which satisfies P(SZ.S sa) = o can be approximated by

(D.64)

where the coefficients ay, bn and ¢ are as given in (D.60) and where
0<aXl Gk_p(k—p).

Next we consider the case where a > Gk_p(k—p).

Since 9 > 0 if and only if a > Gk_p(k-p), it follows from (D.58) that
we are looking for a solution x which satisfies x > l. Here we have to

consider two subcases:
(1) a < G- pl2(k-p)]
(i1) @ > G [2(k-p)]

Note that for a > Gk_p(k-p) we have ¢ = 0 if and only if

a= Gk_p[Z(k-p)] and also b, = 1 if and only if tr = p.

Under the assumption (i) we have 0 < qaig 1 and it is easily seen that
n’ bn and ¢ satisfy (D.61) and (D.62). It follows that O S_xl <1 and
X9 > 1.

a

Hence the approximation of Sq4 becomes

(D.65)

When o satisfies (ii) we get q > 1 and therefore c¢ < 0. Since n is




-179-

‘/ k
large we make the additional assumption that 9 < EE;, which is

equivalent to

a<G p[k.—p + V(k-p) (n-K)] .

k-

This is no serious restriction on a since

Gplkop + VIERIEEN] » G _ (=) = 1,
if n+e,

" Now we get
(D.66) c<0<an<bn$1

and it follows again that (D.62) is satisfied. The roots 3] and x, are
therefore real and different and since a, >0, £f(0) = ¢ < 0 and £(1) =

a, = 2b, + c <0 we get x; < 0 and X, > l. Hence the approximation of 84
is again given by (D.65).

The above results show that, when

Gk_p(k-p) <acl Gk_p[k—p + V(k-p)(n-K)],

*
the value of 8, which satisfies P(SZ_S sa) = q can be approximated by

(D.67)

provided that n is large.

Finally we consider the case o = Gk_p(k-p).

Now q, = 0 if and only if a = Gk_p(k-p) and it is seen from (D.59) and
(D.60) that 8, % X =X, = 1 when q = Gk_p(k-p).

It should be observed that X, and X, in (D.64) and (D.67), respectively,

satisfy
fa f

— _u
X+ p and X, + p’

if n+o, This follows from the fact that a, + 1 and bn + 1 when n+o (see
(Dp.60)).




Now it remains to find a large sample approximation to the distribution
*
of the statistic S3 as defined in (D.1), under the hypothesis (D.4).

*
Here we assume that £ > p, since otherwise S3 is not defined.

We have
(D.68)

where

(D.69)

*
I1f we compare the latter expression with the definition of 82 it follows

that we can find a large sample approximation for

1 1
P <))
53

from (D.56) through replacing k by £ and s by-é.

We get
1o
(0.70) B3 <D = G, [(+-P)(1 + ==,
P 1
B (3
where

1 2-p\, 1,2 tr-p,, 1
B.(D = D - 2D + 1,

n

as can be seen from (D.48).

Since
8 (19 = l_{sz - 2(35:293 + (EZR)]
n's s2 g S A
we can rewrite (D.70) in the following way

(0.7 R <P = 6, [ + ==,

83 Bn(S)

where now Bn(s) is defined by




- g2 - gt 2-p.
(p.72) Bn(s) s Z(nrz )s + (n-z)'
Substitution of (D.71) into (D.68) yields for s > 0

1-s )]
VBn(S)

(D.73)  B(Sy <) ~1- 6, [(-p)(1 +

when n is large, where Bn(s) is as given in (D.72). It should be

observed that 1 + (l-s)/VBn(s) > 0 for all s > 0.

2

Note that since Bn(s) + §° if n+», we have

_ _ 1-s 1 = 2-p
1= G, [(-p)(1 + )1 »1-6, D),

Vsn(S)

F
. * -
if n+o, This agrees with the fact that S3 > 22

X (2-p)

Again, from (D.73) we can find a large sample approximation of the
*
of 8y which satisfies P(S3‘$ sa) = Q.

if née,

That is, §, can be approximated by the solution x of the equation

1-x
1-6,_[(2-p)A + —)] = q,
=P Vsn(X) ¢

or equivalently,

(D.74) 1-x
VBn(x)

-1
where fl-a = Gg_p(l-a).

Equation (D.47) can be rewritten as
(D.75)  £(x) = ax® - 2bx + c_ = 0,
where
2
a=1 9y

2
qa(tr-p)

g

=] -




Similar to the previous case we obtain the following solutions.
When

- -— e - ' - e
1 Gz-p[£ p + V(e-p)(n-2)] < a< 1 Gl—p(z P)
*
the value of s, which satisfies P(S3_g sa) = o is approximated by

2
- ac

n
- , if a # 1 - ct_p[z(z-p)]

if a=1- Gz_pIZ(Q-P)]

= —0
1  2b°
n

Note that

c, b -
-Z-b—= lim
n

n

a
a+0

and that for a < 1 - Gz_p(z—p) we have a = 0 if and only if
a=1- Gl_p[2(£-P)]-
The restriction

a>1l- Gz_p[z-p + V(2-p) (n-2)]
is not serious for large n since

1- Gz_p[l-P + V(e-p)(n-2)] + 1 - Gy (=) = 0,

if nee,

If 1 - Gl_p(z-p) < a <1, we have

bn + Vbi - ac,

(D.78) e P .

For the case a =1 -~ Gl-p(l-p) we get 8, ¥ X T X, = 1. It should be
observed that 0.317 = 1 - Gl(l) <1- GZ(Z) <1- G3(3) < «ee and
1 - G(r) » 3 if roe.




Further we note that x; and x, in (D.77) and (D.78), respectively,
satisfy

and x

if n*o, This is easily seen from the fact that b, + 1 and c, + 1 if nr=
(see (D.76)).
Summarizing the results of this appendix, we have the following large

*
~ sample approximations to P(Si_s s), 58 > 0 and to the value of 84 which
" E
satisfies P(Si.ﬁ sa) =q,1i=1, 2, 3:

(1) B(S) < 8) = oAl g oy
V2 Bn(s)

ifﬂ_Vﬁﬂﬁ%LQ]<ai%

if';'i o < @[/n-maxgkz L) ,

X o
Q(x) -I —
-w V27

Bn(S) = (%E%’sz - 2

2t2

1] - —

-k

2t§(n—k—2+tr)
(n-k)(n-2)




s—-1 )]

*
P(S, < 8) »~ G __[(k-p)(1 +
2= k=p Ve_(s)

, 1f 0< a< G (k=p)

=, if 6 (-p) < a < G_ [k-p + V(&P (=001,

1-s )]
VBn(S)

P(S; < 8) = 1- 6, [(e-p)(1 +

if 1-6)_ [e-p+ V(e-p)(n-2)] < a < 1 - Gy, (2-P) provided that

a# 1= Gy [2(e-p)],




Cc
n -
Sa ~ xl 'Er-l-, if o 1 Gz_p[Z(l Pl

X
G (x) = [ £
r 0

I3 22
o) = - 2t 1

a=1]1- qi

-1
=G£

l-a
The above approximations can easily be computed with the aid of the

n(0, 1) and x? distributions.

For the given matrices X and Z we only have to compute
P = dim(M(X) n M(Z))
tr = tr[X'X)"1x'2(212)~1z1x] - er[(2'2) 1z x(x x)"1x1 2]

In most applications P will be equal to the number of columnvectors that
X and Z have in common.
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