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PROBABILISTIC ANALYSIS OF ALGORITHMS

by

A.H.G. Rinnooy Kan

Abstract

An introductory and selective review is presented of results obtained through

a probabilistic analysis of combinatorial algorithms. The emphasis is on

asymptotic characteristics of optimal solution values, and on the relative and

absolute error analysis for simple heuristics.

1. INTRODUCTION

Suppose that two thieves meet on a regular basis to divide the proceeds of
their joint effort. Each stolen object has a specific dollar value and has to
be assigned to one of the two. For obvious reasons, they are interested in a
quick and fair partitioning scheme.

In spite of its apparent simplicity, the above combinatorial problem is not
easy to solve if we insist on an optimal solution, i.e., one in which the
difference between the values assigned to each thief is as small as possible.
As is the case with most practical problems, this problem too is known to
belong to the class of NP-complete problems. This implies that any opti-
mization method for its solution could be expected to perform very poorly on
some occasions: more formally, its worst case running time is likely to grow
exponentially with problem size.

Hence, in choosing a solution scheme, the thieves will be forced into an

unpleasant trade-off between two features of algorithmic quality: the

comloutational effort (the smaller running time, the better) on one hand and

the computational result (the smaller deviation from optimality, the better)

on the other hand. Complexity theory indicates that we cannot insist on a

simultaneous absolute guarantee for both, i.e., on a fast (polynomially

bounded) running time as well as a zero deviation from the optimal solution

value.

One possible way out of this dilemma is to change the perspective on the

analysis by no longer demanding an absolute guarantee. For practical purposes

an algorithm that, with respect to both effort and result, does well in the



majority of cases or even on average might be perfectly acceptable.

Probability theory provides the natural setting for such an analysis of 

algorithms. This analysis starts from a specification of what an average

problem instance would look like, in terms of a probability distribution over
the class of all instances. The running time and the solution value of a
particular algorithm are then considered as random variables, whose behaviour
can be studied and evaluated. This approach can therefore be viewed as the
analytical counterpart to the familiar experimental analysis in which an
algorithm is tried out on a set of supposedly representative test problems and
evaluated statistically. Here we obtain the rigor of mathematical analysis at
the expense of a certain naivete, in that only relatively straightforward
solution methods can be analyzed probabilistically in full detail.

Although the probabilistic analysis of algorithms has only recently become an
active research area, it has already generated an impressive number of

publications. A concise survey of this area would require the prior

introduction of many techniques from probability theory and could hardly do
justice to the diversity of ideas and approaches that one finds in the
literature. Fortunately, a recent annotated bibliography [Karp et al. 1984]
provides an up to date survey of the available articles and publications. In
view of the existence of this source of detailed information, no attempt at
completeness will be made in what follows below. Rather, the nature of the
analysis and of the results will be illustrated by some typical examples.

In Section 2, we consider the problem of the two thieves in more detail. It
is, of course, none other than the well known PARTITION problem in which one
seeks to minimize the size of the largest share. In Section 3, we review some
representative results that are known for problems defined in the Euclidean 
plane. In Section 4, we examine the fertile area of optimization problems

defined on graphs and networks. In Section 5, we indicate some possibilities
for future work in this very lively research area.

We conclude this introduction by a short digression on modes of stochastic 

convergence, clearly an essential concept if we want to analyze the notion of

a random variable such as the error of a heuristic going to 0 with increasing

problem size.

Almost sure convergence of a sequence of random variables xn to a constant c

by definition means that Pr{limn+.xn = c} = 1; it is a strong form of

stochastic convergence and implies the weaker convergence in probability,



which stands for lim PrOx cl > cl = 0 for all e > 0. The reversen
implication holds under the additional assumption that, for all c > 0,

Pr{lxn -cl > c} < co .
j=1

Similarly, convergence of yn o c  in expectation,

limn+.1E(xn) - ci

•e•

(1)

(2)

also implies convergence in probability, with the reverse implication holding
under additional boundedness assumptions on

2. THE PARTITION PROBLEM

Perhaps the simplest possible way to solve the PARTITION problem of the two
thieves is to allow each thief to choose a particular item in turn until they
have all been Assigned. If the J-th item has value a (j = 1, ..., n), then
this amounts to ordering the items according to decreasing aj values
a(n) > a(n-1) > > a(1), (n) (n-2)one thief receives a + a + ..., the other

This is clearly a fast heuristic method that may, however, produce a very
inequitable result: in the worst case, the first thief may receive up to 50
percent more than the optimal partition would grant him. (Take al = 2,

-aa21 a214.1 = 2 1 (i > 1.) How about its average case behaviour? To answer
that question, we specify a probability distribution over all problem
instances by assuming that robberies are so frequent and haphazard that the aj
can be thought of as independent draws from a uniform distribution on, say,
[0,1]. (Actually i many of the results mentioned below hold under much more
general assumptions, though independence is always required.)

Under the uniform assumption, the optimal solution value Z
OPT
n of the partition

problem (i.e., the smallest possible size of the larger share) turns out to be
almost surely (a.s.) asymptotic to the lower bound (E a)/2

OPT
-n

1 (a.s.) (3)

This result provides a first example of asymptotic probabilistic value 
analysis for n large enough, the optimal solution value 

ZOPT can be guessed



with increasing (relative) accuracy. What about the heuristic solution value
ZH, i.e. the size of the larger share under the heuristic scheme proposed

above? We know that

—n
a(2))

MOW
• • •

and it is not hard to show that the difference between Zn and (

converges to 1/4, so that also

and hence

—n

(I3m1 2j)/2
1 (a.s.)

(4)

a.)/2 a.s.
iml —J

(5)

ZH
—n
Z°PT (a.s.) 6)

—n

This implies that the heuristic is asymptotically optimal: its relative error

(i.e., its percentage deviation from the optimum) (ZnH — Z
OPT
nZ

OPT
n 

a.s. goes

to 0. Hence, a probabilistic analysis leads to a much more optimistic

conclusion than a worst case oriented one.

H What about the absolute error Z — Z
OPT or the absolute difference between then n

two shares? Neither of these two quantities goes to 0 for the above heuristic,
so there is room for improvement. A slightly more sophisticated scheme would
be to allow each thief in turn to select items until the value of his share
exceeds the value of the current share of his colleague. Even from a worst

case point of view, this is a much more reasonable approach: the larger share
can never exceed its smallest possible size by more than 16 2/3 percent

[Graham 1969]. (For a worst case example, take e.g., al m a2 3,

a3 m a4 = a5 m 2.) In a probabilistic sense, the difference is even more

impressive. Of course, the relative error again goes to 0, but the absolute

difference between the shares d (and hence the absolute error) also satisfie—n

dH 0
—n (a.s.

[Frenk and Rinnooy Kan 1983]. To prove this result one observes that

d
H 

< max{dH
1 

— a
(1) 

a
(1)

}

(7)

(8)



which, after repeated application, yields that

d
H

-n xl<k<n
{a(k)

a(16n1) maxla( )

a(j)1

I[dn] a(j)

i=1

(9)

for all 6 > O. The first term converges a.s. to 6 and can therefore be made
arbitrarily small; for any fixed 6, the second term converges a.s. to 0 since

= 0(n) and a(n) is o(n) for every distribution with finite firstj=1
moment.

The two results presented so far demonstrate the importance of the theory of
order statistics for the analysis of heuristics that involve the sorting of
numbers; priority rules generally fall into this class.

Can we do still better? One weakness of a result such as (7) is its asymptotic 
nature, i.e. its validity only for sufficiently large values of n. At the very
least, one would like to know the rate at which dH converges to 0. It can be-n
shown [Frenk and Rinnooy Kan 1984] that

dH
-nlim supn+w 

log log nin < a.s.), (10)

and a simple argument shows that the  rate of convergence for this heuristic
has to be at least 1/n in expectation [Karp, 1984]. This rate is good but not
quite good enough: indeed, it is also known that d PT°

' 
the smallest possible-n 

absolute difference, satisfies

OPT
-n <lim supn+w n22 -n (a.s.)

[Karmarkar et al. 1984]. Hence, the exponential effort that may be required •
for the computation of the optimal partition is at least rewarded by an
exponential decrease to 0 of the difference between the two shares. Can this
also be achieved a.s. in polynomial time?

The answer to this question is unknown, but the previous heuristic can again
be improved upon by essentially assigning two items at a time and compensating
for their difference. More precisely, in the first iteration a(n) would be
assigned to one thief, and a n  to the other. The two terms would then be
replaced by a single item of value a(n) - and the process would be



repeated on the new set of n-1 items until only one

represents the difference between the two shares. A

procedure establishes the partition in terms of the

item remains; its value

simple backtracking

original items.

In the worst case, this heuristic method is not better than the previous one.

The probabilistic analysis of its performance is quite difficult: as on so

many other occasions, each step in the algorithm conditions the probability

distribution encountered in the succeeding steps in a complicated fashion.

Since the difference of two independent uniformly distributed random variables

follows a triangular distribution, there is no distributional invariance 

throughout the steps of this method and yet such invariance is an essential

prerequisite for a successful analysis. One way to overcome this kind of

obstacle is to change the algorithm so that (with high probability) the value

produced will not be affected but its modified behaviour can be analyzed

rigorously. In this particular case, the new versions of the algorithm works

roughly as follows. In iteration m, it deals with numbers in an interval

[0, m.], which is first partitioned into subintervals of size %.1.1. The

original differencing method is then applied to random pairs of numbers taken

from the set Si found in the i-th subinterval (i = 1, ..., 401/%144), until a

set S C [0, al00.1] is obtained and at most one of the numbers originally in Si

remains. The original differencing method is then used on the set of remaining

numbers to reduce them to a single number in [0, c6.4.1].

Now, before the method can be applied recursively to [0, 06+]], the issue of

distributional invariance has to be addressed. To do so, we assume

(inductively) that S = u Si was divided into two subsets, a subset G of 'good'

points that can be assumed to come from a uniform distribution over [0, am]

and a subset B of 'bad' points. During the application of the differencing

method to the sets S the numbers entering S are labeled good only if they

are obtained as the difference of two good numbers in Si. As a result, we know

that the good numbers in 5' = uS' follow a distribution related in the

triangular one. In a final step, a subset of these numbers is relabeled 'bad'

so that the remaining good ones are again uniformly distributed over

[0, am+1]. All that remains to be shown is that for appropriate choices of am,

enough good numbers remain for the method to reach the number of iterations

that is required for a good result.

Through this approach, it could be established in Karwarkar & Karp 1982] that



lim sup 
n+co -log n

d
H

-n
< (a.s.) (12)

Thus, in 0(n log n) time this method guarantees a rate of convergence that is
superpolynomial, yet subexponential. It is tempting to conjecture that this is

best possible for a polynomial time heuristic!

We have dealt with this simple example in some detail, since it exhibits many
of the ingredients typically encountered in a probabilistic analysis:

a combinatorial problem that may be difficult to solve to optimality (the

MED

PARTITION problem is NP-complete);

a probability distribution over all problem instances, that generates the
problem data as realizations of independent and identically distributed 
(i.i.d.) random variables (the a are independent and uniform over [0,1]);
a probabilistic value analysis that yields a description of the asymptotc
optimal solution value as a simple function of the problem data
OPT(Z /(n/4) 1 (a.s.));-n

simple, fast heuristics whose relative error or absolute error may decrease
to 0 in some stochastic sense or may be otherwise well behaved;

- a rate of convergence analysis that allows further differentiation among

the heuristics.

The state of the art for a particular problem class can conveniently be
monitored by means of the above concepts. Consider, for example, the
MULTIKNAPSACK problem max{Eicixi I Ejaiixi < bi (i = 1, ..., m),

{Oa} (j 1, n)}, which is a generalization of PARTITION (take
x c

1 c = a 0 - 1, n), b
(4=1 alj)/2).

Let us assume that the c and a are i.i.d. uniform on [0,1] and that
bi = nBi is constant. As above, we are interested in the optimal solution
value as a function of B = (B1, 8101) and in heuristics whose error
vanishes asymptotically with high probability.

The analysis of this problem in [Meanti et al. 1984] is of interest in that
exploits the close relationship (in probability) between certain difficult
nonconvex combinatorial optimization problems such as MULTIKNAPSACK and their
convex LP relaxations obtained by replacing the constraints x e {0,1} by
0 < xj 1 1. It is easy to see that the absolute difference between the



solution values of these two problems is bounded by m, so that the relative

error that we make by focusing on the LP relaxation goes to O. But the LP

relaxation (or, rather, its dual) is much easier to analyze: its value is

given by

with

j( A) = 11.1Xibi + max{E.

where the maximization

•
- Ein 

=1 
X
iij
a ) I 0 < x. < 1}

problem in (14) is solved by setting

1 if c.

) = 10 othI

Results from convex analysis can

solution value Z
OPT
 satisfies

zOPT

where

M n L(X)

1 IX A) = i.1 — Ec
T

A)n -

E X a .i=1 i-ij 2 0
ise

(13)

(14)

(15)

then be used to establish that the optimal

(a.s.), (16)

(A) (17)

is a convex, twice differentiable function with a unique minimum that can

actually be computed in closed form in some simple cases (e.g., for m=1).

Not surprisingly, successful heuristics for this problem also have a strong LP

flavor (cf. [Frieze & Clarke 1981]). A natural one to consider is the

generalized greedy heuristic in which xi's are set equal to 1 in order of non-

increasing ratio's c
j 
/Em

1 
X
i 
a If the X are chosen to be equal to the1= 

values minimizing the right hand side of (16), then the relative error of this

greedy method goes to 0 a.s. A heuristic whose absolute error vanishes

asymptotically is not known, however, and further analysis of the model

reveals puzzling differences between the minimization and maximization version

of MULTIKNAPSACK that still have to be resolved. None the less, the

probabilistic analysis of the model yields surprisingly high returns.

•

4
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What are the strong and the weak points of the approach? On one hand, the

algorithmic insights nicely complement the more traditional worst case

analysis, with an emphasis that is not so much on an exact guarantee that a

certain running time or a certain error will not be exceeded, as on an

explanation why the algorithm may perform so much better in practice than the

worst case analysis would seem to suggest. On the other hand, the results are

obtained under probabilistic assumptions that can always be questioned, and
are usually only valid for 'sufficiently large' problem sizes, with little
indication of how large these might have to be. Rate of convergence results
somewhat compensate for this latter deficiency.

Apart from its contribution to error analysis, a probabilistic value analysis
may, however, yield additional benif its. An estimate of the optimal solution
value can, for instance, be used in a branch and bound procedure to replace
weak upper or lower bounds, at the possible expense of sacrificing optimality

but at the gain of a significant improvement in running time [Derigs 19841. Or
it may be used in a  two stage stochastic programming problem, where the first

stage decision determines the value of some parameters of the second stage

problem. A probabilistic value analysis may then reveal how the second stage

solution value depends on these parameters so that they can be given optimal

values in the first stage [Stougie 1985].

As a fist step towards a classification of results in probabilistic analysis,

let us note that the PARTITION problem and its generalization, the

MULTIKNAPSACK problem, both have a problem input that consists of numbers. The

probabilistic analysis of algorithms for these problems usually assumes that
these are independently generated from a fixed distribution. To close this
section, we briefly review some typical results that were obtained for other

problems in this category.

The MULTIMACHINE SCHEDULING problem is an appropriate starting point, since it

can be viewed as yet another generalization of PARTITION: it is the problem to

distribute jobs with processing times al, ..., an among m identical machines

so as to minimize the maximal sum of processing times assigned to any machine

(the makespan); the PARTITION problem corresponds to the case that mp=2.
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The second heuristic proposed for PARTITION can be viewed as a special case of

the LPT (Largest Processing Time) heuristic for MULTIMACHINE SCHEDULING, in

which jobs are assigned to the earliest available machine in order of nonin-

creasing aj. If the aj are i.i.d. uniform on [0,1], the proof technique based

on order statistics can again be applied to show that the absolute error of

the LPT heuristic goes to 0 a.s.; the optimal solution value is asymptotic to

n/m. The order in which jobs are assigned to machines turns out to be really

essential: an arbitrary list scheduling heuristic will have a relative error

that goes to 0 a.s. but an absolute error that does not. The Karp-Karmarkar

heuristic can be extended to the case of arbitrary m to improve the rate of

convergence to optimality from 1/n for the LPT rule to n
-log n

We refer to

[Coffman et al. 1983] for additional references.

The famous BIN PACKING problem is in a sense dual to MULTIMACHINE SCHEDULING:

here, the makespan is fixed (say, equal to 1) and the objective now is to find

the minimum number of bins (machines) into which the items (jobs) of size al,

an can be packed. The probabilistic analysis of this problem is again

usually carried out under the assumption that the jobs are i.i.d. uniform on

[0,1]. It has yielded many beautiful results. To give one example, consider

the heuristic that inspects the items in order of decreasing aj and matches

each item ak with the largest unassigned item at satisfying ak + at < 1. To

analyze the performance of this heuristic, we consider the set of all aj on

the interval [0,1] and replace each item ak larger than 1/2 by 1 - ak, marking

it with a '+'; the items smaller than 1/2 get a '-' sign. The heuristic now

amounts to pairing each with the largest '-' to its left; the number of

poorly filled bins (i.e., bins with only one item) is related to the excess of

lif's over '-'s. But the sequence of '+'s and '-'s can be viewed as generated

by flips of a coin, and results from the theory of random walks can be invoked

to show that the expected total number of bins used is 12/2 + 06/n); since the

expected optimal number of bins is known to be n/2 + n(in), the relative error

of this heuristic goes to 0 in expectation [Frederickson 1980; Knodel 1981].

This analysis reveals an interesting connection between matchin problems on

the interval [0, 1/2] and bin packing methods. In a similar vein, a connection

can be established between  on line bin packing methods (i.e., methods in which

Items arrive in arbitrary order and have to be irrevocably assigned to a bin

right away; the previous method is off line) and matching problems on a
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square, where one of the dimensions corresponds to item size and the other

dimension represents time, i.e., it indicates the order in which the items

arrive for packing. In this case, feasibility dictates that each point can

only be matched to a  right upward neighbour; this matching problem was studied

in a different context in [Karp et al. 1985], and the clever extension and

refinement of these results to on-line bin packing can be found in [Shor

1984]. Further references can be found in the useful survey [Coffman et al.

1983] that was already quoted above.

A final number problem that deserves to be mentioned is LINEAR PROGRAMMING,
not because it is a hard combinatorial problem (the Khachian method solves it

in polynomial time) but because probabilistic analysis played such a vital

role in understanding the excellent average performance of the simplex method.
The history of the analysis illustrates the importance of an appropriate

probabilistic model: ultimately, the concept of a random polytope as being

generated by m fixed hyperplanes in 0 and in coin flips to determine the

direction of the corresponding inequalities reduced the computation of the
average number of simplex pivots to a combinatorial counting argument. Within
this model, various simplex variants admit of a quadratic upper bound on the
expected number of iterations (including those in Phase I), which takes us
very close to the behaviour observed in practice [Haimovich 1983; Adler et al.
1983; Adler & Megiddo 1983; Todd 1983].

In the next section, we turn to problems with a geometric flavor, whose
probabilistic analysis involves random sets of points in the Euclidean plane.

3. EUCLIDEAN PROBLEMS

In this section we are concerned with problems whose input includes a set of.n

points in the Euclidean plane. The most famous problem of this type is surely

the TRAVELLING SALESMAN problem, which is to find the shortest tour connecting

the n points. It has a venerable history, of which the probabilistic analysis

forms one of the most recent chapters (see [Lawler et al. 1975]).

To carry out such an analysis, one usually assumes the points to be uniformly

distributed over a fixed region, e.g., the unit (1 x 1) square. Under such an

assumption, it is not difficult to arrive at an intuitive probabilistic value
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analysis for the TRAVELLING SALESMAN problem. For n large, the length of an

optimal tour through a 2 x 2 square with 4n points will be approximately 4

times as large as the optimal tour in a unit square with n points. Scaling

back the 2 x 2 square to a unit one, we conclude that the optimal tour

length Z(1)IPT is likely to grow proportionally to In. Indeed, a heuristic from

[Few 1955] shows that its value is bounded deterministically from above

by A2n), and it is not hard to show that there exists a positive constant c

such that it is a.s. bounded by cin from below.

The actual convergence argument is much more difficult and was first provided

in Beardwood et al. 1959]: as expected,

OPT
—n
-7717 (a.s.) (18)

where is a constant that has been estimated empirically to be about 0.765.

The proof of this result involves a technique useful in a broader context:

rather than viewing the problem on a fixed set of n points, uniformly

distributed on a square, they are assumed to be generated by a Poisson process 

of intensity 1. The advantage is that point sets in disjoint regions are now

fully independent; the disadvantage that an expression for, say, the expected

routelength F(t) in a square [0,t]x[0,t] has to be converted back into a

result for the expected length EZ(*),PT of a tour through n points using the

relation

co 
4.2 ( 2\n

F(t) =E tEZO e-'n-1 —n ni

Certain Tauberian theorems allow one to do precisely that.

In the specific case of the TRAVELING SALESMAN problem, F(t) is computed

through the use of a heuristic that embodies the intuitive insight mentioned

above. The square [0,t]x[0,0 is divided into m2 equal size subsquares; a tour

in each subsquare has expected length F(t/m). These tours can be linked to

form a feasible solution to the original problem by adding segments of length

0(tm), and hence

F(t) < m
2 
F(t/ ) + 0(tm) (20)
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It is not hard to see that this imples that F(t)/t2 converges to a constant

and to conclude from (19) that E
PT

Z° Bin. The argument is completed by
OPT -11proving the variance of Z to be 0(1) through the Efron-Stein inequality;--n.

Chebyshev's inequality and the Borel-Cantelli lemma then yield (18) [Karp &

Steele 1985].

Given the result of the probabilistic value analysis, it now becomes

attractive to search for heuristics whose absolute error is o(/n); their

relative error then goes to 0 almost surely. As in the case of other Euclidean

problems, partitioning heuristics do precisely that. Generally, in these

heuristics the square is appropriately partitioned into subregions (e.g.

rectangles), subproblems defined by the points in each subregion are analyzed

separately, and a feasible solution to the problem as a whole is composed out

of the separate results.

Far the TRAVELLING SALESMAN problem, one partitioning approach is to execute

an alternating sequence of horizontal and vertical cuts through the point with

current median vertical and horizontal coordinate respectively, until the

resulting rectangles contain no more than '(log n) points. Each of these

subproblems is solved to optimality by some enumerative technique (say,

dynamic programming, which takes 0(n ) time per rectangle, and hence 0(n
1e
)

time overall, for all e > 0). The resulting tours define a connected graph

with even degree at each point; the Euler walk that visits each edge of this

graph can be converted into a tour of no greater length by eliminating

multiple visits to one point. The difference between the length of this tour

and the optimal one can be shown to be of the same order as the total

perimeter of the rectangles generated, which is easily seen to be o(in) in

this case. Thus, the relative error of the heuristic goes to 0 a.s. [Karp

1977, Karp and Steele 1985].

Not much is known about the rate of convergence to optimality of this

heuristic, nor is any heuristic known whose absolute error goes to 0

asymptotically. The partitioning approach, however, has been generalized to a

variety of other Euclidean problems. Consider, for example, the CAPACITATED

ROUTING problem, where the points have to be equally distributed among

salesmen, each of whom can visit no more than q customers before returning to
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a common depot. If we assume that the i-th customer is at distance ri from the

depot (ri i.i.d., with finite first moment Er), then it is not hard to prove

that the optimal solution value satisfies

E
r 

rPT r OPT i=1 ilZO > maxIT , In -- n q (21)

w
here T

OPT
is the length of a single travelling salesman tour through the n

customers. A tour partitioning heuristic, in which Tn is optimally divided

into (n/q] consecutive segments containing q customers each, can be shown to

yield a value no more than the sum of the two terms on the right hand side of

(21), so that - in view of (18) - en is a.s. asymptotic to 2nEr/q. As a

byproduct of this result, one obtains that the tour partitioning heuristic (of

the 'route first, cluster second') type has relative error going to 0 a.s.. A

similar result holds for certain region partitioning heuristics ('cluster 

first, route second'): as indicated above, their absolute error is dominated

by the total perimeter of the subregions generated, which in this case is
OPTo(i(n/q)) and hence vanishes asymptotically relative to Z

All these results presuppose that q is a constant that does not grow with n;

if it does, than the results hold as long as q = o(in). Above this threshold,
OPT
Z behaves as in (18), since at that point the total cost of moving among

the groups of customers, Tn, starts to dominate the total cost 2E 1 ri/q of

reaching these groups from the depot (cf. (21)).

The ubiquitous presence of partitioning techniques in probabilistic Euclidean

analysis points in the direction of a common generalization, which was indeed

provided in [Steele 1981]. There, (18) is generalized to problems of arbitrary

dimension, provided that the objective function is subadditive on sets of

points (and that a few other technical conditions are satisfied). The

TRAVELLING SALESMAN problem is one example the MATCHING problem (find the

segments linking each point to a neighbour, of minimum total length) is

another one: see [Papadimitriou 1978] for a probabilistic value analysis and a

heuristic that together establish the optimal solution value to be a.s.

asymptotic to cin, with c e [0.25, 0.40106].

We close this section by discussing an interesting class of problems that

cannot quite be handled by Steele's techniques, i.e. LOCATION problems, in
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which k depots have to be located so as to minimize the average distance

between each point and its closest depot (the Iv-MEDIAN problem) or the maximum

of these distances (the k-CENTER problem). The probabilistic value analysis

for both problems lead to surprisingly similar results, provided that k =

0 (n/log n) (the case k = an is partially open; see [Hochbaum & Steele 1981]).

Both optimal solution values are asymptotically proportional to lbik,

albeit for different constants of proportionality.

The analysis leading to these results is of special interest, since it relies
•heavily on the similarity between the original (discrete) problem for large n

and the continuous problem in which customer demand is not concentrated in a

finite set of points but spread uniformly and continuously over the entire

region. A simple partitioning heuristic in which a depot is located in each of

k nonempty subsquares of size 1/1/k by lbik each already provides an 0(1/1/k)

upper bound on both optimal solution values. An asymptotically optimal
heuristic, however, is only obtained by partitioning the region in regular

jhexagons (the honeycomb heuristic), with the constants of proportionality
being determined by the optimal solution value of the continuous problem with

k=1 over one such hexagon. This heuristic actually solves the continuous
problem to optimality, and a detailed error analysis shows that, for n
sufficiently large its relative error in the discrete case becomes
vanishingly small [Haimovich 1984, Zemel 1984].

4. GRAPHS AND NETWORKS

We now turn to the rich area of combinatorial optimization problems defined on
graphs and networks. One of the reasons for the wide variety of probabilistic
results for this, class of problems is the existence of a substantial theory
dealing with random graphs. There are two popular definitions of this concept:
Gn,p is defined to be the (undirected) graph for n vertices for which each of

the in(n-1) edges occurs independently with equal probability p; Gn is defined
n (n - 1)/2,by assuming that each of the 
( 

) undirected graphs on n vertices

occurs with equal probability (see [Bollobas 1985] for a survey of the

theory). Especially for structural graph optimization problems, in which we

are interested in graph properties that depend only on the node-edge incidence

structure, random graphs provide a natural probability distribution over the

set of all problem intances of size n.



17

Continuing in the spirit of the previous two sections, we again refer to [Karp

et al. 1985] for a list of recent references in this area and review only a

few typical probabilistic analyses of heuristics for NP-complete problems,

whose expected performance compares favorably with the limits set by worst

case analysis. In doing so, we (reluctantly) exclude many beautiful results on

problems of CONNECTIVITY and MATCHING that can be solved in worst case

polynomial time.

A typical example of a difficult structural problem is the CLIQUE problem of

finding a complete subgraph of G that has maximal size w(G). To carry out a

probabilistic value analysis of w(G ) for fixed p, we observe that then,p
expected number of cliques of size k in such a graph is equal to
(n) )/2.

We could expect the maximal clique of size k to occur when the40'
expected number is approximately equal to 1, i.e., when (from Stirling's

approximation of kl)

1 rnep
(
k
-1)/2

)
k 
-;WIZ k • (14)

The left hand side of (14) decreases very rapidly as k increases and passes

through the value 1 where

(k-1)/2nep

i.e. when

k = 2 1 glipn + 2 loglip - 2 log11 k + 1 (16)

so that, approximately, k k( p) with

k(n,p) = 2 1 - 2 logliploglipn + 2 log11p(e/2) + 1. (17)

This estimate turns out to be very sharp indeed. In [Matula 1976], it is

proved that, for all c > 0,

clim Prl[k(n p) 
_ i < zOPT

n+co w(G ) < k(n,p) +n p

•
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so that, for large enough n, the size of the largest clique can be predicted

to be one of two consecutive integers with high probability of success.

This precise probabilistic value analysis again encourages the search for a

fast heuristic whose absolute error compares favorably to 2 loglipn. Consider,

for instance, the sequential greedy algorithm, which considers the vertices of

G in arbitrary order and adds a vertex to the current clique if it is adjacent

to all its members. For an analysis of the performance of this method, one
observes that the expected number of trials to increase the clique size from j
to j+1 is 1/0, so that we might guess the ultimate clique size ZH to satisfy

Z —1 „ j _ 1 — 1/p
j=0 "P (19)

Z
H

loglip . (20)

A more precise analysis shows that, indeed this greedy approach a.s. yields a
clique of size (1/2 — c)Z

OPT
 [Grimmett and McDiarmid 1975]. Thus, the relative

error does not go to 0, but is almost surely close to 50 percent. (There is by
the way, no known polynomial time heuristic with any constant worst case bound
on the relative error.)

The above result has immediate implications for the problem to find the
INDEPENDENT SET in G of maximal size; it coincides with the maximal size
clique in the complement of G. Again, the sequential greedy approach, which
picks up each successive vertex that is not adjacent to any member of the

current independent set, produces an independent set whose size is a.s. close
to 50 percent of the optimal value. The COLORING problem, which is to
partition the vertices of G into the smallest possible number x(G) of

independent sets, is much harder to analyze: the asymptotic optimal solution

value Z
OPT
 = x(G ) is known for p = 1/2 [Korzanov 1980], though thatnop

(Russian) announcement has not been verified. The heuristic method, which

greedily finds an independent set as above, deletes it and repeats on the

remaining graph does poorly [McDiarmid 1979] but good enough to get within a

factor of (2 + c) a.s. [Grimmett and McDiarmid 1975].

The other class of structural graph problems for which probabilistic analysis

has been successful is the HAMILTONIAN CIRCUIT problem of searching for a
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simple cycle containing all vertices.. The emphasis here is more on conditions

under which such a cycle exists (e.g., a.s. in G when
1N = 

1 
n log n + 1E. n log log n + cn [Komlos and Szemeredi 1983]) and less on

the development of fast heuristics that, with high probability, would be

.successful in finding such a cycle if it existed. However, the heuristic

principle of extension and rotation has been applied to this class of problems

with considerable success [Posa 1976, Angluin & Valiant 1979]. The general

idea is as follows. Given a path of vertices (vo, vk), one of the

neigbours of vk, say w, sampled randomly and the edge {vk, w} is added to the

path. If w is not in the path, it is adjoined and the method is applied to w.

If w = v (0 < t < k-1), then the edge {v v 1} is removed from the path and
t' 2+ 

the method is applied to vt+1. If N exceeds the threshold by a sufficient

amount (e.g., N = cn log n, for large enough c) this method will be successful

with high probability.

We now turn briefly to number problems on weighed graphs, i.e., graphs with

weights on the edges, an area which mixes features addressed in Section 2 with

the theory of random graphs. Here, most results refer to problems that admit

of a worst case polynomially bounded algorithm. A typical example is provided

by the LINEAR ASSIGNMENT problem of minimizing 
Ei cin(i) 

over all permutations

it. If the cij are i.i.d. with distribution F, then a probabilistic value

analysis can be arrived at by viewing the problem as weighted matching problem

on a directed bipartite graph, with weights bij on edge (i,j) and dji on edge

(j,i) such that c = min{b ,d ). If we now remove all edges except the s

outgoing ones of minimal weight at each vertex and disregard edge orientations

in the resulting bipartite graph, a result by Walkup shows that a perfect

matching will be present with probability 1 — 0(1/n) if s=2 and 1 — 0(2—n) if

s > 2. Hence, Z
OPT
n is essentially determined by the small order statistics of

F. In the case that the c are uniform on [0,1], this yields that EePT < 3
Nor —

[Walkup 1979]; generally, EZ"' is asymptotic to nF-1(1/n) [Fret& & Rinnooy

Kan 1985].

Many other problems in this category have also been succesfully analyzed. For

instance, in [Frieze 1982], the MINIMUM. SPANNING TREE problem is studied under

the assumption that the graph is complete and the edge weights are i.i.d.

uniform on [0,1]; the expected optimal solution value is equal
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to r 1/k3 1.2202. We also refer to Perl 1977] for an analysis of thek=1
SHORTEST PATH problem; further references can be found in [Karp et al. 1985].

An NP-complete problem that belongs in this category is the ASYMMETRIC

TRAVELLING SALESMAN problem, defined on a complete directed graph. We refer to

[Steele 1985] for a probabilistic value analysis for a Euclidean variant of

this problem n. The optimal solution value is asymptotic to chi in

expectation; see also [Karp 1979] for a heuristic that patches the subcycles

appearing in the linear assignment relaxation together to achieve a relative

error going to 0 in expectation. Perhaps the most peculiar result has been

obtained for its generalization, the QUADRATIC ASSIGNMENT problem

Tn
maxIII1=1 1 =1/ =1 

c dkeikxit xij

In x
ij 

= 1 (
j=1 

• • • , ) , Xii e {0,1}1.

(j = 1, 000,

In [Burkhard and Fincke 1982; Frenk et al. 1982], it is shown that for this

problem with cij and 4, i.i.d., the ratio of the best and the worst possible
solution value tends to 1 in probability. It shows an unexpected side benefit

of probabilistic analysis, in that it clearly indicates how not to generate

test problems for an empirical analysis of heuristic solution methods!

5. CONCLUDING REMARKS

In this final section, we first discuss a limitation of the preceding survey

in that the probabilistic behaviour discussed there was only caused by factors

extraneous to the algorithm itself. The algorithm itself could also contribute

to the randomness of its outcome by containing random steps, i.e., steps whose

result depends partially on a random mechanism.

A very early example of an algorithm that flips coins is the quicksort method

for SORTING. In each step, the algorithm picks a number aj from the set

{al, ..., an} to be sorted; it divides the set into the subset smaller than aj

and the subset larger than a1, and 
repeats recursively on each subset of

cardinality greater than two. The worst case and best case running time of the

method are easily seen to be 0(n2) and 0(n log n) respectively; the average

running time is 0(n log n) under a variety of distributional assumptions but
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also under the assumption that for a fixed input the splitting number a. is

chosen randomly from the set of candidates. Notice that the behaviour of the

algorithm is now a random variable independent of any distributional

assumption, avoiding the always controversial issue of what a random instance

of a particular problem looks like.

The formal study of randomized algorithms is far from complete, and in

particular the real power of randomization remains a mysterious issue; for

instance, it is not clear to what extent (if any) the class of problems that

can be solved in randomized polynomial time (i.e. fast with high reliability)

strictly includes the class of problems that can be solved in worst case

polynomial time. A recent annotated bibliography [Maffioli et al. 1985]

provides a useful survey of the area. We restrict ourselves once again to a

discussion of a few examples that highlight the variety of results produced so

far.

Historically, PRIMALITY TESTING was the first successful application of

randomization. In the algorithm in [Rabin 1980], a number is submitted to k

tests and declared to be prime if it passes all of them, with the probability

of it being composite after all equalto 2—k. Such an algorithm is called a

Monte Carlo method, in contrast to a Las Vegas method in which the algorithm

never produces an incorrect answer, but may — with small probability — produce

no answer at all. The method for GRAPH ISOMORPHISM in [Babai 1979] is of this

nature. The two examples above are of special interest in that they concern

two problems whose computational complexity (polynomially solvable or NP—

complete) is still unknown.

Generally, randomization may produce a speed—up of a polynomial computation at

the expense of a little uncertainty, as for instance for a fast BIPARTITE

MATCHING algorithm in [Ibarra & Moran 1981] with a small probability of error,
,or an 0(IVI
2 
) expected time algorithm for CIRCUIT COVERING ([Itai & Rodeh

1978]) that with small probability will not terminate. For NP—hard problems,

there are other potential benefits. Statistical inference has been suggested

as a way to estimate the optimal solution value from a sample of (supposedly

independent) local minima, i.e., feasible solutions whose value cannot be

further improved by a local improvement method ([Dannenbring 1977]). And the

fashionable simulated annealing approach can be viewed as a randomized version
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of such a local improvement heuristic, in which neighbouring solutions that

decrease the quality of the current feasible solution are also accepted,

albeit with a small probability that is appropriately decreasing over time

([Kirkpatrick et al. 1983]).

It should be clear by now that the area of probabilistic analysis still

harbors many interesting research challenges. The purpose of the preceding

sections has, again, not been to provide an exhaustive review, but to provide

some typical examples that convey the flavour of this area. They have ranged

from the very complete insight we have into various solution methods for the

PARTITION problem to the less satisfactory state of the art for the CLIQUE and

the COLORING problem. Clearly, a lot of problems and a lot of algorithms await

investigation. It is not hard to formulate open questions for probabilistic

analysis; so far, however, it has turned out to be quite hard to came up with

satisfactory answers for any but the simplest heuristics.

A particularly fascinating possibility is the development of a complexity

theory that would lead to a class of problems for which solution to optimality

in polynomial expected time is as unlikely as the equality of P and NP. A

first step in that direction can be found in [Levin 1984], where a TILING

problem is introduced, together with a probability distribution over its

problem instances, such that any other problem with a (mildly restricted type

of) probability distribution is reducible to the TILING problem.

To establish completeness for other problems in this class is a major

challenge of considerable interest. After all, the reasonable average

behaviour of enumerative methods (and the remarkable success of a nonenumer-

ative method based on computations in an integer lattice [Lagarias & Odlyzko

1983]) to solve some NP-complete problems and the apparent impossibility to

find such algorithms for other NP-complete problems, still defy theoretical

explanation!
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