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1. INTRODUCTION

In Part I of this paper [Rinnooy Kan & Timmer 1985], we described

clustering methods for the global optimization problem

e “min £f(x) . . (1)
. 'x€S ‘

in which a strictly descent local search procedure P was applied to a

subset of a sample drawn from a_uniform distribution over S, so as to find
all the 1ocel'minima.of f that are potentially global. In the k-th
iteration of each method, the sample of size kN was first reduced by
removing the (l—Y)kN p01nts with the highest function values. Three methods
to deal with the reduced sample were presented (Density Clustering, Single

Linkage and Mode Analysis), of which the last two turned out to have

particularly attractive properties with respect to efficiency and accuracye

As far as the former is concerned, it could be shown that the number of
local searches would remain finite (with probability 1), even if the
sampling would continue undefinitely. With respect to the latter, we showed
that (with probability 1) a local minimum would be detected in each level

set component in which a point had been sampled. One such component may,

however, contain several local minima; we are only assured of finding one
of them. The purpose of this paper is to show how this final deficiency can

be dealt with. Our notation will be the same as was used in Part I.

A crucial observation is that the methods described in Part I only make
minimal use of the function values of the sample points. These function
values are used to determine the reduced sample, but the clustering process
applied to this reduced sample hardly depends on the function values.
Instead, theeclustering process concentrates on the location of the reduced
sample points. As a result, the methods cannot distinguish between
different regions of attraction which are located in the same component

of L( iYkN)). The function value of a sample point x can be of great
importance if one wishes to predict to which region of attraction x
belongs, because the local search procedure which defines these regions is

assumed to be strictly descent. Hence, x cannot belong to the reglon of

attraction of a local minimum x*, if there is no descent path from X to x*,

i.e. a path along which the function'values are monotonically decreasing.




Furthermore, x does certainly belong to the region of attraction of'x#,
Rx*’ if there does not exist a descent path from x to any other minimum
than x*.

In Section 2, we describe two methods that exploit these observations,
the Multi Level Single Linkage and Multi Level Mode Analysis method. These
methods will be shown to invoke exactly one local search in each regidn of
attraction (with probability 1). Thus, they guarantee the accuracy of the
Multistart method (Section 2 of Part I) at the smallest possible cost in
terms of local searches.

In Section 3, we turn to the computer implementation of the Multi
Level methods. We shall show that they can be implemented in such a fashion-
that the expected computational effort up to iteration k is only 1inear in

k, in spite of the fact that the entire sample is reconsidered in each

iteration.

In Section 4, we present the results of computational experiments that

confirm the speed and reliability of the Multi Level methods, as compared
to other approaches to global optimization. Some concluding remarks are

contained in the same section.

2. MULTI LEVEL METHODS

In the previous section, we observed that the proper assignment of a
sample point x to a region of attraction Ry is related to the existence or
nonexistence of a descent path from x to x*. Obviously, it is impossible to
consider all descent paths starting from x. Instead, we will (implicitly)

consider all rp-descent sequences, where a rp—descent sequence is a

sequence Qf sample points, such that each two successive points are within
distance T of each other and such thaﬁ the‘fﬁnction values of the points
in the sequence are monotonically decreasing. It will turn out that if the
sample size increases and if Iy tends to 0, then every descent path ‘can be
conveniently approximated by such a sequence of sample points.

For a better understanding of the remainder of this section it is
advantageous to consider the following algorithm first. Let w be the number

of local minima known when the procedure 1is started.




Algorithm A.

Step 1. Initiate w different clusters, each consisting of one of the local
miﬁimévpresent.

Step 2. Ordgf thélsample points, such that f(xi) < f(x
Set i := 1,

i) 1 <1 < kN1

Step 3. Assign the sample point Xy to every cluster which contains a point

within distance Ty

If X; 1s not assigned to any cluster yet, then start a local search
at x; to yield a local minimum x*. If x* X*, then add x* to X',
set w = wl énd initiate the w—~th cluster by x*. Assign x; to the
cluster that is initiated by x*.

Step 4. If 1 = kN, then stop. Else, set i := i+l and go to Step 3.

Note that a sample point x can only be linked to a point with smaller
function value that is within distance Ty (provided that a local search has
not been appliéd unnecessarily, and the starting point is added to the
resulting minimum for that reason only). Moreover (under the same
provision), if x is assigned to a cluster which is intitiated by a local
minimum x*, then there exists a ri-descent sequence connecting x and x*.
TheAsample:point X can Be assigned to several clusters, if there exist
‘T ~descent sequences from x to each of the corresponding local minima.

Unfortunately, even if r, tends to 0, then the fact that there exists
an ryp-descent sequence from x to a local minimum x*, does not necessarily
imply that x ¢ Rx*. If P is applied to X, then it is still possible that. it
will follow another descent path, and find another (possibly undetected)
local minimum. However, as we will see later, this cannot happen if x is
ocated in the iﬁterior of the basin of some local minimum. .

intuitively speaking, any two local minima will always be separated by
a region with higher function values, so that Algorithm A will locate every
local minimum in the neighbourhood of which a point has been sampled, if 1
is small enough. Since the function values are used in an explicit way in
the clustering process, it is no longer necessary to reduce the sample. The
method can be applied to the complete sample.

We could have named A Multi Level Single Linkage, since it is easy to

check that it locates all local minima that can be obtained by applying




Single Linkage to the sample points with a function value smaller

than yﬁ ) for every i = 1,2,...,kN. However, we reserve this name for an
even simpler algorithm which locates the same minima. Note that it is not
essential in Algorithm A to actually assign the sample points to clusters.
For every sanple point x, the decision whether P should be applied to x
does not depend on the cluster structures; the decision only depends on the
fact whether or not there exists a sample point z with f(z) < f(x) within
distance r, of x. We now turn to an algorithm in which the superfluous
clustering is omitted altogether! As in the case of Single Linkage it is
necessary for the analysis of this algorithm that we avoid to start P in an

element of Q, or X (see Section 3 of Part I).

Multi Level Single Linkage

Step_l. For every i =1 2,...,kN apply P to the sample point xi except 1f
; € Q ] X or if there is a sample point X with f(x ) < f(xi)

i ="k

and HxJ -x, I <.
Add new stationary points encountered during the local search to

X,

Let us now analyze in how far Multi Level Single Linkage meets ouf
initial goal, i.e. whether a local search is started if and only if = point
is sampled in a region of attraction of a local minimum which has not been
detected previously.

Let us first consider the probability that P is started incorrectly,
in the sense that it results in a local minimum which was already known.
Obviously, we can only start P in a sample point x4 if xi €Y \X or if

x; € M - and there is no sample point x5 with f(x ) < f(x ) within
dlstance r, of x;. However, precisely this probability has been analyzed in
Sectlon 3.2 of Part I for the case that, for some ¢ > 0, rkvsatisfies

-1 1/n L ,
nE(T(1 + Pym(s) LB @

Hence, we can use the analysis of Section 3.2. of Part I to prove'the next

theorem.




THEOREM 1. If the critical distance I, of Multi Level Single Linkage is
determined by (2) with ¢ > 0, and if x is an arbitrary sample point, then
the probability that P is applied to x by Multi Level Single Linkage tends
to 0 with incteasing ke If ¢ > 2, then the probability that a local search
is applied by Multi Level Single Linkage in iteration k tends to 0 with

increasing k. If o > 4, then, even if tﬁe sampling continues forever, the

total number  of. local.searchés ever started by Multi Level Single Linkage
is finite with probability 1.

0

Now considervthe second possible failure, i.e. the possibility that no
'local search -is started in Rx*’ although a point has been sampled in Rx*’
and x* has not been detected vet. As we remarked already, we cannot
entirely exclude this possibility, since the existence of an rk—descent
Seéquence connecting a sample point x to a local minimum x* does not

. necessarily imply'that X € RX*. However, we can prove that every local

minimum will be found in the long run.

THEOREM 2. If r, tends to 0 with increasing k, then, any local minimum x*
will be found by Multi Level Single Linkage within a finite number of
iterations with probability 1.

;}ﬂE&E} Consider the basin B x of x*. Recall that the basin is a component
of {xeS| f(x) (.yl} that contains x* as its only stationary point. Since Y1
is chosen such that Lx*(yl) contains other stationary points as well (it
equals.S if there are no other stationary points) and since x* 1is a local
minimum, it foilows that ¥y > £(x*).

Analogously to the proof of Theorem 11 of Part I it is easy to show
thaﬁ there exists a ; with £(x*) < ; S_yl, such that the set
{xeBx*[ £(x) <_§} has positive measure and has an empty intersection with
Q. or YU\{xesl U=kl < U}.~For any.- € > 0, let E_ be the set
{xeBx*l f(x) < ye}, where Y. is the infimum of f over all points in B x
that are within distance & of 3 point outside {xeBx*l £(x) < y}. Since
y > £(x*), it follows from the continuity of f that there exists a 6 > 0
such that Eg has positive measure.

Suppose that a sample point exists in Eg, and let x be the sample




point with the smallest function value in Eg. Obviously, X cannot belong to
Q. or YU\{xesl Ix=x*1 < v}. Moreover, it follows from the definition of Eg
and x that there cannot be a sample point z within distance 8 of x with
f(z) < f(x). Hence, if Tr < §, then a local search will be started in x to
find x*, unless x* has been discovered previously already. Since the
probability that a sample point exists in EG tends to 0 with increasing k,
the ;esult is now immediate (cf. the analysis leading to Theorem 12,

Part I).

Note that if we ignore the influence of the sets Q. and Xt, then y
equals ¥1 in the proof of Theorem 2. Hence, in this case, we proved that a
local minimum x* will be discovered if B *(rk) contains a sample point.
(Recall that BX*(r) is the set {xeBx*| f(x) <€ yr}, where y is the infimum
over all points in B x that are within distance r of an element outside

B %) Since B *(rk) tends to B 4 if k tends to infinity, we obtain that in
the limit, a local minimum x* will be found if a point has ‘been sampled in
its basin.

The basin is the largest subset of Ro% for which we can prove that if
P is applied to one of its elements, it then converges to x*. The reason is
that for points outside a basin there may exist descent paths leading to
different local minima. Intuitively speaking, the basin is the Intersection
of all regions of attraction belonging to the different possible strictly
descent local search procedures. Hence we cannot really hope for
substantially better methods than Mulfi Level Single Linkage if werdo not
further restrict the local search procedure in such a way to be able to
translate this extra restriction into more information on the resulting

regions of attraction.

We conclude this section with a method which we will call Multi Level
Mode Analysis.‘This method is a generalization of Mode Analysis in a
similar way and for the same reasons that Multi Level Single Linkage is a
generalization of Single Linkage. As in Mode Analysis S is partitioned into
| cells, and we define a cell A to be full if it contains more than
m(A)kN/m(S) reduced sample points. We define the function value of a cell

A to be equal to the smallest function value of any of the sample pOints'in

A.




Multi Level Mode Analysis

Step 1. (Dété:mine redﬁced sample) Determine the reduced saﬁple by taking
thé YkN sémple points with the smallest funétion values.

Step 2. (Définé’cells) Partition S into v cells.

. Step 3. (Détermine full cells). For each cell A determine the number of
reduéed-sample points in the cell. If this number exceeds
%m(A)kN/m(S), then the cell is full. |

Step 4. For every full cell A, determine the point x which has the smallest
fuﬂction value among the reduced .sample points in A. Apply P to X
except if x ¢ QT u X:, or if A has a neighbour which is full and
has a smaller function value than f(x). Add new stationary points

, i *
encountered during the local search to X .

Note that we still reduce the sample. Although this is no longer
strictly necessary, it creates the extra possibility that two regions of

attraction are recognized as such only because a cell on the boundary of
both‘regiéns is empty.

The cells are defined in the same way as they are defined in Mode
Analysis, so that for some o > 0, there are kN/ (ologkN) cells in iteration
ko o

Obviously, the arguments used to analyze the probability that a local

search isistarted by Mode Analysis can also be used to prove the following

theoren.,

THEOREM 35 If, in iteration k, the number of cells in Multi Level Mode
Analysis is kN/(ologkN) with o > 10, then the probability that a local
search is started by Multi Level Mode Analysis in iteration k tends to O
with incréasing k. If ¢ > 20, then, even if the sampling continues forever,
the total number of local searches ever started by Multi Level Mode

Analysis is finite with probability 1.

If x* is a local minimum for which £(x*) <‘yY , then the proof of

Theorem 2 can be easily adapted to show that the probability that Multi
Level Mode Analysis will locate x* tends to 1 with increasing k. If we
define Es as in the proof of Theorem 2, then, for k large enough, the cell
A containing x* will be completely contained in Eg. The probability that A




contains less than }kNm(A)/m(S) sample points is again O(R—O/lo). Moreover,
since f(x*) < Yy the probability that all sample points in A belong to the
reduced sample tends to 1 with increasing k. We conclude that the
probability that A is full tends to 1 with increasing k. Obviously, since
A c Eg the following theorem now follows from the definition of Ege

THEOREM 4. If, in iteration k, the number of cells in Multi Level Mode
Aﬁalysis is kN/(ologkN) with ¢ > 0, then, any local minimum x* with
f(x*) < Yys will be found:by Multi Level Mode Analysis within a fini;e
number of iterations with probability 1.

We conclude that the Multi Level methods and Multistart will result in
the same set of minima with a pfobability which tends to 1 with increasing
sample size. Hence, we did not go into the problem of designing a stopping
rule for our methods. We simply suggest to use the stopping rules which

were designed for Multistart (see Section 2 of Part I).

The assumptions under which the methods have been analyzed, were
stated in Section 3 of Part I. Several of these aséumptions concern the
local search used. For instance, it is assumed that each local search
converges to a local minimum and that the path followed by the scarch is
completely contained in S. Although these assumptions simplify the
exposition considerably, the methods proposed do not really depend on these
assumptions. Obviously, if we drop both assumptions, then Multi Level
Single Linkage and Multi Level Mode Analysis will still find the gloBal
minimum in the long run. This is due to the fact that there exists a
neighbourhood (EG) of the global minimum which does not contain any other
stationary points.-and which is a component of a certain level set. .
Therefore, the Multi Level methods ultimately start a local search in this

neighbourhood to find the global minimum.

In this section we focused especially on the reliability of the -

methods considered. We did not pay much attention to the way in which they
should be implemented. In the next section we describe some very efflcient

implementations of the more successful ones.




3. COMPUTER IMPLEMENTATION

So far, in our description of iterative global optimization methods,

we have concentrated on one particular iteration, say k, and described the

clustering procedures as if they were applied only once to a sample of size

kN. Moreover, these static déscriptipns were focused primarily on the
resulting_number of local searches and not on implementation problems.

In this section, we will deal with the problem of efficient
implementation of these methods. Of course, it is not efficient to start
the calculations which are necessary for the clustering procedure from
scratch in each iteration. Since the sample of iteration k-1 is a subset of
the sample of iteration k, and since it is known in what way the parameters
that define the clustering procedure (such as the critical distance) vary

with k, it turns out to be possible to develop efficient dynamic

implementations of the methods. In these dynamic implementations, the

information which is necessary to determine the starting points of the
local search procedure in iteration k will be determined by updating the
corresponding information from iteration k-1. We will see that it is
possible to implement Multi Level Single Linkage and Multi Level Mode
Analysis in such a way that the running time needed up to iteration k is
only O(R) in expectation. This is surprisingly efficient: in each
'iteration, the entire sample is reconsidered so that a naive implementation
would be O(kz).

There are two dynamic subproblems which need to be solved in most
clustering procedures. Since most clustering methods use the reduced sample
points only, we have to deal with the problem of dete:mining this reduced
sample, which is strongly related to the dynamic selectioﬁ problem: find
the ykN-th smailest function value in a sample of size kN for k = 1,2,.0..
This problem is dealt with in detail in [Postmus et al. 1983}, where we

showed how to solve it in linear expected time. Actually, the analysis
there is carried out only with respect to the number of comparisons
required in the computation. Use of appropriate data structures such as
doubly linked lists and 2-3 trees allows the conclusion to be extended to
the running time in general.

A second subproblem which arises in clustering procedures such as

Single Linkage, is that of testing whether or not there exists a sample




point z within the critical distance of a given point x (possibly with the

extra restriction f(z) < (£f(x)). This problem is related to the problem of
finding nearest neighbours among uniformly distributed points which has
been solved efficiently in [Bentley et al. 1980]. Below we discuss a data
structure based on this reference, which allows for the determination of
the nearest neighbour of a given point among kN uniform points in 0(1)

expected running time.
In [Bentley et al. 1980] a technique 1s described which preprocesses

kN uniform points in O(k) running time, after which it is possible to
determine the nearest neighbour of any query point (among the kN points) in
0(1) expected running time. We will first briefly describe this (static)
technique and then show how it can be generalized for our purpose.

For some positive c, the idea of the preprocessing step is to assign
each point to a small cell of measure c/(kN) so that the expected number of
points in each cell is c. We assume that 9(kN/c) is an integer sovthat we
can choose the cells to be hypercubes (this assumption is not crucial). It
is easy to check that this preprocessing can be performed in O(k) running
time. If we now wish to determine the nearest neighbour of some point xy,
we first locate the cell containing Xje If this cell does not contain any
sample point, then we start searching the cells surrounding it in an
expanding pattern until a cell containing a sample point is found. Once we
have this sample point, say X), We are guaranteed that there is no need to
investigate any cell that does not intersect with the hypersphere centered
at x; of radius sz - xlﬂ. The sample point nearest to X, can be found by
considering all sample points in the cells that do intersect with this

hypersphere. In [Bentley et al. 1980] it is proved that this Spiral Search

finds the nearest neighbour of any given point in 0(l) expected running
time.

Spiral Search can also be used to find the point closest to X, among
the sample points with a function value smaller than f(xl). The only
difference is that we now have to continue our spiralling search until we
find a cell containing a sample point with a function value.smallef than

£(x1). If x; is an element of M then we can use Theorem 7 irn Part I to

T,U? ' .
show that such an adapted version of Spiral Search finds the closest sample
point with a function value smaller than f(xl) in 0(1) expected runﬂing
time. To see why, let the i-th cell be the first cell in which a sémple

point is found with a function value smaller than f(xl). It is then easy to




check that the number of cells cbnsidered is 0(i), and that these cells
‘contain O(ci) sample points in expectation. From the Theorem 7 in Part I we

know that there exists an r, such that for some 0 < B < ¥

m( {xeS| Ix=x | < r, and f(x) < f(xl)})

m( {xeS| x=x, 1 < rO})

> Be

Hence, the probability that no sample point exists in

{xes| ﬂx—xlﬂ_< r, and f(x) < f(xl)} decreases exponentially fast with k, s0
that we may ignore this possibility (the resulting costs are O(k)).

the < ro}
does not contain a sample point with a function value smaller than f(xl) is
bounded by (1 - Bc/(kN))kN which is smaller than e'Bc, and the probability

that the i-th cell considered is the first cell contaihing a sample point

Obviously, the probability that an arbitrary cell in {XGSI Ix—-x

with a function value smaller than f(xl) decreases exponentially with i.
Thus, we conclude that, for any x, € MT’U, Spiral Search finds the point
which is closest to X, among the sample points with a function value
smaller than f(xl) in 0(1) expected running time.

In Multi Level Single Linkage, we are only interested in finding the
point closeét to a point x; among the sample points with a function value
smaller than f(xl) if such a point exists within the critical distance Ty
of X1+ Obviously, we can then stop the search if we have considered all

cells that have a nonempty intersection with A = {xes| ﬂx—xlﬂ_s r For

. k}.
instance, if r, is determined by (2), then m(A) = (ologkN)/(kN) and it is

easy to check that we will not have to consider more than 0(logk) cells.

To transform this static procedure into a dynamic one, it is suggested
in [Bentléy et al. 1980] to redefine the cells only if k is a power of 2,
i.es if k= 2™ for some positive intéger m. Hence, if k = 2", we insert all
kN sample points in a new cell structure of (kN)/c cells. If k is not a
power of 2, then we do not change the cells, but only assign the N newly
drawn points to the existing-cells. Obviously, if we preprocess the points
in this way, then, in any iteration, we can determine the nearest neighbour
of an arbitrary point in O(l) expected running time (the expected number of
points in a cell is not always c, but is still bounded by 2c¢).

Let us now consider the cost of the dynamic preprocessing of the

sample points. In most iterations we only have to assign the N new sample

‘points to the existing cells which takes no more than 0(1l) running time.




If, for some integer m, k = 2™, then we have to reinsert all kN sample
points in the new cell structure which takes 0(k) running time. However,
these latter iterations are rare enough not to prevent the running time up
to iteration k to be O(k) as well. To see why, note that if k = 2™ for some
integer m, then this implies that the previous 1k iterations were easy in
the sense that they only took O(1) running time per iteration. Hence, if we
divide the 0(k) costs in iteration k over the %k previous iteratioﬁs, then
we can say that the amortized running time per iteration is 0(1l) (for a
discussion of this notion of amortized cost, see [Tarjan 1983]). More
precisely, if there exist constants c; and Co» such that a certain
procedure takes ¢y calculations in iteration k if k is not a power of 2,
and czk if k is a power of 2, then the number of calculations needed up to
iteration k are smaller than kc1 + 2m>0c2k2-m 5_(cl + 2c2)k.

Now let us use this approach to design an efficient implementation of
Multi Level Single Linkage. Given a set of stationary points X*, Multi
Level Single Linkage determines which of the kN sample points in iteration
k should be used as starting points of the local search procedure, and
updates the set X* if new stationary points are encountered during these
local searches. In the implementation of Multi Level Single Linkage
described in this section, we use Spiral Search as a subroutine. If, for
some‘point X, Spiral Search is applied to x in iteration k, then it will
find the point closest to x among the sample points with a function value
smaller than f(x), unless no such sample point exists within the critical
~distance r) of x. In the latter case, we say that Spiral Search did not
succeed. We know that, after suitable preprocessing of the sample points,
an application of Spiral Search to a sample point x in MT o will take O(1)

bl
running time in expectation, and that the number of cells considered during

the search is O(logk) if r, is determined by (2). The preprocessing.of the

sample points consists of partitioning S into small cells and assigning

every sample point to the cell in which it is located. As indicated, we do
not have to redefine the cells in every iteration. It suffices tb.define
new cells if k is a power of 2 only. If k is not a power of 2 we simply
assign the newly.drawn points to one of the existing cells.

The outcomes of the applications of Spiral Search will be used” to
define lists T(&) for every future iteration £ up to the next iteration in

* which the cells are redefined. These lists have the property that in




iteration k (k not a power of 2), T(k) contains all sample points from

which it may be necessary to start a local search.

Since we only redefine the cells if k is a power of 2, our

implementation of Multi Level Single Linkage is divided in two parts

depending on whether k is a power of 2 (case A) or not (case B). For a

: e *
definition of notions like QT and XU which we will use in the sequel, we

refer to
to (2).

Part I. We will always choose the critical distance tk according

A. Multi

Step Al.

Step A2.

Steg A3.

SteE A4,

B. Multi

Level Sihgle Linkage (k = 2™, for some integer m)

For some c > 0, partition S into (kN)/c cells (hypercubes).
Aséign each sample point to the cell in which it is located.

Set i:=0 A

Set i:=i+l. If i is greater than kN, stop.

If‘tﬁe i-th sample point, say Xy, is in QT u Xt, then repeat Step
A3.

If x; is in Y, then go to Step A4.

Apply Spiral Search to Xy If the search does not succeed, then go

to Step A4, else let z be the outcome of the search.

If‘dxi-zﬂ > r,, , then determine the integer & for which

2k
rz_l_z Hxi-zn > r, and add X; to a list corresponding to iteration

%, say T(L). Repeat Step A3.

Apply P to X;+ Add new stationary points encountered during this
search to X' and go to Step A3.

SteE Bl.

Step B2.

Level Single Linkage (k # 2™, for any integer m)

.Assign the N new sample points to the existing cell structure;

add these points to the list T(k) and let t be the number of

elements of the resulting list T(k). Set i:=0.

Set i:=i+l. If i is greater than t, stop.

If the i-th element of T(k), say x;, is in Q. v Xt. then repeat
Step B2.

If x; is in Y,, then go to Step B3.

Apply Spiral Search to x;. If the search does not succeed, then go

i
to Step B3, else let z be the outcome of the search.




If uxi—zu is greater than the critical distance of the next
iteration in which the cells are redefined, then determine the

integer £ for which r 1 Z_Hxi—zﬂ > r, and add x; to T(%). Repeat

Q-
Step B2.
Step B3. Apply P to X4 Add new stationary points encountered during this

search to X* and go to Step B2.

Apart from the set X*, and the information concerning the sample
points and the cells, we maintain a list T(R) for every future iteration £
up to the next iteration k" in which the cells are redefined. If, in
iteration k, we apply Spiral Search to a point Xy and find a point z with

f(z) < f(xi) and Hxi—zﬂ S_rk, and if nxi-zn is greater than the critical

distance of iteration k+, then we add x; to the list T(%), where % is the

first iteration in which Ix,-zl will no longer be smaller than or equal to

the critical distance Toe Hince, it is easy to see that the list T(&) (k <
% < k+) contains all sample points in Mr,u from which no local search has
been started yet and which have no sample point within distance ry, with a
smaller function value. Note that a list T(2&) may also contain other
points, since we do not always know the nearest neighbour with a smaller
function value of every sample point (updating this kind of information
would be time consuming and is not necessary). However, if a sample point x
in Mr,u is not on the list T(k) then we can be sure that either a sample
point exists with lx-zl S'rk and f(z) < f£f(x) or that P has been applied to
x previously already (provided that k is not a power of 2). Hence, if k is
not a power of 2, then it suffices to consider the elements of T(k) only

(cf. Step B2).

It is easy to check that our implementation of Multi Level Single
Linkage only differs from the previous description in the way the sémple
points in YU\Xi are treated. We now start P from every sample point
in YU\XU, i.e. from every sample point that is within distance v of a
stationary point which has not yet been located. To be able to do so, we
assume that it is possible to test whether a newly drawn point x is
in YU\XZ. This assumption is reasonable, since we can choose v arbitrarily
small. For instance, we can determine the gradient in x and decide that x
is in Y, if this gradient is small. We treat the points in Yd\Xt in this

specific way because we cannot be sure that an application of Spiral Search
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to a point in'YU\XU is possible in O(1l) expected running time. Since there

‘are only a finite number of stationary points, we will only start a finite
number of local searches from points in YJ\XZ’ so that Theorem 1 and
Theorem 2 are also valid for the above implementation of Multi Level Single
Linkage.

Let gs now examine the running time required by our implementation.

.First, suﬁpose that k is a power of 2. We know that Step Al and A2 only

~ take 0(k) fﬁnning time. In Step A3 we apply Spiral Search to elements X5
of Mr,u ohly, so that the expected running time of each application is

" bounded by a constant. If Spiral Search finds a sample point z
and Hxi—zu > Tor? then we must determine the integer % satisfying
rz_l_z Hxi—zﬂ > ro. We cannot determine £ analytically, but it is obvious
that 2 can be determined by comparing Hxi—zﬂ and values T3 for 0(logk)
values of j between k and 2k (e.g. by Binary Search). These 0(logk)
calculatiohs only occur if Hxi—zﬂ > Lok? i.e. 1f no sample point z; exists
with f(zl)'< f(xi) and Hxi—zlﬂ_s Tox (else z would have been equal to zl).
The probability of this latter event, say oy, is smaller than the
probability that there is no sample point zy with Hxi—zln_s rky% and
f(zl) < f£(x) since rky% < Lo

within distance rky% of X, is (}ologkN)/(kN), for any B < }, we can use

- Since the measure of the set of points

Theorem 7 of Part I to bound o by O(k-%Bo). It follows that the expected
running time needed for any sample point in Step A3 in 0(l), so that the
expected running time for Step A3 is O(k). Since the running time of a
local search does not depend on k, we conclude that the expected running
time for'Step Al-A4, 1.e. the expected running time for Multi Level Single
Linkage in\ifération k, where k is a power of 2, is 0(k).

Let us now examine the expected running time required in iteration k
if k is not a power of 2. It is easy to adapt the analysis given for Step
Al-A4 to show that the expected running time necessary for the treatment of
the N new sample points can be bounded by a constant. Hence, it remains to
consider the sample points that were already on the list T(k) at the
beginning of iteration k. We will prove that the expected running time
required.for Step B1-B3 in iteration k is 0(l) if o > 4, by showing that,
for any B < }, the expected number of sample points on the list T(k) at the

-1 . .
1 280) and that the expected running time to

beginning of iteration k is O(k
handle such a point is 0O(logk). To start with the latter, let x be an

arbitrary point on the list T(k) at the beginning of iteration k. We know




that in the iteration in which x was added to the list T(k) there did not
exist a sample point z with f(z) < f(x) and Ix-zlI S_rk. Hence, we are no
longer sure that the expected running time of an application of Spiral
Search to x is O(l) since we should condition on this knowledge. However,
we can be sure that Spiral Search considers only 0(logk) cells. The
expected number of sample points in these cells is 0O(logk). Hence, for
every sample point x which is on the list T(k) at the beginning of -
iteration k we can bound the expected running time needed for an ,
application of Spiral Search to x by O(logk). It is easy to check that the
same bound is vaiid for the expected running time needed in Step B1-B3 for
such a point x.

We shall now bound the expected number of sample points on the list
T(k) at the beginning of iteration k. Let x be any sample point in MT’U
which has been sampled before iteration k (obviously these are the only
possible candidates to be on the list T(k) at the beginning of iteration
k). Let k' be the most recent iteration in which Spiral Search was applied
to x. Then k' > 3k. If, in iteration k', a sample point‘z did exist with
Ix=z1 s_r%k 9% and f(z) < f(x), then x cannot be on the list T(k) (we
already noticed that r, > r%ky%). The probability that there was no such
sample point z in iteration k' is smaller than the probability that none of
the 3kN sample points in iteration 1k was within distance r%kp% of x and
had a function value smaller than f(x). For any B < %, we can use Theorem 7
of Part I again to show that this latter probability is O(k_%so)- It
follows that for any B < } the expected number of elements on the list T(k)
at the beginning of iteration k is O(kl-%so). Since the expected running
time for each of these points is 0(logk), we have proved that the éxpected
running time of Step BI-B3, i.e. the expected running time for Multi Level
Single Linkage in iteration k, where k is not a power of 2, is 0(1l) if
¢ > 4. Combining the results for case A and B, we obtain the following

theorem.

THEOREM 5. If the critical distance of Multi Level Single Linkage is -

determined by (2) with ¢ > 4, then it can be implemented in such a way that

the expected running time up to iteration k is 0(k) and the amortized

expected running time is 0O(l) in every iteration.




The implementation of Multi Level Single Linkage described so far can be

easily adapted to handle the situation in which one wishes to use the

reduced sample only.

Let us now describe an efficient implementation of Muiti Level Mode
Analysis, In the first description of this method we defined the number of
cells in iteration k to be equal to kN/(ologkN), and we defined a cell to
be full if it contained more than %oiogkN reduced sample points, i.e. more
than half the expected number of sample points in the cell. Obviously, the
redefinition of the cells in every iteration is prohibitive for a very
efficient implementation. As before, we will only define new cells if k is
a power of 2. In iteration k the number of cells in our implementation is
equal to k N/(ologk™N), where k™ is the most recent iteration number which
is a power of 2. The expected number of sample points in iteration k is
then equal ‘to (kologk™N)/k™, and we will now define a cell to be full if it
contains more than (4kologk ™ N)/k~ reduced sample points. Since the number
of cells in iteration k, k" N/(ologk™N), is between 3kN/(ologkN) and
kN/(ologkN),'it is easy to check that this adaptation of the method does
not affect the theoretical results obtained in Section 2.

Between iteration k=, which is a power of 2, and iteration kT = 2k,
we do not change the cells but only update information concerning the
cells. In each-cell (say A;) we iteratively update (if necessary) the
reduced sample point with the smallest function value (say ;}) and the
total number of reduced sample points in the cell (say ai). Apart from the
information concerning the cells we will also maintain a list T(&) for
every future iteration % up to iteration k¥. Such a list T(%) will contain
every cell which, after being full in iteration 2~1, will become empty in
iteration 2, provided that no points are added to or removed from the cell
until iteration 2. We iteratively update these lists to prevent that we
have to check every cell in every iteration.

If, in iteration k, a cell is on the list T(k), then we add all its
neighbours to an initiaily empty list, say G. The cells which become full
in iteration k (after being empty in iteration k-1) and the cells for which
;; changes in iteration k are also added to the list G. As we shall see
later the list G then contains all cells for which it may be necessary to
apply P to one of its elements.

Finally, we note that, as in the previous sections, we will not go




into the details of how to store the cell structure itself. It is easy to
see that we can number the cells such that, for each sample point we can
find the cell in which it is located in 0(1) running time, and for each

cell we can find all neighbouring cells in 0(1) running time as well.

A. Multi Level Mode Analysis (k = 2™ for some integer m)

Step Al. Determine the reduced sample.

Step A2. Partition S into kN/(ologkN) cells. Set i := 0

Step A3. Set i := i+l. If i is larger than the number of cells, then set
i := 0 and go to Step A4.
Consider the i~the cell, say Ai‘ Determine the poiht ;; which has
the smallest function value among the reduced sample points in Ai’
and determine the number of reduced sample points in A.i say a;.
Set 1 := i+l. If i is greater than the number of cells, stop.
If a; does not exceed }ologkN, then repeat Step A4.
Let iteration £ be the first iteration in which a; elements are
not enough for a cell to be full, i.e. % is the smallest integer
greater than or equal to 2a;k/(ologkN). If & < 2k, then add A; to
the list T(%).
Apply P to Ei, except 1if 2; € QT u X: or 1if Ai has a neighbour
which contains more than tologkN sample points, at least one of

which has a function value smaller than f(xi)' Add new stationary

*
points encountered during a local search to X .

Level Mode Analysis (k # 2@ for any integer m)

Determine the sets D; and D, of points entering, respectiyely
leaving, the reduced sample. Let the number of elements of D; and
Dy be d; and d, respectively. Let k be the most recent iferation
number which was a power of 2, and let Kt equal 2k~ . Set j = 0 and
p := 0. ' .i

Set j = j+l. If j is greater than dl’ then go to step B3.=A
Determine the cell Ai(j) in which the j-th elements of D, is
located. Set ai(j) '= ai(j) + 1. If the function value of fﬁe

j—th element of Dl is smaller than f(xi(j))’ then replace.xi(j)

by this element and if in addition Ai(j) is full




-' R - - A' . . . .

(1‘e ai(j) > (4oklogk N)/k ), then add e to an initially
empty list G.

If not already on the list, add Ai(j) to the list G if éi(j) was
empty in the previous iteration and has now become full, i.e. if
ai(j)“l S_(%c(k—l)logk_N)/K— and if ai(j) > (%oklogk_N)/k‘.
Let % and &' be the smallest integers greater than or equal to

Z(ai(j)—l)k_/(ologkﬁN) respectively Zai(j)k—/(ologk—N).

If &' = %, then repeat.Step B2.
If k ¢ 2 <K', then delete A; ;) from the list T(2).
If k < &' < KT, then add Aj(4) to the list T(2'). Repeat Step B2.

Set p := ptl. If p is larger than d,, then go to Step Bé4.
Determine the cell Ai(p) in which the p-th element of D, is
located. Set aj(p) = ai(p)—l.

Let % and &' be the smallest integer greater than or equal to
Z(ai(p)+1)k /(ologk N) and Zai
If 2 £ k, then repeat Step B3.
If % < k', then delete A;(,y from the list T(2).
If k 2" <K', then add Ay ) to the list T(L').

N ' I3 i .
If 2' < k, then add Al(p) to the list T(k)

(p)k—/(ologk—N) respectively.

Repeat Step B3.

For every cell on the list T(k), add all neighbours of the cell to
the 1list G, provided that they are full and not already on this
list.

For every cell on the list G, apply P to the reduced sample

point x with the smallest function value in the cell except if

X € QT U XZ or if the cell has a neighbour that contains more
"than (}kologk N)/k  reduced sample points, at least one if which
has a function value smaller than f(x). Add new stationery points

, . *
encountered during a local search to X .

It is not too difficult to verify that Theorems 4 and 5 apply to the
above implementation. We omit the details and conclude this section by
considefing the expected running time needed by our implementation in
iteration k. Using the dynamic selection method of [Postmus et al. 1983],
we can perform Step Al and Step Bl in 0(l) expected running time. If k is a
power of 2, then it is easy to check that Step A2 and A3 can be performed

in O(k) running time. Since every cell does only have 0(1) neighbours,




every cell can be treated in 0(1) running time in Step A4. It follows that
Step Al-A4 only take O(k) running time in expectation.

Now suppose that k is not a power of 2. Each element of Dy will only
cause 0(1) running time in Step B2 and can only cause one cell to be added
to the list G. Similarly, each element of D, can be treated in O(l) running
time in Step B3. Since dl and d, are both smaller than or equal to N, it
follows that Step B2 and B3 can be performed in 0(1) running time, and that
no more than N cells can be on the list G at the beginning of Step B4.
Obviously, each cell on the list T(k) can only cause 0(1l) cells to be added
to G and each cell on the list G can be treated in 0(1l) running time in
Step B5. Hence, to prove that Step Bl-B5 can be performed in O(l) expected
running time, it suffices to show that the list T(k) contains 0(1l) cells at
the beginning of Step B4.

A cell can only be on the list T(k) at the beginning of Step B4, if it
was full in iteration k and has now become empty. It is easy to see that
the expected number of full cells does not change from iteration k-1 to
iteration k (provided that k is not a power of 2 and the cells are
redefined). Moreover, a cell can only change from empty in iteration k-1 to
full in iteration k if a-point is added to the cell in iteration k. Since
d; is at most equal to N, it follows that the expected number of cells that
change from empty to full in iteration k is at most N. Combining this last
result with the fact that the expected number of full cells in iteration k
is equal to the corresponding number in iteration k-1, it follows that the

expected number of cells on the list T(k) at the beginning of Step'BA is

also at most equal to N. Hence, we proved the following theorem.

THEOREM 6. Multi Level Mode Analysis can be implemented such that the
expected running time up to iteration k is O(k) and the amortized expected

running time is O(l) in every iteration.




4. COMPUTATIONAL EXPERIMENTS

In this section we shall discuss the computational performance of the
methods described in Part I and Part II on a number of test problems. For
this purpose the algorithms were coded in Fortran IV and run on the DEC
2060 computer of‘the Comnputer Inétitute Woudestein.

To be able to compare our methods with other existing ones, the
unconstrained methods have been tested on the standard set of test
functions [Dixon & Szegé 1978b], which is commonly used in global
optimization. (see Table 1) Since all test functions are twice continuously
differentiable, we used the VAlOAD variable metric subroutine from the
Harwell Subroutine Library as the local search procedure in all
experiments;

After some initial experiments we concentrated on Single Linkage,
Multi Level Single Linkage and Multi Level Mode Analysis. To obtain an
impression of the numerical performance of these procedures, we applied
them to four independent samples of size 1000. For all three methods we
reduced the sample to 100 points (y=0.1). Furthermore, we chose both v and

T to be equal to zero in all experiments, thus neglecting the

%
sets QT and Xu' In Multi Level Single Linkage and in Single Linkage we set

o equal to 4. In Single Linkage we used the gradient criterion (Section 4
of Part I) in an attempt to approximate the regions of attraction instead
of the components of a level set. In Multi Level Mode Analysis we
encountered the problem that if the sample size is 1000 then the number of
cells is still not very large. Especially in higher dimensional problems
each cell is a neigbour of most other cells. We therefore chose ¢ to be
only one and restricted the definition of neighbouring cells. In our
implementation we said two cells to be neighbours if they have an (n-1)-
dimensional facet in common, so that a cell has at most 2n neighbours.

The average results of the four runs are listed in Table 2.




Table 1

TESTFUNCTIONS [Dixon & Szegd 1978b]

GP Goldstein & Price
BR Branin (RCOS)
H3 Hartman 3
H6 Hartman 6
S5 Shekel 5
S7 Shekel 7
Shekel 10




Table 2

Samples of size 1000

Single Multi Level Multi Level
Linkage Single Linkage Mode Analysis

Function

l.m.
1.s.
f.e.
lem.
lese
f.e.
“lem.
“l.s.
f.e.
lem.
1l.s.
f.e.
lem.
l.s.
f.e.
l.m.
l.s.
'f.e.
l.m.
l.s.

f.e.

number of local minima found

number of local searches performed

number of function evaluations required (not including the 1000

function evaluations required to determine the function values of the

sample points)

global minimum was not found in one of the four runs




In one of the four runs the methods did not find the global minimum of
both the S7 and the S10 test. The reasons for this are twofold. Firstly,
the global minimum of these functions is relatively close to other local
minima. Secondly, one of the four samples happened to be a very unfortunate
one: the regions of attraction surrounding the region of attraction of. the
global minimum contained sample points whose function values were smaller
than the smallest function value attained in a sample point in the region
of attraction of the global minimum.

The number of local seérches started unnecessarily is the largest for
the test functions H3 and H7. This is due to the fact that these functions

are badly scaled. The results obtained on these functions can be improved

considerably using the Hessians at the local minima found.

On the basis of Table 2, we decided to continue the computational
experimenté with Multi Level Single Linkage. This method has been'c0mpared
with a few leading contenders whose computational behaviour is described in
[Dixon & Szegd 1978b]. In this reference methods are compared on the basis
of two criteria: the number of function evaluations and the running time
required to solve each of the seven test problems. To eliminate the
influence of the different computer systems used, the running time required
is measured in units of standard time, where one unit corresponds to the
running time needed for 1000 evaluations of the S5 test function in the
point (4,4,4,4). '

Since both the number of function'évaluations and the units of

standard time required are sensitive to the peculiarities of the sample at
hand, the results reported for Multi Level Single Linkage are the average
outcome of four independent runs again. As before we chose T = v = 0 and

0 = 4 in our implementation of Multi Level Single Linkage. However, we now
applied Multi Level Single Linkage to 20% of the sample points (y = 0.2)
(the reason that we set y equal to 0.1 before was that a major reduction of
the sample is necessary for successful application of Single Linkage).
Furthermore, it did not seem reasonable to apply Multi Level Single Linkage
to samples of fixed size. After an initial sample of size 100, we increase
the sample and applied Multi Level Single Linkage iteratively until the
expected number of minima (in the Bayesian sense - see Theorem 2, Part I)

exceeded the number of different minima found by less than 0.5.




In Tables 4 énd Table 5 we summarize the computational results of the
methods listed in Table 3 (except for Multi Level Single Linkage, the

results are taken from [Dixon & Szegd 1978b]).
Table 3

Methods

Trajectory method [Branin & Hoo 1972].

Random direction method [Bremmerman 1970].

Controlled Random Search [Price 1978].

Method proposed in [Tdrn 1976, 1978] based on concentration of the
sample and density clustering.

Method based on reduction, density clustering and a spline
apbroximation of the distribution function ¢ of f [De Biase & Frontini
1978].

Multi Level Single Linkage.

Table 4

Number of function evaluations

Function

H3

- - - - 5020 4860
300 160 4201, 515 4051, 336L

2500 1800 2400 7600 4900 4400

2499 1558 2584 3447 3606 3874
378 597 732 807 788 1160
148 206 197 487 432(*) 564

¢ the method did not find the global minimum

the global minimum was not found in one of the four runs




Table 5

Number of units standard time

Function

H3

20

13
15 14 16 ~ 20
0.15 0.25 0.5 1(*)

: the method did not find the global minimum

the global minimum was not found in one of the four runs

As before Multi Level Single Linkage did not find the global minimum
of the S7 test function in one of'the four ruhs. This failure could have
been prevented by chosing 0 to be equal to 2. In that case, the
computational results of the method obtained on the test functions GP, BR,
H3, H7 and S5 turn out to be comparable to the numbers given in Table 4 and
Table 5. HoWever, the number of function evaluations required for the
functions S7 and S10 increase by a factor of 2 and 3 respectively. This is
due to the fact that all minima of both-functidns are found in an early
stage if o equals 2. However, the sample must then be increased
considerably before our stopping criterion is satisfied. _

Since the stopping rules involved in thelmethods'listed in Table 3 are
totally different, the comparison between the methods can never be,éntirely

fair: there is always a trade—off between reliability and computational

effort that is hard to measure consistently. However, we feel confident

that Multi Level Single Linkage is one of the most reliable and efficient

methods preseﬁtly available.




The most important disadvantage of the methods dealt with in Part I

and Part II is that their performance still depends heavily on the
dimension n of the space over which the minimization is performed. (This
problem did not arise in our analysis, since we always treated n as a
constant.) The problem is most obvious in the Mode Analysis approach since
in high dimensional spaces all cells will be neighbours of each other
except if the sample is very large. But in (Multi level) Single Linkage the
problem is equally existing.

This 'curse of dimensionality' [Dixon et al. 1976] is present in all
efficient methods that have been proposed for global optimization. A reason
to believé thét it could be countered in principle is that the Bayesian
analysis described in Section 2 of Part I does not depend on n. Apart from
the fact that a local search procedure may be less efficient in higher
dimensional space, the only parameters which influence the behaviour of
Multistart are the number of local minima and the relative sizes of its
regions of attraction. Moreover, the number of local searches required to
find the glbbal minimum only depends on the relative size of the region of
attraction of the global minimum which does not necessarily depends on n.
However, to avoid the problems occurring in high dimensional spaces an
approach basically different from the one described here seems to be
necessary.

Another way in which the methods might be improved is suggested in the
observation that it seems natural to change the sampling distribution as a
result of what has been learned in previous iterations. Most results can
probably be generalized to hold for a wide class of sampling distributions.
It seems difficult, however, to adapt the Bayesian analysis and the
resulting stopping rules so as to hold for distributions different from the
uniform one.

We conclude that the approach suggested to solve the global
optimization problem has many attractive properties, but that further
research will be necessary before practical global optimization problems,
especially in high dimensional spaces, can be solved with true efficiency.
Thus, it seems that global optimization, an area of research which has been
neglected for such a long time, will continue to offer interesting

challenges to researchers from widely differing backgrounds.
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