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ABSTRACT

In this paper we shall discuss a financial option of which the payoff

depends on the average value of the underlying security over some final

time interval. After explaining what an option is about we will derive a

partial differential equation for the option which is different from the

partial differential equation of a simple European call option. From

this we will get an expectation formula for the option value. We will

give an economical as well as a mathematical argument for this

expectation formula.
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1. INTRODUCTION

The rapid development of option pricing theory and the application of

that theory is caused by the path-breaking papers of Black and Scholes

(Black and Scholes (1973)) and Merton (Merton (1973)). They derived a

first explicit option pricing formula by using the theory of stochastic

processes. This theory has also played a fundamental role in the fur-

ther developments of option pricing and will also do so in this paper.

A call option gives the owner the right to buy a specific share of

stock at a specific future date (maturity date) for a fixed price (ex-

cercise price). In fact this is an European call option. One also has

put options where the owner has the right to sell instead of to buy a

share of stock and one has American options where the owner has the

right to buy or sell at any time before the maturity date instead of

just at the maturity date.

Now the Black-Scholes formula gives the price of such an European call

option in the financial markets and Black and Scholes suggested that

their solution to the option pricing problem could also be used for more

complex options. This resulted in numerous extensions of the basic

BlackScholes model. In this paper we will also give an extension for a

specific kind, of option. To explain this kind of option we first remark

that in practice the owner of the option doesn't actually buy the option

at the maturity date but he simply gets the difference between the share

'price and the exercise price if this is positive and nothing if the

difference is negative from the issuer of the option. Hence the issuer

doesn't have to possess a share of stock.

The option we want to discuss in this paper gives the owner the right of

getting the difference between the average value of the underlying

security (in our case a share of stock) over some final time interval

preceeding the maturity date and the exercise price. This kind of

option is often part of a commodity-linked bond contract. The value of

a commodity-linked bond is determined by the value of a reference bundle

of the commodity. A recent example is the guilder oil bond issued by the

Dutch venture capital company Oranje Nassau of which the payoff is the

maximum of the price of 10,5 barrels of North Sea oil and 1.000

guilders. By the price of 10,5 barrels of North Sea oil is meant the

average price over the last year of the contract. A pricing model and

more exact description can be found in Kemna (1986). The whole contract
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can be split in a normal bond of 1.000 guilders and an option of the

kind we will consider here, where we take a share of stock as reference

bundle.

The value of this option can be determined in two stages. In section 2

we derive a partial differential equation for the option price during

the final time interval. The option price during the final time interval

differs from a simple option price if the share price is high during the

first part of the time interval. Then one can be sure of a positive pay-

off before the maturity date, while this is never true for a normal

option. It will also be shown that we only need to solve the partial

differential equation for the case that there is no positive payoff with

certainty. The derivation will follow the lines of the Black-Scholes

equilibrium approach. In section 3 we derive an expectation formula for

this option. An economic as well as a mathematical argument is used.

This approach is applied in section 4 for the option before the final

time interval. Before the final time interval we have a simple option

whose boundary value equals the starting value of the option during the

final time interval. Due to this boundary condition there is no explicit'

formula for this simple option. In section 5 we explore under what

conditions it would be possible to find an explicit formula for our

complex option. It turns out that none of the conditions can be econo-

mically justified. This means that we have to solve the problem

numerically or we have to use Monte-Carlo-simulation. Finally, section

6 summarizes the results and offers some concluding remarks.

2. A PARTIAL DIFFERENTIAL EQUATION FOR THE OPTION PRICE.

In this section we shall give a PDE for the value of an option of

which the payoff is not only based on the value of the underlying

security at the excercise time T but also on the average value of

the security over some final time interval. If t1 is the first mo-

ment from where on we take the average and hence T-t1 is the length

of the time interval we assume that the payoff of the option is

equal to

max (AT -K , 0)



with

ST dr1
T- t1

ti

(2)

where K is the fixed excercise price and Sr is the value of the un-

derlying security at time r.

In this section we will only give the PDE for t1 5 t 5 T while in

the next section we will give a PDE for t < t1. Hence we will assume

ti 5 t < T. If we put

SI. dr— 1
T- t1

ti

(3)

then it is clear that the value of the option at any time t will

depend on t,St and A. As said in the preceeding section we will

assume that our underlying security is a share of common stock and

as usual we will assume that the stock price is governed by the fol-

lowing stochastic differential equation

dSt = aSdt + aSdWt (4)

where Wt is a Wiener process and a and a are constants. Since St is

a stochastic process we have to interpret formulas (2) and (3) as

stochastic integrals. If we put Xt =( St At)' and p 1/(T-t1) we

can combine (3) and (4) to the following system of stochastic dif-

ferential equations:

0 a 0
dXt X dt + I Xt dWt (5)

01 t [0 0

If C(St,At,t) is the value of an option at time t, where the under-

lying stock has a value St and the average up to t is given by At we

have by Ito's formula that

SC SC SC 62c SC
,_____ + aSdCt — ( --. + fiS — + xa2s2 .._ ---)dt + aS --- dWt 6)
St SS SA (6s)2 SS

Furthermore let r be the interest rate on riskless default free

bonds. Hence if we invest an amount Bt in such a bond our investment



is governed by the following differential equation

dB t rBtdt 7)

For the following argument we must assume that the stock markets are

frictionless, that there are no transaction costs for buying or sel-

ling options, stocks or bonds and that the interest rates on lending

and borrowing are equal. These are also the underlying assumptions

for the Black-Scholes option pricing formula and are often used for

deriving theoretical results.

Instead of buying an option we could also buy (6C/6S) shares of

stock and borrow an amount of ((5C/6S)S - C). This last strategy

has the same risk as holding the option. Or stated in another way :

if we buy (6C/6S) shares of stock, borrow ((6C/6S)S - C) and sell to

someone the option we would bring ourselves in a riskless position

since the disturbance term would be

SC , 45C
( aS - aS dWt

SS SS
(8

Furthermore we see that this would cost or bring us no money at this

moment since

SC SC
- S ( -C
6S 6S

+ C 0 (9)

Such a strategy of buying or selling shares of stock and lending or

borrowing against a riskfree interest rate is called a hedging stra- •

tegy if it comes with the same risk and initial investment.

Bensoussan (Bensoussan (1984)) showed using martingales that a hed-

ging strategy exists for more general claims as the option claim we

discuss here. We also like to remark that in the hedging strategy

one constantly has to adjust the amount of shares which one is hol-

ding and the amount one is borrowing. Hence the assumption that the-

re are no transaction costs is essential. Since the hedging strategy

has the same risk and the same investment costs as buying an option •

the expected profit of the option and the hedging strategy must be

the same, otherwise one could make an arbitrage profit by buying the

one with the highest expected profit and selling the other one.



Hence in financial markets investment opportunities which require no

• investment and bring no risk must have a zero expected profit. And

the combination of the option and the hedging strategy is such an

opportunity. From this it follows that

SC SC SC •62 c Sc SC
aS + pS __ lia2 s2   aS — + r(C - S ) (10)

St SS SA (6S)2 SS SS

and we get the following PDE for the value of the option

SC SC 62c SC
+ fiS — 1/2(72 S2  

St SA (6S)2 SS

on the region R1 — ((S,A,t) u S 0, A >. 0, t T).

Of course we have some boundary conditions and these are

C(S,A,T) = Max(A-K,0)

C(0,A,t) Max(e-r(T-t)(A-K),0)

SC T-t
co,A,T) —

SS

  e-r(T-t)

T-t1

• Before we can state the last boundary condition we first calculate

C(S,A,t) for A >. K. If A K we know that we will get a positive

payoff in the end. This payoff will be

(A-K) + el Ssdr (15)

• There is also another way to reach this payoff without using the op-

tion and that is the following : put (A-K)e-r(r-t) in riskless bonds

• and besides for every time interval (t,t+At) we put the amount

• fie-r(T-t)StAt in riskless bonds. If we do this for every time inter-

val (t,t+At) and let At go to zero we will also end up with (15) as

final amount (the factor e-r(T-t) reflects that we earn interest on

our bonds). To do this we need the following Amount of money, which

must therefore be the option price :
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C(S,A,t) A-K)e-r(T-t)

A-K)e-r(T-t)

/3 e-r(T-T)Srdr =

-r(T-t)

Hence (16) gives the value of C(S,A,t) if A K. Of course (16) ful-

fils the PDE (11). So we only have to solve (11) on the region

R2 — ((S,A,t) I S 0, 0 A K, t1 t T) with boundary con-

ditions (12), (13), (14) and

C(S,K,t) = — S(1-e-r(T-t) )

. THE OPTION PRICE AS AN EXPECTATION

(17)

There are two ways which lead to the same expectation formula for

the option price C(S,A,t). One uses an economic argument and the

other is purely mathematically. We will start off with the economic

argument which was first introduced by Cox and Ross (Cox and Ross

(1976)). It is assumed that most investors are risk-averse, which

means that if two financial objects have the same expected profit

the investors prefer the object with the lowest risk i.e. with the

smallest variance. Hence they will not buy the object with the

higher risk and because of this the price Of the object will de-

crease and hence its expected profit will increase. So in a risk-

averse economy one assumes that objects with a higher risk must have

a higher expected profit.

In a hypothetical risk-neutral economy investors only consider the

expected profits and do not worry about the risk. Investors will prefer

the obiects with the highest expected profit. Because of this the object

with lower expected profit will see their prices decrease and hence

their expected profits increase until these are on the higher level.

Hence in a risk-neutral economy all objects will have the same expected

profit and the equilibrium rate of return must be the riskless interest

rate. In the previous section we have seen that the share price and the

bond price play a rBle in the forming of a hedging strategy and we have

seen that such a riskless hedging strategy can be formed. But then the



valuation of the objects should be independent of the investors attitude

towards risk. Hence we might assume that all investors are risk neutral

.and we can find the option price in a risk-neutral economy. Hence we may

assume that

since in a risk neutral economy we must have

exp(cz(t-t0)) = E 0

(18)

E
Bo
(Bt) — exp(r(t-t )) (19)

• and the price of the option must be the expected terminal payoff,

discounted at the riskless interest rate r i.e.

C(S ,A,t) = 
e-ra-OES,A (max(AT-K,O)) (20)

Now we will give a mathematical argument which leads to the same

expectation formula. If we substitute

C(S,A,t (21)e-ra-t) D(s,A,t)

then our PDE 11) becomes

SD SD 62D SD
— + fiS + 1/2a2S2   + r 0
St SA (5S)2 SS

(22)

Now we see that this is the Kolmogorov backward equation of the fol-

lowing system of stochastic differential equations

dXt

o r a 0
IX dt + XtdWj t t

o o
(23)

with X't — (St At).

But then it is well known that the solution of (20) is given by an

expectation formula. Of course we have to use the boundary condi-

tions for D instead of those for C but if we consider D on the re-

gion R1 the first exit time will be T since we never hit the boun-

dary before time T. Hence we find from (23) that
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D(S,A,t) = E" (D(ST,AT,T)) ES,A (max(AT -K,O)) (24)

and we see that the economical and mathematical argument give rise

to the same formula. If A >_ K (24) reduces of course to

D(S,A,t) Es,A (AT) - K (25)

and we will show in section 5 that in general

/3
Es,A(AT) — A - S(1 - er(T-t))

And hence for A >_ K

D(S,A,t)
fi

- K) + — S(er(T-t)_1)

(26)

(27)

which is of course exactly the same as formula (14) for A >_ K. We

can also give on expectation formula if we restrict ourselves to the

region R2 and this becomes

D(S,A,t) = Esdi (Ir.‹T . — S(e(T-7)-1)) (28)

where r is the first exit time from R2 and I is the indicator func-

tion i.e.

f 1 if r T

[ 0 if r > T
(29)

In practical applications one wants closed analytical formulas for

the value of an option instead of (20), (24) or (28). If we had a

simple option this would be possible and we would get the Black-

Scholes formula. In the next section we will derive this formula. We

do this for two reasons. The first is that for the Black-Scholes we

need a PDE which also plays a rBle in our problem if t < t1 and the

second is of expositional nature.

r-
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4. THE BLACK-SCHOLES FORMULA

In the preceeding section we derived a PDE for the option price

C(S,A,t) if t1 t T. In this section we are focussing on the op-

tion price if t < t1 i.e. if we are not yet in the final time inter-

val over which we take the average share price. It is clear that for

t < t1 A doesn't play a role and C only depends on S and t. Let us

write C*(S,t) for the option price if t < tl. By C*(S,t1) we will of

course mean lim C*(S,t) and we know thatti

C*( , ) C(S,O,t1) (30)

We still assume that St follows the stochastic differential equation

(4) and again we can apply Ito's lemma to C*(S,t). We can also form

a riskless hedge and arguing as in section 2 we derive the following

PDE for C* if t < t1

SC* 62c* 6C*
4. 1/2 a2s2 r ( S C*) — 0 (31)

St (6S)2 SS

This is the PDE for a normal European call option which pays off

max(ST-K,0) instead of max (AT-K,O) and has been derived by Black

and Scholes. Hence for an European call option we have (31) with

boundary condition

C*(S,T) =max(S -K,O) (32)

The solution to (31) with our boundary condition (28) is by the same

economical or mathematical argument as in the preceeding section

given by

C*(S,t e-r(t-t1)Es(C(St1,O,t0) (33)

with St given by the following stochastic differential equation

dSt = rSedt + aStdWt (34)

As we said before for a simple option we will also have (31) but now
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with boundary condition (32). Hence for a simple option the price

Cl(S,t) is given by

Cl(S,t) e-rcr-to E(max(ST-K,O)) (35)

but since St is again given by (34) we know that ST is normally

distributed and it easily follows that

Cl(S,t) SN(xi) - Ke-r(T-oN(x2)

with x1 [1n(S/K) + (r+1/20.2)(T-t) ] /ajt-t

(36)

(37)

fT -t (38)

and where N is the normal distribution function. (36), (37) and (38)

form the well-known Black-Scholes formula for the valuation of an Euro-

pean call option. For practical purposes it would be very convenient if

we could find explicit formulas like (36), (37) and (38) for C(S,A,t)

and C*(S,t). We will comment on this in the next section.

5. PROBLEMS WITH AN EXPLICIT FORMULA

If we want to find explicit formula's for the option price if

t1 -S. t T then we have seen in section 3 formula (24) that we have

to calculate expectations of a process given by the following system

of stochastic differential equations

with

(AN't + a)dt + (BXt + b)dWt (39)

01

Now it seems impossible to us to give explicit formulas for

(40)

D(S,A,t) Esa(max(AT-K,O)) (24)

7c-
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since Xt is not a Gaussian process. In the case of a simple European

call option we indeed have a Gaussian process as we have seen in the

preceeding section and we could give the explicit formulas (36)-(38).

Although Xt is not Gaussian in our case we can calculate the expec-

tation and variance of Xt but this of course alone is not enough to

give us an explicit formula for (24). To calculate the expectation

and variance of Xt we know that (see Arnold (1974)) mt = EX t follows

the following differential equation

Amtdt

and Pt - EXtXt is the unique nonnegative definite symmetric solu-
tion of the system of differential equation

dPt = APt PEA' + BPtB' (42)

where we have already used that a - b 0.

Now (41) can be solved easily and gives

Sto r(t-to)

EAt= At + s 
to
(er(t-t-)

-1)

(43)

(44)

(41)

Since A and B have very special forms one can also find successively
explicit formulas for ESt2, ESA and EAt2. The results are as fol-
lows

ESt2 = 5o2 e(2r+cr2)(t-to)

pso 2
EStAt (r+a2) 

(2r+o2)(t-to) (A0S0 -

EAt2
2fl2S02
  e(2r+a2)(t-t0)
(r+a2)(2r+a2)

f3S02

(r+a2
er(t-to)

(45)

(46)

2fi 002
+ (A0S0   )er(t-to)+C (47)

(r+a2) o

where C is such that EA02 - A02.
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As we said before this is not enough to find an explicit solution

for (24) although (44) gives the solution of (24) if Ato K as we

explained in section 3.

One might wonder whether it is possible to change the model such

that we end up with a Gaussian process as for a simple European call

option. This is indeed possible (see Arnold (1974) pg. 136) if we

assume that St is governed by

dSt = aS dt + adWt (48)

instead of (4). In this case one easily sees that (37) gives rise to

a Gaussian process and we could give explicit formulas for (24).

However with a specification like (48) there is always a positive

probability that St becomes negative and from an economic point of

view this must be impossible since shares of common stock always ha-

ve a positive value. An owner of a share of common stock is not res-

ponsible for the debt of the firm. Another way to get a Gaussian

process would be to make a model with a — b = 0 and such that A and

B commute (see Arnold (1974) pg. 144). This would happen for example

if we assume

fiStdt + aStdWt (49)

instead of (3). However this specification implies that there is a

disturbance term in the measurement of the average share price. It

will be clear that the owner of an option will never accept a down-

ward disturbance, while the person who issued the option will never

accept an upward disturbance. Hence from an economic point of view

(49) doesn't make sense.

. CONCLUSIONS

In this paper we have studied an option of which the payoff depends

on the average value over some final time interval of the underlying

security. We derived two PDE's for the option value, one for the ca-

se that we are already in the final time interval and one for the

case where we are not yet in the interval. These PDE's can be seen

r•

4
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as the Kolmogorov backward equations of two systems of stochastic

differential equations. From this it follows that the option value

can be written in an expectation formula. Unfortunately this formula

is not as explicit as the Black-Scholes formula for a simple Euro-

pean call option. Hence if one wants to find the option value in a

practical case one has to solve the PDE's numerically or one has to

rely on simulation methods. Since the most important PDE has three

variables it seems much cheaper to use simulation methods. All in

all it seems interesting to find a reliable and fast method for com-

puting the expectations and hence the option values.
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